1
|
Lin Y, Zhu Y, Jing L, Lei X, Xie Z. Regulation of viral replication by host restriction factors. Front Immunol 2025; 16:1484119. [PMID: 39917304 PMCID: PMC11798991 DOI: 10.3389/fimmu.2025.1484119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Viral infectious diseases, caused by numerous viruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A virus (IAV), enterovirus (EV), human immunodeficiency virus (HIV), hepatitis B virus (HBV), and human papillomavirus (HPV), pose a continuous threat to global health. As obligate parasites, viruses rely on host cells to replicate, and host cells have developed numerous defense mechanisms to counteract viral infection. Host restriction factors (HRFs) are critical components of the early antiviral response. These cellular proteins inhibit viral replication and spread by impeding essential steps in the viral life cycle, such as viral entry, genome transcription and replication, protein translation, viral particle assembly, and release. This review summarizes the current understanding of how host restriction factors inhibit viral replication, with a primary focus on their diverse antiviral mechanisms against a range of viruses, including SARS-CoV-2, influenza A virus, enteroviruses, human immunodeficiency virus, hepatitis B virus, and human papillomavirus. In addition, we highlight the crucial role of these factors in shaping the host-virus interactions and discuss their potential as targets for antiviral drug development.
Collapse
Affiliation(s)
- Ying Lin
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Zhu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Jing
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Lei
- National Health Commission (NHC) Key Laboratory of System Biology of Pathogens and Christophe Merieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China
| | - Zhengde Xie
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Palomino-Vizcaino G, Bañuelos-Villegas EG, Alvarez-Salas LM. The Natural History of Cervical Cancer and the Case for MicroRNAs: Is Human Papillomavirus Infection the Whole Story? Int J Mol Sci 2024; 25:12991. [PMID: 39684702 PMCID: PMC11641362 DOI: 10.3390/ijms252312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that negatively regulate gene expression. MiRNAs regulate fundamental biological processes and have significant roles in several pathologies, including cancer. Cervical cancer is the best-known example of a widespread human malignancy with a demonstrated viral etiology. Infection with high-risk human papillomavirus (hrHPV) has been shown to be a causative factor for cervical carcinogenesis. Despite the occurrence of prophylactic vaccines, highly sensitive HPV diagnostics, and innovative new therapies, cervical cancer remains a main cause of death in developing countries. The relationship between hrHPV infection and cervical cancer depends on the integration of viral DNA to the host genome, disrupting the viral regulator E2 and the continuous production of the viral E6 and E7 proteins, which are necessary to acquire and maintain a transformed phenotype but insufficient for malignant cervical carcinogenesis. Lately, miRNAs, the tumor microenvironment, and immune evasion have been found to be major players in cervical carcinogenesis after hrHPV infection. Many miRNAs have been widely reported as deregulated in cervical cancer. Here, the relevance of miRNA in HPV-mediated transformation is critically reviewed in the context of the natural history of hrHPV infection and cervical cancer.
Collapse
Affiliation(s)
- Giovanni Palomino-Vizcaino
- Facultad de Ciencias de la Salud, Unidad Valle de las Palmas, Campus Tijuana, Universidad Autónoma de Baja California, Tijuana 21500, Mexico;
| | - Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México City 07360, Mexico;
| |
Collapse
|
3
|
Ortega-Prieto AM, Jimenez-Guardeño JM. Interferon-stimulated genes and their antiviral activity against SARS-CoV-2. mBio 2024; 15:e0210024. [PMID: 39171921 PMCID: PMC11389394 DOI: 10.1128/mbio.02100-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic remains an international health problem caused by the recent emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As of May 2024, SARS-CoV-2 has caused more than 775 million cases and over 7 million deaths globally. Despite current vaccination programs, infections are still rapidly increasing, mainly due to the appearance and spread of new variants, variations in immunization rates, and limitations of current vaccines in preventing transmission. This underscores the need for pan-variant antivirals and treatments. The interferon (IFN) system is a critical element of the innate immune response and serves as a frontline defense against viruses. It induces a generalized antiviral state by transiently upregulating hundreds of IFN-stimulated genes (ISGs). To gain a deeper comprehension of the innate immune response to SARS-CoV-2, its connection to COVID-19 pathogenesis, and the potential therapeutic implications, this review provides a detailed overview of fundamental aspects of the diverse ISGs identified for their antiviral properties against SARS-CoV-2. It emphasizes the importance of these proteins in controlling viral replication and spread. Furthermore, we explore methodological approaches for the identification of ISGs and conduct a comparative analysis with other viruses. Deciphering the roles of ISGs and their interactions with viral pathogens can help identify novel targets for antiviral therapies and enhance our preparedness to confront current and future viral threats.
