1
|
Hou X, Zhang L, Chen Y, Liu Z, Zhao X, Lu B, Luo Y, Qu X, Musskaya O, Glazov I, Kulak AI, Chen F, Zhao J, Zhou Z, Zheng L. Photothermal switch by gallic acid-calcium grafts synthesized by coordination chemistry for sequential treatment of bone tumor and regeneration. Biomaterials 2025; 312:122724. [PMID: 39106818 DOI: 10.1016/j.biomaterials.2024.122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
The residual bone tumor and defects which is caused by surgical therapy of bone tumor is a major and important problem in clinicals. And the sequential treatment for irradiating residual tumor and repairing bone defects has wildly prospects. In this study, we developed a general modification strategy by gallic acid (GA)-assisted coordination chemistry to prepare black calcium-based materials, which combines the sequential photothermal therapy of bone tumor and bone defects. The GA modification endows the materials remarkable photothermal properties. Under the near-infrared (NIR) irradiation with different power densities, the black GA-modified bone matrix (GBM) did not merely display an excellent performance in eliminating bone tumor with high temperature, but showed a facile effect of the mild-heat stimulation to accelerate bone regeneration. GBM can efficiently regulate the microenvironments of bone regeneration in a spatial-temporal manner, including inflammation/immune response, vascularization and osteogenic differentiation. Meanwhile, the integrin/PI3K/Akt signaling pathway of bone marrow mesenchymal stem cells (BMSCs) was revealed to be involved in the effect of osteogenesis induced by the mild-heat stimulation. The outcome of this study not only provides a serial of new multifunctional biomaterials, but also demonstrates a general strategy for designing novel blacked calcium-based biomaterials with great potential for clinical use.
Collapse
Affiliation(s)
- Xiaodong Hou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Department of Orthopedics, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, China
| | - Lei Zhang
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yixing Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhiqing Liu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Zhao
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingqiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yiping Luo
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xinyu Qu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Olga Musskaya
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Ilya Glazov
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Anatoly I Kulak
- Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova Str. 9, 220072, Minsk, Belarus
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Zifei Zhou
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Longpo Zheng
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China; Shanghai Trauma Emergency Center, Orthopedic Intelligent Minimally Invasive Diagnosis & Treatment Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
2
|
Songkoomkrong S, Nonkhwao S, Duangprom S, Saetan J, Manochantr S, Sobhon P, Kornthong N, Amonruttanapun P. Investigating the potential effect of Holothuria scabra extract on osteogenic differentiation in preosteoblast MC3T3-E1 cells. Sci Rep 2024; 14:26415. [PMID: 39488645 PMCID: PMC11531581 DOI: 10.1038/s41598-024-77850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
The present medical treatments of osteoporosis come with adverse effects. It leads to the exploration of natural products as safer alternative medical prevention and treatment. The sea cucumber, Holothuria scabra, has commercial significance in Asian countries with rising awareness of its properties as a functional food. This study aims to investigate the effects of the inner wall (IW) extract isolated from H. scabra on extracellular matrix maturation, mineralization, and osteogenic signaling pathways on MC3T3-E1 preosteoblasts. The IW showed the expression of several growth factors. Molecular docking revealed that H. scabra BMP2/4 binds specifically to mammal BMP2 type I receptor (BMPR-IA). After osteogenic induction, the viability of cells treated with IW extract was assessed and designated with treatment of 0.1, 0.5, 1, and 5 µg/ml of IW extract for 21 consecutive days. On days 14 and 21, treatments with IW extract at 1 and 5 µg/ml showed increased alkaline phosphatase (ALP) activity and calcium deposit levels in a dose-dependent manner compared to the control group. Moreover, the transcriptomic analysis of total RNA of cells treated with 5 µg/ml of IW extract exhibited upregulation of TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways at days 14. This study suggests that IW extract from H. scabra exhibits the potential to enhance osteogenic differentiation and mineralization of MC3T3-E1 preosteoblasts through TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways. Further investigation into the molecular mechanisms underlying the effect of IW extract on osteogenesis is crucial to support its application as a naturally derived supplement for prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Siriporn Nonkhwao
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Pathumthani, 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand.
| |
Collapse
|
3
|
Advani D, Farid N, Tariq MH, Kohli N. A systematic review of mesenchymal stem cell secretome: Functional annotations, gene clusters and proteomics analyses for bone formation. Bone 2024; 190:117269. [PMID: 39368726 DOI: 10.1016/j.bone.2024.117269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The regenerative capacity of mesenchymal stem cells (MSCs) is now attributed to their ability to release paracrine factors into the extracellular matrix that boost tissue regeneration, reduce inflammation and encourage healing. Understanding the MSC secretome is crucial for shifting the prototypic conventional cell-based therapies to cell-free regenerative treatments. This systematic review aimed to analyse the functional annotations of the secretome of human adult adipose tissue and bone marrow MSCs and unveil the gene clusters responsible for bone formation. Bioinformatics tools were used to identify the biological processes, molecular functions, hallmarks and KEGG pathways of adipose and bone marrow MSC secretome proteins. We found a substantial overlap in the functional annotations and protein compositions of both adipose and bone marrow MSC secretome indicating that MSC source may be noninfluencial with regards to tissue regeneration. Additionally, a novel network pharmacology-based analysis of the secreted proteins revealed that the commonly secreted proteins within a single source interact with multiple drugable targets of bone diseases and regulate various KEGG pathway. This study unravels the secretome profile of human adult adipose and bone marrow MSCs based on the current literature and provides valuable insights into the therapeutic use of the MSC secretome for cell-free therapies.
Collapse
Affiliation(s)
- Dia Advani
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Nouran Farid
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Muhammad Hamza Tariq
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Nupur Kohli
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| |
Collapse
|
4
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Ali A, Flatt PR, Irwin N. Gut-Derived Peptide Hormone Analogues and Potential Treatment of Bone Disorders in Obesity and Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241238059. [PMID: 38486712 PMCID: PMC10938612 DOI: 10.1177/11795514241238059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.
Collapse
Affiliation(s)
- Asif Ali
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
6
|
Zhang X, Zhou W, Xi W. Advancements in incorporating metal ions onto the surface of biomedical titanium and its alloys via micro-arc oxidation: a research review. Front Chem 2024; 12:1353950. [PMID: 38456182 PMCID: PMC10917964 DOI: 10.3389/fchem.2024.1353950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.
