1
|
Li H, Gao Y, Li M, Dong Y, Chen J, Zhang B, Li K, Cai Y. Cai's herbal tea enhances mitochondrial autophagy of type 1 diabetic mellitus β cells through the AMPK/mTOR pathway and alleviates inflammatory response. Acta Diabetol 2024; 61:1553-1567. [PMID: 38954041 PMCID: PMC11628451 DOI: 10.1007/s00592-024-02316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND This study investigates the therapeutic mechanisms of Cai's Herbal Tea in Type 1 Diabetes Mellitus (T1DM) mice, focusing on its effects on mitochondrial change and autophagy via the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. METHODS The composition of Cai's Herbal Tea was analyzed by Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry (UHPLC-Q/TOF-MS). C57BL/6 mice and Min6 pancreatic beta cells were divided into control, diabetic mellitus (DM)/high glucose (HG), and treatment groups (low, medium, and high doses of Cai's Tea, and Metformin). Key physiological parameters, pancreatic islet health, Min6 cell morphology, viability, and insulin (INS) secretion were assessed. Small Interfering RNA-AMPK (si-AMPK) was utilized to confirm the pathway involvement. RESULTS Cai's Herbal Tea improved body weight, pancreatic islet pathological injury, and INS secretion whereas reduced total triglycerides, fasting blood sugar, and Interferon gamma (INF-γ) in T1DM mice, particularly at higher doses. In Min6 cells, Cai's Tea mitigated HG-induced damage and proinflammatory response, enhancing cell viability and INS secretion. Notably, it reduced swelling and improved cristae structure in treated groups of mitochondria and promoted autophagy via the AMPK-mTOR pathway, evidenced by increased LC3II/LC3I and P-AMPK/AMPK ratios, and decreased P-mTOR/mTOR and P62 expressions in pancreatic islet β-cells. Furthermore, these effects were converted by si-AMPK interference. CONCLUSION Cai's Herbal Tea exhibits significant therapeutic efficacy in T1DM mice by improving mitochondrial health and inducing autophagy through the AMPK-mTOR pathway in pancreatic islet β-cells. These findings highlight its potential as a therapeutic approach for T1DM management.
Collapse
Affiliation(s)
- Hongchun Li
- Diabetes and Obesity Clinic, Tongde Hospital of Zhejiang Province, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Yanfei Gao
- Rehabilitation Medicine Center, Tongde Hospital of Zhejiang Province, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Mengdi Li
- Diabetes and Obesity Clinic, Tongde Hospital of Zhejiang Province, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Yue Dong
- Diabetes and Obesity Clinic, Tongde Hospital of Zhejiang Province, Xihu District, Hangzhou, 310012, Zhejiang, China
| | - Jie Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Provincial People's Hospital, Gongshu District, Hangzhou, 310014, China
| | - Bingyue Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Provincial People's Hospital, Gongshu District, Hangzhou, 310014, China
| | - Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Gongshu District, Hangzhou, 310014, China.
| | - Yuqun Cai
- Department of Integrated Traditional Chinese and Western Medicine, Zhejiang Provincial People's Hospital, Gongshu District, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Wu Z, Yang W, Wu T, Liu Y, Pu Y, Hu W, Jiang Y, Zhang J, Zhu H, Li X, Feng S. Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptors activation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 136:156292. [PMID: 39631296 DOI: 10.1016/j.phymed.2024.156292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Coptidis Rhizoma, a classic bitter traditional Chinese medicine, can lead to digestive dysfunction when long-term use according to traditional experience. Bitter taste receptors have been found to regulate gastrointestinal smooth muscle contraction. Coptidis Rhizoma alkaloids are potential agonists for bitter taste receptors, but whether they can induce gastrointestinal dysfunction via bitter taste receptors is not clear. PURPOSE The purpose of this study is to elucidate whether long-term Coptidis Rhizoma decoction/berberine intake can affect gastrointestinal function via bitter taste receptors. METHODS Firstly, mice were orally administered Coptidis Rhizoma decoction (or berberine) for 8 weeks, then their appetite, gastrointestinal emptying function, colon barrier function, and gut microbiota homeostasis were evaluated. Subsequently, isolated intestine, molecular docking, calcium release, and immunofluorescence co-localization experiments were applied to explore the mechanism of Coptidis Rhizoma decoction (or berberine) inhibition effects on gastrointestinal motility. Finally, transmembrane resistance, scratch assay, tight junction and cytoskeletal protein immunofluorescence staining were conducted to verify that the bitter taste receptor is the target for Coptidis Rhizoma decoction (or berberine) to damage the colon barrier function. RESULT Long-term Coptidis Rhizoma decoction (or berberine) intake can reduce appetite, inhibit gastrointestinal contractions, disrupt bacterial balance and colon barrier function in mice. Further mechanistic studies have shown that the alkaloids of Coptidis Rhizoma are agonists for bitter taste receptors, which can promote α-gustducin binding to CHRM3 by activating bitter taste receptors, finally inhibiting gastrointestinal smooth muscle contraction. In addition, Coptidis Rhizoma decoction (or berberine) can activate bitter taste receptors and its downstream pathways PKCβ/RhoA/ROCK1/MLC-2, reshape skeletal proteins, downregulate tight junction protein expression, and ultimately disrupt colon barrier function. CONCLUSIONS Long term Coptidis Rhizoma intake induce gastrointestinal emptying inhibition and colon barrier weaken via bitter taste receptor activation in mice.
Collapse
Affiliation(s)
- Zhizhongbin Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Wei Yang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Tianyue Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yulin Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yu Pu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Weiqing Hu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Yunbin Jiang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Jifen Zhang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Xuegang Li
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Kang YH, Wang JH, Lee JS, Hwang SJ, Lee NH, Son CG. Berberine inhibits colorectal liver metastasis via modulation of TGF-β in a cecum transplant mouse model. Eur J Med Res 2024; 29:552. [PMID: 39558413 PMCID: PMC11575064 DOI: 10.1186/s40001-024-02122-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Hepatic metastasis is the primary cause of colorectal cancer (CRC)-induced death. Our previous results showed the anti-metastatic effects of Coptidis rhizoma using in vitro model. AIM The present study aimed to investigate whether berberine, the main active compound of C. rhizoma, inhibits colon-liver metastasis in an animal model, and to elucidate the underlying mechanisms. METHODS Murine colon carcinoma (CT26) tumor tissue was implanted into the cecum of balb/c mice with/without oral administration of berberine (100 mg/kg) for 21 days, after which liver metastasis was evaluated. In addition, the pharmacological actions of berberine were explored using 5-fluorouracil-resistant human colon cancer cells (HCT116/R). RESULT The administration of berberine significantly decreased the number of tumor nodules in the liver, while significant activation of E-cadherin (an epithelial marker), and suppression of vimentin, Snail and TGF-β (mesenchymal markers) were observed in primary colon tumor tissues. Berberine treatment also notably lowered the levels of inflammatory cytokines (TGF-β, TNF- α, IL-6 and IL-1β) in the blood. In HCT116/R cells, berberine significantly inhibited migration and invasion and modulated the expression of TGF-β and representative molecules related to its pathway. The results obtained with a TGF-β inhibitor (SB431542) and a TGF-β siRNA, strongly suggest that the mechanism of action of berberine is linked to TGF-β signaling. CONCLUSION In conclusion, berberine evidently possess an anti-colon-liver metastatic effect, and its underlying mechanisms involve the inhibition of epithelial-mesenchymal transition (EMT) through the TGF-β signaling pathway. Thus, we cautiously propose the pharmacological potential of berberine in drug research studies targeting hepatic metastasis from CRC.
Collapse
Affiliation(s)
- Yong-Hwi Kang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Jing-Hua Wang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Jin-Seok Lee
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Seung-Ju Hwang
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea
| | - Nam-Hun Lee
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea.
- East-West Cancer Center, Cheonan Oriental Hospital of Daejeon University, 4, Notaesan-Ro, Seobuk-Gu, Cheonan-Si, 31099, Korea.
| | - Chang-Gue Son
- East-West Cancer Center of Daejeon University, 176 Split 75 Daedeokdae-Ro Seo-Gu, Daejeon, 35235, Korea.
| |
Collapse
|
4
|
Zhang CW, Huang DY, Rajoka MSR, Wu Y, He ZD, Ye L, Wang Y, Song X. The Antifungal Effects of Berberine and Its Proposed Mechanism of Action Through CYP51 Inhibition, as Predicted by Molecular Docking and Binding Analysis. Molecules 2024; 29:5079. [PMID: 39519720 PMCID: PMC11547813 DOI: 10.3390/molecules29215079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fungal infections present a significant health risk, particularly in immunocompromised individuals. Berberine, a natural isoquinoline alkaloid, has demonstrated broad-spectrum antimicrobial activity, though its antifungal potential and underlying mechanisms against both yeast-like and filamentous fungi are not fully understood. This study investigates the antifungal efficacy of berberine against Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, and Trichophyton mentagrophytes in vitro, as well as its therapeutic potential in a murine model of cryptococcal infection. Berberine showed strong antifungal activity, with MIC values ranging from 64 to 128 µg/mL. SEM and TEM analyses revealed that berberine induced notable disruptions to the cell wall and membrane in C. neoformans. No signs of cell necrosis or apoptosis were observed in fungal cells treated with 2 × MIC berberine, and it did not increase intracellular ROS levels or affect mitochondrial membrane potential. Molecular docking and binding affinity assays demonstrated a strong interaction between berberine and the fungal enzyme CYP51, with a dissociation constant (KD) of less than 1 × 10-12 M, suggesting potent inhibition of ergosterol biosynthesis. In vivo studies further showed that berberine promoted healing in guinea pigs infected with T. mentagrophytes, and in a murine cryptococcal infection model, it prolonged survival and reduced lung inflammation, showing comparable efficacy to fluconazole. These findings indicate that berberine exerts broad-spectrum antifungal effects through membrane disruption and CYP51 inhibition, highlighting its potential as a promising therapeutic option for fungal infections.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Dong-Yu Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Muhammad Shahid Riaz Rajoka
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Zhen-Dan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| | - Liang Ye
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
| | - Yan Wang
- Center for Translation Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xun Song
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China; (C.-W.Z.); (D.-Y.H.); (M.S.R.R.); (L.Y.)