Collapse
Affiliation(s)
- Ana Maria Ortega-Prieto
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| | - Jose M Jimenez-Guardeño
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
4
|
Molenberghs F, Verschuuren M, Vandeweyer L, Peeters S, Bogers JJ, Novo CP, Vanden Berghe W, De Reu H, Cools N, Schelhaas M, De Vos WH. Lamin B1 curtails early human papillomavirus infection by safeguarding nuclear compartmentalization and autophagic capacity. Cell Mol Life Sci 2024; 81:141. [PMID: 38485766 PMCID: PMC10940392 DOI: 10.1007/s00018-024-05194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lauran Vandeweyer
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sarah Peeters
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Claudina Perez Novo
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
5
|
Toyohara Y, Taguchi A, Ishii Y, Yoshimoto D, Yamazaki M, Matsunaga H, Nakatani K, Hoshi D, Tsuchimochi S, Kusakabe M, Baba S, Kawata A, Ikemura M, Tanikawa M, Sone K, Uchino‐Mori M, Ushiku T, Takeyama H, Oda K, Kawana K, Hippo Y, Osuga Y. Identification of target cells of human papillomavirus 18 using squamocolumnar junction organoids. Cancer Sci 2024; 115:125-138. [PMID: 37996972 PMCID: PMC10823277 DOI: 10.1111/cas.15988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 11/25/2023] Open
Abstract
Human papillomavirus 18 (HPV18) is a highly malignant HPV genotype among high-risk HPVs, characterized by the difficulty of detecting it in precancerous lesions and its high prevalence in adenocarcinomas. The cellular targets and molecular mechanisms underlying its infection remain unclear. In this study, we aimed to identify the cells targeted by HPV18 and elucidate the molecular mechanisms underlying HPV18 replication. Initially, we established a lentiviral vector (HPV18LCR-GFP vector) containing the HPV18 long control region promoter located upstream of EGFP. Subsequently, HPV18LCR-GFP vectors were transduced into patient-derived squamocolumnar junction organoids, and the presence of GFP-positive cells was evaluated. Single-cell RNA sequencing of GFP-positive and GFP-negative cells was conducted. Differentially expressed gene analysis revealed that 169 and 484 genes were significantly upregulated in GFP-positive and GFP-negative cells, respectively. Pathway analysis showed that pathways associated with cell cycle and viral carcinogenesis were upregulated in GFP-positive cells, whereas keratinization and mitophagy/autophagy-related pathways were upregulated in GFP-negative cells. siRNA-mediated luciferase reporter assay and HPV18 genome replication assay validated that, among the upregulated genes, ADNP, FHL2, and NPM3 were significantly associated with the activation of the HPV18 early promoter and maintenance of the HPV18 genome. Among them, NPM3 showed substantially higher expression in HPV-related cervical adenocarcinomas than in squamous cell carcinomas, and NPM3 knockdown of HPV18-infected cells downregulated stem cell-related genes. Our new experimental model allows us to identify novel genes involved in HPV18 early promoter activities. These molecules might serve as therapeutic targets in HPV18-infected cervical lesions.
