1
|
Naz M, Afzal MR, Qi SS, Dai Z, Sun Q, Du D. Microbial-assistance and chelation-support techniques promoting phytoremediation under abiotic stresses. CHEMOSPHERE 2024; 365:143397. [PMID: 39313079 DOI: 10.1016/j.chemosphere.2024.143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Phytoremediation, the use of plants to remove heavy metals from polluted environments, has been extensively studied. However, abiotic stresses such as drought, salt, and high temperatures can limit plant growth and metal uptake, reducing phytoremediation efficiency. High levels of HMs are also toxic to plants, further decreasing phytoremediation efficacy. This manuscript explores the potential of microbial-assisted and chelation-supported approaches to improve phytoremediation under abiotic stress conditions. Microbial assistance involves the use of specific microbes, including fungi that can produce siderophores. Siderophores bind essential metal ions, increasing their solubility and bioavailability for plant uptake. Chelation-supported methods employ organic acids and amino acids to enhance soil absorption and supply of essential metal ions. These chelating agents bind HMs ions, reducing their toxicity to plants and enabling plants to better withstand abiotic stresses like drought and salinity. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of heavy metal and abiotic stresses. Managed microbial-assisted and chelation-supported approaches offer more efficient and sustainable phytoremediation by promoting plant growth, metal uptake, and mitigating the effects of HMs and abiotic stresses.These strategies represent a significant advancement in phytoremediation technology, potentially expanding its applicability to more challenging environmental conditions. In this review, we examined how microbial-assisted and chelation-supported techniques can enhance phytoremediation a method that uses plants to remove heavy metals from contaminated sites. These approaches not only boost plant growth and metal uptake but also alleviate the toxic effects of HMs and abiotic stresses like drought and salinity. By doing so, they make phytoremediation a more viable and effective solution for environmental remediation.
Collapse
Affiliation(s)
- Misbah Naz
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Muhammad Rahil Afzal
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Shan Shan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Zhicong Dai
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Qiuyang Sun
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu Province, PR China.
| | - Daolin Du
- Jingjiang College, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
2
|
Huang N, Huang W, Wu J, Long S, Luo Y, Huang J. Possible opportunities and challenges for traditional Chinese medicine research in 2035. Front Pharmacol 2024; 15:1426300. [PMID: 38974044 PMCID: PMC11224461 DOI: 10.3389/fphar.2024.1426300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The drug development process is poised for significant transformation due to the rapid advancement of modern biological and information technologies, such as artificial intelligence (AI). As these new technologies and concepts infiltrate every stage of drug development, the efficiency and success rate of research and development are expected to improve substantially. Traditional Chinese medicine (TCM), a time-honored therapeutic system encompassing herbal medicine, acupuncture, and qigong, will also be profoundly impacted by these advancements. Over the next decade, Traditional Chinese medicine research will encounter both opportunities and challenges as it integrates with modern technologies and concepts. By 2035, TCM is anticipated to merge with modern medicine through a more contemporary and open research and development model, providing substantial support for treating a broader spectrum of diseases.
Collapse
Affiliation(s)
- Nanqu Huang
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Wendi Huang
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingjing Wu
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Sheng Long
- Cloud Computing Division, Jiangsu Hoperun Software Co., Ltd., Nanjing, Jiangsu, China
| | - Yong Luo
- National Drug Clinical Trial Institution, The First People’s Hospital of Zunyi, Third Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Juan Huang
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
3
|
Cini E, Crisponi G, Fantasia A, Cappai R, Siciliano S, Florio GD, Nurchi VM, Corsini M. Multipurpose Iron-Chelating Ligands Inspired by Bioavailable Molecules. Biomolecules 2024; 14:92. [PMID: 38254692 PMCID: PMC10813012 DOI: 10.3390/biom14010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Because of their capacity to bind metals, metal chelators are primarily employed for therapeutic purposes, but they can also find applications as colorimetric reagents and cleaning solutions as well as in soil remediation, electroplating, waste treatment, and so on. For instance, iron-chelation therapy, which is used to treat iron-overload disorders, involves removing excess iron from the blood through the use of particular molecules, like deferoxamine, that have the ability to chelate the metal. The creation of bioinspired and biodegradable chelating agents is a crucial objective that draws inspiration from natural products. In this context, starting from bioavailable molecules such as maltol and pyrogallol, new molecules have been synthetized and characterized by potentiometry, infrared spectroscopy and cyclic voltammetry. Finally, the ability of these to bind iron has been investigated, and the stability constants of ferric complexes are measured using spectrophotometry. These compounds offer intriguing scaffolds for an innovative class of versatile, multipurpose chelating agents.
