1
|
Amiri MA, Amiri D, Hamedani S. Thermosensitive Hydrogels for Periodontal Regeneration: A Systematic Review of the Evidence. Clin Exp Dent Res 2024; 10:e70029. [PMID: 39539029 PMCID: PMC11561135 DOI: 10.1002/cre2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Thermosensitive hydrogels are now among the most commonly used biomaterials in tissue engineering. Due to their unique characteristics, this review aimed to evaluate the suitability of thermosensitive hydrogels in periodontal regeneration. MATERIAL AND METHODS PubMed, Scopus, and Web of Science databases were searched until March 25, 2024, to retrieve relevant articles. The eligibility criteria for the included studies were determined by the designed PICO elements. Results from each included study were extracted, focusing on the three main areas: thermosensitivity, cellular characteristics, and in vivo characteristics. RESULTS Nineteen studies were included in our study. The thermosensitivity assessment of the hydrogels indicated a range of sol-gel transition times from 40 s to 20 min based on the type of polymers and the fabrication process. The cellular characterization was assessed based on three main cellular behaviors: cellular viability/proliferation, differentiation, and migration. The in vivo characterization was performed based on two main approaches: radiographic and histologic evaluation. CONCLUSIONS The results indicated that the addition of bioactive agents could enhance the in vivo efficacy of thermosensitive hydrogels in periodontal regeneration through three main areas: antimicrobial, anti-inflammatory, and regenerative effects.
Collapse
Affiliation(s)
- Mohammad Amin Amiri
- Oral and Dental Disease Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| | - Delara Amiri
- School of DentistryShiraz University of Medical SciencesShirazIran
| | - Shahram Hamedani
- Oral and Dental Disease Research Center, School of DentistryShiraz University of Medical SciencesShirazIran
| |
Collapse
|
2
|
Yılmaz B, Emingil G. Validating proteomic biomarkers in saliva: distinguishing between health and periodontal diseases. Expert Rev Proteomics 2024; 21:417-429. [PMID: 39385324 DOI: 10.1080/14789450.2024.2413099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Periodontitis is a chronic inflammatory disease characterized by progressive soft tissue and alveolar bone loss due to interactions between microbial dental plaque and the host response. Despite extensive research on biomarkers from saliva or gingival crevicular fluid (GCF) for diagnosing periodontitis, clinical and radiological parameters remain the primary diagnostic tools. AREAS COVERED This review discusses the ongoing research into salivary biomarkers for periodontitis diagnosis, emphasizing the need for reliable biomarkers to differentiate between periodontal health and disease. Salivary biomarker research has gained momentum with advancements in proteomic technologies, enabling noninvasive sample collection and revealing potential candidate biomarkers. EXPERT OPINION Proteomic research since the early 2000s has identified promising biomarkers and provided insights into the pathogenesis of periodontitis. Bioinformatic analysis of proteomic data elucidates the underlying biological mechanisms. This review summarizes key findings and highlights common potential biomarkers identified through proteomic research in periodontology.
Collapse
Affiliation(s)
- Büşra Yılmaz
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, Ege University School of Dentistry, İzmir, Turkey
| |
Collapse
|
3
|
Gallo M, Ferrari E, Giovati L, Pertinhez TA, Artesani L, Conti S, Ciociola T. The Variability of the Salivary Antimicrobial Peptide Profile: Impact of Lifestyle. Int J Mol Sci 2024; 25:11501. [PMID: 39519054 PMCID: PMC11547034 DOI: 10.3390/ijms252111501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Saliva is crucial in maintaining oral health; its composition reflects the body's physiological and diseased state. Among salivary components, antimicrobial peptides (AMPs) stand out for their broad antimicrobial activities and role in modulating the oral microbiota and innate immune response. Local and systemic diseases can affect the levels of AMPs in saliva, making them attractive biomarkers. However, the large variability in their concentrations hampers their use in diagnostics. Knowledge of the various factors influencing the profile of salivary AMPs is essential for their use as biomarkers. Here, we examine how lifestyle factors such as physical activity, dietary supplementation, tobacco smoking, and psychological stress impact salivary AMP levels. By understanding these sources of variability, we can take a step forward in using AMPs for diagnostics and prognostics and develop new tailored and preventative approaches.
Collapse
Affiliation(s)
- Mariana Gallo
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Elena Ferrari
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Laura Giovati
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Thelma A. Pertinhez
- Laboratory of Biochemistry and Metabolomics, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy; (M.G.); (E.F.)
| | - Lorenza Artesani
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
| | - Stefania Conti
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Tecla Ciociola
- Laboratory of Microbiology and Virology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (L.G.); (L.A.); (S.C.); (T.C.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| |
Collapse
|
4
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Atalay N, Balci N, Gürsoy M, Gürsoy UK. Systemic Factors Affecting Human Beta-Defensins in Oral Cavity. Pathogens 2024; 13:654. [PMID: 39204254 PMCID: PMC11357671 DOI: 10.3390/pathogens13080654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Human beta-defensins are host defense peptides with broad antimicrobial and inflammatory functions. In the oral cavity, these peptides are produced mainly by the keratinocytes of the epithelium; however, fibroblasts, monocytes, and macrophages also contribute to oral human beta-defensin expressions. The resident and immune cells of the oral cavity come into contact with various microbe-associated molecular patterns continuously and simultaneously. The overall antimicrobial cellular response is highly influenced by local and environmental factors. Recent studies have produced evidence showing that not only systemic chronic diseases but also systemic factors like hyperglycemia, pregnancy, the long-term use of certain vitamins, and aging can modulate oral cellular antimicrobial responses against microbial challenges. Therefore, the aim of this narrative review is to discuss the role of systemic factors on oral human beta-defensin expressions.