Collapse
Affiliation(s)
- Xue’e Zhang
- Jiangxi Province Key Laboratory of Oral Biomedicine, School of Stomatology, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Wuchao Zhou
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| | - Weihong Xi
- Jiangxi Province Key Laboratory of Oral Biomedicine, The Affiliated Stomatological Hospital, Jiangxi Medical College, Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Giannandrea D, Parolini M, Citro V, De Felice B, Pezzotta A, Abazari N, Platonova N, Sugni M, Chiu M, Villa A, Lesma E, Chiaramonte R, Casati L. Nanoplastic impact on bone microenvironment: A snapshot from murine bone cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132717. [PMID: 37820528 DOI: 10.1016/j.jhazmat.2023.132717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023]
Abstract
Our world is made of plastic. Plastic waste deeply affects our health entering the food chain. The degradation and/or fragmentation of plastics due to weathering processes result in the generation of nanoplastics (NPs). Only a few studies tested NPs effects on human health. NPs toxic actions are, in part, mediated by oxidative stress (OS) that, among its effects, affects bone remodeling. This study aimed to assess if NPs influence skeleton remodeling through OS. Murine bone cell cultures (MC3T3-E1 preosteoblasts, MLOY-4 osteocyte-like cells, and RAW264.7 pre-osteoclasts) were used to test the NPs detrimental effects on bone cells. NPs affect cell viability and induce ROS production and apoptosis (by caspase 3/7 activation) in pre-osteoblasts, osteocytes, and pre-osteoclasts. NPs impair the migration capability of pre-osteoblasts and potentiate the osteoclastogenesis of preosteoclasts. NPs affected the expression of genes related to inflammatory and osteoblastogenic pathways in pre-osteoblasts and osteocytes, related to the osteoclastogenic commitment of pre-osteoclasts. A better understanding of the impact of NPs on bone cell activities resulting in vivo in impaired bone turnover could give more information on the possible toxicity consequence of NPs on bone mass and the subsequent public health problems, such as bone disease.
Collapse
Affiliation(s)
| | - Marco Parolini
- Department of Environmental Science and Policy, University of Milan, Italy
| | | | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, Italy
| | - Alex Pezzotta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Italy
| | | | | | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Italy
| | | | - Elena Lesma
- Department of Health Sciences, University of Milan, Italy
| | | | - Lavinia Casati
- Department of Health Sciences, University of Milan, Italy.
| |
Collapse
|
8
|
Suwanmanee G, Tantrawatpan C, Kheolamai P, Paraoan L, Manochantr S. Fucoxanthin diminishes oxidative stress damage in human placenta-derived mesenchymal stem cells through the PI3K/Akt/Nrf-2 pathway. Sci Rep 2023; 13:22974. [PMID: 38151503 PMCID: PMC10752906 DOI: 10.1038/s41598-023-49751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Placenta-derived mesenchymal stem cells (PL-MSCs) have therapeutic potential in various clinical contexts due to their regenerative and immunomodulatory properties. However, with increasing age or extensive in vitro culture, their viability and function are gradually lost, thus restricting their therapeutic application. The primary cause of this deterioration is oxidative injury from free radicals. Therefore, enhancing cell viability and restoring cellular repair mechanisms of PL-MSCs in an oxidative stress environment are crucial in this context. Fucoxanthin, a carotenoid derived from brown seaweed, demonstrates antioxidant activity by increasing the production of antioxidant enzymes and lowering the levels of reactive oxygen species (ROS). This study aimed to determine whether fucoxanthin protects PL-MSCs from hydrogen peroxide (H2O2)-induced oxidative stress. After characterization, PL-MSCs were co-treated with fucoxanthin and H2O2 for 24 h (co-treatment) or pre-treated with fucoxanthin for 24 h followed by H2O2 for 24 h (pre-treatment). The effects of fucoxanthin on cell viability and proliferation were examined using an MTT assay. The expression of antioxidant enzymes, PI3K/Akt/Nrf-2 and intracellular ROS production were investigated in fucoxanthin-treated PL-MSCs compared to the untreated group. The gene expression and involvement of specific pathways in the cytoprotective effect of fucoxanthin were investigated by high-throughput NanoString nCounter analysis. The results demonstrated that co-treatment and pre-treatment with fucoxanthin restored the viability and proliferative capacity of PL-MSCs. Fucoxanthin treatment increased the expression of antioxidant enzymes in PL-MSCs cultured under oxidative stress conditions and decreased intracellular ROS accumulation. Markedly, fucoxanthin treatment could restore PI3K/Akt/Nrf-2 expression in H2O2-treated PL-MSCs. High-throughput analysis revealed up-regulation of genes involved in cell survival pathways, including cell cycle and proliferation, DNA damage repair pathways, and down-regulation of genes in apoptosis and autophagy pathways. This study demonstrated that fucoxanthin protects and rescues PL-MSCs from oxidative stress damage through the PI3K/Akt/Nrf-2 pathway. Our data provide the supporting evidence for the use of fucoxanthin as an antioxidant cytoprotective agent to improve the viability and proliferation capacity of PL-MSCs both in vitro and in vivo required to increase the effectiveness of MSC expansion for therapeutic applications.
Collapse
Affiliation(s)
- Gunticha Suwanmanee
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
| | - Chairat Tantrawatpan
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Stem Research and Innovation, Thammasat University, Pathumthani, 12120, Thailand
| | - Pakpoom Kheolamai
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand
- Center of Excellence in Stem Research and Innovation, Thammasat University, Pathumthani, 12120, Thailand
| | - Luminita Paraoan
- Department of Biology, Faculty of Arts and Sciences, Edge Hill University, BioSciences Building, St Helens Road, Ormskirk, L39 4QP, UK
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120, Thailand.
- Center of Excellence in Stem Research and Innovation, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
9
|
Chang S, Zhuang Z, Jin C. MetaLnc9 facilitates osteogenesis of human bone marrow mesenchymal stem cells by activating the AKT pathway. Connect Tissue Res 2023; 64:532-542. [PMID: 37427853 DOI: 10.1080/03008207.2023.2232463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
AIM OF THE STUDY To investigate the role of MetaLnc9 in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS AND METHODS We used lentiviruses to knockdown or overexpress MetaLnc9 in hBMSCs. qRT-PCR was employed to determine the mRNA levels of osteogenic-related genes in transfected cells. ALP staining and activity assay, ARS staining and quantification were used to identify the degree of osteogenic differentiation. Ectopic bone formation was conducted to examine the osteogenesis of transfected cells in vivo. AKT pathway activator SC-79 and inhibitor LY294002 were used to validate the relationship between MetaLnc9 and AKT signaling pathway. RESULTS The expression of MetaLnc9 was significantly upregulated in the osteogenic differentiation of hBMSCs. MetaLnc9 knockdown inhibited the osteogenesis of hBMSCs, whereas overexpression of it promoted the osteogenic differentiation both in vitro and in vivo. Taking a deeper insight, we found that MetaLnc9 enhanced the osteogenic differentiation by activating AKT signaling. The inhibitor of AKT signaling LY294002 could reverse the positive effect on osteogenesis brought by MetaLnc9 overexpression, whereas the activator of AKT signaling SC-79 could reverse the negative effect caused by MetaLnc9 knockdown. CONCLUSION Our works uncovered a vital role of MetaLnc9 in osteogenesis via regulating the AKT signaling pathway. [Figure: see text].