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.W.); (Z.-D.H.)
| |
Collapse
|
5
|
García-Muñoz AM, Victoria-Montesinos D, Ballester P, Cerdá B, Zafrilla P. A Descriptive Review of the Antioxidant Effects and Mechanisms of Action of Berberine and Silymarin. Molecules 2024; 29:4576. [PMID: 39407506 PMCID: PMC11478310 DOI: 10.3390/molecules29194576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Oxidative stress is a key factor in the development of chronic diseases such as type 2 diabetes, cardiovascular diseases, and liver disorders. Antioxidant therapies that target oxidative damage show significant promise in preventing and treating these conditions. Berberine, an alkaloid derived from various plants in the Berberidaceae family, enhances cellular defenses against oxidative stress through several mechanisms. It activates the AMP-activated protein kinase (AMPK) pathway, which reduces mitochondrial reactive oxygen species (ROS) production and improves energy metabolism. Furthermore, it boosts the activity of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), thus protecting cells from oxidative damage. These actions make berberine effective in managing diseases like type 2 diabetes, cardiovascular conditions, and neurodegenerative disorders. Silymarin, a flavonolignan complex derived from Silybum marianum, is particularly effective for liver protection. It activates the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, enhancing antioxidant enzyme expression and stabilizing mitochondrial membranes. Additionally, silymarin reduces the formation of ROS by chelating metal ions, and it also diminishes inflammation. This makes it beneficial for conditions like non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disorders. This review aims to highlight the distinct mechanisms by which berberine and silymarin exert their antioxidant effects.
Collapse
Affiliation(s)
| | | | - Pura Ballester
- Faculty of Pharmacy and Nutrition, UCAM Universidad Católica de Murcia, 30107 Murcia, Spain; (A.M.G.-M.); (D.V.-M.); (B.C.); (P.Z.)
| | | | | |
Collapse
|
6
|
Rigillo G, Cappellucci G, Baini G, Vaccaro F, Miraldi E, Pani L, Tascedda F, Bruni R, Biagi M. Comprehensive Analysis of Berberis aristata DC. Bark Extracts: In Vitro and In Silico Evaluation of Bioaccessibility and Safety. Nutrients 2024; 16:2953. [PMID: 39275269 PMCID: PMC11397700 DOI: 10.3390/nu16172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Berberine (BER) is an alkaloid found, together with other protoberberinoids (PROTBERs), in several species used in medicines and food supplements. While some herbal preparations containing BER and PROTBERs, such as Berberis aristata DC. bark extracts, have shown promising potential for human health, their safety has not been fully assessed. Recently, the EFSA issued a call for data to deepen the pharmacokinetic and pharmacodynamic understanding of products containing BER and PROTBERs and to comprehensively assess their safety, especially when used in food supplements. In this context, new data were collected in this work by assessing: (i) the phytochemical profile of 16 different commercial B. aristata dry extracts, which are among the most widely used preparations containing BER and PROTBERs in Europe; (ii) the In Vitro and In Silico investigation of the pharmacokinetic properties of BER and PROTBERs; (iii) the In Vitro cytotoxicity of selected extracts in different human cell lines, including tests on hepatic cells in the presence of CYP450 substrates; (iv) the effects of the extracts on cancer cell migration; and (v) the In Vitro molecular effects of extracts in non-cancer human cells. Results showed that commercial B. aristata extracts contain BER as the main constituent, with jatrorrhizine as main secondary PROTBER. BER and jatrorrhizine were found to have a good bioaccessibility rate, but they interact with P-gp. B. aristata extracts showed limited cytotoxicity and minimal interaction with CYP450 substrates. Furthermore, tested extracts demonstrated inhibition of cancer cell migration and were devoid of any pro-tumoral effects in normal cells. Overall, our work provides a valuable overview to better elucidate important concerns regarding botanicals containing BER and PROTBERs.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
| | - Giorgio Cappellucci
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Elisabetta Miraldi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136, USA
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34148 Trieste, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| | - Marco Biagi
- Laboratory of Italian Society of Phytoterapy-SIFITLab, 53100 Siena, Italy
- Department of Food and Drug, University of Parma, 43124 Parma, Italy
| |
Collapse
|
7
|
He Q, Lu S, Wang J, Xu C, Qu W, Nawaz S, Ataya FS, Wu Y, Li K. Lactobacillus salivarius and Berberine Alleviated Yak Calves' Diarrhea via Accommodating Oxidation Resistance, Inflammatory Factors, and Intestinal Microbiota. Animals (Basel) 2024; 14:2419. [PMID: 39199953 PMCID: PMC11350718 DOI: 10.3390/ani14162419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Yaks are important food animals in China; however, bacterial diarrheal diseases frequently occur on the plateau, with limited effective therapies. The objective of this research was to evaluate the effectiveness of Lactobacillus salivarius (LS) and berberine in alleviating diarrhea in yak calves. For this purpose, eighteen healthy yak calves were divided into control (JC), infected (JM), and treatment (JT) groups. Yaks in the JT group were treated with 2 × 1010 CFU/calf L. salivarius and 20 mg/kg berberine, and yaks in the JM and JT groups were induced with multi-drug-resistant Escherichia coli. The results showed that the weight growth rate in the JM group was significantly lower than that in the JC and JT groups. The diarrhea score in the JM group was significantly higher than that in both the JC and JT groups. Additionally, the contents of T-AOC, SOD, GSH-Px, and IL-10 were significantly lower in the JM group than those in the JC and JT groups, while MDA, TNF-α, IL-1β, and IL-6 were significantly higher in the JM group. Microbiota sequencing identified two phyla and twenty-seven genera as significant among the yak groups. Notably, probiotic genera such as Faecalibaculum and Parvibacter were observed, alongside harmful genera, including Marvinbryantia and Lachnospiraceae UCG-001. Our findings indicate that treatment with L. salivarius and berberine significantly reduced diarrhea incidence, improved growth performance, and positively modulated intestinal microbiota, which could provide novel insights for developing new therapies for ruminant diarrhea.
Collapse
Affiliation(s)
- Qing He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijia Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Qu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Shah Nawaz
- Department of Anatomy, Faculty of Veterinary Science, University of Agriculture, Faisalabad 38000, Pakistan
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yi Wu
- College of Veterinary Medicine, Yunnan Agricultural University, No. 452 Feng Yuan Road, Panlong District, Kunming 650201, China
| | - Kun Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Hashem AE, Elmasry IH, Lebda MA, El-Karim DRSG, Hagar M, Ebied SKM, Alotaibi BS, Rizk NI, Ghamry HI, Shukry M, Edres HA. Characterization and antioxidant activity of nano-formulated berberine and cyperus rotundus extracts with anti-inflammatory effects in mastitis-induced rats. Sci Rep 2024; 14:18462. [PMID: 39122736 PMCID: PMC11315693 DOI: 10.1038/s41598-024-66801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/04/2024] [Indexed: 08/12/2024] Open
Abstract
Bovine mastitis caused by infectious pathogens, mainly Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), constitutes a major destructive challenge for the dairy industry and public health. Berberine chloride (BER) and Cyperus rotundus possess a broad spectrum of anti-inflammatory, antioxidant, antibacterial, and antiproliferative activities; however, their bioavailability is low. This research aimed first to prepare an ethanolic extract of Cyperus rotundus rhizomes (CRE) followed by screening its phytochemical contents, then synthesis of BER and CRE loaded chitosan nanoparticles (NPs) (BER/CH-NPs and CRE/CH-NPs), afterward, the analysis of their loading efficiency in addition to the morphological and physicochemical characterization of the formulated NPs employing Scanning Electron Microscopy (SEM), Zeta Potential (ZP), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) assessments compared to their crude forms to evaluate the enhancement of bioavailability and stability. Isolation of bacterial strains from the milk of mastitic cows, used for induction of mammary gland (MG) inflammation in female albino rats, and a preliminary investigation of the prophylactic oral doses of the prepared NPs against S. aureus-induced mastitis in female rats. The minimal inhibitory concentration (MIC) of BER/CH-NPs and CRE/CH-NPs is 1 mg/kg b.w. BER/CH-NPs and CRE/CH-NPs alone or in combination show significant (P ≤ 0.05) DPPH radical scavenging activity (69.2, 88.5, and 98.2%, respectively) in vitro. Oral administration of BER/CH-NPs and CRE/CH-NPs to mastitis rats significantly (P ≤ 0.05) attenuated TNF-α (22.1, 28.6 pg/ml), IL-6 (33.4, 42.9 pg/ml), IL-18 (21.7, 34.7 pg/ml), IL-4 (432.9, 421.6 pg/ml), and MPO (87.1, 89.3 pg/ml) compared to mastitis group alongside the improvement of MG histopathological findings without any side effect on renal and hepatic functions. Despite promising results with BER and CRE nanoparticles, the study is limited by small-scale trials, a focus on acute administration, and partially explored nanoparticle-biological interactions, with no economic or scalability assessments. Future research should address these limitations by expanding trial scopes, exploring interactions further, extending study durations, and assessing economic and practical scalability. Field trials and regulatory compliance are also necessary to ensure practical application and safety in the dairy industry. In conclusion, the in vitro and in vivo results proved the antioxidant and anti-inflammatory efficacy of BER/CH-NPs and CRE/CH-NPs in low doses with minimal damage to the liver and kidney functions, supposing their promising uses in mastitis treatment.
Collapse
Affiliation(s)
- Aml E Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ingi H Elmasry
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Dina R S Gad El-Karim
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
- Faculty of Advanced Basic Sciences, Alamein International University, Alamein City, Matrouh Governorate, Egypt
| | - Sawsan Kh M Ebied
- Bacteriology Unit, Animal Health Research Institute, Alexandria Province, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Heba I Ghamry
- Nutrition and Food Science, Department of Biology, College of Science, King Khalid University, P.O. Box 960, Abha, 61421, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Hanan A Edres
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
9
|
Zhu M, Sun M, Liu J, Chen C, Yang Y, Teng Y. A Ratiometric Fluorescence Detection Method for Berberine Using Triplex-Containing DNA-Templated Silver Nanoclusters. Molecules 2024; 29:3459. [PMID: 39124864 PMCID: PMC11314519 DOI: 10.3390/molecules29153459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Berberine (BBR), as a natural isoquinoline alkaloid, has demonstrated various pharmacological activities, and is widely applied in the treatment of diseases. The quantitative analysis of BBR is important for pharmacological studies and clinical applications. In this work, utilizing the specific interaction between BBR and triplex DNA, a sensitive and selective fluorescent detecting method was established with DNA-templated silver nanoclusters (DNA-AgNCs). After binding with the triplex structure in the template of DNA-AgNCs, BBR quenched the fluorescence of DNA-AgNCs and formed BBR-triplex complex with yellow-green fluorescence. The ratiometric fluorescence signal showed a linear relationship with BBR concentration in a range from 10 nM to 1000 nM, with a detection limit of 10 nM. Our method exhibited excellent sensitivity and selectivity, and was further applied in BBR detection in real samples.