Collapse
Affiliation(s)
- Nur Atalay
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| | - Nur Balci
- Department of Periodontology, Faculty of Dentistry, Medipol University, Goztepe Mahallesi, Ataturk Caddesi 40, Beykoz, 34815 Istanbul, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
- Welfare Division, Oral Health Care, 20540 Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520 Turku, Finland
| |
Collapse
|
6
|
Korgaonkar J, Tarman AY, Ceylan Koydemir H, Chukkapalli SS. Periodontal disease and emerging point-of-care technologies for its diagnosis. LAB ON A CHIP 2024; 24:3326-3346. [PMID: 38874483 DOI: 10.1039/d4lc00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Periodontal disease (PD), a chronic inflammatory disorder that damages the tooth and its supporting components, is a common global oral health problem. Understanding the intricacies of these disorders, from gingivitis to severe PD, is critical for efficient treatment, diagnosis, and prevention in dental care. Periodontal biosensors and biomarkers are critical in improving oral health diagnostic skills. Clinicians may accomplish early identification, tailored therapy, and efficient tracking of periodontal diseases by using these technologies, ushering in a new age of accurate oral healthcare. Traditional periodontitis diagnostic methods frequently rely on physical probing and visual examinations, necessitating the development of point-of-care (POC) devices. As periodontal disorders necessitate more precise and rapid diagnosis, incorporating novel innovations in biosensors and biomarkers becomes increasingly crucial. These innovations improve our capacity to diagnose, monitor, and adapt periodontal therapies, bringing in the next phase of customized and effective dental healthcare. The review discusses the characteristics and stages of PD, clinical treatment techniques, prominent biomarkers and infection-associated factors that may be employed to determine PD, biomedical sensing, and POC appliances that have been created so far to diagnose stages of PD and its progression profile, as well as predicting future developments in this field.
Collapse
Affiliation(s)
- Jayesh Korgaonkar
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Azra Yaprak Tarman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Hatice Ceylan Koydemir
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
- Center for Remote Health Technologies and Systems, Texas A&M Engineering and Experiment Station, College Station, TX 77843, USA
| | - Sasanka S Chukkapalli
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
7
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Jiang S, Zha Y, Zhao T, Jin X, Zhu R, Wei S, Wang R, Song Y, Li L, Lyu J, Hu W, Zhang D, Wang M, Zhang Y. Antimicrobial peptide temporin derivatives inhibit biofilm formation and virulence factor expression of Streptococcus mutans. Front Microbiol 2023; 14:1267389. [PMID: 37822738 PMCID: PMC10562637 DOI: 10.3389/fmicb.2023.1267389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Temporin-GHa obtained from the frog Hylarana guentheri showed bactericidal efficacy against Streptococcus mutans. To enhance its antibacterial activity, the derived peptides GHaR and GHa11R were designed, and their antibacterial performance, antibiofilm efficacy and potential in the inhibition of dental caries were evaluated. Methods Bacterial survival assay, fluorescent staining assay and transmission electron microscopy observation were applied to explore how the peptides inhibited and killed S. mutans. The antibiofilm efficacy was assayed by examining exopolysaccharide (EPS) and lactic acid production, bacterial adhesion and cell surface hydrophobicity. The gene expression level of virulence factors of S. mutans was detected by qRT-PCR. Finally, the impact of the peptides on the caries induced ability of S. mutans was measured using a rat caries model. Results It has been shown that the peptides inhibited biofilm rapid accumulation by weakening the initial adhesion of S. mutans and reducing the production of EPS. Meanwhile, they also decreased bacterial acidogenicity and aciduricity, and ultimately prevented caries development in vivo. Conclusion GHaR and GHa11R might be promising candidates for controlling S. mutans infections.
Collapse
Affiliation(s)
- Shangjun Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Yanmei Zha
- College of Life Sciences, Hainan University, Haikou, China
| | - Ting Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Xiao Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Ruiying Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | | | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Lushuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Junchen Lyu
- School of Science, Hainan University, Haikou, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Daqi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Manchuriga Wang
- School of Animal Science and Technology, Hainan University, Haikou, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| |
Collapse
|
9
|
Fu J, Zong X, Jin M, Min J, Wang F, Wang Y. Mechanisms and regulation of defensins in host defense. Signal Transduct Target Ther 2023; 8:300. [PMID: 37574471 PMCID: PMC10423725 DOI: 10.1038/s41392-023-01553-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023] Open
Abstract
As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.
Collapse
Affiliation(s)
- Jie Fu
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Mingliang Jin
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, China.
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
10
|
Laberge S, Akoum D, Wlodarczyk P, Massé JD, Fournier D, Semlali A. The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis. Genes (Basel) 2023; 14:1202. [PMID: 37372382 DOI: 10.3390/genes14061202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that affects the supporting structures of teeth. In the literature, the association between the pathogenicity of bacteria and environmental factors in this regard have been extensively examined. In the present study, we will shed light on the potential role that epigenetic change can play on different facets of its process, more particularly the modifications concerning the genes involved in inflammation, defense, and immune systems. Since the 1960s, the role of genetic variants in the onset and severity of periodontal disease has been widely demonstrated. These make some people more susceptible to developing it than others. It has been documented that the wide variation in its frequency for various racial and ethnic populations is due primarily to the complex interplay among genetic factors with those affecting the environment and the demography. In molecular biology, epigenetic modifications are defined as any change in the promoter for the CpG islands, in the structure of the histone protein, as well as post-translational regulation by microRNAs (miRNAs), being known to contribute to the alteration in gene expression for complex multifactorial diseases such as periodontitis. The key role of epigenetic modification is to understand the mechanism involved in the gene-environment interaction, and the development of periodontitis is now the subject of more and more studies that attempt to identify which factors are stimulating it, but also affect the reduced response to therapy.
Collapse
Affiliation(s)
- Samuel Laberge
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Daniel Akoum
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Piotr Wlodarczyk
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Jean-Daniel Massé
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | | | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
11
|
Musiał N, Bogucka A, Tretiakow D, Skorek A, Ryl J, Czaplewska P. Proteomic analysis of sialoliths from calcified, lipid and mixed groups as a source of potential biomarkers of deposit formation in the salivary glands. Clin Proteomics 2023; 20:11. [PMID: 36949424 PMCID: PMC10035263 DOI: 10.1186/s12014-023-09402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Salivary stones, also known as sialoliths, are formed in a pathological situation in the salivary glands. So far, neither the mechanism of their formation nor the factors predisposing to their formation are known despite several hypotheses. While they do not directly threaten human life, they significantly deteriorate the patient's quality of life. Although this is not a typical research material, attempts are made to apply various analytical tools to characterise sialoliths and search for the biomarkers in their proteomes. In this work, we used mass spectrometry and SWATH-MS qualitative and quantitative analysis to investigate the composition and select proteins that may contribute to solid deposits in the salivary glands. Twenty sialoliths, previously characterized spectroscopically and divided into the following groups: calcified (CAL), lipid (LIP) and mixed (MIX), were used for the study. Proteins unique for each of the groups were found, including: for the CAL group among them, e.g. proteins from the S100 group (S100 A8/A12 and P), mucin 7 (MUC7), keratins (KRT1/2/4/5/13), elastase (ELANE) or stomatin (STOM); proteins for the LIP group-transthyretin (TTR), lactotransferrin (LTF), matrix Gla protein (MPG), submandibular gland androgen-regulated protein 3 (SMR3A); mixed stones had the fewest unique proteins. Bacterial proteins present in sialoliths have also been identified. The analysis of the results indicates the possible role of bacterial infections, disturbances in calcium metabolism and neutrophil extracellular traps (NETs) in the formation of sialoliths.