Collapse
Affiliation(s)
- Elena Cini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.C.); (S.S.); (G.D.F.)
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell’Ambiente, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy; (G.C.); (A.F.)
| | - Alessandra Fantasia
- Dipartimento di Scienze della Vita e dell’Ambiente, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy; (G.C.); (A.F.)
| | - Rosita Cappai
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Sofia Siciliano
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.C.); (S.S.); (G.D.F.)
| | - Giuseppe Di Florio
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.C.); (S.S.); (G.D.F.)
| | - Valeria M. Nurchi
- Dipartimento di Scienze della Vita e dell’Ambiente, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy; (G.C.); (A.F.)
| | - Maddalena Corsini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (E.C.); (S.S.); (G.D.F.)
| |
Collapse
|
4
|
Rahman S, Rahman IMM, Hasegawa H. Management of arsenic-contaminated excavated soils: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118943. [PMID: 37748284 DOI: 10.1016/j.jenvman.2023.118943] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023]
Abstract
Ongoing global sustainable development and underground space utilization projects have inadvertently exposed many excavated soils naturally contaminated with geogenic arsenic (As). Recent investigations have revealed that As in certain excavated soils, especially those originating from deep construction projects, has exceeded regulatory limits, threatening the environment and human health. While numerous remediation techniques exist for treating As-contaminated soil, the unique characteristics of geogenic As contamination in excavated soil require specific measures when leachable As content surpasses established regulatory limits. Consequently, several standard leaching tests have been developed globally to assess As leaching from contaminated soil. However, a comprehensive comparative analysis of these methods and their implementation in contaminated excavated soils remains lacking. Furthermore, the suitability and efficacy of most conventional and advanced techniques for remediating As-contaminated excavated soils remained unexplored. Therefore, this study critically reviews relevant literature and summarize recent research findings concerning the management and mitigation of geogenic As in naturally contaminated excavated soil. The objective of this study was to outline present status of excavated soil globally, the extent and mode of As enrichment, management and mitigation approaches for As-contaminated soil, global excavated soil recycling strategies, and relevant soil contamination countermeasure laws. Additionally, the study provides a concise overview and comparison of standard As leaching tests developed across different countries. Furthermore, this review assessed the suitability of prominent and widely accepted As remediation techniques based on their applicability, acceptability, cost-effectiveness, duration, and overall treatment efficiency. This comprehensive review contributes to a more profound comprehension of the challenges linked to geogenic As contamination in excavated soils.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan.