Collapse
Affiliation(s)
| | | | | | | | - Yonggang Yang
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun 130117, China
| | - Ye Teng
- School of Pharmacy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun 130117, China
| |
Collapse
|
10
|
Boreak N, Al Mahde RZ, Otayn WA, Alamer AY, Alrajhi T, Jafri S, Sharwani A, Swaidi E, Abozoah S, Mowkly AAM. Exploring Plant-Based Compounds as Alternatives for Targeting Enterococcus faecalis in Endodontic Therapy: A Molecular Docking Approach. Int J Mol Sci 2024; 25:7727. [PMID: 39062969 PMCID: PMC11276846 DOI: 10.3390/ijms25147727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Endodontic infections pose significant challenges in dental practice due to their persistence and potential complications. Among the causative agents, Enterococcus faecalis stands out for its ability to form biofilms and develop resistance to conventional antibiotics, leading to treatment failures and recurrent infections. The urgent need for alternative treatments arises from the growing concern over antibiotic resistance and the limitations of current therapeutic options in combating E. faecalis-associated endodontic infections. Plant-based natural compounds offer a promising avenue for exploration, given their diverse bioactive properties and potential as sources of novel antimicrobial agents. In this study, molecular docking and dynamics simulations are employed to explore the interactions between SrtA, a key enzyme in E. faecalis, and plant-based natural compounds. Analysis of phytocompounds through molecular docking unveiled several candidates with binding energies surpassing that of the control drug, ampicillin, with pinocembrin emerging as the lead compound due to its strong interactions with key residues of SrtA. Comparative analysis with ampicillin underscored varying degrees of structural similarity among the study compounds. Molecular dynamics simulations provided deeper insights into the dynamic behavior and stability of protein-ligand complexes, with pinocembrin demonstrating minimal conformational changes and effective stabilization of the N-terminal region. Free energy landscape analysis supported pinocembrin's stabilizing effects, further corroborated by hydrogen bond analysis. Additionally, physicochemical properties analysis highlighted the drug-likeness of pinocembrin and glabridin. Overall, this study elucidates the potential anti-bacterial properties of selected phytocompounds against E. faecalis infections, with pinocembrin emerging as a promising lead compound for further drug development efforts, offering new avenues for combating bacterial infections and advancing therapeutic interventions in endodontic practice.
Collapse
Affiliation(s)
- Nezar Boreak
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Rahf Zuhair Al Mahde
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Waseem Ahmed Otayn
- Specialized Dental Canter, Ministry of Health, Jazan 45142, Saudi Arabia; (W.A.O.)
| | - Amwaj Yahya Alamer
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Taif Alrajhi
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Shatha Jafri
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Amnah Sharwani
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Entesar Swaidi
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | - Shahad Abozoah
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (R.Z.A.M.); (A.Y.A.); (T.A.); (S.J.); (A.S.)
| | | |
Collapse
|
11
|
Chen X, Mei XY, Ren ZM, Chen SS, Tong YL, Zhang CP, Chen J, Dai GH. Comprehensive insights into berberine's hypoglycemic mechanisms: A focus on ileocecal microbiome in db/db mice. Heliyon 2024; 10:e33704. [PMID: 39040376 PMCID: PMC11261017 DOI: 10.1016/j.heliyon.2024.e33704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
The efficacy of berberine in managing diabetes through modulation of gut microbiome has been established through fecal sample analyses. However, relying solely on fecal materials constrains our comprehension of berberine's effects on diverse gastrointestinal locations. This study specifically explores the ileocecal region, a segment characterized by higher microbial diversity than fecal samples. Berberine exhibits a robust hypoglycemic impact by significantly reducing glucose levels in blood and urine. Beyond glycemic control, berberine ameliorates various diabetes-related symptoms in serum, including increased insulin and leptin, but decreased NEFA and MDA. Notably, berberine demonstrates liver-protective functions by alleviating oxidative stress and enhancing hepatic glycogen abundance. These outcomes prompted a high-throughput sequencing analysis of the ileocecal microbiome, revealing an augmentation of beneficial bacterial genera (four genera in the Lachnospiraceae family, Erysipelatoclostridium, and Escherichia-Shigella), along with a reduction in harmful bacterial genera (Romboutsia). Additionally, we predicted the impact of the ileocecal microbiome on clinically relevant factors associated with diabetes. These findings elucidate the multi-pathway mechanisms of berberine in treating T2D, underscoring its potential as a natural anti-diabetic agent or functional food, particularly through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Xuan Chen
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xi-yu Mei
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ze-ming Ren
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Si-si Chen
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ye-ling Tong
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | | | - Jia Chen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Guan-hai Dai
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
12
|
Sun A, Yang H, Li T, Luo J, Zhou L, Chen R, Han L, Lin Y. Molecular mechanisms, targets and clinical potential of berberine in regulating metabolism: a review focussing on databases and molecular docking studies. Front Pharmacol 2024; 15:1368950. [PMID: 38957396 PMCID: PMC11217548 DOI: 10.3389/fphar.2024.1368950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/04/2024] Open
Abstract
Background: Metabolic imbalance is the common basis of many diseases. As natural isoquinoline alkaloid, berberine (BBR) has shown great promise in regulating glucose and lipids metabolism and treating metabolic disorders. However, the related mechanism still lacks systematic research. Aim: To discuss the role of BBR in the whole body's systemic metabolic regulation and further explore its therapeutic potential and targets. Method: Based on animal and cell experiments, the mechanism of BBR regulating systemic metabolic processes is reviewed. Potential metabolism-related targets were summarized using Therapeutic Target Database (TTD), DrugBank, GeneCards, and cutting-edge literature. Molecular modeling was applied to explore BBR binding to the potential targets. Results: BBR regulates the whole-body metabolic response including digestive, circulatory, immune, endocrine, and motor systems through adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), sirtuin (SIRT)1/forkhead box O (FOXO)1/sterol regulatory element-binding protein (SREBP)2, nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1, and other signaling pathways. Through these reactions, BBR exerts hypoglycemic, lipid-regulating, anti-inflammatory, anti-oxidation, and immune regulation. Molecular docking results showed that BBR could regulate metabolism targeting FOXO3, Nrf2, NAD(P)H quinone oxidoreductase 1 (NQO1), glutathione peroxidase (Gpx) 4 and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA). Evaluating the target clinical effects, we found that BBR has the therapeutic potential of anti-aging, anti-cancer, relieving kidney disease, regulating the nervous system, and alleviating other chronic diseases. Conclusion: This review elucidates the interaction between potential targets and small molecular metabolites by exploring the mechanism of BBR regulating metabolism. That will help pharmacologists to identify new promising metabolites interacting with these targets.
Collapse
Affiliation(s)
- Aru Sun
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Haoyu Yang
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Li
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinli Luo
- China Traditional Chinese Medicine Holdings Co. Limited, Guangdong e-fong Pharmaceutical Co., Ltd., Foshan, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zhou
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Chen
- College of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Lin Han
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiqun Lin
- Department of Endocrinology, Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
13
|
Zhang T, Luo L, He Q, Xiao S, Li Y, Chen J, Qin T, Xiao Z, Ge Q. Research advances on molecular mechanism and natural product therapy of iron metabolism in heart failure. Eur J Med Res 2024; 29:253. [PMID: 38659000 PMCID: PMC11044586 DOI: 10.1186/s40001-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
The progression of heart failure (HF) is complex and involves multiple regulatory pathways. Iron ions play a crucial supportive role as a cofactor for important proteins such as hemoglobin, myoglobin, oxidative respiratory chain, and DNA synthetase, in the myocardial energy metabolism process. In recent years, numerous studies have shown that HF is associated with iron dysmetabolism, and deficiencies in iron and overload of iron can both lead to the development of various myocarditis diseases, which ultimately progress to HF. Iron toxicity and iron metabolism may be key targets for the diagnosis, treatment, and prevention of HF. Some iron chelators (such as desferrioxamine), antioxidants (such as ascorbate), Fer-1, and molecules that regulate iron levels (such as lactoferrin) have been shown to be effective in treating HF and protecting the myocardium in multiple studies. Additionally, certain natural compounds can play a significant role by mediating the imbalance of iron-related signaling pathways and expression levels. Therefore, this review not only summarizes the basic processes of iron metabolism in the body and the mechanisms by which they play a role in HF, with the aim of providing new clues and considerations for the treatment of HF, but also summarizes recent studies on natural chemical components that involve ferroptosis and its role in HF pathology, as well as the mechanisms by which naturally occurring products regulate ferroptosis in HF, with the aim of providing reference information for the development of new ferroptosis inhibitors and lead compounds for the treatment of HF in the future.
Collapse
Affiliation(s)
- Tianqing Zhang
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Li Luo
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Sijie Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuwei Li
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Junpeng Chen
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Tao Qin
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Zhenni Xiao
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China
| | - Qingliang Ge
- Department of Cardiology, Changde Hospital, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
14
|
Bertuccioli A, Zonzini GB, Cazzaniga M, Cardinali M, Di Pierro F, Gregoretti A, Zerbinati N, Guasti L, Matera MR, Cavecchia I, Palazzi CM. Sports-Related Gastrointestinal Disorders: From the Microbiota to the Possible Role of Nutraceuticals, a Narrative Analysis. Microorganisms 2024; 12:804. [PMID: 38674748 PMCID: PMC11051759 DOI: 10.3390/microorganisms12040804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Intense physical exercise can be related to a significant incidence of gastrointestinal symptoms, with a prevalence documented in the literature above 80%, especially for more intense forms such as running. This is in an initial phase due to the distancing of the flow of blood from the digestive system to the skeletal muscle and thermoregulatory systems, and secondarily to sympathetic nervous activation and hormonal response with alteration of intestinal motility, transit, and nutrient absorption capacity. The sum of these effects results in a localized inflammatory process with disruption of the intestinal microbiota and, in the long term, systemic inflammation. The most frequent early symptoms include abdominal cramps, flatulence, the urge to defecate, rectal bleeding, diarrhea, nausea, vomiting, regurgitation, chest pain, heartburn, and belching. Promoting the stability of the microbiota can contribute to the maintenance of correct intestinal permeability and functionality, with better control of these symptoms. The literature documents various acute and chronic alterations of the microbiota following the practice of different types of activities. Several nutraceuticals can have functional effects on the control of inflammatory dynamics and the stability of the microbiota, exerting both nutraceutical and prebiotic effects. In particular, curcumin, green tea catechins, boswellia, berberine, and cranberry PACs can show functional characteristics in the management of these situations. This narrative review will describe its application potential.