Collapse
Affiliation(s)
- Natalia Musiał
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Aleksandra Bogucka
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland
- Institute of Biochemistry, Medical Faculty, Justus Liebig University of Giessen, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Dmitry Tretiakow
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Andrzej Skorek
- Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology UG&MUG, University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| |
Collapse
|
12
|
Deniz Tekin E, Calisir M. Investigation of human β-defensins 1, 2 and 3 in human saliva by molecular dynamics. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:100. [PMID: 36542178 DOI: 10.1140/epje/s10189-022-00257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Human β-defensins present in saliva have a broad spectrum of antimicrobial activities that work against infections in oral cavity. To provide a better understanding of these molecules' properties and functions at the molecular level, we have investigated and compared the important structural properties of human β-defensin-1, -2 and -3 using molecular dynamics simulations. Our results have shown that human β-defensin-3 has a more flexible structure in water than the other two because of its high hydrophilicity, low β-sheet content and high repulsive forces between its charged residues. Moreover, we found that the location of the salt bridges is important in protein's stability in water. Molecular dynamics simulations of human β-defensins 1, 2 and 3 revealed that the hbd-3 is more flexible in water than hbd-1 and hbd-2.
Collapse
Affiliation(s)
- E Deniz Tekin
- Faculty of Engineering, University of Turkish Aeronautical Association, 06790, Ankara, Turkey.
| | - Metin Calisir
- Faculty of Dentistry, Adıyaman University, 02000, Adıyaman, Turkey
| |
Collapse
|
13
|
Ramírez Thomé S, Ávila Curiel B, Hernández Huerta MT, Solórzano Mata C. β-defensinas como posibles indicadores de la actividad inflamatoria en la enfermedad periodontal. INVESTIGACIÓN CLÍNICA 2022. [DOI: 10.54817/ic.v63n4a08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Periodontal disease (gingivitis and periodontitis) is an inflam-matory process caused by the activity of pathogenic bacteria and their products on the gingival sulcus, with the consequent activation of the immune response. Saliva and crevicular fluid contain a wide variety of enzymes and antimicrobial factors that are in contact with the supragingival and subgingival region, in-cluding β-defensins (hBDs). hHBDs are non-glycosylated, cysteine-rich cationic peptides produced by epithelial cells with antimicrobial and immunoregulatory effects, thus contributing to maintaining homeostasis in periodontal tissues. The changes in the microbiota and the immune response from a healthy peri-odontium to gingivitis and, finally, to periodontitis are complex. Their sever-ity depends on a dynamic balance between bacteria associated with plaque, genetic and environmental factors. Recent advances have made it possible to understand the implication of hBDs in the detection, diagnosis, and therapy of periodontal disease and the relationship between periodontitis and other inflammatory conditions. This review aims to describe the effect of hBDs on the immune response and its use as a possible marker of the inflammatory activity of the periodontal disease.
Collapse
Affiliation(s)
- Saira Ramírez Thomé
- Facultad de Odontología. Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| | | | | | - Carlos Solórzano Mata
- Facultad de Odontología. Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, México
| |
Collapse
|
14
|
Functional biomaterials for comprehensive periodontitis therapy. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
15
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
16
|
Yilmaz D, Yilmaz N, Polat R, Nissilä V, Aydın EG, Rautava J, Gürsoy M, Gürsoy UK. Salivary levels of hBDs in children and adolescents with type 1 diabetes mellitus and gingivitis. Clin Oral Investig 2022; 26:4897-4904. [PMID: 35313357 DOI: 10.1007/s00784-022-04457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Type 1 diabetes mellitus (T1DM), a chronic autoimmune disease characterized by insulin deficiency, is related to periodontal diseases in children and adolescents. Our aim was to profile salivary human beta-defensin (hBD)-2 and hBD-3 concentrations in relation to periodontal and T1DM status in children and adolescent populations. MATERIAL AND METHODS Unstimulated saliva samples were collected from 66 participants including periodontally healthy T1DM patients (T1DM + C; n = 18), T1DM patients with gingivitis (T1DM + G; n = 20), systemically and periodontally healthy individuals (SH + C: n = 15), and systemically healthy gingivitis patients (SH + G; n = 13). Full mouth plaque index (PI), bleeding on probing (BOP), probing pocket depth (PPD), and clinical attachment level (CAL) were recorded. Salivary hBD-2 and hBD-3 concentrations were evaluated by sandwich ELISA method. A p value of < 0.05 was considered statistically significant. RESULTS Salivary hBD-3 concentrations were lower in T1DM groups in comparison to systemically healthy counterparts (SH + G vs. T1DM + G; p < 0.001 and SH + C vs. T1DM + C; p < 0.001). Salivary hBD-2 levels did not differ between related groups. The difference in hBD-3 concentrations between T1DM and control groups was still significant (p = 0.008) after being adjusted for PI%, BOP%, and age. CONCLUSION In the limits of study, T1DM patients were found to have decreased salivary hBD-3 concentrations, regardless of their gingival inflammatory status. CLINICAL RELEVANCE Altered salivary hBD-3 concentration can partly explain why diabetic children are more prone to periodontal diseases.
Collapse
Affiliation(s)
- Dogukan Yilmaz
- Department of Periodontology, Faculty of Dentistry, Sakarya University, Sakarya, Turkey.