Collapse
Affiliation(s)
- Yusuke Toyohara
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Laboratory of Human Single Cell Immunology, World Premier International Immunology Frontier Research Center (WPI‐IFReC)Osaka UniversitySuitaJapan
| | - Yoshiyuki Ishii
- Pathogen Genomics CenterNational Institute of Infectious DiseasesTokyoJapan
| | - Daisuke Yoshimoto
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Miki Yamazaki
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Computational Bio Big‐Data Open Innovation LaboratoryAIST‐Waseda UniversityTokyoJapan
| | - Hiroko Matsunaga
- Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan
| | - Kazuma Nakatani
- Department of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Daisuke Hoshi
- Department of Oncologic PathologyKanazawa Medical UniversityUchinadaJapan
| | - Saki Tsuchimochi
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Misako Kusakabe
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Satoshi Baba
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Masako Ikemura
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kenbun Sone
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Mayuyo Uchino‐Mori
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Haruko Takeyama
- Department of Life Science and Medical BioscienceWaseda UniversityTokyoJapan
- Computational Bio Big‐Data Open Innovation LaboratoryAIST‐Waseda UniversityTokyoJapan
- Research organization for Nano and Life InnovationWaseda UniversityTokyoJapan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and EngineeringWaseda UniversityTokyoJapan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Kei Kawana
- Department of Obstetrics and GynecologyNihon University School of MedicineTokyoJapan
| | - Yoshitaka Hippo
- Department of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Ding S, Wang H, Liao Y, Chen R, Hu Y, Wu H, Shen H, Tang S. HPV16 E7 protein antagonizes TNF-α-induced apoptosis of cervical cancer cells via Daxx/JNK pathway. Microb Pathog 2023; 185:106423. [PMID: 37871853 DOI: 10.1016/j.micpath.2023.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Human papillomavirus (HPV) E7 protein as an important viral factor was involved in the progression of cervical cancer by mediating the cellular signaling pathways. Daxx (Death domain-associated protein) can interact with a variety of proteins to affect the viral infection process. However, the interaction and its related function between HPV16 E7 and Daxx have not been adequately investigated. Here, it was found that HPV16 E7 can interact with Daxx in HeLa or C33A cells by co-immunoprecipitation. HPV16 E7 protein treatment can up-regulate Daxx protein expression, while the interference in Daxx expression and the agonists for JNK can both reduce the antagonistic effects of HPV16 E7 on TNF-α-induced apoptosis, suggesting that Daxx/JNK pathway may be involved in the anti-apoptotic activity of HPV16 E7.
Collapse
Affiliation(s)
- Shuang Ding
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China; Department of Clinical Laboratory, The Seventh Affiliated Hospital, University of South China / Hunan Provincial Veterans Administration Hospital, Changsha, China
| | - Hanmeng Wang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yaqi Liao
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Ranzhong Chen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Hu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongrong Wu
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Haiyan Shen
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China
| | - Shuangyang Tang
- Institute of Pathogenic Biology, School of Basic Medicine Sciences, Hengyang Medical College, University of South China, Hengyang, China.
| |
Collapse
|
7
|
Chen Z, Liu H, Zhu J, Duan X, Wang H, Li X, Zhou X, Zhao A, Yang S. Porcine promyelocytic leukemia protein isoforms suppress Japanese encephalitis virus replication in PK15 cells. Virol J 2023; 20:280. [PMID: 38031162 PMCID: PMC10687900 DOI: 10.1186/s12985-023-02212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection. METHODS PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-β signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays. RESULTS Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-β signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection. CONCLUSIONS These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-β and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.