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| |
Collapse
|
5
|
Rahman S, Saito M, Yoshioka S, Ni S, Wong KH, Mashio AS, Begum ZA, Rahman IMM, Ohta A, Hasegawa H. Evaluation of newly designed flushing techniques for on-site remediation of arsenic-contaminated excavated debris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112052-112070. [PMID: 37824052 DOI: 10.1007/s11356-023-30140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Excavated debris (soil and rock) contaminated with geogenic arsenic (As) is an increasing concern for regulatory organizations and construction stakeholders. Chelator-assisted soil flushing is a promising method for practical on-site remediation of As-contaminated soil, offering technical, economic, and environmental benefits. Ethylenediaminetetraacetic acid (EDTA) is the most prevalent chelator used for remediating As-contaminated soil. However, the extensive environmental persistence and potential toxicity of EDTA necessitate the exploration of eco-compliant alternatives. In this study, the feasibility of the conventional flushing method pump-and-treat and two newly designed immersion and sprinkling techniques were evaluated at the laboratory scale (small-scale laboratory experiments) for the on-site treatment of As-contaminated excavated debris. Two biodegradable chelators, L-glutamic acid-N,N'-diacetic acid (GLDA) and 3-hydroxy-2,2'-iminodisuccinic acid (HIDS), were examined as eco-friendly substitutes for EDTA. Additionally, this study highlights a useful post-treatment measure to ensure minimal mobility of residual As in the chelator-treated debris residues. The pump-and-treat method displayed rapid As-remediation (t, 3 h), but it required a substantial volume of washing solution (100 mL g-1). Conversely, the immersion technique demonstrated an excellent As-extraction rate using a relatively smaller washing solution (0.33 mL g-1) and shorter immersion time (t, 3 h). In contrast, the sprinkling technique showed an increased As-extraction rate over an extended period (t, 48 h). Among the chelators employed, the biodegradable chelator HIDS (10 mmol L-1; pH, 3) exhibited the highest As-extraction efficiency. Furthermore, the post-treatment of chelator-treated debris with FeCl3 and CaO successfully reduced the leachable As content below the permissible limit.
Collapse
Affiliation(s)
- Shafiqur Rahman
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Makoto Saito
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shoji Yoshioka
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Shengbin Ni
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Kuo H Wong
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Zinnat A Begum
- Department of Civil Engineering, Southern University, Arefin Nagar, Bayezid Bostami, Chattogram, 4210, Bangladesh
| | - Ismail M M Rahman
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima, Fukushima City, 960-1296, Japan
| | - Akio Ohta
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| |
Collapse
|
6
|
Cappai R, Fantasia A, Barone G, Peana MF, Pelucelli A, Medici S, Crisponi G, Nurchi VM, Zoroddu MA. A family of kojic acid derivatives aimed to remediation of Pb 2+ and Cd 2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115470. [PMID: 37716075 DOI: 10.1016/j.ecoenv.2023.115470] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/18/2023]
Abstract
The present work analyzes the complex formation ability towards Pb2+ and Cd2+ of a series of kojic acid derivatives that join the chelating properties of the pyrone molecules and those of polyamines, with the aim of evaluating how the different effects of oxygen and nitrogen coordinating groups act on the stability of metal complexes. Experimental research is carried out using potentiometric and spectrophotometric techniques supported by 1H and 13C NMR spectroscopy and DFT calculations. Actually, a different coordination mechanism toward Pb2+ and Cd2+ was proved: in the case of Pb2+, coordination takes place exclusively via the oxygen atoms, while the contribute of the nitrogen atoms appears relevant in the case of Cd2+. Lead complexes of all the studied ligands are characterized by significantly stronger stability than those of cadmium. Finally, on the basis of the measured complex formation stabilities, some of the proposed molecules seems promising effective ligands for lead and cadmium ion decorporation from polluted soils or waste waters.
Collapse
Affiliation(s)
- Rosita Cappai
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy.
| | - Alessandra Fantasia
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Massimiliano F Peana
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Alessio Pelucelli
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Serenella Medici
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| | - Guido Crisponi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy
| | - Valeria M Nurchi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cittadella Universitaria, Monserrato, 09042 Cagliari, Italy
| | - M Antonietta Zoroddu
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
7
|
Mustafa A, Zulfiqar U, Mumtaz MZ, Radziemska M, Haider FU, Holatko J, Hammershmiedt T, Naveed M, Ali H, Kintl A, Saeed Q, Kucerik J, Brtnicky M. Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. CHEMOSPHERE 2023; 328:138574. [PMID: 37019403 DOI: 10.1016/j.chemosphere.2023.138574] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Scientists studying the environment, physiology, and biology have been particularly interested in nickel (Ni) because of its dual effects (essentiality and toxicity) on terrestrial biota. It has been reported in some studies that without an adequate supply of Ni, plants are unable to finish their life cycle. The safest Ni limit for plants is 1.5 μg g-1, while the limit for soil is between 75 and 150 μg g-1. Ni at lethal levels harms plants by interfering with a variety of physiological functions, including enzyme activity, root development, photosynthesis, and mineral uptake. This review focuses on the occurrence and phytotoxicity of Ni with respect to growth, physiological and biochemical aspects. It also delves into advanced Ni detoxification mechanisms such as cellular modifications, organic acids, and chelation of Ni by plant roots, and emphasizes the role of genes involved in Ni detoxification. The discussion has been carried out on the current state of using soil amendments and plant-microbe interactions to successfully remediate Ni from contaminated sites. This review has identified potential drawbacks and difficulties of various strategies for Ni remediation, discussed the importance of these findings for environmental authorities and decision-makers, and concluded by noting the sustainability concerns and future research needs regarding Ni remediation.