Collapse
Affiliation(s)
- Alexander Bertuccioli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Giordano Bruno Zonzini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
| | - Massimiliano Cazzaniga
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
| | - Marco Cardinali
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61122 Urbino, Italy; (A.B.); (G.B.Z.); (M.C.)
- Department of Internal Medicine, Infermi Hospital, AUSL Romagna, 47921 Rimini, Italy
| | - Francesco Di Pierro
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
- Scientific & Research Department, Velleja Research, 20125 Milano, Italy
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Aurora Gregoretti
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Nicola Zerbinati
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Luigina Guasti
- Department of Medicine and Surgery, University of Insurbia, 21100 Varese, Italy; (N.Z.); (L.G.)
| | - Maria Rosaria Matera
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Ilaria Cavecchia
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| | - Chiara Maria Palazzi
- Microbiota International Clinical Society, 10123 Torino, Italy; (M.C.); (F.D.P.); (A.G.); (M.R.M.); (I.C.)
| |
Collapse
|
15
|
Yazdanpanah E, Dadfar S, Shadab A, Orooji N, Nemati M, Pazoki A, Esmaeili SA, Baharlou R, Haghmorad D. Berberine: A natural modulator of immune cells in multiple sclerosis. Immun Inflamm Dis 2024; 12:e1213. [PMID: 38477663 DOI: 10.1002/iid3.1213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Berberine is a benzylisoquinoline alkaloid found in such plants as Berberis vulgaris, Berberis aristata, and others, revealing a variety of pharmacological properties as a result of interacting with different cellular and molecular targets. Recent studies have shown the immunomodulatory effects of Berberine which result from its impacts on immune cells and immune response mediators such as diverse T lymphocyte subsets, dendritic cells (DCs), and different inflammatory cytokines. Multiple sclerosis (MS) is a chronic disabling and neurodegenerative disease of the central nervous system (CNS) characterized by the recruitment of autoreactive T cells into the CNS causing demyelination, axonal damage, and oligodendrocyte loss. There have been considerable changes discovered in MS regards to the function and frequency of T cell subsets such as Th1 cells, Th17 cells, Th2 cells, Treg cells, and DCs. In the current research, we reviewed the outcomes of in vitro, experimental, and clinical investigations concerning the modulatory effects that Berberine provides on the function and numbers of T cell subsets and DCs, as well as important cytokines that are involved in MS.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - MohammadHossein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Alireza Pazoki
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Rasoul Baharlou
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
16
|
Nie Q, Li M, Huang C, Yuan Y, Liang Q, Ma X, Qiu T, Li J. The clinical efficacy and safety of berberine in the treatment of non-alcoholic fatty liver disease: a meta-analysis and systematic review. J Transl Med 2024; 22:225. [PMID: 38429794 PMCID: PMC10908013 DOI: 10.1186/s12967-024-05011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming increasingly prevalent worldwide, emerging as a significant health issue on a global scale. Berberine exhibits potential for treating NAFLD, but clinical evidence remains inconclusive. This meta-analysis was conducted to assess the efficacy and safety of berberine for treating NAFLD. METHODS This study was registered with PROSPERO (No. CRD42023462338). Identification of randomized controlled trials (RCTs) involved searching 6 databases covering the period from their initiation to 9 September 2023. The primary outcomes comprised liver function markers such as glutamyl transpeptidase (GGT), alanine transaminase (ALT), aspartate transaminase (AST), lipid indices including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), homeostasis model assessment for insulin resistance (HOMA-IR) and body mass index (BMI). Review Manager 5.4 and STATA 17.0 were applied for analysis. RESULTS Among 10 RCTs involving 811 patients, berberine demonstrated significant reductions in various parameters: ALT (standardized mean difference (SMD) = - 0.72), 95% confidence interval (Cl) [- 1.01, - 0.44], P < 0.00001), AST (SMD = - 0.79, 95% CI [- 1.17, - 0.40], P < 0.0001), GGT (SMD = - 0.62, 95% CI [- 0.95, - 0.29], P = 0.0002), TG (SMD = - 0.59, 95% CI [- 0.86, - 0.31], P < 0.0001), TC(SMD = - 0.74, 95% CI [- 1.00, - 0.49], P < 0.00001), LDL-C (SMD = - 0.53, 95% CI [- 0.88, - 0.18], P = 0.003), HDL-C (SMD = - 0.51, 95% CI [- 0.12, 1.15], P = 0.11), HOMA-IR (SMD = - 1.56, 95% CI [- 2.54, - 0.58], P = 0.002), and BMI (SMD = - 0.58, 95% CI [- 0.77, - 0.38], P < 0.00001). Importantly, Berberine exhibited a favorable safety profile, with only mild gastrointestinal adverse events reported. CONCLUSION This meta-analysis demonstrates berberine's efficacy in improving liver enzymes, lipid profile, and insulin sensitivity in NAFLD patients. These results indicate that berberine shows promise as an adjunct therapy for NAFLD. Trial registration The protocol was registered with PROSPERO (No. CRD42023462338). Registered on September 27, 2023.
Collapse
Affiliation(s)
- Qilong Nie
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Mingyang Li
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Caiyang Huang
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Yongwei Yuan
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Qiuyan Liang
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
| | - Xiaojun Ma
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Tengyu Qiu
- The Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Foshan, 528051, Guangdong, China
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China
| | - Jianhong Li
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, No. 6, Qinren Road, Chancheng District, Foshan, 528051, Guangdong, China.
| |
Collapse
|
17
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Wu L, Meng XJ, Xu TB, Zhang XC, Zhou Y, Tong ZF, Jiang JH. Berberine attenuates cognitive dysfunction and hippocampal apoptosis in rats with prediabetes. Chem Biol Drug Des 2024; 103:e14420. [PMID: 38230770 DOI: 10.1111/cbdd.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
The cognitive dysfunction caused by prediabetes causes great difficulties in human life, and the terrible thing is that the means to prevent the occurrence of this disease are very limited at present, Berberine has shown the potential to treat diabetes and cognitive dysfunction, but it still needs to be further explored to clarify the mechanism of its therapeutic effect. Therefore, the aim of this study was to investigate the effects and mechanisms of Berberine on prediabetes-induced cognitive dysfunction. Prediabetes rat model was induced by a high-fat diet and a normal diet was used as a control. They were fed for 20 weeks. At week 13, the model rats were given 100 mg/kg Berberine by gavage for 7 weeks. The cognitive function of rats was observed. At the same time, OGTT, fasting blood glucose, blood lipids, insulin and other metabolic parameters, oxidative stress, and apoptosis levels were measured. The results showed that the model rats showed obvious glucose intolerance, elevated blood lipids, and insulin resistance, and the levels of oxidative stress and apoptosis were significantly increased. However, after the administration of Berberine, the blood glucose and lipid metabolism of prediabetic rats were significantly improved, and the oxidative stress level and apoptosis level of hippocampal tissue were significantly reduced. In conclusion, Berberine can alleviate the further development of diabetes in prediabetic rats, reduce oxidative stress and apoptosis in hippocampal tissue, and improve cognitive impairment in prediabetic rats.
Collapse
Affiliation(s)
- Lan Wu
- Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Tian-Bao Xu
- Mathematics Teaching and Research Group, The High School Affiliated to Anhui Normal University, Wuhu, Anhui Province, China
| | - Xian-Cui Zhang
- Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Yong Zhou
- Health Management Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Zhu-Feng Tong
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Jing-Han Jiang
- Department of General Practice, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| |
Collapse
|
19
|
Poulios E, Koukounari S, Psara E, Vasios GK, Sakarikou C, Giaginis C. Anti-obesity Properties of Phytochemicals: Highlighting their Molecular Mechanisms against Obesity. Curr Med Chem 2024; 31:25-61. [PMID: 37198988 DOI: 10.2174/0929867330666230517124033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Obesity is a complex, chronic and inflammatory disease that affects more than one-third of the world's population, leading to a higher incidence of diabetes, dyslipidemia, metabolic syndrome, cardiovascular diseases, and some types of cancer. Several phytochemicals are used as flavoring and aromatic compounds, also exerting many benefits for public health. This study aims to summarize and scrutinize the beneficial effects of the most important phytochemicals against obesity. Systematic research of the current international literature was carried out in the most accurate scientific databases, e.g., Pubmed, Scopus, Web of Science and Google Scholar, using a set of critical and representative keywords, such as phytochemicals, obesity, metabolism, metabolic syndrome, etc. Several studies unraveled the potential positive effects of phytochemicals such as berberine, carvacrol, curcumin, quercetin, resveratrol, thymol, etc., against obesity and metabolic disorders. Mechanisms of action include inhibition of adipocyte differentiation, browning of the white adipose tissue, inhibition of enzymes such as lipase and amylase, suppression of inflammation, improvement of the gut microbiota, and downregulation of obesity-inducing genes. In conclusion, multiple bioactive compounds-phytochemicals exert many beneficial effects against obesity. Future molecular and clinical studies must be performed to unravel the multiple molecular mechanisms and anti-obesity activities of these naturally occurring bioactive compounds.