Collapse
Affiliation(s)
- Zhenyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Huaijin Liu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Jingjing Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xing Duan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
8
|
Silonov SA, Smirnov EY, Kuznetsova IM, Turoverov KK, Fonin AV. PML Body Biogenesis: A Delicate Balance of Interactions. Int J Mol Sci 2023; 24:16702. [PMID: 38069029 PMCID: PMC10705990 DOI: 10.3390/ijms242316702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
PML bodies are subnuclear protein complexes that play a crucial role in various physiological and pathological cellular processes. One of the general structural proteins of PML bodies is a member of the tripartite motif (TRIM) family-promyelocytic leukemia protein (PML). It is known that PML interacts with over a hundred partners, and the protein itself is represented by several major isoforms, differing in their variable and disordered C-terminal end due to alternative splicing. Despite nearly 30 years of research, the mechanisms underlying PML body formation and the role of PML proteins in this process remain largely unclear. In this review, we examine the literature and highlight recent progress in this field, with a particular focus on understanding the role of individual domains of the PML protein, its post-translational modifications, and polyvalent nonspecific interactions in the formation of PML bodies. Additionally, based on the available literature, we propose a new hypothetical model of PML body formation.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (E.Y.S.); (I.M.K.); (K.K.T.)
| | | | | | | | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
9
|
Procario MC, Sexton JZ, Halligan BS, Imperiale MJ. Single-Cell, High-Content Microscopy Analysis of BK Polyomavirus Infection. Microbiol Spectr 2023; 11:e0087323. [PMID: 37154756 PMCID: PMC10269497 DOI: 10.1128/spectrum.00873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/08/2023] [Indexed: 05/10/2023] Open
Abstract
By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.
Collapse
Affiliation(s)
- Megan C. Procario
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
- Center for Drug Repurposing, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin S. Halligan
- Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J. Imperiale
- Department of Microbiology and Immunology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Molenberghs F, Verschuuren M, Barbier M, Bogers JJ, Cools N, Delputte P, Schelhaas M, De Vos WH. Cells infected with human papilloma pseudovirus display nuclear reorganization and heterogenous infection kinetics. Cytometry A 2022; 101:1035-1048. [PMID: 35668549 DOI: 10.1002/cyto.a.24663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023]
Abstract
Human papillomaviruses (HPV) are small, non-enveloped DNA viruses, which upon chronic infection can provoke cervical and head-and-neck cancers. Although the infectious life cycle of HPV has been studied and a vaccine is available for the most prevalent cancer-causing HPV types, there are no antiviral agents to treat infected patients. Hence, there is a need for novel therapeutic entry points and a means to identify them. In this work, we have used high-content microscopy to quantitatively investigate the early phase of HPV infection. Human cervical cancer cells and immortalized keratinocytes were exposed to pseudoviruses (PsV) of the widespread HPV type 16, in which the viral genome was replaced by a pseudogenome encoding a fluorescent reporter protein. Using the fluorescent signal as readout, we measured differences in infection between cell lines, which directly correlated with host cell proliferation rate. Parallel multiparametric analysis of nuclear organization revealed that HPV PsV infection alters nuclear organization and inflates promyelocytic leukemia protein body content, positioning these events at the early stage of HPV infection, upstream of viral replication. Time-resolved analysis revealed a marked heterogeneity in infection kinetics even between two daughter cells, which we attribute to differences in viral load. Consistent with the requirement for mitotic nuclear envelope breakdown, pharmacological inhibition of the cell cycle dramatically blunted infection efficiency. Thus, by systematic image-based single cell analysis, we revealed phenotypic alterations that accompany HPV PsV infection in individual cells, and which may be relevant for therapeutic drug screens.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Michaël Barbier
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Simply Complex Lab, UNAM, Bilkent University, Ankara, Turkey
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Antwerp, Belgium.,Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, Antwerp, Belgium.,μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Kashkin KN. Looking for Tumor Specific Promoters In Silico. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022060127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract—
Previously we demonstrated the tumor-specific activity of several human native and chimeric promoters. Here we have analyzed the DNA sequences of experimentally tested tumor-specific promoters for the presence of recognition matrices of transcription factors and for de novo motif discovery. CiiiDER and MEME Suite software tools were used for this purpose. A number of transcription factor matrices have been identified, which are present more often in tumor-specific promoters than in the promoters of housekeeping genes. New promoter–TF regulatory relationships have been predicted by pathway analysis. A motif of 44 bp characteristic of tumor-specific promoters but not of housekeeping gene promoters has been discovered. The search through 29 598 human promoters from the EPDnew promoter database has revealed a series of promoters with this motif, their genes being associated with unfavorable prognoses in cancer. We suppose that some of these promoters may possess a tumor specific activity. In addition, a close similarity in nucleotide motifs between the promoters of the BIRC5 and MCM2 genes has been shown. The results of the study may contribute to understanding the peculiarities of gene transcription in tumors, as well as to searching for native tumor-specific promoters or creating artificial ones for cancer gene therapy, as well as in the development of anticancer vaccines.