Collapse
Affiliation(s)
- Adnan Mustafa
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benatska 2, CZ12800, Praha, Czech Republic.
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Main Campus, Defense Road, Lahore, 54000, Pakistan
| | - Maja Radziemska
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Institute of Environmental Engineering, Warsaw University of Life Sciences, 159 Nowoursynowska,02-776, Warsaw, Poland
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 510650, Guangzhou, China
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13, Rapotin, Czech Republic
| | - Tereza Hammershmiedt
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic; Agricultural Research, Ltd., 664 4, Troubsko, Czech Republic
| | - Qudsia Saeed
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Jiri Kucerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00, Brno, Czech Republic; Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, 61300, Brno, Czech Republic.
| |
Collapse
|
8
|
Soni S, Teli P, Sahiba N, Teli S, Agarwal S. Exploring the synthetic potential of a g-C 3N 4·SO 3H ionic liquid catalyst for one-pot synthesis of 1,1-dihomoarylmethane scaffolds via Knoevenagel-Michael reaction. RSC Adv 2023; 13:13337-13353. [PMID: 37143699 PMCID: PMC10152133 DOI: 10.1039/d3ra01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/25/2023] [Indexed: 05/06/2023] Open
Abstract
A highly promising approach for the synthesis of functionalized 1,1-dihomoarylmethane scaffolds (bis-dimedones, bis-cyclohexanediones, bis-pyrazoles, and bis-coumarins) using g-C3N4·SO3H ionic liquid via Knoevenagel-Michael reaction has been developed and the synthesized derivatives were well characterized using spectral studies. The method involved the reaction of C-H activated acids with a range of aromatic aldehydes, in a 2 : 1 ratio catalyzed by a g-C3N4·SO3H ionic liquid catalyst. The use of g-C3N4·SO3H as a catalyst has several benefits, such as low cost, easy preparation, and high stability. It was synthesized from urea powder and chloro-sulfonic acid and was thoroughly characterized using FT-IR, XRD, SEM, and HRTEM. The present work unveils a promising and environmentally friendly method for synthesizing 1,1-dihomoarylmethane scaffolds with high yield, selectivity, and efficiency, using mild reaction conditions, no need for chromatographic separation, and short reaction times. The approach adheres to green chemistry principles and offers a viable alternative to the previously reported methods.
Collapse
Affiliation(s)
- Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| |
Collapse
|
9
|
Khare S, Singhal A, Rai S, Rallapalli S. Heavy metal remediation using chelator-enhanced washing of municipal solid waste compost based on spectroscopic characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65779-65800. [PMID: 37093381 DOI: 10.1007/s11356-023-26970-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Due to high metal toxicity, mixed municipal solid waste (MSW) compost is difficult to use. This study detected the presence of heavy metals (Cd, Cu, Pb, Ni, and Zn) in MSW compost through mineralogical analysis using X-ray diffraction (XRD) and performed topographical imaging and elemental mapping using a scanning electron microscope and energy dispersive X-ray analysis (SEM-EDX). Ethylenediaminetetraacetic acid (EDTA), a typical chelator, is tested to remove heavy metals from Indian MSW compost (New Delhi and Mumbai). It deals with two novel aspects, viz., (i) investigating the influence of EDTA-washing conditions, molarity, dosage, MSW compost-sample size, speed, and contact time, on their metal removal efficiencies, and (ii) maximizing the percentage removal of heavy metals by determining the optimal process control process parameters. These parameters were optimized in a batch reactor utilizing Taguchi orthogonal (L25) array. The optimization showed that the removal efficiencies were 96.71%, 47.37%, and 49.94% for Cd, Pb, and Zn in Delhi samples, whereas 45.55%, 79.52%, 59.63%, 82.31%, and 88.40% for Cd, Cu, Pb, Ni, and Zn in Mumbai samples. Results indicate that the removal efficiency of heavy metals was greatly influenced by EDTA-molarity. Fourier-transform infrared spectroscopy (FTIR) confirmed the presence of hydroxyl group, which aids heavy metal chelation. The results reveal the possibility of EDTA to reduce the hazardous properties of MSW compost.