| | - Neslihan Yilmaz
- Department of Pediatric Dentistry, Faculty of Dentistry, Sakarya University, Sakarya, Turkey.,Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Recep Polat
- Department of Pediatric Endocrinology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Verneri Nissilä
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Elif Gül Aydın
- Department of Pediatric Dentistry, Faculty of Dentistry, Sakarya University, Sakarya, Turkey
| | - Jaana Rautava
- Department of Oral and Maxillofacial Diseases, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, ClinicumHelsinki, Finland.,Department of Pathology, Faculty of Medicine, University of Helsinki, HUS Diagnostic Center, HUSLAB, Helsinki University Hospital, MedicumHelsinki, Finland
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi Kahraman Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Ebersole JL, Kirakodu S, Nguyen L, Gonzalez OA. Gingival Transcriptome of Innate Antimicrobial Factors and the Oral Microbiome With Aging and Periodontitis. FRONTIERS IN ORAL HEALTH 2022; 3:817249. [PMID: 35330821 PMCID: PMC8940521 DOI: 10.3389/froh.2022.817249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/04/2022] [Indexed: 12/30/2022] Open
Abstract
The epithelial barrier at mucosal sites comprises an important mechanical protective feature of innate immunity, and is intimately involved in communicating signals of infection/tissue damage to inflammatory and immune cells in these local environments. A wide array of antimicrobial factors (AMF) exist at mucosal sites and in secretions that contribute to this innate immunity. A non-human primate model of ligature-induced periodontitis was used to explore characteristics of the antimicrobial factor transcriptome (n = 114 genes) of gingival biopsies in health, initiation and progression of periodontal lesions, and in samples with clinical resolution. Age effects and relationship of AMF to the dominant members of the oral microbiome were also evaluated. AMF could be stratified into 4 groups with high (n = 22), intermediate (n = 29), low (n = 18) and very low (n = 45) expression in healthy adult tissues. A subset of AMF were altered in healthy young, adolescent and aged samples compared with adults (e.g., APP, CCL28, DEFB113, DEFB126, FLG2, PRH1) and were affected across multiple age groups. With disease, a greater number of the AMF genes were affected in the adult and aged samples with skewing toward decreased expression, for example WDC12, PGLYRP3, FLG2, DEFB128, and DEF4A/B, with multiple age groups. Few of the AMF genes showed a >2-fold increase with disease in any age group. Selected AMF exhibited significant positive correlations across the array of AMF that varied in health and disease. In contrast, a rather limited number of the AMF significantly correlated with members of the microbiome; most prominent in healthy samples. These correlated microbes were different in younger and older samples and differed in health, disease and resolution samples. The findings supported effects of age on the expression of AMF genes in healthy gingival tissues showing a relationship to members of the oral microbiome. Furthermore, a dynamic expression of AMF genes was related to the disease process and showed similarities across the age groups, except for low/very low expressed genes that were unaffected in young samples. Targeted assessment of AMF members from this large array may provide insight into differences in disease risk and biomolecules that provide some discernment of early transition to disease.
Collapse
Affiliation(s)
- Jeffrey L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Sreenatha Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - Linh Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Octavio A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
18
|
Balan P, Chong YS, Lin Q, Lim TK, Li H, Wong ML, Lopez V, He HG, Seneviratne CJ. Isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative analysis of the salivary proteome during healthy pregnancy and pregnancy gingivitis. J Clin Periodontol 2021; 48:1559-1569. [PMID: 34605060 DOI: 10.1111/jcpe.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/25/2021] [Indexed: 02/06/2023]
Abstract
AIM The present study aimed to investigate the salivary proteome profiles of pregnant women with gingivitis (PG) or without gingivitis (HP) and non-pregnant healthy controls (HC) by employing iTRAQ-based proteomics. MATERIALS AND METHODS Saliva samples were collected from 30 Chinese women comprising 10 subjects in each of the three groups (PG, HP, and HC). The samples were subjected to iTRAQ-based proteomics analysis, and ELISA was performed to validate the results. The subsequent observations were validated in a cohort of 48 subjects. RESULTS Pathways associated with neutrophil-mediated immune response and antioxidant defence mechanism were significantly higher in PG than HC. The abundance of salivary cystatins (S, SA, and SN) and antimicrobials were significantly decreased in PG and HP, while cystatin C and D were additionally decreased in PG. Cystatin C was mapped to all the major catabolic pathways and was the most re-wired protein in pregnancy gingivitis. Further validation demonstrated cystatin C to be significantly lower in PG than HC. CONCLUSIONS While the decrease in levels of salivary cystatins and antimicrobial proteins may predispose healthy pregnant women to pregnancy gingivitis, it may cause persistence of inflammation in pregnant women with gingivitis.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center, Singapore.,Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Yap S Chong
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Huihua Li
- Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Mun L Wong
- Discipline of Primary Dental Care and Population Oral Health, Faculty of Dentistry, National University of Singapore, Singapore
| | - Violeta Lopez
- School of Nursing, Hubei University of Medicine, Shiyan City, Hubei Province, China
| | - Hong Gu He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center, Singapore.,Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| |
Collapse
|
19
|
Al Mansour N, Al-Kafaji G, Al Mahmeed A, Bindayna KM. Dysregulation of human beta-defensin-3 expression in the peripheral blood of patients with sepsis. SAGE Open Med 2021; 9:20503121211041515. [PMID: 34457302 PMCID: PMC8385589 DOI: 10.1177/20503121211041515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: Sepsis is a serious medical condition caused by the body’s systemic inflammatory response to infections. The antimicrobial peptides, human beta-defensins, play a key role in modulating host immune responses, and aberrant expression of human beta-defensins has been implicated in many infections and inflammatory diseases. However, little is known about the expression of human beta-defensin-3 in systemic infectious diseases. Methods: We investigated the gene expression and protein level of human beta-defensin-3 in peripheral whole blood from 107 participants—67 patients with sepsis and 40 healthy controls—and evaluated the feasibility of human beta-defensin-3 as an indicator for sepsis. Total RNA was extracted from peripheral blood samples, and relative mRNA expression of human beta-defensin-3 was determined by reverse transcription-quantitative polymerase chain reaction. Plasma concentration of human beta-defensin-3 was measured by enzyme-linked immunosorbent assay. Pearson’s correlation analysis was performed to assess the relationship between human beta-defensin-3 mRNA and protein levels. Receiver operating characteristic analysis was performed to evaluate the value of human beta-defensin-3 as a biomarker for sepsis. Results: Human beta-defensin-3 mRNA expression was significantly downregulated in sepsis patients compared to controls (p = 0.001). The mean fold change of mRNA expression (±standard error) was 0.82 ± 0.63 in sepsis patients and 1.39 ± 1.09 in controls. Plasma concentration of human beta-defensin-3 (pg/mL) was significantly lower in sepsis patients compared to healthy controls (p = 0.039). The mean protein concentration (±standard error) was 539.6 ± 39.4 in sepsis patients and 715.5 ± 53 in controls. There was a significant correlation between human beta-defensin-3 mRNA expression and the corresponding protein level in sepsis patients (r = 0.358, p = 0.04), but not in healthy controls (r = 0.124, p = 0.51). For discriminating sepsis patients from healthy controls, the area under the receiver operating characteristic curve was 0.722 (95% confidence interval: 0.597–0.847, p = 0.002) for human beta-defensin-3 mRNA and 0.689 (95% confidence interval: 0.557–0.827, p = 0.009) for human beta-defensin-3 protein. Conclusion: This is the first study to show the downregulation of human beta-defensin-3 gene expression and protein level in sepsis, which may contribute to the complex immunological imbalance in sepsis. The significant correlation between human beta-defensin-3 mRNA expression and protein concentration suggests that mRNA expression could be used to predict protein level. Our study also showed a potential role of human beta-defensin-3 as a blood-based biomarker for sepsis. More studies on the clinical significance of human beta-defensin-3 in sepsis could further support a biomarker development.