Collapse
Affiliation(s)
- Efthymios Poulios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Stergia Koukounari
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Evmorfia Psara
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Georgios K Vasios
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Christina Sakarikou
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Myrina, Lemnos, Greece
| |
Collapse
|
20
|
Dehau T, Cherlet M, Croubels S, Van De Vliet M, Goossens E, Van Immerseel F. Berberine-microbiota interplay: orchestrating gut health through modulation of the gut microbiota and metabolic transformation into bioactive metabolites. Front Pharmacol 2023; 14:1281090. [PMID: 38130410 PMCID: PMC10733463 DOI: 10.3389/fphar.2023.1281090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Berberine is an isoquinoline alkaloid found in plants. It presents a wide range of pharmacological activities, including anti-inflammatory and antioxidant properties, despite a low oral bioavailability. Growing evidence suggests that the gut microbiota is the target of berberine, and that the microbiota metabolizes berberine to active metabolites, although little evidence exists in the specific species involved in its therapeutic effects. This study was performed to detail the bidirectional interactions of berberine with the broiler chicken gut microbiota, including the regulation of gut microbiota composition and metabolism by berberine and metabolization of berberine by the gut microbiota, and how they contribute to berberine-mediated effects on gut health. As previous evidence showed that high concentrations of berberine may induce dysbiosis, low (0.1 g/kg feed), middle (0.5 g/kg feed) and high (1 g/kg feed) doses were here investigated. Low and middle doses of in-feed berberine stimulated potent beneficial bacteria from the Lachnospiraceae family in the large intestine of chickens, while middle and high doses tended to increase villus length in the small intestine. Plasma levels of the berberine-derived metabolites berberrubine, thalifendine and demethyleneberberine were positively correlated with the villus length of chickens. Berberrubine and thalifendine were the main metabolites of berberine in the caecum, and they were produced in vitro by the caecal microbiota, confirming their microbial origin. We show that members of the genus Blautia could demethylate berberine into mainly thalifendine, and that this reaction may stimulate the production of short-chain fatty acids (SCFAs) acetate and butyrate, via acetogenesis and cross-feeding respectively. We hypothesize that acetogens such as Blautia spp. are key bacteria in the metabolization of berberine, and that berberrubine, thalifendine and SCFAs play a significant role in the biological effect of berberine.
Collapse
Affiliation(s)
- Tessa Dehau
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Marc Cherlet
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michiel Van De Vliet
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty Of Veterinary Medicine, Merelbeke, Belgium
| |
Collapse
|
21
|
Zhou H, Wang W, Cai L, Yang T. Potentiation and Mechanism of Berberine as an Antibiotic Adjuvant Against Multidrug-Resistant Bacteria. Infect Drug Resist 2023; 16:7313-7326. [PMID: 38023403 PMCID: PMC10676105 DOI: 10.2147/idr.s431256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The growing global apprehension towards multi-drug resistant (MDR) bacteria necessitates the development of innovative strategies to combat these infections. Berberine (BER), an isoquinoline quaternary alkaloid derived from various medicinal plants, has surfaced as a promising antibiotic adjuvant due to its ability to enhance the effectiveness of conventional antibiotics against drug-resistant bacterial strains. Here, we overview the augmenting properties and mechanisms of BER as an adjunctive antibiotic against MDR bacteria. BER has been observed to exhibit synergistic effects when co-administered with a range of antibiotics, including β-lactams, quinolones, aminoglycosides, tetracyclines, macrolides, lincosamides and fusidic acid. The adjunctive properties of BER led to an increase in antimicrobial effectiveness for these antibiotics against the corresponding bacteria, a decrease in minimal inhibitory concentrations, and even the reversal from resistance to susceptibility sometimes. The potential mechanisms responsible for these effects included the inhibition of antibiotic efflux, the disruption of biofilm formation, the modulation of host immune responses, and the restoration of gut microbiota homeostasis. In brief, BER demonstrated significant potential as an antibiotic adjuvant against MDR bacteria and is a promising candidate for combination therapy. Further research is necessary to fully elucidate its mechanism of action and address the challenges associated with its clinical application.
Collapse
Affiliation(s)
- Hongjuan Zhou
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenli Wang
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Long Cai
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Yang
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
22
|
Xia W, Li S, Li L, Zhang S, Wang X, Ding W, Ding L, Zhang X, Wang Z. Role of anthraquinones in combating insulin resistance. Front Pharmacol 2023; 14:1275430. [PMID: 38053837 PMCID: PMC10694622 DOI: 10.3389/fphar.2023.1275430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Insulin resistance presents a formidable public health challenge that is intricately linked to the onset and progression of various chronic ailments, including diabetes, cardiovascular disease, hypertension, metabolic syndrome, nonalcoholic fatty liver disease, and cancer. Effectively addressing insulin resistance is paramount in preventing and managing these metabolic disorders. Natural herbal remedies show promise in combating insulin resistance, with anthraquinone extracts garnering attention for their role in enhancing insulin sensitivity and treating diabetes. Anthraquinones are believed to ameliorate insulin resistance through diverse pathways, encompassing activation of the AMP-activated protein kinase (AMPK) signaling pathway, restoration of insulin signal transduction, attenuation of inflammatory pathways, and modulation of gut microbiota. This comprehensive review aims to consolidate the potential anthraquinone compounds that exert beneficial effects on insulin resistance, elucidating the underlying mechanisms responsible for their therapeutic impact. The evidence discussed in this review points toward the potential utilization of anthraquinones as a promising therapeutic strategy to combat insulin resistance and its associated metabolic diseases.
Collapse
Affiliation(s)
- Wanru Xia
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuqian Li
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - LinZehao Li
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shibo Zhang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaolei Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenyu Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Ding
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiandang Zhang
- Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhibin Wang
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
23
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
24
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Bellavite P, Fazio S, Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules 2023; 28:4491. [PMID: 37298967 PMCID: PMC10254920 DOI: 10.3390/molecules28114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Insulin resistance (IR) and the associated hyperinsulinemia are early pathophysiological changes which, if not well treated, can lead to type 2 diabetes, endothelial dysfunction and cardiovascular disease. While diabetes care is fairly well standardized, the prevention and treatment of IR lacks a single pharmaceutical approach and many lifestyle and dietary interventions have been proposed, including a wide range of food supplements. Among the most interesting and well-known natural remedies, alkaloid berberine and the flavonol quercetin have particular relevance in the literature, while silymarin-the active principle of the Silybum marianum thistle-was traditionally used for lipid metabolism disorders and to sustain liver function. This review describes the major defects of insulin signaling leading to IR and the main properties of the three mentioned natural substances, their molecular targets and synergistic action mechanisms. The actions of berberine, quercetin and silymarin are partially superimposable as remedies against reactive oxygen intermediates generated by a high-lipid diet and by NADPH oxidase, which is triggered by phagocyte activation. Furthermore, these compounds inhibit the secretion of a battery of pro-inflammatory cytokines, modulate intestinal microbiota and are especially able to control the various disorders of the insulin receptor and post-receptor signaling systems. Although most of the evidence on the effects of berberine, quercetin and silymarin in modulating insulin resistance and preventing cardiovascular disease derive from experimental studies on animals, the amount of pre-clinical knowledge strongly suggests the need to investigate the therapeutic potential of these substances in human pathology.
Collapse
Affiliation(s)
- Paolo Bellavite
- Pathophysiology Chair, Homeopathic Medical School of Verona, 37121 Verona, Italy
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, 80138 Naples, Italy;
| | | |
Collapse
|
26
|
Chen N, Chen P, Zhou Y, Chen S, Gong S, Fu M, Geng L. HuNoV Non-Structural Protein P22 Induces Maturation of IL-1β and IL-18 and N-GSDMD-Dependent Pyroptosis through Activating NLRP3 Inflammasome. Vaccines (Basel) 2023; 11:vaccines11050993. [PMID: 37243097 DOI: 10.3390/vaccines11050993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Norovirus infection is the leading cause of foodborne gastroenteritis worldwide, causing more than 200,000 deaths each year. As a result of a lack of reproducible and robust in vitro culture systems and suitable animal models for human norovirus (HuNoV) infection, the pathogenesis of HuNoV is still poorly understood. In recent years, human intestinal enteroids (HIEs) have been successfully constructed and demonstrated to be able to support the replication of HuNoV. The NLRP3 inflammasome plays a key role in host innate immune responses by activating caspase1 to facilitate IL-1β and IL-18 secretion and N-GSDMD-driven apoptosis, while NLRP3 inflammasome overactivation plays an important role in the development of various inflammatory diseases. Here, we found that HuNoV activated enteric stem cell-derived human intestinal enteroids (HIEs) NLRP3 inflammasome, which was confirmed by transfection of Caco2 cells with full-length cDNA clones of HuNoV. Further, we found that HuNoV non-structural protein P22 activated the NLRP3 inflammasome and then matured IL-1β and IL-18 and processed the cleavage of gasdermin-D (GSDMD) to N-GSDMD, leading to pyroptosis. Besides, berberine (BBR) could ameliorate the pyroptosis caused by HuNoV and P22 by inhibiting NLRP3 inflammasome activation. Together, these results reveal new insights into the mechanisms of inflammation and cell death caused by HuNoV and provide potential treatments.
Collapse
Affiliation(s)
- Nini Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yanhe Zhou
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sidong Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Fu
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
27
|
Qin W, Yu Z, Li Z, Liu H, Li W, Zhao J, Ren Y, Ma L. Dietary Berberine and Ellagic Acid Supplementation Improve Growth Performance and Intestinal Damage by Regulating the Structural Function of Gut Microbiota and SCFAs in Weaned Piglets. Microorganisms 2023; 11:1254. [PMID: 37317228 DOI: 10.3390/microorganisms11051254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Early weaning is an effective method for improving the utilization rate of sows in intensive pig farms. However, weaning stress induces diarrhea and intestinal damage in piglets. Berberine (BBR) is known for its anti-diarrhea properties and ellagic acid (EA) is known for its antioxidant properties, however, whether their combination improves diarrhea and intestinal damage in piglets has not been studied, and the mechanism remains unclear. To explore the combined effects in this experiment, a total of 63 weaned piglets (Landrace × Yorkshire) were divided into three groups at 21 days. Piglets in the Ctrl group were treated with a basal diet and 2 mL saline orally, while those in the BE group were treated with a basal diet supplemented with 10 mg/kg (BW) BBR, 10 mg/kg (BW) EA, and 2 mL saline orally. Piglets in the FBE group were treated with a basal diet and 2 mL fecal microbiota suspension from the BE group orally, respectively, for 14 days. Compared with the Ctrl group, dietary supplementation with BE improved growth performance by increasing the average daily gain and average daily food intake and reducing the fecal score in weaned piglets. Dietary supplementation with BE also improved intestinal morphology and cell apoptosis by increasing the ratio of villus height to crypt depth and decreasing the average optical density of apoptotic cells; meanwhile, improvements also involved attenuating oxidative stress and intestinal barrier dysfunction by increasing the total antioxidant capacity, glutathione, and catalase, and upregulating the mRNA expressions of Occludin, Claudin-1, and ZO-1. Interestingly, the oral administration of a fecal microbiota suspension to piglets fed BE had similar effects to those of the BE group. According to 16S rDNA sequencing analysis, dietary supplementation with BE altered the composition of the microbiota, including firmicutes, bacteroidetes, lactobacillus, phascolarctobacterium, and parabacteroides, and increased the metabolites of propionate and butyrate. In addition, Spearman analysis revealed that improvements in growth performance and intestinal damage were significantly correlated with differential bacteria and short-chain fatty acids (SCFAs). In brief, dietary supplementation with BE improved the growth performance and intestinal damage by altering the gut microbiota composition and SCFAs in weaned piglets.