Collapse
|
12
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
The Interaction of Human Papillomavirus Infection and Prostaglandin E2 Signaling in Carcinogenesis: A Focus on Cervical Cancer Therapeutics. Cells 2022; 11:cells11162528. [PMID: 36010605 PMCID: PMC9406919 DOI: 10.3390/cells11162528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.
Collapse
|
14
|
Schweiger L, Lelieveld-Fast LA, Mikuličić S, Strunk J, Freitag K, Tenzer S, Clement AM, Florin L. HPV16 Induces Formation of Virus-p62-PML Hybrid Bodies to Enable Infection. Viruses 2022; 14:1478. [PMID: 35891458 PMCID: PMC9315800 DOI: 10.3390/v14071478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Human papillomaviruses (HPVs) inflict a significant burden on the human population. The clinical manifestations caused by high-risk HPV types are cancers at anogenital sites, including cervical cancer, as well as head and neck cancers. Host cell defense mechanisms such as autophagy are initiated upon HPV entry. At the same time, the virus modulates cellular antiviral processes and structures such as promyelocytic leukemia nuclear bodies (PML NBs) to enable infection. Here, we uncover the autophagy adaptor p62, also known as p62/sequestosome-1, as a novel proviral factor in infections by the high-risk HPV type 16 (HPV16). Proteomics, imaging and interaction studies of HPV16 pseudovirus-treated HeLa cells display that p62 is recruited to virus-filled endosomes, interacts with incoming capsids, and accompanies the virus to PML NBs, the sites of viral transcription and replication. Cellular depletion of p62 significantly decreased the delivery of HPV16 viral DNA to PML NBs and HPV16 infection rate. Moreover, the absence of p62 leads to an increase in the targeting of viral components to autophagic structures and enhanced degradation of the viral capsid protein L2. The proviral role of p62 and formation of virus-p62-PML hybrid bodies have also been observed in human primary keratinocytes, the HPV target cells. Together, these findings suggest the previously unrecognized virus-induced formation of p62-PML hybrid bodies as a viral mechanism to subvert the cellular antiviral defense, thus enabling viral gene expression.
Collapse
Affiliation(s)
- Linda Schweiger
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Laura A. Lelieveld-Fast
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Snježana Mikuličić
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Johannes Strunk
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany;
| | - Albrecht M. Clement
- Institute of Pathobiochemistry, University Medical Center, Johannes Gutenberg University of Mainz, Duesbergweg 6, 55128 Mainz, Germany;
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg University of Mainz, Obere Zahlbacher Strasse 67, 55131 Mainz, Germany; (L.S.); (L.A.L.-F.); (S.M.); (J.S.); (K.F.)