Collapse
Affiliation(s)
- Noura Al Mansour
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ghada Al-Kafaji
- Department of Molecular Medicine and Al-Jawhara Centre for Molecular Medicine, Genetics, and Inherited Disorders, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ali Al Mahmeed
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Khalid M Bindayna
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
20
|
Haririan H, Andrukhov O, Laky M, Rausch-Fan X. Saliva as a Source of Biomarkers for Periodontitis and Periimplantitis. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.687638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Saliva has the potential to be used as a diagnostic and monitoring tool for various diseases if biomarkers of an adequate sensitivity and specificity could be identified. Several reviews and even meta-analyses have been performed in recent years, which have found some candidate biomarkers for periodontitis, like macrophage inflammatory protein-1 alpha, interleukin-1ß, interleukin-6, matrix metalloproteinase-8, or hemoglobin. However, none of those are currently in use to replace conventional periodontal diagnostics with a periodontal probe. For periimplantitis, to date, heterogeneity of different study protocols and implant types did not permit to discover clear biomarkers, which were able to distinguish between healthy and diseased implants. Few proinflammatory cytokines, similar to periodontitis, have been characterized as adjunct tools to clinical diagnosis. The additional determination of antimicrobial peptides, bone turnover markers, and bacteria could help to enhance sensitivity and specificity in a combined model for periodontitis and periimplantitis. Furthermore, proteomic approaches might be preferred over single biomarker determinations. A global consensus is also needed to harmonize salivary sampling methods as well as procedures of biomarker analysis to ensure future comparability.
Collapse
|
21
|
Keles Yucel ZP, Afacan B, Atmaca İlhan H, Kose T, Emingil G. The trefoil factor family 1 (TFF-1) and 3 (TFF-3) are upregulated in the saliva, gingival crevicular fluid and serum of periodontitis patients. Oral Dis 2021; 28:1240-1249. [PMID: 33660336 DOI: 10.1111/odi.13820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE This study aimed to investigate the levels of trefoil factor family (TFF)-1, TFF-3 and interleukin (IL)-1β in gingival crevicular fluid (GCF), saliva and serum of patients with gingivitis, stage 3 periodontitis and healthy individuals. MATERIALS AND METHODS A total of 100 individuals consisting of 25 periodontally healthy, 25 gingivitis and 50 stage 3 periodontitis, were enrolled in the study. Clinical periodontal examinations were recorded and GCF, saliva and serum samples were obtained. TFF-1, TFF-3 and IL-1β were measured by ELISA. RESULTS TFF-1 and TFF-3 levels in both GCF, saliva and serum were higher in periodontitis patients than healthy controls (p < .001) and gingivitis group (p < .01). The levels of these peptides in all biofluids were similar between gingivitis and healthy control groups (p > .05). GCF, saliva and serum IL-1β levels were also higher in periodontitis patients than the controls (p < .01). Periodontitis patients had elevated GCF and saliva IL-β levels than gingivitis group (p < .001). CONCLUSION Elevated TFF-1 and TFF-3 levels both locally and systemically in periodontitis in parallel to increased IL-1β levels might suggest that these peptides are involved in host response during the periodontal tissue destruction.
Collapse
Affiliation(s)
| | - Beral Afacan
- Department of Periodontology, Faculty of Dentistry, Adnan Menderes University, Aydin, Turkey
| | - Harika Atmaca İlhan
- Department of Biology, Section of Molecular Biology, Faculty of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Kose
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gulnur Emingil
- Department of Periodontology, Faculty of Dentistry, Ege University, Izmir, Turkey
| |
Collapse
|
22
|
Lachowicz JI, Szczepski K, Scano A, Casu C, Fais S, Orrù G, Pisano B, Piras M, Jaremko M. The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. Int J Mol Sci 2020; 21:E7349. [PMID: 33027928 PMCID: PMC7583890 DOI: 10.3390/ijms21197349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/05/2023] Open
Abstract
Health-care systems that develop rapidly and efficiently may increase the lifespan of humans. Nevertheless, the older population is more fragile, and is at an increased risk of disease development. A concurrently growing number of surgeries and transplantations have caused antibiotics to be used much more frequently, and for much longer periods of time, which in turn increases microbial resistance. In 1945, Fleming warned against the abuse of antibiotics in his Nobel lecture: "The time may come when penicillin can be bought by anyone in the shops. Then there is the danger that the ignorant man may easily underdose himself and by exposing his microbes to non-lethal quantities of the drug make them resistant". After 70 years, we are witnessing the fulfilment of Fleming's prophecy, as more than 700,000 people die each year due to drug-resistant diseases. Naturally occurring antimicrobial peptides protect all living matter against bacteria, and now different peptidomimetic strategies to engineer innovative antibiotics are being developed to defend humans against bacterial infections.
Collapse
Affiliation(s)
- Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Kacper Szczepski
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Alessandra Scano
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Cinzia Casu
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Sara Fais
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Germano Orrù
- Department of Surgical Science, OBL Oral Biotechnology Laboratory, University of Cagliari, 09124 Cagliari, Italy; (A.S.); (C.C.); (S.F.); (G.O.)
| | - Barbara Pisano
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Monica Piras
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy; (B.P.); (M.P.)
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
23
|
Salivary Redox Biomarkers in Selected Neurodegenerative Diseases. J Clin Med 2020; 9:jcm9020497. [PMID: 32059422 PMCID: PMC7074092 DOI: 10.3390/jcm9020497] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases (NDDs), such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are disorders, which cause irreversible and progressive deterioration of the central nervous system. The pathophysiology of NDDs is still not fully explained; nevertheless, oxidative stress is considered as a critical mediator of cerebral degeneration, brain inflammation, as well as neuronal apoptosis. Therefore, it is not surprising that redox biomarkers are increasingly used in the diagnosis of neurodegenerative diseases. As saliva is a very easy to obtain bioliquid, it seems promising to use this biomaterial in the diagnosis of NDDs. Saliva collection is easy, cheap, stress-free, and non-infectious, and it does not require the help of a specialised medical personnel. Additionally, the concentrations of many salivary redox biomarkers correlate with their content in blood serum as well as the degree of disease progression, which makes them non-invasive indicators of NDDs. This paper reviews the latest knowledge concerning the use of salivary redox biomarkers in the diagnosis and prognosis of selected neurodegenerative diseases.