Collapse
Affiliation(s)
- Sijia Chang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ziyao Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
10
|
Santos MDS, Lima VTM, Barrioni BR, Vago JP, de Arruda JAA, Prazeres PD, Amaral FA, Silva TA, Macari S. Targeting phosphatidylinositol-3-kinase for inhibiting maxillary bone resorption. J Cell Physiol 2023; 238:2651-2667. [PMID: 37814842 DOI: 10.1002/jcp.31121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023]
Abstract
Previous studies have suggested a role of phosphatidylinositol-3-kinase gamma (PI3Kγ) in bone remodeling, but the mechanism remains undefined. Here, we explored the contribution of PI3Kγ in the resorption of maxillary bone and dental roots using models of orthodontic tooth movement (OTM), orthodontic-induced inflammatory root resorption, and rapid maxillary expansion (RME). PI3Kγ-deficient mice (PI3Kγ-/- ), mice with loss of PI3Kγ kinase activity (PI3KγKD/KD ) and C57BL/6 mice treated with a PI3Kγ inhibitor (AS605240) and respective controls were used. The maxillary bones of PI3Kγ-/- , PI3KγKD/KD , and C57BL/6 mice treated with AS605240 showed an improvement of bone quality compared to their controls, resulting in reduction of the OTM and RME in all experimental groups. PI3Kγ-/- mice exhibited increased root volume and decreased odontoclasts counts. Consistently, the pharmacological blockade or genetic deletion of PI3K resulted in increased numbers of osteoblasts and reduction in osteoclasts during OTM. There was an augmented expression of Runt-related transcription factor 2 (Runx2) and alkaline phosphatase (Alp), a reduction of interleukin-6 (Il-6), as well as a lack of responsiveness of receptor activator of nuclear factor kappa-Β (Rank) in PI3Kγ-/- and PI3KγKD/KD mice compared to control mice. The maxillary bones of PI3Kγ-/- animals showed reduced p-Akt expression. In vitro, bone marrow cells treated with AS605240 and cells from PI3Kγ-/- mice exhibited significant augment of osteoblast mineralization and less osteoclast differentiation. The PI3Kγ/Akt axis is pivotal for bone remodeling by providing negative and positive signals for the differentiation of osteoclasts and osteoblasts, respectively.
Collapse
Affiliation(s)
- Mariana de S Santos
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virgínia T M Lima
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Breno R Barrioni
- Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana P Vago
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Alcides A de Arruda
- Department of Oral Surgery, Pathology and Clinical Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro D Prazeres
- Department of Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flávio A Amaral
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry and Immunology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília A Silva
- Department of Oral Surgery, Pathology and Clinical Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia Macari
- Department of Morphology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
11
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
12
|
Histological evaluation of the effects of bone morphogenetic protein 9 and angiopoietin 1 on bone healing. J Taibah Univ Med Sci 2023; 18:954-963. [PMID: 36875339 PMCID: PMC9982621 DOI: 10.1016/j.jtumed.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Objectives Bone healing remains a critical clinical orthopedic problem. Bone, which is a greatly vascularized tissue, depends on the tight temporal and spatial link between blood vessels and bone cells. Thus, angiogenesis is crucial for skeletal growth and bone fracture healing. The purpose of this study was to evaluate the efficacy of the local application of osteogenic and angiogenic factors such as bone morphogenetic protein 9 (BMP9) and angiopoietin 1 (Ang1), respectively, and their combination as an osteoinducer in the process of bone healing. Methods Forty-eight male albino rats, weighing 300-400 g and aged 6-8 months, were utilized in this study. The animals underwent surgery on the medial side of the tibia bone. In the control group, an absorbable hemostatic sponge was locally applied to the bone defect, while experimental groups were separated into three groups. In Group I, 1 mg BMP9 was locally applied, Group II was treated with 1 mg Ang1, and Group III was treated with local application of a combination (0.5 mg BMP9 and 0.5 mg Ang1). All experimental groups were fixed with an absorbable hemostatic sponge. The rats were sacrificed on days 14 and 28 after surgery. Results Local application of BMP9 alone, Ang1 alone, and their combination to a tibia defect caused osteoid tissue formation and significantly increased the number of bone cells. A gradual decrease in the number of trabecular bone, an increase in trabecular area, and no significant difference in the bone marrow area were noted. Conclusion The combination of BMP9 and Ang1 has therapeutic potential in promoting the healing process of bone defects. Osteogenesis and angiogenesis are regulated by BMP9 and Ang1. These factors act together to accelerate bone regeneration more efficiently than either factor alone.
Collapse
|
13
|
Thamnium S, Laomeephol C, Pavasant P, Osathanon T, Tabata Y, Wang C, Luckanagul JA. Osteogenic induction of asiatic acid derivatives in human periodontal ligament stem cells. Sci Rep 2023; 13:14102. [PMID: 37644086 PMCID: PMC10465493 DOI: 10.1038/s41598-023-41388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023] Open
Abstract
Asiatic acid (AA) and asiaticoside, pentacyclic triterpenoid compounds derived from Centella asiatica, are known for their biological effects in promoting type I collagen synthesis and inducing osteogenesis of stem cells. However, their applications in regenerative medicine are limited due to their low potency and poor aqueous solubility. This work aimed to evaluate the osteogenic induction activity of AA derivatives in human periodontal ligament stem cells (hPDLSCs) in vitro. Four compounds were synthesised, namely 501, 502, 503, and 506. AA was used as the control. The 502 exhibited low water solubility, while the 506 compound showed the highest. The cytotoxicity analysis demonstrated that 503 caused significant deterioration in cell viability, while other derivatives showed no harmful effect on hPDLSCs. The dimethyl aminopropyl amine derivative of AA, compound 506, demonstrated a relatively high potency in inducing osteogenic differentiation. An elevated mRNA expression of osteogenic-related genes, BMP2, WNT3A, ALP, OSX and IBSP was observed with 506. Additionally, the expression of BMP-2 protein was enhanced with increasing dose of 506, and the effect was pronounced when the Erk signalling molecule was inhibited. The 506 derivative was proposed for the promotion of osteogenic differentiation in hPDLSCs by upregulating BMP2 via the Erk signalling pathway. The 506 molecule showed promise in bone tissue regeneration.