Collapse
Affiliation(s)
- Srishti Khare
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Anupam Singhal
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Saumitra Rai
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Srinivas Rallapalli
- Department of Civil Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin Cities, MN, USA.
| |
Collapse
|
10
|
Washing Bottom Sediment for The Removal of Arsenic from Contaminated Italian Coast. Processes (Basel) 2023. [DOI: 10.3390/pr11030902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Among various forms of anthropogenic pollution, the release of toxic metals in the environment is a global concern due to the high toxicity of these metals towards living organisms. In the last 20 years, sediment washing has gained increasing attention thanks to its capability to remove toxic metals from contaminated matrices. In this paper, we propose a Response Surface Methodology method for the washing of selected marine sediments of the Bagnoli-Coroglio Bay (Campania region, Italy) polluted with arsenic and other contaminants. We focused our attention on different factors affecting the clean-up performance (i.e., liquid/solid ratio, chelating concentration, and reaction time). The highest As removal efficiency (i.e., >30 μg/g) was obtained at a liquid/solid ratio of 10:1 (v/w), a citric acid concentration of 1000 mM, and a washing time of 94.22 h. Based on these optimum results, ecotoxicological tests were performed and evaluated in two marine model species (i.e., Phaeodactylum tricornutum and Aliivibrio fischeri), which were exposed to the washing solutions. Reduced inhibition of the model species was observed after nutrient addition. Overall, this study provides an effective tool to quickly assess the optimum operating conditions to be set during the washing procedures of a broad range of marine sediments with similar physicochemical properties (i.e., grain size and type of pollution).
Collapse
|
11
|
Chidichimo F, De Biase M, Tursi A, Maiolo M, Straface S, Baratta M, Olivito F, De Filpo G. A model for the adsorption process of water dissolved elements flowing into reactive porous media: Characterization and sizing of water mining/filtering systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130554. [PMID: 36635918 DOI: 10.1016/j.jhazmat.2022.130554] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study presents a mathematical model describing the adsorption-desorption process of water dissolved elements onto reactive porous materials during filtering operations performed under dynamic flow conditions. The developed model is based on a reversible second order adsorption kinetic featuring the progressive reduction of the purifying capacity of the filtering material due to the gradual exhaustion of the active sites available for solute retention. It enables the simulation of the performances of water filtering systems through the use of parameters having a clear chemical-physical significance or it can be used for the estimation of these parameters to characterize the adsorption properties of the reactive material. Starting from the same adsorptive conceptual model used for the filtering system marked by ongoing flowing conditions, an adaptation for static systems was performed on the mathematical framework in order to process the same chemical physical parameters in both schemes. Adsorption laboratory tests were carried out to validate the developed model. Results show that the kinetic constants and adsorption capacities (a maximum of about 45 mg g-1 was obtained for the tested material) are highly comparable, both within the same experimental system, and between different experimental setup. This confirms the validity of the developed model which is able to perfectly fit the observed concentration data in all tested configurations.