Collapse
|
24
|
Ohtani M, Nishimura T. Sulfur-containing amino acids in aged garlic extract inhibit inflammation in human gingival epithelial cells by suppressing intercellular adhesion molecule-1 expression and IL-6 secretion. Biomed Rep 2019; 12:99-108. [PMID: 32042418 DOI: 10.3892/br.2019.1269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Aged garlic extract (AGE) contains various biologically active sulfur-containing amino acids, such as S-allylcysteine (SAC), S-1-propenylcysteine (S1PC) and S-allylmercaptocysteine (SAMC). These amino acids have been demonstrated to lower hypertension, improve atherosclerosis and enhance immunity through their anti-inflammatory and antioxidant activities. It was recently reported that the administration of AGE alleviated gingivitis in a clinical trial. In this study, to gain insight into this effect of AGE, the authors examined whether AGE and the three above-mentioned sulfur compounds influence the effects of tumor necrosis factor-α (TNF-α) in inducing intercellular adhesion molecule-1 (ICAM-1) expression and interleukin-6 (IL-6) secretion in Ca9-22 human gingival epithelial cells. It was found that S1PC reduced the level of ICAM-1 protein induced by TNF-α possibly through post-translational levels without affecting the TNF-α-induced mRNA expression. However, SAC and SAMC had no effect. It was also confirmed the inhibitory effect of an antimicrobial peptide [human-β defensin-3 (hβD3)] and found that the inhibitory effects of hbD3 and S1PC were synergistic. On the other hand, the TNF-α-induced IL-6 secretion was attenuated by SAC and SAMC in a dose-dependent manner, whereas S1PC was ineffective. In addition, SAC and SAMC, but not S1PC inhibited the phosphorylation of the transcription factor nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), which is involved in the expression of inflammatory molecules, suggesting that the anti-inflammatory effects of SAC and SAMC are mediated, at least partly, by NF-κB. On the whole, the findings of this study suggest that the three sulfur amino acids in AGE function synergistically in alleviating inflammation in human gingival epithelial cells.
Collapse
Affiliation(s)
- Masahiro Ohtani
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| | - Tsubasa Nishimura
- Central Research Institute, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Hiroshima 739-1195, Japan
| |
Collapse
|
25
|
Prasad SV, Fiedoruk K, Daniluk T, Piktel E, Bucki R. Expression and Function of Host Defense Peptides at Inflammation Sites. Int J Mol Sci 2019; 21:ijms21010104. [PMID: 31877866 PMCID: PMC6982121 DOI: 10.3390/ijms21010104] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/09/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
There is a growing interest in the complex role of host defense peptides (HDPs) in the pathophysiology of several immune-mediated inflammatory diseases. The physicochemical properties and selective interaction of HDPs with various receptors define their immunomodulatory effects. However, it is quite challenging to understand their function because some HDPs play opposing pro-inflammatory and anti-inflammatory roles, depending on their expression level within the site of inflammation. While it is known that HDPs maintain constitutive host protection against invading microorganisms, the inducible nature of HDPs in various cells and tissues is an important aspect of the molecular events of inflammation. This review outlines the biological functions and emerging roles of HDPs in different inflammatory conditions. We further discuss the current data on the clinical relevance of impaired HDPs expression in inflammation and selected diseases.
Collapse
|
26
|
Jourdain M, Velard F, Pierrard L, Sergheraert J, Gangloff SC, Braux J. Cationic antimicrobial peptides and periodontal physiopathology: A systematic review. J Periodontal Res 2019; 54:589-600. [DOI: 10.1111/jre.12676] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Marie‐Laure Jourdain
- EA 4691 "Biomatériaux et Inflammation en Site Osseux" (BIOS) Université de Reims‐Champagne‐Ardenne Reims France
- UFR Odontologie Reims France
- Pôle de Médecine Bucco‐Dentaire CHU de Reims Reims France
| | - Frédéric Velard
- EA 4691 "Biomatériaux et Inflammation en Site Osseux" (BIOS) Université de Reims‐Champagne‐Ardenne Reims France
- UFR Odontologie Reims France
| | - Loïc Pierrard
- UFR Odontologie Reims France
- Pôle de Médecine Bucco‐Dentaire CHU de Reims Reims France
| | - Johan Sergheraert
- UFR Odontologie Reims France
- Pôle de Médecine Bucco‐Dentaire CHU de Reims Reims France
| | - Sophie C. Gangloff
- EA 4691 "Biomatériaux et Inflammation en Site Osseux" (BIOS) Université de Reims‐Champagne‐Ardenne Reims France
- UFR Pharmacie Reims France
| | - Julien Braux
- EA 4691 "Biomatériaux et Inflammation en Site Osseux" (BIOS) Université de Reims‐Champagne‐Ardenne Reims France
- UFR Odontologie Reims France
- Pôle de Médecine Bucco‐Dentaire CHU de Reims Reims France
| |
Collapse
|
27
|
Ebersole JL, Orraca L, Novak MJ, Kirakodu S, Gonzalez-Martinez J, Gonzalez OA. Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1197:143-163. [PMID: 31732940 DOI: 10.1007/978-3-030-28524-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epithelial cells and functions of the epithelium are critical to the health of the oral cavity. We used a nonhuman primate model to profile the transcriptome of gingival tissues in health across the lifespan and hypothesized that in older animals, epithelial-related transcriptome patterns would reflect epithelial cells that are aggressively responsive to the surrounding environment and less able to modulate and resolve the noxious challenge from the bacteria. Rhesus monkeys (n = 34) with a healthy periodontium were distributed into four groups: ≤3 years (young), 3-7 years (adolescent), 12-16 years (adult), and 18-23 years (aged), and a buccal gingival sample from the premolar/molar region of each animal was obtained. RNA was subjected to a microarray analysis (GeneChip® Rhesus Macaque Genome Array, Affymetrix), and 336 genes examined that are linked to epithelium and epithelial cell functions categorized into 9 broad functional groups: extracellular matrix and cell structure; extracellular matrix remodeling enzymes; cell adhesion molecules, cytoskeleton regulation; inflammatory response; growth factors; kinases/cell signaling; cell surface receptors; junction associated molecules; autophagy/apoptosis; antimicrobial peptides; and transcription factors. Total of 255 genes displayed a normalized signal >100, and differences across the age groups were observed primarily in extracellular matrix and cell structure, cell adhesion molecules, and cell surface receptor gene categories with elevations in the aged tissues. Keratins 2, 5, 6B, 13, 16, 17 were all significantly increased in healthy-aged tissues versus adults, and keratins 1 and 2 were significantly decreased in young animals. Approximately 15 integrins are highly expressed in the gingival tissues across the age groups with only ITGA8, ITGAM (CD11b), and ITGB2 significantly increased in the aged tissues. Little impact of aging on desmosomal/hemidesmosomal genes was noted. These results suggest that healthy gingival aging has a relatively limited impact on the broader functions of the epithelium and epithelial cells, with some effects on genes for extracellular matrix and cell adhesion molecules (e.g., integrins). Thus, while there is a substantial impact of aging on immune system targets even in healthy gingiva, it appears that the epithelial barrier remains reasonably molecularly intact in this model system.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - L Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - M J Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, University College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, University College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - J Gonzalez-Martinez
- Caribbean Primate Research Center, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - O A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
28
|
Silva ON, Porto WF, Ribeiro SM, Batista I, Franco OL. Host-defense peptides and their potential use as biomarkers in human diseases. Drug Discov Today 2018; 23:1666-1671. [PMID: 29803935 DOI: 10.1016/j.drudis.2018.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/06/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023]
Abstract
Since the early 19th century, host-defense peptides (HDPs) have been known to play a crucial role in innate host defense. Subsequent work has demonstrated their role in adaptive immunity as well as their involvement in cancer and also a number of inflammatory and/or autoimmune diseases. In addition to these multiple functional activities, several studies have shown that HDP accumulation might be correlated with various human diseases and, therefore, could be used as a biomarkers for such. Thus, research has aimed to validate the clinical use of HDPs for diagnosis, prognosis, and further treatment. In this review, we outline the most recent findings related to the use of HDPs as biomarkers, their clinical and epidemiological value, and the techniques used to determine the levels of HDPs.