Collapse
Affiliation(s)
- Wenxia Qin
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhendong Yu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhechang Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hengfeng Liu
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Li
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianan Zhao
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yin Ren
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Libao Ma
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
28
|
Rizzo M, Colletti A, Penson PE, Katsiki N, Mikhailidis DP, Toth PP, Gouni-Berthold I, Mancini J, Marais D, Moriarty P, Ruscica M, Sahebkar A, Vinereanu D, Cicero AFG, Banach M, Al-Khnifsawi M, Alnouri F, Amar F, Atanasov AG, Bajraktari G, Banach M, Gouni-Berthold I, Bhaskar S, Bielecka-Dąbrowa A, Bjelakovic B, Bruckert E, Bytyçi I, Cafferata A, Ceska R, Cicero AF, Chlebus K, Collet X, Daccord M, Descamps O, Djuric D, Durst R, Ezhov MV, Fras Z, Gaita D, Gouni-Berthold I, Hernandez AV, Jones SR, Jozwiak J, Kakauridze N, Kallel A, Katsiki N, Khera A, Kostner K, Kubilius R, Latkovskis G, John Mancini G, David Marais A, Martin SS, Martinez JA, Mazidi M, Mikhailidis DP, Mirrakhimov E, Miserez AR, Mitchenko O, Mitkovskaya NP, Moriarty PM, Mohammad Nabavi S, Nair D, Panagiotakos DB, Paragh G, Pella D, Penson PE, Petrulioniene Z, Pirro M, Postadzhiyan A, Puri R, Reda A, Reiner Ž, Radenkovic D, Rakowski M, Riadh J, Richter D, Rizzo M, Ruscica M, Sahebkar A, Serban MC, Shehab AM, Shek AB, Sirtori CR, Stefanutti C, Tomasik T, Toth PP, Viigimaa M, Valdivielso P, Vinereanu D, Vohnout B, von Haehling S, Vrablik M, Wong ND, Yeh HI, Zhisheng J, Zirlik A. Nutraceutical approaches to non-alcoholic fatty liver disease (NAFLD): A position paper from the International Lipid Expert Panel (ILEP). Pharmacol Res 2023; 189:106679. [PMID: 36764041 DOI: 10.1016/j.phrs.2023.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is a common condition affecting around 10-25% of the general adult population, 15% of children, and even > 50% of individuals who have type 2 diabetes mellitus. It is a major cause of liver-related morbidity, and cardiovascular (CV) mortality is a common cause of death. In addition to being the initial step of irreversible alterations of the liver parenchyma causing cirrhosis, about 1/6 of those who develop NASH are at risk also developing CV disease (CVD). More recently the acronym MAFLD (Metabolic Associated Fatty Liver Disease) has been preferred by many European and US specialists, providing a clearer message on the metabolic etiology of the disease. The suggestions for the management of NAFLD are like those recommended by guidelines for CVD prevention. In this context, the general approach is to prescribe physical activity and dietary changes the effect weight loss. Lifestyle change in the NAFLD patient has been supplemented in some by the use of nutraceuticals, but the evidence based for these remains uncertain. The aim of this Position Paper was to summarize the clinical evidence relating to the effect of nutraceuticals on NAFLD-related parameters. Our reading of the data is that whilst many nutraceuticals have been studied in relation to NAFLD, none have sufficient evidence to recommend their routine use; robust trials are required to appropriately address efficacy and safety.
Collapse
Affiliation(s)
- Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Via del Vespro 141, 90127 Palermo, Italy.
| | - Alessandro Colletti
- Department of Science and Drug Technology, University of Turin, Turin, Italy
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK; Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Campus, Medical School, University College London (UCL), London, UK
| | - Peter P Toth
- The Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, Baltimore, MD, USA; Preventive Cardiology, CGH Medical Center, Sterling, IL, USA
| | - Ioanna Gouni-Berthold
- Department of Endocrinology, Diabetes and Preventive Medicine, University of Cologne, Germany
| | - John Mancini
- Department of Medicine, Division of Cardiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Marais
- Chemical Pathology Division of the Department of Pathology, University of Cape Town Health Science Faculty, Cape Town, South Africa
| | - Patrick Moriarty
- Division of Clinical Pharmacology, Division of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dragos Vinereanu
- Cardiology Department, University and Emergency Hospital, Bucharest, Romania, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Arrigo Francesco Giuseppe Cicero
- Hypertension and Cardiovascular disease risk research center, Medical and Surgical Sciences Department, University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi, Bologna, Italy
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Centner AM, Khalili L, Ukhanov V, Kadyan S, Nagpal R, Salazar G. The Role of Phytochemicals and Gut Microbiome in Atherosclerosis in Preclinical Mouse Models. Nutrients 2023; 15:1212. [PMID: 36904211 PMCID: PMC10005405 DOI: 10.3390/nu15051212] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Gut microbiome alterations have recently been linked to many chronic conditions including cardiovascular disease (CVD). There is an interplay between diet and the resident gut microbiome, where the food eaten affects populations of certain microbes. This is important, as different microbes are associated with various pathologies, as they can produce compounds that are disease-promoting or disease-protecting. The Western diet negatively affects the host gut microbiome, ultimately resulting in heightened arterial inflammation and cell phenotype changes as well as plaque accumulation in the arteries. Nutritional interventions including whole foods rich in fiber and phytochemicals as well as isolated compounds including polyphenols and traditional medicinal plants show promise in positively influencing the host gut microbiome to alleviate atherosclerosis. This review investigates the efficacy of a vast array of foods and phytochemicals on host gut microbes and atherosclerotic burden in mice. Reduction in plaque by interventions was associated with increases in bacterial diversity, reduction in the Firmicutes/Bacteroidetes (F/B) ratio, and upregulation of Akkermansia. Upregulation in CYP7 isoform in the liver, ABC transporters, bile acid excretion, and the level of acetic acid, propionic acid, and butyric acid were also noted in several studies reducing plaque. These changes were also associated with attenuated inflammation and oxidative stress. In conclusion, an increase in the abundance of Akkermansia with diets rich in polyphenols, fiber, and grains is likely to reduce plaque burden in patients suffering from CVD.
Collapse
Affiliation(s)
- Ann M. Centner
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Leila Khalili
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Vladimir Ukhanov
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Saurabh Kadyan
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| | - Gloria Salazar
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
30
|
Pan Y, Feng X, Song W, Zhou X, Zhou Z, Chen G, Shen T, Zhang X. Effects and Potential Mechanism of Zhuyu Pill Against Atherosclerosis: Network Pharmacology and Experimental Validation. Drug Des Devel Ther 2023; 17:597-612. [PMID: 36866196 PMCID: PMC9970883 DOI: 10.2147/dddt.s398808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Background Atherosclerosis (AS) is an immunoinflammatory disease associated with dyslipidemia. Zhuyu Pill (ZYP) is a classic Chinese herbal compound that has been shown to exhibit anti-inflammatory and lipid-lowering effects on AS in our previous studies. However, the underlying mechanisms by which ZYP ameliorates atherosclerosis have not yet been fully investigated. In this study, network pharmacology and in vivo experiments were conducted to explore the underlying pharmacological mechanisms of ZYP on ameliorating AS. Methods The active ingredients of ZYP were acquired from our previous study. The putative targets of ZYP relevant to AS were obtained from TCMSP, SwissTargetPrediction, STITCH, DisGeNET, and GeneCards databases. Protein-protein interactions (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted using the Cytoscape software. Furthermore, in vivo experiments were carried out for target validation in apolipoprotein E (ApoE) -/- mice. Results Animal experiments revealed that ZYP ameliorated AS mainly through lowering blood lipids, alleviating vascular inflammation, and decreasing the levels of vascular cell adhesion molecule-1 (VCAM1), intercellular adhesion molecule-1 (ICAM1), monocyte chemotactic protein-1 (MCP-1), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α). Additionally, the results of Real-Time quantitative PCR revealed that ZYP inhibited the gene expressions of mitogen-activated protein kinase (MAPK) p38, extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-B (NF-κB) p65. The Immunohistochemistry and Western blot assays showed the inhibitory effect of ZYP on the proteins level of p38, p-p38, p65, and p-p65. Conclusion This study has provided valuable evidence on the pharmacological mechanisms of action of ZYP in ameliorating AS that will be useful for forming the rationale of future research studying the cardio-protection and anti-inflammation effects of ZYP.
Collapse
Affiliation(s)
- Yingying Pan
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xianrong Feng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wei Song
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Gaoyang Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaobo Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China,Correspondence: Xiaobo Zhang; Tao Shen, School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China, Email ;
| |
Collapse
|
31
|
Li C, Leng Q, Li L, Hu F, Xu Y, Gong S, Yang Y, Zhang H, Li X. Berberine Ameliorates Obesity by Inducing GDF15 Secretion by Brown Adipocytes. Endocrinology 2023; 164:7056674. [PMID: 36825874 DOI: 10.1210/endocr/bqad035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Berberine (BBR), which is a compound derived from the Chinese medicinal plant Coptis chinensis, promotes weight loss, but the molecular mechanisms are not well understood. Here, we show that BBR increases the serum level of growth differentiation factor 15 (GDF15), which is a stress response cytokine that can reduce food intake and lower body weight in diet-induced obese (DIO) mice. The body weight and food intake of DIO mice were decreased after BBR treatment, and the weight change was negatively correlated with the serum GDF15 level. Further studies show that BBR induced GDF15 mRNA expression and secretion in the brown adipose tissue (BAT) of DIO mice and primary mouse brown adipocytes. In addition, we found that BBR upregulates GDF15 mRNA expression and secretion by activating the integrated stress response (ISR) in primary mouse brown adipocytes. Overall, our findings show that BBR lowers body weight by inducing GDF15 secretion via the activation of the ISR in BAT.