| |
Collapse
|
15
|
Mac Kain A, Maarifi G, Aicher SM, Arhel N, Baidaliuk A, Munier S, Donati F, Vallet T, Tran QD, Hardy A, Chazal M, Porrot F, OhAinle M, Carlson-Stevermer J, Oki J, Holden K, Zimmer G, Simon-Lorière E, Bruel T, Schwartz O, van der Werf S, Jouvenet N, Nisole S, Vignuzzi M, Roesch F. Identification of DAXX as a restriction factor of SARS-CoV-2 through a CRISPR/Cas9 screen. Nat Commun 2022; 13:2442. [PMID: 35508460 PMCID: PMC9068693 DOI: 10.1038/s41467-022-30134-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Interferon restricts SARS-CoV-2 replication in cell culture, but only a handful of Interferon Stimulated Genes with antiviral activity against SARS-CoV-2 have been identified. Here, we describe a functional CRISPR/Cas9 screen aiming at identifying SARS-CoV-2 restriction factors. We identify DAXX, a scaffold protein residing in PML nuclear bodies known to limit the replication of DNA viruses and retroviruses, as a potent inhibitor of SARS-CoV-2 and SARS-CoV replication in human cells. Basal expression of DAXX is sufficient to limit the replication of SARS-CoV-2, and DAXX over-expression further restricts infection. DAXX restricts an early, post-entry step of the SARS-CoV-2 life cycle. DAXX-mediated restriction of SARS-CoV-2 is independent of the SUMOylation pathway but dependent on its D/E domain, also necessary for its protein-folding activity. SARS-CoV-2 infection triggers the re-localization of DAXX to cytoplasmic sites and promotes its degradation. Mechanistically, this process is mediated by the viral papain-like protease (PLpro) and the proteasome. Together, these results demonstrate that DAXX restricts SARS-CoV-2, which in turn has evolved a mechanism to counteract its action.
Collapse
Affiliation(s)
- Alice Mac Kain
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Viral populations and pathogenesis Unit, F-75015, Paris, France
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), , Université de Montpellier, CNRS, 34090, Montpellier, France
| | - Sophie-Marie Aicher
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, F-75015, Paris, France
| | - Nathalie Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), , Université de Montpellier, CNRS, 34090, Montpellier, France
| | - Artem Baidaliuk
- Institut Pasteur, G5 Evolutionary genomics of RNA viruses, F-75015, Paris, France
| | - Sandie Munier
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015, Paris, France
- Institut Pasteur, CNR Virus des infections respiratoires, F-75015, Paris, France
| | - Flora Donati
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015, Paris, France
- Institut Pasteur, CNR Virus des infections respiratoires, F-75015, Paris, France
| | - Thomas Vallet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Viral populations and pathogenesis Unit, F-75015, Paris, France
| | - Quang Dinh Tran
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Viral populations and pathogenesis Unit, F-75015, Paris, France
| | - Alexandra Hardy
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Viral populations and pathogenesis Unit, F-75015, Paris, France
| | - Maxime Chazal
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, F-75015, Paris, France
| | - Françoise Porrot
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity, F-75015, Paris, France
| | - Molly OhAinle
- Divisions of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Jennifer Oki
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - Kevin Holden
- Synthego Corporation, 3565 Haven Avenue, Menlo Park, CA, 94025, USA
| | - Gert Zimmer
- Institute of Virology and Immunology, Bern & Mittelhäusern, Switzerland, and Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Timothée Bruel
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity, F-75015, Paris, France
| | - Olivier Schwartz
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus and Immunity, F-75015, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Molecular Genetics of RNA Viruses Unit, F-75015, Paris, France
- Institut Pasteur, CNR Virus des infections respiratoires, F-75015, Paris, France
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, F-75015, Paris, France.
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), , Université de Montpellier, CNRS, 34090, Montpellier, France.
| | - Marco Vignuzzi
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Viral populations and pathogenesis Unit, F-75015, Paris, France.
| | - Ferdinand Roesch
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Viral populations and pathogenesis Unit, F-75015, Paris, France.
- UMR 1282 ISP, INRAE Centre Val de Loire, Nouzilly, France.
| |
Collapse
|
16
|
Recent Advances in Our Understanding of the Infectious Entry Pathway of Human Papillomavirus Type 16. Microorganisms 2021; 9:microorganisms9102076. [PMID: 34683397 PMCID: PMC8540256 DOI: 10.3390/microorganisms9102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Papillomaviruses are a diverse viral species, but several types such as HPV16 are given special attention due to their contribution towards the pathogenesis of several major cancers. In this review, we will summarize how the knowledge of HPV16 entry has expanded since the last comprehensive HPV16 entry review our lab published in 2017.