Collapse
Affiliation(s)
- Osmar N Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - William F Porto
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Porto Reports, 70790-160, Brasília, DF, Brazil
| | - Suzana M Ribeiro
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados-MS
| | - Ingrid Batista
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil
| | - Octavio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, DF, Brazil; Departamento de Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
29
|
Jourdain ML, Pierrard L, Kanagaratnam L, Velard F, Sergheraert J, Lefèvre B, Gangloff SC, Braux J. Antimicrobial peptide gene expression in periodontitis patients: A pilot study. J Clin Periodontol 2018; 45:524-537. [PMID: 29446150 DOI: 10.1111/jcpe.12879] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2018] [Indexed: 12/11/2022]
Abstract
AIM Antimicrobial peptides (AMPs) are one of the most active components of innate immunity and have characteristics that could place them at the heart of the pathogenesis of periodontal disease. This study investigated differences in the expression of AMP coding genes obtained using a simple harvesting technique, gingival smear, between two groups of patients: chronic periodontitis subjects versus healthy ones. MATERIALS AND METHODS Twenty-three patients were enrolled in two groups: 12 were diagnosed with moderate or severe generalized chronic periodontitis, and 11 were diagnosed as clinically healthy. Gingival smears were retrieved and studied using reverse transcription-quantitative PCR (RT-qPCR) after mRNA purification. RESULTS Fifteen gene expressions were obtained using real-time RT-qPCR. Three AMP genes, histatin 3 (HTN3), α-defensin 4 (DEFA4) and lysozyme C (LYZ), presented different expression levels in periodontitis patients compared with healthy subjects. The relative expression level of DEFA4 appeared to be a protective factor against periodontitis. CONCLUSION Gingival smears studied by RT-qPCR may be used to assess the expression of AMPs coding genes. A lack of expression of DEFA4 could be a potential indicator of periodontitis status.
Collapse
Affiliation(s)
- Marie-Laure Jourdain
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Loïc Pierrard
- UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France.,EA 3797 Santé Publique, Vieillissement, Qualité de Vie et Réadaptation des Sujets Fragiles, Université de Reims-Champagne-Ardenne, Reims, France
| | - Lukshe Kanagaratnam
- Pôle Odontologie, CHU de Reims, Reims, France.,EA 3797 Santé Publique, Vieillissement, Qualité de Vie et Réadaptation des Sujets Fragiles, Université de Reims-Champagne-Ardenne, Reims, France
| | - Frédéric Velard
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France
| | - Johan Sergheraert
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Benoît Lefèvre
- UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| | - Sophie C Gangloff
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR de Pharmacie, Reims, France
| | - Julien Braux
- EA 4691 Biomatériaux et inflammation en site osseux (BIOS), SFR CAP-Santé (FED 4231), Université de Reims-Champagne-Ardenne, Reims, France.,UFR Odontologie, Reims, France.,Pôle Odontologie, CHU de Reims, Reims, France
| |
Collapse
|
30
|
Li S, Schmalz G, Schmidt J, Krause F, Haak R, Ziebolz D. Antimicrobial peptides as a possible interlink between periodontal diseases and its risk factors: A systematic review. J Periodontal Res 2017; 53:145-155. [DOI: 10.1111/jre.12482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2017] [Indexed: 12/30/2022]
Affiliation(s)
- S. Li
- Department of Cariology, Endodontology and Periodontology; University of Leipzig; Leipzig Germany
| | - G. Schmalz
- Department of Cariology, Endodontology and Periodontology; University of Leipzig; Leipzig Germany
| | - J. Schmidt
- Department of Cariology, Endodontology and Periodontology; University of Leipzig; Leipzig Germany
| | - F. Krause
- Department of Cariology, Endodontology and Periodontology; University of Leipzig; Leipzig Germany
| | - R. Haak
- Department of Cariology, Endodontology and Periodontology; University of Leipzig; Leipzig Germany
| | - D. Ziebolz
- Department of Cariology, Endodontology and Periodontology; University of Leipzig; Leipzig Germany
| |
Collapse
|
31
|
Wang Z, Shen Y, Haapasalo M. Antibiofilm peptides against oral biofilms. J Oral Microbiol 2017; 9:1327308. [PMID: 28748031 PMCID: PMC5508375 DOI: 10.1080/20002297.2017.1327308] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/01/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
The oral cavity is a major entry point for bacteria and other microorganisms. Oral biofilms are formed by mixed communities of microorganisms embedded in an exopolysaccharide matrix. Biofilms forming on dental hard or soft tissue are the major cause of caries and endodontic and periodontal disease. Human oral biofilms exhibit high resistance to antimicrobial agents. Antibiofilm peptides constitute a diverse class of host-defense molecules that act to combat invasion and infection with biofilms. Different in vitro and in vivo biofilm models with quantitative analysis have been established to provide predictable platforms for the evaluation of the antibiofilm effect of oral antibiofilm peptides. These peptides have engendered considerable interest in the past decades as potential alternatives to traditional disinfecting agents due to their ability to target bacterial biofilms specifically, leading to the prevention of biofilm formation and destruction of pre-existing biofilms by Gram-positive and -negative bacterial pathogens and fungi. At the same time, challenges associated with the application of these antibiofilm peptides in dental practice also exist. The production of effective, nontoxic, and stable antibiofilm peptides is desired in both academic and industrial fields. This review focuses on the antibiofilm properties of current synthetic peptides and their application in different areas of dentistry.