Collapse
Affiliation(s)
- Sirikool Thamnium
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanaphum Osathanon
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Institute for Life and Medical Sciences, Kyoto University, 53 Kawara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 6100641, Sichuan, People's Republic of China
- School of Food and Bioengineering, Xihua University, Chengdu, 610039, People's Republic of China
| | - Jittima A Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
14
|
Sethi A, Ruby JG, Veras MA, Telis N, Melamud E. Genetics implicates overactive osteogenesis in the development of diffuse idiopathic skeletal hyperostosis. Nat Commun 2023; 14:2644. [PMID: 37156767 PMCID: PMC10167361 DOI: 10.1038/s41467-023-38279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Diffuse idiopathic skeletal hyperostosis (DISH) is a condition where adjacent vertebrae become fused through formation of osteophytes. The genetic and epidemiological etiology of this condition is not well understood. Here, we implemented a machine learning algorithm to assess the prevalence and severity of the pathology in ~40,000 lateral DXA scans in the UK Biobank Imaging cohort. We find that DISH is highly prevalent, above the age of 45, ~20% of men and ~8% of women having multiple osteophytes. Surprisingly, we find strong phenotypic and genetic association of DISH with increased bone mineral density and content throughout the entire skeletal system. Genetic association analysis identified ten loci associated with DISH, including multiple genes involved in bone remodeling (RUNX2, IL11, GDF5, CCDC91, NOG, and ROR2). Overall, this study describes genetics of DISH and implicates the role of overactive osteogenesis as a key driver of the pathology.
Collapse
Affiliation(s)
- Anurag Sethi
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA.
| | - J Graham Ruby
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA
| | - Matthew A Veras
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA
| | - Natalie Telis
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA
| | - Eugene Melamud
- Calico Life Sciences, LLC, South San Francisco, CA, 94080, USA.
| |
Collapse
|
15
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
16
|
Lee CW, Lin ZC, Chiang YC, Li SY, Ciou JJ, Liu KW, Lin YC, Huang BJ, Peng KT, Fang ML, Lin TE, Liao MY, Lai CH. AuAg nanocomposites suppress biofilm-induced inflammation in human osteoblasts. NANOTECHNOLOGY 2023; 34:165101. [PMID: 36657162 DOI: 10.1088/1361-6528/acb4a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Staphylococcus aureus (S. aureus)forms biofilm that causes periprosthetic joint infections and osteomyelitis (OM) which are the intractable health problems in clinics. The silver-containing nanoparticles (AgNPs) are antibacterial nanomaterials with less cytotoxicity than the classic Ag compounds. Likewise, gold nanoparticles (AuNPs) have also been demonstrated as excellent nanomaterials for medical applications. Previous studies have showed that both AgNPs and AuNPs have anti-microbial or anti-inflammatory properties. We have developed a novel green chemistry that could generate the AuAg nanocomposites, through the reduction of tannic acid (TNA). The bioactivity of the nanocomposites was investigated inS. aureusbiofilm-exposed human osteoblast cells (hFOB1.19). The current synthesis method is a simple, low-cost, eco-friendly, and green chemistry approach. Our results showed that the AuAg nanocomposites were biocompatible with low cell toxicity, and did not induce cell apoptosis nor necrosis in hFOB1.19 cells. Moreover, AuAg nanocomposites could effectively inhibited the accumulation of reactive oxygen species (ROS) in mitochondria and in rest of cellular compartments after exposing to bacterial biofilm (by reducing 0.78, 0.77-fold in the cell and mitochondria, respectively). AuAg nanocomposites also suppressed ROS-triggered inflammatory protein expression via MAPKs and Akt pathways. The current data suggest that AuAg nanocomposites have the potential to be a good therapeutic agent in treating inflammation in bacteria-infected bone diseases.
Collapse
Affiliation(s)
- Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
| | - Zih-Chan Lin
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
| | - Yao-Chang Chiang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Sin-Yu Li
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Department of Safety Health and Environmental Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Jyun-Jia Ciou
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kuan-Wen Liu
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Yu-Ching Lin
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Bo-Jie Huang
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Puzi City, Chiayi County 61363, Taiwan
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kuo-Ti Peng
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Puzi City, Chiayi County 61363, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Mei-Ling Fang
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Tzu-En Lin
- Institute of Biomedical Engineering, Department of Electronics and Computer Engineering, National Yang Ming Chiao Tung University, Taiwan
| | - Mei-Yi Liao
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
17
|
Bourgery M, Ekholm E, Hiltunen A, Heino TJ, Pursiheimo JP, Bendre A, Yatkin E, Laitala T, Määttä J, Säämänen AM. Signature of circulating small non-coding RNAs during early fracture healing in mice. Bone Rep 2022; 17:101627. [PMID: 36304905 PMCID: PMC9593857 DOI: 10.1016/j.bonr.2022.101627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/04/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Fracture healing is a complex process with multiple overlapping metabolic and differentiation phases. Small non-coding RNAs are involved in the regulation of fracture healing and their presence in circulation is under current interest due to their obvious value as potential biomarkers. Circulating microRNAs (miRNAs) have been characterized to some extent but the current knowledge on tRNA-derived small RNA fragments (tsRNAs) is relatively scarce, especially in circulation. In this study, the spectrum of circulating miRNAs and tsRNAs was analysed by next generation sequencing to show their differential expression during fracture healing in vivo. Analysed tsRNA fragments included stress-induced translation interfering tRNA fragments (tiRNAs or tRNA halves) and internal tRNA fragments (i-tRF), within the size range of 28–36 bp. To unveil the expression of these non-coding RNAs, genome-wide analysis was performed on two months old C57BL/6 mice on days 1, 5, 7, 10, and 14 (D1, D5, D7, D10, and D14) after a closed tibial fracture. Valine isoacceptor tRNA-derived Val-AAC 5′end and Val-CAC 5′end fragments were the major types of 5′end tiRNAs in circulation, comprising about 65 % of the total counts. Their expression was not affected by fracture. After a fracture, the levels of two 5′end tiRNAs Lys-TTT 5′ and Lys-CTT 5′ were decreased and His-GTG 5′ was increased through D1-D14. The level of miR-451a was decreased on the first post-fracture day (D1), whereas miR-328-3p, miR-133a-3p, miR-375-3p, miR-423-5p, and miR-150-5p were increased post-fracture. These data provide evidence on how fracture healing could provoke systemic metabolic effects and further pinpoint the potential of small non-coding RNAs as biomarkers for tissue regeneration.
Collapse
Affiliation(s)
- Matthieu Bourgery
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Erika Ekholm
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | | | - Terhi J. Heino
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Juha-Pekka Pursiheimo
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Genomill Health, Turku, Finland
| | - Ameya Bendre
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Emrah Yatkin
- Central Animal Laboratory, University of Turku, Turku, Finland
| | - Tiina Laitala
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland
| | - Jorma Määttä
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Turku Center for Disease Modeling (TCDM), Turku, Finland
| | - Anna-Marja Säämänen
- Integrative Physiology and Pharmacology Unit, Institute of Biomedicine, University of Turku, Finland,Corresponding author at: Institute of Biomedicine, University of Turku, Finland.