Collapse
Affiliation(s)
- Chang Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Qingyang Leng
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Lihua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Fan Hu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Yuejie Xu
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Sa Gong
- Shanghai Songjiang District Fangta Hospital of Traditional Chinese Medicine, Shanghai 201600, China
| | - Ying Yang
- Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200030, China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
32
|
Zhu C, Li K, Peng XX, Yao TJ, Wang ZY, Hu P, Cai D, Liu HY. Berberine a traditional Chinese drug repurposing: Its actions in inflammation-associated ulcerative colitis and cancer therapy. Front Immunol 2022; 13:1083788. [PMID: 36561763 PMCID: PMC9763584 DOI: 10.3389/fimmu.2022.1083788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid extracted from Coptidis Rhizoma, has a long history of treating dysentery in the clinic. Over the past two decades, the polytrophic, pharmacological, and biochemical properties of BBR have been intensively studied. The key functions of BBR, including anti-inflammation, antibacterial, antioxidant, anti-obesity, and even antitumor, have been discovered. However, the underlying mechanisms of BBR-mediated regulation still need to be explored. Given that BBR is also a natural nutrition supplement, the modulatory effects of BBR on nutritional immune responses have attracted more attention from investigators. In this mini-review, we summarized the latest achievements of BBR on inflammation, gut microbes, macrophage polarization, and immune responses associated with their possible tools in the pathogenesis and therapy of ulcerative colitis and cancer in recent 5 years. We also discuss the therapeutic efficacy and anti-inflammatory actions of BBR to benefit future clinical applications.
Collapse
Affiliation(s)
- Cuipeng Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiao-Xu Peng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tong-Jia Yao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zi-Yu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ping Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China,*Correspondence: Hao-Yu Liu, ; Demin Cai,
| |
Collapse
|
33
|
Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022; 11:cells11213433. [PMID: 36359829 PMCID: PMC9655513 DOI: 10.3390/cells11213433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.
Collapse
|
34
|
Khoshandam A, Imenshahidi M, Hosseinzadeh H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother Res 2022; 36:4063-4079. [PMID: 36221815 DOI: 10.1002/ptr.7589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Barberry (Berberis vulgaris L.) is a medicinal plant and its main constituent is an isoquinoline alkaloid named berberine that has multiple pharmacological effects such as antioxidant, anti-microbial, antiinflammatory, anticancer, anti-diabetes, anti-dyslipidemia, and anti-obesity. However, it has restricted clinical uses due to its very poor solubility and bioavailability (less than 1%). It undergoes demethylenation, reduction, and cleavage of the dioxymethylene group in the first phase of metabolism. Its phase two reactions include glucuronidation, sulfation, and methylation. The liver is the main site for berberine distribution. Berberine could excrete in feces, urine, and bile. Fecal excretion of berberine (11-23%) is higher than urinary and biliary excretion routes. However, a major berberine metabolite is excreted in urine greater than in feces. Concomitant administration of berberine with other drugs such as metformin, cyclosporine A, digoxin, etc. may result in important interactions. Thus, in this review, we gathered and dissected any related animal and human research articles regarding the pharmacokinetic parameters of berberine including bioavailability, metabolism, distribution, excretion, and drug-drug interactions. Also, we discussed and gathered various animal and human studies regarding the developed products of berberine with better bioavailability and consequently, better therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Carbonized π-conjugated polymer-coated porous silica: preparation and evaluating its extraction ability for berberine. Mikrochim Acta 2022; 189:401. [PMID: 36190563 DOI: 10.1007/s00604-022-05496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 10/10/2022]
Abstract
In view of the limitations of existing berberine solid-phase extraction adsorbents, this paper proposes a novel carbonized π-conjugated polymer-coated porous silica (SiO2@C-π-CP) adsorbent with simple process and low cost for efficient extraction of berberine by multiple interactions. Characterization methods, including Brunner-Emmet-Teller measurement, thermogravimetric analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy techniques, were used to verify the successful modification of carbonized π-conjugated polymer on the surface of porous silica. The berberine was selected as target molecule, and the adsorption mechanism and process were investigated through adsorption kinetics, adsorption isotherms, and thermodynamic studies. The fitting results show that the adsorption of berberine by SiO2@C-π-CP well conforms to the pseudo-second-order and Langmuir models. By optimizing the main SPE parameters, the SPE method based on SiO2@C-π-CP was developed. Excellent results were obtained, including low limit of detection (0.75 ng mL-1) and limit of quantification (2 ng mL-1), wide linearity (2-13,000 ng mL-1), and satisfactory relative standard deviations (RSD) of inter-day (1.5%) and intra-day (6.2%). Finally, the SiO2@C-π-CP also has been successfully used to the enrichment of berberine in real urine samples. This research makes clear that SiO2@C-π-CP has outstanding potential for trace enrichment of berberine alkaloids.
Collapse
|
36
|
Gong Y, Lu Q, Liu Y, Xi L, Zhang Z, Liu H, Jin J, Yang Y, Zhu X, Xie S, Han D. Dietary berberine alleviates high carbohydrate diet-induced intestinal damages and improves lipid metabolism in largemouth bass (Micropterus salmoides). Front Nutr 2022; 9:1010859. [PMID: 36211485 PMCID: PMC9539808 DOI: 10.3389/fnut.2022.1010859] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
High carbohydrate diet (HCD) causes metabolism disorder and intestinal damages in aquaculture fish. Berberine has been applied to improve obesity, diabetes and NAFLD. However, whether berberine contributes to the alleviation of HCD-induced intestinal damages in aquaculture fish is still unclear. Here we investigated the effects and mechanism of berberine on HCD-induced intestinal damages in largemouth bass (Micropterus salmoides). We found dietary berberine (50 mg/kg) improved the physical indexes (VSI and HSI) without affecting the growth performance and survival rate of largemouth bass. Importantly, the results showed that dietary berberine reduced the HCD-induced tissue damages and repaired the barrier in the intestine of largemouth bass. We observed dietary berberine significantly suppressed HCD-induced intestinal apoptosis rate (from 31.21 to 8.35%) and the activity level of Caspase3/9 (P < 0.05) by alleviating the inflammation (il1β, il8, tgfβ, and IL-6, P < 0.05) and ER stress (atf6, xbp1, perk, eif2α, chopa, chopb, and BIP, P < 0.05) in largemouth bass. Further results showed that dietary berberine declined the HCD-induced excessive lipogenesis (oil red O area, TG content, acaca, fasn, scd, pparγ, and srebp1, P < 0.05) and promoted the lipolysis (hsl, lpl, cpt1a, and cpt2, P < 0.05) via activating adenosine monophosphate-activated protein kinase (AMPK, P < 0.05) and inhibiting sterol regulatory element-binding protein 1 (SREBP1, P < 0.05) in the intestine of largemouth bass. Besides, we also found that dietary berberine significantly promoted the hepatic lipid catabolism (hsl, lpl, cpt1a, and cpt2, P < 0.05) and glycolysis (pk and ira, P < 0.05) to reduce the systematic lipid deposition in largemouth bass fed with HCD. Therefore, we elucidated that 50 mg/kg dietary berberine alleviated HCD-induced intestinal damages and improved AMPK/SREBP1-mediated lipid metabolism in largemouth bass, and evaluated the feasibility for berberine as an aquafeed additive to enhance the intestinal function of aquaculture species.
Collapse
Affiliation(s)
- Yulong Gong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qisheng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Longwei Xi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhimin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haokun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junyan Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yunxia Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoming Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Dong Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Hubei Engineering Research Center for Aquatic Animal Nutrition and Feed, Wuhan, China
- *Correspondence: Dong Han,
| |
Collapse
|
37
|
Zhong XD, Chen LJ, Xu XY, Liu YJ, Tao F, Zhu MH, Li CY, Zhao D, Yang GJ, Chen J. Berberine as a potential agent for breast cancer therapy. Front Oncol 2022; 12:993775. [PMID: 36119505 PMCID: PMC9480097 DOI: 10.3389/fonc.2022.993775] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 01/02/2023] Open
Abstract
Breast cancer (BC) is a common malignancy that mainly occurred in women and it has become the most diagnosed cancer annually since 2020. Berberine (BBR), an alkaloid extracted from the Berberidacea family, has been found with broad pharmacological bioactivities including anti-inflammatory, anti-diabetic, anti-hypertensive, anti-obesity, antidepressant, and anticancer effects. Mounting evidence shows that BBR is a safe and effective agent with good anticancer activity against BC. However, its detailed underlying mechanism in BC treatment remains unclear. Here, we will provide the evidence for BBR in BC therapy and summarize its potential mechanisms. This review briefly introduces the source, metabolism, and biological function of BBR and emphasizes the therapeutic effects of BBR against BC via directly interacting with effector proteins, transcriptional regulatory elements, miRNA, and several BBR-mediated signaling pathways. Moreover, the novel BBR-based therapeutic strategies against BC improve biocompatibility and water solubility, and the efficacies of BBR are also briefly discussed. Finally, the status of BBR in BC treatment and future research directions is also prospected.
Collapse
Affiliation(s)
- Xiao-Dan Zhong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Li-Juan Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xin-Yang Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Chang-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Dan Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Chou S, Zhang S, Guo H, Chang YF, Zhao W, Mou X. Targeted Antimicrobial Agents as Potential Tools for Modulating the Gut Microbiome. Front Microbiol 2022; 13:879207. [PMID: 35875544 PMCID: PMC9302920 DOI: 10.3389/fmicb.2022.879207] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
The gut microbiome plays a pivotal role in maintaining the health of the hosts; however, there is accumulating evidence that certain bacteria in the host, termed pathobionts, play roles in the progression of diseases. Although antibiotics can be used to eradicate unwanted bacteria, the side effects of antibiotic treatment lead to a great need for more targeted antimicrobial agents as tools to modulate the microbiome more precisely. Herein, we reviewed narrow-spectrum antibiotics naturally made by plants and microorganisms, followed by more targeted antibiotic agents including synthetic peptides, phage, and targeted drug delivery systems, from the perspective of using them as potential tools for modulating the gut microbiome for favorable effects on the health of the host. Given the emerging discoveries on pathobionts and the increasing knowledge on targeted antimicrobial agents reviewed in this article, we anticipate targeted antimicrobial agents will emerge as a new generation of a drug to treat microbiome-involved diseases.