Collapse
Affiliation(s)
- Francesco Chidichimo
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Michele De Biase
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Antonio Tursi
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Mario Maiolo
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Salvatore Straface
- Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Mariafrancesca Baratta
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Fabrizio Olivito
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| |
Collapse
|
12
|
Li M, Yao J, Sunahara G, Hawari J, Duran R, Liu J, Liu B, Cao Y, Pang W, Li H, Li Y, Ruan Z. Novel microbial consortia facilitate metalliferous immobilization in non-ferrous metal(loid)s contaminated smelter soil: Efficiency and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120042. [PMID: 36044947 DOI: 10.1016/j.envpol.2022.120042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/13/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Exposure to toxic metals from nonferrous metal(loid) smelter soils can pose serious threats to the surrounding ecosystems, crop production, and human health. Bioremediation using microorganisms is a promising strategy for treating metal(loid)-contaminated soils. Here, a native microbial consortium with sulfate-reducing function (SRB1) enriched from smelter soils can tolerate exposures to mixtures of heavy metal(loid)s (e.g., As and Pb) or various organic flotation reagents (e.g., ethylthionocarbamate). The addition of Fe2+ greatly increased As3+ immobilization compared to treatment without Fe2+, with the immobilization efficiencies of 81.0% and 58.9%, respectively. Scanning electronic microscopy-energy dispersive spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy confirmed that the As3+ immobilizing activity was related to the formation of arsenic sulfides (AsS, As4S4, and As2S3) and sorption/co-precipitation of pyrite (FeS2). High-throughput 16S rRNA gene sequencing of SRB1 suggests that members of Clostridium, Desulfosporosinus, and Desulfovibrio genera play an important role in maintaining and stabilizing As3+ immobilization activity. Metal(loid)s immobilizing activity of SRB1 was not observed at high and toxic total exposure concentrations (220-1181 mg As/kg or 63-222 mg Pb/kg). However, at lower concentrations, SRB1 treatment decreased bioavailable fractions of As (9.0%) and Pb (28.6%) compared to without treatment. Results indicate that enriched native SRB1 consortia exhibited metal(loid) transformation capacities under non-toxic concentrations of metal(loid)s for future bioremediation strategies to decrease mixed metal(loid)s exposure from smelter polluted soils.
Collapse
Affiliation(s)
- Miaomiao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Jalal Hawari
- École Polytechnique de Montréal, Département des génies civil, géologique et des mines, 2900 boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS 5254, Pau, France
| | - Jianli Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Bang Liu
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Ying Cao
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Wancheng Pang
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hao Li
- Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yangquan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing, 100082, China
| | - Zhiyong Ruan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
13
|
Kumar M, Bolan N, Jasemizad T, Padhye LP, Sridharan S, Singh L, Bolan S, O'Connor J, Zhao H, Shaheen SM, Song H, Siddique KHM, Wang H, Kirkham MB, Rinklebe J. Mobilization of contaminants: Potential for soil remediation and unintended consequences. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156373. [PMID: 35649457 DOI: 10.1016/j.scitotenv.2022.156373] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Land treatment has become an essential waste management practice. Therefore, soil becomes a major source of contaminants including organic chemicals and potentially toxic elements (PTEs) which enter the food chain, primarily through leaching to potable water sources, plant uptake, and animal transfer. A range of soil amendments are used to manage the mobility of contaminants and subsequently their bioavailability. Various soil amendments, like desorbing agents, surfactants, and chelating agents, have been applied to increase contaminant mobility and bioavailability. These mobilizing agents are applied to increase the contaminant removal though phytoremediation, bioremediation, and soil washing. However, possible leaching of the mobilized pollutants during soil washing is a major limitation, particularly when there is no active plant uptake. This leads to groundwater contamination and toxicity to plants and soil biota. In this context, the present review provides an overview on various soil amendments used to enhance the bioavailability and mobility of organic and inorganic contaminants, thereby facilitating increased risk when soil is remediated in polluted areas. The unintended consequences of the mobilization methods, when used to remediate polluted sites, are discussed in relation to the leaching of mobilized contaminants when active plant growth is absent. The toxicity of targeted and non-targeted contaminants to microbial communities and higher plants is also discussed. Finally, this review work summarizes the existing research gaps in various contaminant mobilization approaches, and prospects for future research.