| |
Collapse
|
18
|
Dienelt A, Keller KC, zur Nieden NI. High glucose impairs osteogenic differentiation of embryonic stem cells via early diversion of beta-catenin from Forkhead box O to T cell factor interaction. Birth Defects Res 2022; 114:1056-1074. [PMID: 36164276 PMCID: PMC9708100 DOI: 10.1002/bdr2.2085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Diabetes, which is characterized by an increase in blood glucose concentration, is accompanied by low bone turnover, increased fracture risk, and the formation of embryonic skeletal malformations. Yet, there are few studies elucidating the underlying alterations in signaling pathways leading to these osteogenic defects. We hypothesized here that bone formation deficiencies in a high glucose environment result from altered activity of beta-catenin (CTNNB1), a key contributor to osteogenic differentiation, dysregulation of which has also been implicated in the development of diabetes. METHODS To test this hypothesis, we used a previously established embryonic stem cell (ESC) model of differentiation that mimics the diabetic environment of the developing embryo. We differentiated murine ESCs within osteogenic-inducing media containing either high (diabetic) or low (physiological) levels of D-glucose and performed time course analyses to study the influence of high glucose on early and late bone cell differentiation. RESULTS Endpoint measures for osteogenic differentiation were reduced in a glucose-dependent manner and expression of precursor-specific markers altered at multiple time points. Furthermore, transcriptional activity of the lymphoid enhancer factor (LEF)/T cell factor (TCF) transcription factors during precursor formation stages was significantly elevated while levels of CTNNB1 complexed with Forkhead box O 3a (FOXO3a) declined. Modulation of AKT, a known upstream regulator of both LEF/TCF and FOXO3a, as well as CTNNB1 rescued some of the reductions in osteogenic output seen in the high glucose condition. CONCLUSIONS Within our in vitro model, we found a clear involvement of LEF/TCF and FOXO3a signaling pathways in the regulation of osteogenic differentiation, which may account for the skeletal deficiencies found in newborns of diabetic mothers.
Collapse
Affiliation(s)
- Anke Dienelt
- Department of Cell Therapy, Applied Stem Cell Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Kevin C. Keller
- Department of Molecular, Cell and Systems Biology & Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| | - Nicole I. zur Nieden
- Department of Cell Therapy, Applied Stem Cell Technologies Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Department of Molecular, Cell and Systems Biology & Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
19
|
Long-term osteogenic differentiation of human bone marrow stromal cells in simulated microgravity: novel proteins sighted. Cell Mol Life Sci 2022; 79:536. [PMID: 36181557 PMCID: PMC9526692 DOI: 10.1007/s00018-022-04553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/23/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022]
Abstract
Microgravity-induced bone loss is a major concern for space travelers. Ground-based microgravity simulators are crucial to study the effect of microgravity exposure on biological systems and to address the limitations posed by restricted access to real space. In this work, for the first time, we adopt a multidisciplinary approach to characterize the morphological, biochemical, and molecular changes underlying the response of human bone marrow stromal cells to long-term simulated microgravity exposure during osteogenic differentiation. Our results show that osteogenic differentiation is reduced while energy metabolism is promoted. We found novel proteins were dysregulated under simulated microgravity, including CSC1-like protein, involved in the mechanotransduction of pressure signals, and PTPN11, SLC44A1 and MME which are involved in osteoblast differentiation pathways and which may become the focus of future translational projects. The investigation of cell proteome highlighted how simulated microgravity affects a relatively low number of proteins compared to time and/or osteogenic factors and has allowed us to reconstruct a hypothetical pipeline for cell response to simulated microgravity. Further investigation focused on the application of nanomaterials may help to increase understanding of how to treat or minimize the effects of microgravity.
Collapse
|
20
|
Weina T, Ying L, Yiwen W, Huan-Huan Q. What we have learnt from Drosophila model organism: the coordination between insulin signaling pathway and tumor cells. Heliyon 2022; 8:e09957. [PMID: 35874083 PMCID: PMC9304707 DOI: 10.1016/j.heliyon.2022.e09957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer development is related to a variety of signaling pathways which mediate various cellular processes including growth, survival, division and competition of cells, as well as cell-cell interaction. The insulin signaling pathway interacts with different pathways and plays a core role in the regulations of all these processes. In this study, we reviewed recent studies on the relationship between the insulin signaling pathway and tumors using the Drosophila melanogaster model. We found that on one hand, the insulin pathway is normally hyperactive in tumor cells, which promotes tumor growth, and on the other hand, tumor cells can suppress the growth of healthy tissues via inhibition of their insulin pathway. Moreover, systematic disruption in glucose homeostasis also facilitates cancer development by different mechanisms. The studies on how the insulin network regulates the behaviors of cancer cells may help to discover new therapeutic treatments for cancer.
Collapse
Affiliation(s)
- Tang Weina
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Li Ying
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Wang Yiwen
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, Tianjin, China
| | - Qiao Huan-Huan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
21
|
Fehsel K, Christl J. Comorbidity of osteoporosis and Alzheimer's disease: Is `AKT `-ing on cellular glucose uptake the missing link? Ageing Res Rev 2022; 76:101592. [PMID: 35192961 DOI: 10.1016/j.arr.2022.101592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023]
Abstract
Osteoporosis and Alzheimer's disease (AD) are both degenerative diseases. Osteoporosis often proceeds cognitive deficits, and multiple studies have revealed common triggers that lead to energy deficits in brain and bone. Risk factors for osteoporosis and AD, such as obesity, type 2 diabetes, aging, chemotherapy, vitamin deficiency, alcohol abuse, and apolipoprotein Eε4 and/or Il-6 gene variants, reduce cellular glucose uptake, and protective factors, such as estrogen, insulin, exercise, mammalian target of rapamycin inhibitors, hydrogen sulfide, and most phytochemicals, increase uptake. Glucose uptake is a fine-tuned process that depends on an abundance of glucose transporters (Gluts) on the cell surface. Gluts are stored in vesicles under the plasma membrane, and protective factors cause these vesicles to fuse with the membrane, resulting in presentation of Gluts on the cell surface. This translocation depends mainly on AKT kinase signaling and can be affected by a range of factors. Reduced AKT kinase signaling results in intracellular glucose deprivation, which causes endoplasmic reticulum stress and iron depletion, leading to activation of HIF-1α, the transcription factor necessary for higher Glut expression. The link between diseases and aging is a topic of growing interest. Here, we show that diseases that affect the same biochemical pathways tend to co-occur, which may explain why osteoporosis and/or diabetes are often associated with AD.
Collapse
|
22
|
Durdan MM, Azaria RD, Weivoda MM. Novel insights into the coupling of osteoclasts and resorption to bone formation. Semin Cell Dev Biol 2022; 123:4-13. [PMID: 34756783 PMCID: PMC8840962 DOI: 10.1016/j.semcdb.2021.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Bone remodeling consists of resorption by osteoclasts (OCs) and formation by osteoblasts (OBs). Precise coordination of these activities is required for the resorbed bone to be replaced with an equal amount of new bone in order to maintain skeletal mass throughout the lifespan. This coordination of remodeling processes is referred to as the "coupling" of resorption to bone formation. In this review, we discuss the essential role for OCs in coupling resorption to bone formation, mechanisms for this coupling, and how coupling becomes less efficient or disrupted in conditions of bone loss. Lastly, we provide perspectives on targeting coupling to treat human bone disease.