Collapse
Affiliation(s)
- Shuli Chou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shiqing Zhang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Huating Guo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yung-fu Chang
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
39
|
S R, P G, P B, Hn Y, Ak D. Solid lipid nanoformulation of berberine attenuates Doxorubicin triggered in vitro inflammation in H9c2 rat cardiomyocytes. Comb Chem High Throughput Screen 2022; 25:1695-1706. [PMID: 35718970 DOI: 10.2174/1386207325666220617113744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022]
Abstract
AIM To evaluate berberine solid lipid nanoparticles' efficacy against doxorubicin-induced cardiotoxicity. BACKGROUND Berberine (Ber) is cardioprotective, but its oral bioavailability is low and its effect in chemotherapy-induced cardiotoxicity has not been studied. OBJECTIVE Solid lipid nanoparticles (SLNs) of berberine chloride were prepared, characterized and evaluated in vitro against Doxorubicin induced cardiomyocyte injury. METHODOLOGY Berberine loaded SLNs (Ber-SLNs) were synthesized using water-in-oil microemulsion technique with tripalmitin, Tween 80 and poloxamer 407. Ber-SLNs were evaluated for preventive effect against toxicity of Doxorubicin in H9c2 cells. The culture was pre-treated (24 h) with Ber (10 µM) and Ber-SLNs (1 and 10 µM) and exposed to 1 µM of Doxorubicin (Dox) was added for 3 h. The cell viability (LDH (Lactate dehydrogenase) assay and MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)), levels of Creatine kinase-MB (CK-MB), Nitrite, MDA (Malondialdehyde), ROS (Reactive oxygen species) generation and apoptotic DNA (Deoxyribonucleic acid) content were assessed. RESULTS Ber-SLNs had a mean particle size of 13.12±1.188 nm, zeta potential of -1.05 ± 0.08 mV, poly-dispersity index (PDI) of 0.317 ± 0.05 and entrapment efficiency of 50 ± 4.8%. Cell viability was 81 0.17% for Ber-SLNs (10 µM) and 73.22 0.83% for Ber (10 µM) treated cells in MTT assay. Percentage cytotoxicity calculated from LDH release was 58.91 0.54% after Dox, 40.3 1.3% with Ber (10 µM) and 40.7 1.3% with Ber-SLNs (1 µM) (p<0.001). Inflammation and oxidative stress markers were lower with Ber and Ber-SLNs. Attenuation of ROS generation and apoptosis of cardiomyocytes were noted on fluorescence microscopy. CONCLUSION Ber loaded SLNs effectively prevented Doxorubicin-induced inflammation and oxidative stress in rat cardiomyocytes. The results demonstrate that microemulsion is a simple, cost-effective technique to prepare Ber-SLNs and may be considered as a drug delivery vehicle for berberine.
Collapse
Affiliation(s)
- Rawal S
- Department of Pharmacology, AIIMS, New Delhi
| | - Gupta P
- Department of Pharmacology, AIIMS, New Delhi
| | - Bhatnagar P
- Department of Pharmacology, AIIMS, New Delhi
| | - Yadav Hn
- Department of Pharmacology, AIIMS, New Delhi
| | - Dinda Ak
- Department of Pathology, AIIMS, New Delhi
| |
Collapse
|
40
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
41
|
Lack of berberine effect on bone mechanical properties in rats with experimentally induced diabetes. Pharmacotherapy 2022; 146:112562. [DOI: 10.1016/j.biopha.2021.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
|
42
|
Berberine and its derivatives represent as the promising therapeutic agents for inflammatory disorders. Pharmacol Rep 2022; 74:297-309. [PMID: 35083737 DOI: 10.1007/s43440-021-00348-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Berberine, with the skeleton of quaternary ammonium, has been considered as the well-defined natural product in treating multiple diseases, including inflammation, acute and chronic infection, autoimmune diseases, and diabetes. However, due to the low bioavailability and systemic exposure, broad clinical applications of berberine have been largely impeded. Numerous studies have been conducted to further explore the therapeutic capacities of berberine in preclinical and clinical trials. Over the past, berberine and its derivatives have been shown to possess numerous pharmacological activities, as evidenced in intestinal, pulmonary, skin, and bone inflammatory disorders. In the present review, the pharmacological impact of berberine on inflammatory diseases are fully discussed, with indication that berberine and its potential derivatives represent promising natural therapeutic agents with anti-inflammatory properties.
Collapse
|
43
|
Sun RX, Huang WJ, Xiao Y, Wang DD, Mu GH, Nan H, Ni BR, Huang XQ, Wang HC, Liu YF, Fu Q, Zhao JX. Shenlian (SL) Decoction, a Traditional Chinese Medicine Compound, May Ameliorate Blood Glucose via Mediating the Gut Microbiota in db/db Mice. J Diabetes Res 2022; 2022:7802107. [PMID: 35187178 PMCID: PMC8855168 DOI: 10.1155/2022/7802107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/14/2022] Open
Abstract
Shenlian (SL) decoction is a herbal formula composed of Coptis and ginseng, of which berberine and ginsenoside are the main constituents. Even though SL decoction is widely used in treating diabetes in China, the mechanism of its antidiabetes function still needs further study. Gut microbiota disorder is one of the important factors that cause diabetes. To explore the effect of SL decoction on intestinal microbiota, gut microbiota of mice was analyzed by sequencing the gut bacterial 16S rRNA V3+V4 region and metagenomics. In this study, results demonstrated that SL decoction had a better hypoglycemic effect and β cell protection effect than either ginseng or Coptis chinensis. Alpha diversity analysis showed that all interventions with ginseng, Coptis, and SL decoction could reverse the increased diversity and richness of gut microbiota in db/db mice. PCoA analysis showed oral SL decoction significantly alters gut microbiota composition in db/db mice. 395 OTUs showed significant differences after SL treatment, of which 37 OTUs enriched by SL decoction showed a significant negative correlation with FBG, and 204 OTUs decreased by SL decoction showed a significant positive correlation with FBG. Results of KEGG analysis and metagenomic sequencing showed that SL decoction could reduce the Prevotellaceae, Rikenellaceae, and Helicobacteraceae, which were related to lipopolysaccharide biosynthesis, riboflavin metabolism, and peroxisome, respectively. It could also upregulate the abundance of Bacteroidaceae, which contributed to the metabolism of starch and sucrose as well as pentose-glucuronate interconversions. In the species level, SL decoction significantly upregulates the relative abundance of Bacteroides_acidifaciens which showed a significant negative correlation with FBG and was reported to be a potential agent for modulating metabolic disorders such as diabetes and obesity. In conclusion, SL decoction was effective in hypoglycemia and its mechanism may be related to regulating gut microbiota via upregulating Bacteroides_acidifaciens.
Collapse
Affiliation(s)
- Rui-xi Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei-jun Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yao Xiao
- Nephropathy Department, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dou-dou Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Guo-hua Mu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - He Nan
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo-ran Ni
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-qiang Huang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hsuan-chuan Wang
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yi-fan Liu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Fu
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-xi Zhao
- Section II of Endocrinology & Nephropathy Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
44
|
Hylemon PB, Su L, Zheng PC, Bajaj JS, Zhou H. Bile Acids, Gut Microbiome and the Road to Fatty Liver Disease. Compr Physiol 2021; 12:2719-2730. [PMID: 34964117 DOI: 10.1002/cphy.c210024] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This article describes the complex interactions occurring between diet, the gut microbiome, and bile acids in the etiology of fatty liver disease. Perhaps 25% of the world's population may have nonalcoholic fatty liver disease (NAFLD) and a significant percentage (∼20%) of these individuals will progress to nonalcoholic steatohepatitis (NASH). Currently, the only recommended treatment for NAFLD and NASH is a change in diet and exercise. A Western-type diet containing high fructose corn syrup, fats, and cholesterol creates gut dysbiosis, increases intestinal permeability and uptake of LPS causing low-grade chronic inflammation in the body. Fructose is a "lipogenic" sugar that induces long-chain fatty acid (LCFA) synthesis in the liver. Inflammation decreases the oxidation of LCFA, allowing fat accumulation in hepatocytes. Hepatic bile acid transporters are downregulated by inflammation slowing their enterohepatic circulation and allowing conjugated bile acids (CBA) to increase in the serum and liver of NASH patients. High levels of CBA in the liver are hypothesized to activate sphingosine-1-phosphate receptor 2 (S1PR2), activating pro-inflammatory and fibrosis pathways enhancing NASH progression. Because inflammation appears to be a major physiological driving force in NAFLD/NASH, new drugs and treatment protocols may require the use of anti-inflammatory compounds, such as berberine, in combination with bile acid receptor agonists or antagonists. Emerging new molecular technologies may provide guidance in unraveling the complex physiological pathways driving fatty liver disease and better approaches to prevention and treatment. © 2021 American Physiological Society. Compr Physiol 11:1-12, 2021.
Collapse
Affiliation(s)
- Phillip B Hylemon
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.,Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Lianyong Su
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Po-Cheng Zheng
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jasmohan S Bajaj
- Department of Medicine/Division of Gastroenterology, Hepatology and Nutrition, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.,Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia, USA.,Central Virginia Veterans Healthcare System, Richmond, Virginia, USA
| |
Collapse
|
45
|
Shanmugam H, Ganguly S, Priya B. Plant food bioactives and its effects on gut microbiota profile modulation for better brain health and functioning in Autism Spectrum Disorder individuals: A review. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Haripriya Shanmugam
- Department of Nano Science and Technology Tamil Nadu Agricultural University Coimbatore India
| | | | - Badma Priya
- Molecular Biophysics Unit Indian Institute of Science Bangalore India
| |
Collapse
|
46
|
Pharmacokinetics and Pharmacological Activities of Berberine in Diabetes Mellitus Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9987097. [PMID: 34471420 PMCID: PMC8405293 DOI: 10.1155/2021/9987097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/09/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Traditional Chinese medicine (TCM) has good clinical application prospects in diabetes treatment. In addition, TCM is less toxic and/or has fewer side effects and provides various therapeutic effects. Berberine (BBR) is isolated as the main component in many TCM kinds (e.g., Rhizoma Coptidis and Berberidis Cortex). Furthermore, BBR can reduce blood sugar and blood fat, alleviate inflammation, and improve the state of patients. Based on the recent study results of BBR in diabetes treatment, the BBR pharmacokinetics and mechanism on diabetes are mainly studied, and the specific molecular mechanism of related experimental BBR is systematically summarized and analyzed. Clinical studies have proved that BBR has a good therapeutic effect on diabetes, suggesting that BBR may be a promising drug candidate for diabetes. More detailed BBR mechanisms and pathways of BBR need to be studied further in depth, which will help understand the BBR pharmacology in diabetes treatment.
Collapse
|