Collapse
Affiliation(s)
- Manish Kumar
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia.
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Srinidhi Sridharan
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Shiv Bolan
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - James O'Connor
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Haochen Zhao
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia
| | - Hocheol Song
- Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou 311300, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India.
| |
Collapse
|
14
|
Abstract
Heavy metals are essential for a wide range of biological processes, including the growth and reproduction of cells, synthesis of biomolecules, many enzymatic reactions, and the body’s immunity, but their excessive intake is harmful. Specifically, they cause oxidative stress (OS) and generate free radicals and reactive oxygen species (ROS) in metabolism. In addition, the accumulation of heavy metals in humans can cause serious damage to different organs, especially respiratory, nervous and reproductive and digestive systems. Biologically, metal chelation therapy is often used to treat metal toxicity. This process occurs through the interaction between the ligand and a central metal atom, forming a complex ring-like structure. After metals are chelated with appropriate chelating agents, their damage in metabolism can be prevented and efficiently removed from the body. On the other hand, heavy metals, including Zn, Fe and Cu, are necessary for the suitable functioning of different proteins including enzymes in metabolism. However, when the same metals accumulate at levels higher than the optimum level, they can easily become toxic and have harmful effects toward biomolecules. In this case, it induces the formation of ROS and nitrogen species (RNS) resulting in peroxidation of biological molecules such as lipids in the plasma membrane. Antioxidants have an increasing interest in many fields due to their protective effects, especially in food and pharmaceutical products. Screening of antioxidant properties of compounds needs appropriate methods including metal chelating assay. In this study, a general approach to the bonding and chelating properties of metals is described. For this purpose, the basic principles and chemical principles of metal chelation methods, both in vivo and in vitro, are outlined and discussed. Hence, in the main sections of this review, the descriptions related to metal ions, metal chelating, antioxidants, importance of metal chelating in biological system and definitions of metal chelating assays as widely used methods to determine antioxidant ability of compounds are provided. In addition, some chemical properties, technical and critical details of the used chelation methods are given.
Collapse
|
15
|
Guo B, Liu C, Lin Y, Li H, Li N, Liu J, Fu Q, Tong W, Yu H. Fruit extracts from Phyllanthus emblica accentuate cadmium tolerance and accumulation in Platycladus orientalis: A new natural chelate for phytoextraction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116996. [PMID: 33784563 DOI: 10.1016/j.envpol.2021.116996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
A key challenge for phytoextraction is the identification of high efficiency, growth-supporting, and low cost chelating agents. To date, no substance has satisfied all above criteria. This study investigated nine traditional Chinese herbs and found that Phyllanthus emblica fruit (FPE) extract could be utilised as an optimal chelate for the phytoextraction of cadmium (Cd)-contaminated soils. FPE application into soil at a ratio of 0.1% (w/w) significantly increased extractable Cd (by 43%) compared to the control. The success of FPE as a chelating agent was attributed to high quantities of polyphenol compounds (0.76%) and organic acids (9.6%), in particular, gallic acid (7.6%). Furthermore, antioxidative properties (1.4%) and free amino acids in FPE alleviated Cd-induced oxidant toxicity and enhanced plant biomass. FPE promoted 78% higher phytoextraction efficiency in Platycladus orientalis compared to traditional chelating agents (EDTA). Furthermore, 76% of FPE was degraded 90 days after the initial application, and there was no difference in extractable Cd between the treatment and control. FPE has been commercially produced at a lower market price than other biodegradable chelates. As a commercially available and cost-effective chelator, FPE could be utilised to treat Cd-contaminated soils without adverse environmental impacts.
Collapse
Affiliation(s)
- Bin Guo
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Chen Liu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yicheng Lin
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ningyu Li
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Junli Liu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qinglin Fu
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Wenbin Tong
- Qujiang District Agricultural and Rural Burea, Quzhou, 324022, China
| | - Haiping Yu
- Shangyu District Agricultural Technology Extension Center, Shaoxing, 312000, China
| |
Collapse
|