Collapse
Affiliation(s)
- Margaret M. Durdan
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ruth D. Azaria
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Megan M. Weivoda
- Cell and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA,Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Zhang Y, Lu W, Zhao Q, Chen J, Wang T, Ji J. The role of the protein tyrosine phosphatase SHP2 in ossification. Dev Dyn 2021; 251:748-758. [PMID: 34962674 DOI: 10.1002/dvdy.449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/09/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
SHP2, encoded by the PTPN11 gene, participates in multiple cell functions including cell proliferation, movement, and differentiation. PTPN11 loss-of-function and gain-of-function mutations are both associated with diseases, such as Noonan syndrome, whose manifestations include bone defects, suggesting a crucial role for SHP2 in the skeleton. However, the exact mechanisms by which SHP2 regulates bone development remain unclear. This review focuses on the current understanding of the regulation of SHP2 and highlights the vital roles of SHP2 in skeletal development, especially its roles in ossification. Overall, a better understanding of the functions of SHP2 in ossification will provide a new avenue to treat-related skeletal diseases.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Wei Lu
- Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Qing Zhao
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jindong Chen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Tiancong Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Jun Ji
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China.,Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
24
|
Dong K, Zhou WJ, Liu ZH, Hao PJ. The extract of concentrated growth factor enhances osteogenic activity of osteoblast through PI3K/AKT pathway and promotes bone regeneration in vivo. Int J Implant Dent 2021; 7:70. [PMID: 34345951 PMCID: PMC8333229 DOI: 10.1186/s40729-021-00357-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Concentrated growth factor (CGF) is a third-generation platelet concentrate product; the major source of growth factors in CGF is its extract; however, there are few studies on the overall effects of the extract of CGF (CGF-e). The aim of this study was to investigate the effect and mechanism of CGF-e on MC3T3-E1 cells in vitro and to explore the effect of combination of CGF-e and bone collagen (Bio-Oss Collagen, Geistlich, Switzerland) for bone formation in cranial defect model of rats in vivo. METHODS The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression were evaluated in vitro; the newly formed bone was evaluated by histological and immunohistochemical analysis through critical-sized cranial defect rat model in vivo. RESULTS The cell proliferation, ALP activity, mineral deposition, osteogenic-related gene, and protein expression of CGF-e group were significantly increased compared with the control group. In addition, there was significantly more newly formed bone in the CGF-e + bone collagen group, compared to the blank control group and bone collagen only group. CONCLUSIONS CGF-e activated the PI3K/AKT signaling pathway to enhance osteogenic differentiation and mineralization of MC3T3-E1 cells and promoted the bone formation of rat cranial defect model.
Collapse
Affiliation(s)
- Kai Dong
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China
| | - Wen-Juan Zhou
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China
| | - Zhong-Hao Liu
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China
| | - Peng-Jie Hao
- Department of Dental Implantology, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, No. 142, North Great Str, Yantai, Shandong, 264008, People's Republic of China.
| |
Collapse
|
25
|
Nováková S, Danchenko M, Okajčeková T, Baranovičová E, Kováč A, Grendár M, Beke G, Pálešová J, Strnádel J, Janíčková M, Halašová E, Škovierová H. Comparative Proteomic and Metabolomic Analysis of Human Osteoblasts, Differentiated from Dental Pulp Stem Cells, Hinted Crucial Signaling Pathways Promoting Osteogenesis. Int J Mol Sci 2021; 22:ijms22157908. [PMID: 34360674 PMCID: PMC8347416 DOI: 10.3390/ijms22157908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Population aging has been a global trend for the last decades, which increases the pressure to develop new cell-based or drug-based therapies, including those that may cure bone diseases. To understand molecular processes that underlie bone development and turnover, we followed osteogenic differentiation of human dental pulp stem cells (DPSCs) using a specific induction medium. The differentiation process imitating in vivo osteogenesis is triggered by various signaling pathways and is associated with massive proteome and metabolome changes. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility-enhanced mass spectrometry. From 2667 reproducibly quantified and identified proteins, 432 were differentially abundant by strict statistic criteria. Metabolome profiling was carried out by nuclear magnetic resonance. From 27 detected metabolites, 8 were differentially accumulated. KEGG and MetaboAnalyst hinted metabolic pathways that may be involved in the osteogenic process. Enrichment analysis of differentially abundant proteins highlighted PPAR, FoxO, JAK-STAT, IL-17 signaling pathways, biosynthesis of thyroid hormones and steroids, mineral absorption, and fatty acid metabolism as processes with prominent impact on osteoinduction. In parallel, metabolomic data showed that aminoacyl-tRNA biosynthesis, as well as specific amino acids, likely promote osteodifferentiation. Targeted immunoassays validated and complemented omic results. Our data underlined the complexity of the osteogenic mechanism. Finally, we proposed promising targets for future validation in patient samples, a step toward the treatment of bone defects.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| | - Maksym Danchenko
- Plant Science and Biodiversity Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23 Bratislava, Slovakia;
| | - Terézia Okajčeková
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Eva Baranovičová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava, Slovakia;
| | - Marián Grendár
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia;
| | - Janka Pálešová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Ján Strnádel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
| | - Mária Janíčková
- Department of Stomatology and Maxillofacial Surgery, University Hospital in Martin and JFM CU, Kollárova 2, 036 01 Martin, Slovakia;
| | - Erika Halašová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava (JFM CU), Malá Hora 4C, 036 01 Martin, Slovakia; (T.O.); (E.B.); (M.G.); (J.P.); (J.S.); (E.H.)
- Correspondence: (S.N.); (H.Š.); Tel.: +421-43-2633-904 (S.N.); +421-43-2633-904 (H.Š.)
| |
Collapse
|
26
|
Kwan KKL, Wong TY, Yu AXD, Dong TTX, Lam HHN, Tsim KWK. Integrated Omics Reveals the Orchestrating Role of Calycosin in Danggui Buxue Tang, a Herbal Formula Containing Angelicae Sinensis Radix and Astragali Radix, in Inducing Osteoblastic Differentiation and Proliferation. Front Pharmacol 2021; 12:670947. [PMID: 34248625 PMCID: PMC8260986 DOI: 10.3389/fphar.2021.670947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Systems biology unravels the black box of signaling pathway of cells; but which has not been extensively applied to reveal the mechanistic synergy of a herbal formula. The therapeutic efficacies of a herbal formula having multi-target, multi-function and multi-pathway are the niches of traditional Chinese medicine (TCM). Here, we reported an integrated omics approach, coupled with the knockout of an active compound, to measure the regulation of cellular signaling, as to reveal the landscape in cultured rat osteoblasts having synergistic pharmacological efficacy of Danggui Buxue Tang (DBT), a Chinese herbal formula containing Angelicae Sinensis Radix and Astragali Radix. The changes in signaling pathways responsible for energy metabolism, RNA metabolism and protein metabolism showed distinct features between DBT and calycosin-depleted DBT. Here, our results show that calycosin within DBT can orchestrate the osteoblastic functions and signaling pathways of the entire herbal formula. This finding reveals the harmony of herbal medicine in pharmacological functions, as well as the design of drug/herbal medicine formulation. The integration of systems biology can provide novel and essential insights into the synergistic property of a herbal formula, which is a key in modernizing TCM.