Collapse
|
17
|
Warburton A, Della Fera AN, McBride AA. Dangerous Liaisons: Long-Term Replication with an Extrachromosomal HPV Genome. Viruses 2021; 13:1846. [PMID: 34578427 PMCID: PMC8472234 DOI: 10.3390/v13091846] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Papillomaviruses cause persistent, and usually self-limiting, infections in the mucosal and cutaneous surfaces of the host epithelium. However, in some cases, infection with an oncogenic HPV can lead to cancer. The viral genome is a small, double-stranded circular DNA molecule that is assembled into nucleosomes at all stages of infection. The viral minichromosome replicates at a low copy number in the nucleus of persistently infected cells using the cellular replication machinery. When the infected cells differentiate, the virus hijacks the host DNA damage and repair pathways to replicate viral DNA to a high copy number to generate progeny virions. This strategy is highly effective and requires a close association between viral and host chromatin, as well as cellular processes associated with DNA replication, repair, and transcription. However, this association can lead to accidental integration of the viral genome into host DNA, and under certain circumstances integration can promote oncogenesis. Here we describe the fate of viral DNA at each stage of the viral life cycle and how this might facilitate accidental integration and subsequent carcinogenesis.
Collapse
Affiliation(s)
| | | | - Alison A. McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.); (A.N.D.F.)
| |
Collapse
|
18
|
Patra U, Müller S. A Tale of Usurpation and Subversion: SUMO-Dependent Integrity of Promyelocytic Leukemia Nuclear Bodies at the Crossroad of Infection and Immunity. Front Cell Dev Biol 2021; 9:696234. [PMID: 34513832 PMCID: PMC8430037 DOI: 10.3389/fcell.2021.696234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are multi-protein assemblies representing distinct sub-nuclear structures. As phase-separated molecular condensates, PML NBs exhibit liquid droplet-like consistency. A key organizer of the assembly and dynamics of PML NBs is the ubiquitin-like SUMO modification system. SUMO is covalently attached to PML and other core components of PML NBs thereby exhibiting a glue-like function by providing multivalent interactions with proteins containing SUMO interacting motifs (SIMs). PML NBs serve as the catalytic center for nuclear SUMOylation and SUMO-SIM interactions are essential for protein assembly within these structures. Importantly, however, formation of SUMO chains on PML and other PML NB-associated proteins triggers ubiquitylation and proteasomal degradation which coincide with disruption of these nuclear condensates. To date, a plethora of nuclear activities such as transcriptional and post-transcriptional regulation of gene expression, apoptosis, senescence, cell cycle control, DNA damage response, and DNA replication have been associated with PML NBs. Not surprisingly, therefore, SUMO-dependent PML NB integrity has been implicated in regulating many physiological processes including tumor suppression, metabolism, drug-resistance, development, cellular stemness, and anti-pathogen immune response. The interplay between PML NBs and viral infection is multifaceted. As a part of the cellular antiviral defense strategy, PML NB components are crucial restriction factors for many viruses and a mutual positive correlation has been found to exist between PML NBs and the interferon response. Viruses, in turn, have developed counterstrategies for disarming PML NB associated immune defense measures. On the other end of the spectrum, certain viruses are known to usurp specific PML NB components for successful replication and disruption of these sub-nuclear foci has recently been linked to the stimulation rather than curtailment of antiviral gene repertoire. Importantly, the ability of invading virions to manipulate the host SUMO modification machinery is essential for this interplay between PML NB integrity and viruses. Moreover, compelling evidence is emerging in favor of bacterial pathogens to negotiate with the SUMO system thereby modulating PML NB-directed intrinsic and innate immunity. In the current context, we will present an updated account of the dynamic intricacies between cellular PML NBs as the nuclear SUMO modification hotspots and immune regulatory mechanisms in response to viral and bacterial pathogens.