Collapse
Affiliation(s)
- Zhejun Wang
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Ya Shen
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Markus Haapasalo
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
32
|
Dolińska E, Skurska A, Pietruska M, Dymicka-Piekarska V, Milewski R, Pietruski J, Sculean A. The Effect of Nonsurgical Periodontal Therapy on HNP1-3 Level in Gingival Crevicular Fluid of Chronic Periodontitis Patients. Arch Immunol Ther Exp (Warsz) 2017; 65:355-361. [PMID: 28204842 PMCID: PMC5511316 DOI: 10.1007/s00005-016-0451-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 12/14/2016] [Indexed: 12/21/2022]
Abstract
The rich bacterial flora of oral cavity is controlled by innate immune response, including antibacterial peptides and among them human neutrophil peptides 1–3 (HNP1-3). The knowledge of the involvement of HNPs in innate and acquired immunity of the periodontium is fragmentary. The aim of the study was to assess alterations in HNP1-3 levels in the gingival crevicular fluid (GCF) of chronic periodontitis patients before and after nonsurgical periodontal therapy. Nineteen patients with chronic periodontitis were qualified to the study. After periodontal examination, one site with pocket depth (PD) ≥4 mm was selected. All the patients received periodontal treatment involving scaling and root planing with additional systemic antibiotic therapy (Amoxicillin 375 mg three times daily and Metronidazole 250 mg three times daily for 7 days). Prior to therapy, 3 and 6 months after it, clinical periodontal parameters were measured and GCF was collected from previously chosen site. The level of HNP1-3 in GCF was determined by means of a commercially available enzyme-linked immunoassay kit. The periodontal therapy caused a statistically significant (p < 0.001) decrease in all the assessed clinical parameters at the sites of sample collection except for bleeding on probing. The level of HNP1-3 per measure point showed a statistically significant increase (baseline—3 months: p = 0.05, baseline—6 months: p = 0.007). Within the limits of the study, it can be stated that nonsurgical periodontal therapy with additional systemic administration of Amoxicillin and Metronidazole increases the level of HNP1-3 in GCF.
Collapse
Affiliation(s)
- Ewa Dolińska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, Waszyngtona 13, 15-269, Białystok, Poland.
| | - Anna Skurska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, Waszyngtona 13, 15-269, Białystok, Poland
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, Waszyngtona 13, 15-269, Białystok, Poland.,Private Practice, Białystok, Poland
| | | | - Robert Milewski
- Department of Statistics and Medical Informatics, Medical University of Bialystok, Białystok, Poland
| | | | - Anton Sculean
- Department of Periodontology, Dental School University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
Mehlotra RK, Hall NB, Willie B, Stein CM, Weinberg A, Zimmerman PA, Vernon LT. Associations of Toll-Like Receptor and β-Defensin Polymorphisms with Measures of Periodontal Disease (PD) in HIV+ North American Adults: An Exploratory Study. PLoS One 2016; 11:e0164075. [PMID: 27727278 PMCID: PMC5058471 DOI: 10.1371/journal.pone.0164075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022] Open
Abstract
Polymorphisms in toll-like receptor (TLR) and β-defensin (DEFB) genes have been recognized as potential genetic factors that can influence susceptibility to and severity of periodontal diseases (PD). However, data regarding associations between these polymorphisms and PD are still scarce in North American populations, and are not available in HIV+ North American populations. In this exploratory study, we analyzed samples from HIV+ adults (n = 115), who received primary HIV care at 3 local outpatient HIV clinics and were monitored for PD status. We genotyped a total of 41 single nucleotide polymorphisms (SNPs) in 8 TLR genes and copy number variation (CNV) in DEFB4/103A. We performed regression analyses for levels of 3 periodontopathogens in subgingival dental plaques (Porphyromonas gingivalis [Pg], Treponema denticola [Td], and Tannerella forsythia [Tf]) and 3 clinical measures of PD (periodontal probing depth [PPD], gingival recession [REC], and bleeding on probing [BOP]). In all subjects combined, 2 SNPs in TLR1 were significantly associated with Td, and one SNP in TLR2 was significantly associated with BOP. One of the 2 SNPs in TLR1 was significantly associated with Td in Caucasians. In addition, another SNP in TLR1 and a SNP in TLR6 were also significantly associated with Td and Pg, respectively, in Caucasians. All 3 periodontopathogen levels were significantly associated with PPD and BOP, but none was associated with REC. Instrumental variable analysis showed that 8 SNPs in 6 TLR genes were significantly associated with the 3 periodontopathogen levels. However, associations between the 3 periodontopathogen levels and PPD or BOP were not driven by associations with these identified SNPs. No association was found between DEFB4/103A CNV and any periodontopathogen level or clinical measure in all samples, Caucasians, or African Americans. Our exploratory study suggests a role of TLR polymorphisms, particularly TLR1 and TLR6 polymorphisms, in PD in HIV+ North Americans.
Collapse
Affiliation(s)
- Rajeev K. Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| | - Noemi B. Hall
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Barne Willie
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Catherine M. Stein
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Lance T. Vernon
- Department of Pediatric and Community Dentistry, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
- * E-mail: (RKM); (LTV)
| |
Collapse
|
34
|
Hoppe T, Kraus D, Novak N, Probstmeier R, Frentzen M, Wenghoefer M, Jepsen S, Winter J. Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins. Tumour Biol 2016; 37:13789-13798. [PMID: 27481514 DOI: 10.1007/s13277-016-5281-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.
Collapse
Affiliation(s)
- T Hoppe
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - D Kraus
- Department of Prosthodontics, Preclinical Education, and Material Science, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - N Novak
- Department of Dermatology and Allergy, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - R Probstmeier
- Neuro- and Tumor Cell Biology Group, Department of Nuclear Medicine, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - M Frentzen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - M Wenghoefer
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Bonn, University of Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - S Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - J Winter
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| |
Collapse
|