Collapse
Affiliation(s)
- Kenneth K L Kwan
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Anna X D Yu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| | - Henry H N Lam
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Shenzhen, China
| |
Collapse
|
27
|
The Mechanism of the Yigutang-Mediated P13K/AKT/GSK-3 β Signal Pathway to Regulate Osteogenic Differentiation of Bone Marrow Stromal Stem Cells to Treat Osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6699781. [PMID: 34239593 PMCID: PMC8233090 DOI: 10.1155/2021/6699781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/07/2021] [Indexed: 11/18/2022]
Abstract
Objectives To explore the mechanism of Yigutang mediating the P13K/AKT/GSK-3β signaling pathway to regulate the osteogenic differentiation of bone marrow stromal stem cells to treat osteoporosis (OP). Methods Sixty 12-week-old female SD rats were randomly divided into the normal group, model group, Yigutang group, and estrogen group, with 15 cases in each group. In the model group, Yigutang group, and estrogen group, the ovaries on both sides were removed to construct the model, and the bone mineral density (BMD) of the upper metaphysis of the right femur of the rats in each group was detected. The left femur of each group of rats was removed, and the load-deformation curve of the left femur of each group of rats was calculated. The number of osteoblasts was observed by H&E staining. After extracting the right femurs of rats in each group, real-time fluorescent quantitative PCR and Western blot were used to detect the expression levels of genes and proteins related to the P13K/AKT/GSK-3β signaling pathway. Results The BMD of the upper metaphysis of the right femur in the Yigutang group and the estrogen group was significantly higher than that of the model group (P < 0.05), while both Yigutang and estrogen groups had no significant difference compared with the normal group (P > 0.05). In addition, there was no significant difference between the Yigutang group and the estrogen group (P > 0.05). The elastic load and maximum load of the Yigutang group and the estrogen group were significantly higher than the model group (P < 0.05), but both were lower than the normal group (P < 0.05). There was no significant difference between the Yigutang group and the estrogen group (P > 0.05). The number of osteoblasts in the Yigutang group and the estrogen group was significantly higher than the model group (P < 0.05), but both were lower than the normal group (P < 0.05). There was no significant difference between the Yigutang group and the estrogen group (P > 0.05). The P13K gene expression in the right femoral bone tissue of rats in the Yigutang group and the estrogen group was significantly higher than that in the model group (P < 0.05), and the AKT gene expression did not change significantly (P > 0.05). The gene expression of GSK-3β was significantly lower than that of the model group (P < 0.05). Compared with the normal group, the gene expression of P13K, AKT, and GSK-3β in the right femur bone tissue of the Yigutang group and the estrogen group did not change significantly (P > 0.05). The protein expression of P13K and P-AKt in the right femoral bone tissue of rats in the Yigutang group and the estrogen group was significantly higher than that of the model group (P < 0.05), and the protein expression of AKT did not change significantly (P > 0.05). The protein expression of GSK-3β was significantly lower than the model group (P < 0.05). Compared with the normal group, the protein expression of P13K, AKT, P-AKt, and GSK-3β in the right femoral bone tissue of the Yigutang group and the estrogen group did not change significantly (P > 0.05). Conclusions Yigutang can regulate the differentiation of bone marrow stromal stem cells into osteoblasts, which may be achieved by regulating the P13K/AKT/GSK-3β signaling pathway.
Collapse
|
28
|
Lee S, Liu P, Ahmad M, Tuckermann JP. Leukemia inhibitory factor treatment attenuates the detrimental effects of glucocorticoids on bone in mice. Bone 2021; 145:115843. [PMID: 33429108 DOI: 10.1016/j.bone.2021.115843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/08/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022]
Abstract
Glucocorticoids (GCs) are widely used drugs for the treatment of inflammatory and autoimmune diseases. However, a severe side effect induced by long-term GC therapy is osteoporosis. Leukemia inhibitory factor (LIF) - a glycoprotein 130 (gp130) dependent cytokine and member of the interleukin-6 cytokine family - is an activator protein 1 (AP-1) target gene that may be involved in one of the mechanisms underlying GC-induced bone loss. Indeed, we previously reported that the mRNA expression level of LIF was enhanced upon osteogenic differentiation, but was significantly decreased in GC-treated osteoblasts. In this study, we show that in vitro LIF treatment rescues the decreased early osteogenic differentiation and mineralization of GC-treated osteoblasts. Furthermore, we also demonstrate that in vivo LIF treatment protects against GC-mediated trabecular bone loss by decreasing the loss of both trabecular bone formation and osteoblast numbers. This protection appears to be conferred by LIF rescuing GC decreased activity of Stat3, MAPK, and Akt signaling pathways. Thus, the specific targeting of LIF signaling may represent a new therapeutic strategy to prevent GC-induced trabecular bone loss.
Collapse
Affiliation(s)
- Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Peng Liu
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany; Clinics of the Ludwig Maximilians University Munich, Munich, Germany.
| |
Collapse
|
29
|
Pirosa A, Gottardi R, Alexander PG, Puppi D, Chiellini F, Tuan RS. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials 2021; 272:120773. [PMID: 33798958 DOI: 10.1016/j.biomaterials.2021.120773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/06/2023]
Abstract
The generation of engineered models of the osteochondral complex to study its pathologies and develop possible treatments is hindered by the distinctly different properties of articular cartilage and subchondral bone, with the latter characterized by vascularization. In vitro models of the osteochondral complex have been mainly engineered as biphasic constructs containing just cartilage and bone cells, a condition very dissimilar from the in vivo environment. The different cellular components of the osteochondral complex are governed by interacting biochemical signaling; hence, to study the crosstalk among chondrocytes, osteoblasts, and endothelial cells, we have developed a novel triphasic model of the osteochondral tissue interface. Wet-spun poly(ε-caprolactone) (PCL) and PCL/hydroxyapatite (HA) scaffolds in combination with a methacrylated gelatin (gelMA) hydrogel were used as the polymeric backbone of the constructs. The scaffold components were engineered with human bone marrow derived mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs), and differentiated using a dual chamber microphysiological system (MPS) bioreactor that allows the simultaneous, separate flow of media of different compositions for induced differentiation of each compartment towards a cartilaginous or osseous lineage. Within the engineered Microphysiological Vascularized Osteochondral System, hMSCs showed spatially distinct chondrogenic and osteogenic markers in terms of histology and gene expression. HUVECs formed a stable capillary-like network in the engineered bone compartment and enhanced both chondrogenic and osteogenic differentiation of hMSCs, resulting in the generation of an in vitro system that mimics a vascularized osteochondral interface tissue.