Collapse
Affiliation(s)
- Upayan Patra
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| | - Stefan Müller
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany
| |
Collapse
|
19
|
Human papillomaviruses: diversity, infection and host interactions. Nat Rev Microbiol 2021; 20:95-108. [PMID: 34522050 DOI: 10.1038/s41579-021-00617-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Human papillomaviruses (HPVs) are an ancient and highly successful group of viruses that have co-evolved with their host to replicate in specific anatomical niches of the stratified epithelia. They replicate persistently in dividing cells, hijack key host cellular processes to manipulate the cellular environment and escape immune detection, and produce virions in terminally differentiated cells that are shed from the host. Some HPVs cause benign, proliferative lesions on the skin and mucosa, and others are associated with the development of cancer. However, most HPVs cause infections that are asymptomatic and inapparent unless the immune system becomes compromised. To date, the genomes of almost 450 distinct HPV types have been isolated and sequenced. In this Review, I explore the diversity, evolution, infectious cycle, host interactions and disease association of HPVs.
Collapse
|
20
|
Wang L, Ning S. TRIMming Type I Interferon-Mediated Innate Immune Response in Antiviral and Antitumor Defense. Viruses 2021; 13:279. [PMID: 33670221 PMCID: PMC7916971 DOI: 10.3390/v13020279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The tripartite motif (TRIM) family comprises at least 80 members in humans, with most having ubiquitin or SUMO E3 ligase activity conferred by their N-terminal RING domain. TRIMs regulate a wide range of processes in ubiquitination- or sumoylation-dependent manners in most cases, and fewer as adaptors. Their roles in the regulation of viral infections, autophagy, cell cycle progression, DNA damage and other stress responses, and carcinogenesis are being increasingly appreciated, and their E3 ligase activities are attractive targets for developing specific immunotherapeutic strategies for immune diseases and cancers. Given their importance in antiviral immune response, viruses have evolved sophisticated immune escape strategies to subvert TRIM-mediated mechanisms. In this review, we focus on their regulation of IFN-I-mediated innate immune response, which plays key roles in antiviral and antitumor defense.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA;
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
21
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
22
|
García CC, Vázquez CA, Giovannoni F, Russo CA, Cordo SM, Alaimo A, Damonte EB. Cellular Organelles Reorganization During Zika Virus Infection of Human Cells. Front Microbiol 2020; 11:1558. [PMID: 32774331 PMCID: PMC7381349 DOI: 10.3389/fmicb.2020.01558] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Zika virus (ZIKV) is an enveloped positive stranded RNA virus belonging to the genus Flavivirus in the family Flaviviridae that emerged in recent decades causing pandemic outbreaks of human infections occasionally associated with severe neurological disorders in adults and newborns. The intracellular steps of flavivirus multiplication are associated to cellular membranes and their bound organelles leading to an extensive host cell reorganization. Importantly, the association of organelle dysfunction with diseases caused by several human viruses has been widely reported in recent studies. With the aim to increase the knowledge about the impact of ZIKV infection on the host cell functions, the present study was focused on the evaluation of the reorganization of three cell components, promyelocytic leukemia nuclear bodies (PML-NBs), mitochondria, and lipid droplets (LDs). Relevant human cell lines including neural progenitor cells (NPCs), hepatic Huh-7, and retinal pigment epithelial (RPE) cells were infected with the Argentina INEVH116141 ZIKV strain and the organelle alterations were studied by using fluorescent cell imaging analysis. Our results have shown that these three organelles are targeted and structurally modified during ZIKV infection. Considering the nuclear reorganization, the analysis by confocal microscopy of infected cells showed a significantly reduced number of PML-NBs in comparison to uninfected cells. Moreover, a mitochondrial morphodynamic perturbation with an increased fragmentation and the loss of mitochondrial membrane potential was observed in ZIKV infected RPE cells. Regarding lipid structures, a decrease in the number and volume of LDs was observed in ZIKV infected cells. Given the involvement of these organelles in host defense processes, the reported perturbations may be related to enhanced virus replication through protection from innate immunity. The understanding of the cellular remodeling will enable the design of new host-targeted antiviral strategies.
Collapse
Affiliation(s)
- Cybele C García
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Cecilia A Vázquez
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Federico Giovannoni
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Constanza A Russo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Sandra M Cordo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Agustina Alaimo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Elsa B Damonte
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|