Collapse
Affiliation(s)
- Alessandro Pirosa
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; BIOlab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Ri.MED Foundation, Palermo, Italy
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dario Puppi
- BIOlab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Federica Chiellini
- BIOlab Research Group, Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
30
|
Zhou Z, Zhao D, Zhang P, Zhang M, Leng X, Yao B. The enzymatic hydrolysates from deer sinew promote MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. BMC Complement Med Ther 2021; 21:59. [PMID: 33568122 PMCID: PMC7877118 DOI: 10.1186/s12906-021-03240-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Deer Sinew serves as a medicinal food, and has been used for treating skeletal diseases, especially bone diseases in a long history. Thus, it could become an alternative option for the prevention and therapeutic remedy of bone-related diseases. In our previous study, we established an optimal extraction process of the enzymatic hydrolysates from Chinese Sika deer sinews (DSEH), and we demonstrated that DSEH significantly promoted the proliferation of MC3T3-E1 cells (an osteoblast-like cell line) with a certain dose-effect relationship. However, the precise molecular mechanism of deer sinew in regulating bone strength is still largely unknown. The aim of this study was to explore the underlying molecular mechanism of DSEH on MC3T3-E1 cells proliferation and extracellular matrix synthesis. Methods Preparation and quality control were performed as previously described. The effect of DSEH at different administrated concentrations on cell proliferation was measured using both CCK-8 and MTT assays, and the capacity of DSEH on extracellular matrix synthesis was detected by Alizarin red staining and quantification. The gene expression pattern change of MC3T3-E1 cells under the treatment of DSEH was investigated by RNA-seq analysis accompanied with validation methods. Results We demonstrated that DSEH promoted MC3T3-E1 cell proliferation and extracellular matrix synthesis by regulating multiple functional genes. DSEH significantly increased the expression levels of genes that promoted cell proliferation such as Gstp1, Timp1, Serpine1, Cyr61, Crlf1, Thbs1, Ctgf, P4ha2, Sod3 and Nqo1. However, DSEH significantly decreased the expression levels of genes that inhibited cell proliferation such as Mt1, Cdc20, Gas1, Nrp2, Cmtm3, Dlk2, Sema3a, Rbm25 and Hspb6. Furthermore, DSEH mildly increased the expression levels of osteoblast gene markers. Conclusions Our findings suggest that DSEH facilitate MC3T3-E1 cell proliferation and extracellular matrix synthesis to consolidate bone formation and stability, but prevent MC3T3-E1 cells from oxidative stress-induced damage, apoptosis and further differentiation. These findings deepened the current understanding of DSEH on regulating bone development, and provided theoretical support for the discovery of optional prevention and treatment for bone-related diseases.
Collapse
Affiliation(s)
- Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Pengcheng Zhang
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mei Zhang
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xiangyang Leng
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
31
|
Gustafsson KL, Farman HH, Nilsson KH, Henning P, Movérare-Skrtic S, Lionikaite V, Lawenius L, Engdahl C, Ohlsson C, Lagerquist MK. Arginine site 264 in murine estrogen receptor-α is dispensable for the regulation of the skeleton. Am J Physiol Endocrinol Metab 2021; 320:E160-E168. [PMID: 33225718 DOI: 10.1152/ajpendo.00349.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα. Estrogen protects against bone loss but is not a suitable treatment due to adverse effects in other tissues. Therefore, increased knowledge regarding estrogen signaling in estrogen-responsive tissues is warranted to aid the development of bone-specific estrogen treatments. Estrogen receptor-α (ERα), the main mediator of estrogenic effects in bone, is widely subjected to posttranslational modifications (PTMs). In vitro studies have shown that methylation at site R260 in the human ERα affects receptor localization and intracellular signaling. The corresponding amino acid R264 in murine ERα has been shown to have a functional role in endothelium in vivo, although the methylation of R264 in the murine gene is yet to be empirically demonstrated. The aim of this study was to investigate whether R264 in ERα is involved in the regulation of the skeleton in vivo. Dual-energy X-ray absorptiometry (DEXA) analysis at 3, 6, 9, and 12 mo of age showed no differences in total body areal bone mineral density (BMD) between R264A and wild type (WT) in either female or male mice. Furthermore, analyses using computed tomography (CT) demonstrated that trabecular bone mass in tibia and vertebra and cortical thickness in tibia were similar between R264A and WT mice. In addition, R264A females displayed a normal estrogen treatment response in trabecular bone mass as well as in cortical thickness. Furthermore, uterus, thymus, and adipose tissue responded similarly in R264A and WT female mice after estrogen treatment. In conclusion, our novel finding that mutation of R264 in ERα does not affect the regulation of the skeleton, together with the known role of R264 for ERα-mediated endothelial effects, supports the concept that R264 determines tissue specificity of ERα.NEW & NOTEWORTHY Mutation of arginine 264 in ERα has been shown to abrogate rapid membrane ERα-mediated endothelial effects. Our novel finding that mutation of R264 is dispensable for ERα-mediated skeletal effects supports the concept that R264 determines tissue specificity of ERα.
Collapse
Affiliation(s)
- Karin L Gustafsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Helen H Farman
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin H Nilsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Vikte Lionikaite
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lina Lawenius
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pharmacology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie K Lagerquist
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
32
|
Casati L, Pagani F, Maggi R, Ferrucci F, Sibilia V. Reply "Comment on: Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration. Int. J. Mol. Sci. 2020, 21, 4661". Int J Mol Sci 2020; 21:ijms21186675. [PMID: 32932619 PMCID: PMC7555298 DOI: 10.3390/ijms21186675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Dear Editor.
Collapse
Affiliation(s)
- Lavinia Casati
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (L.C.); (F.P.)
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Francesca Pagani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (L.C.); (F.P.)
| | - Roberto Maggi
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Francesco Ferrucci
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Valeria Sibilia
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20129 Milano, Italy; (L.C.); (F.P.)
- Correspondence:
| |
Collapse
|
33
|
Shang N, Bhullar KS, Wu J. Ovotransferrin Exhibits Osteogenic Activity Partially via Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Activation in MC3T3-E1 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9427-9435. [PMID: 32786820 DOI: 10.1021/acs.jafc.0c04064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ovotransferrin, a major protein in egg white, induces osteoblast proliferation and survival in vitro. However, it is unclear which receptor(s) drive the beneficial activities of this bioactive glycoprotein. We examined the role of the low-density lipoprotein receptor-related protein 1 (LRP1) in the actions of ovotransferrin on osteoblasts. Here, we showed that LRP1 in part regulates osteogenic action of ovotransferrin. Mouse osteoblasts, MC3T3-E1, with LRP1 deletion displayed diminished osteogenic activity. Our findings indicate that the bone-stimulatory impact of ovotransferrin on RUNX2, COL1A2, and Ca2+ signaling is LRP1-dependent. This shows that LRP1 not only acts as a scavenger receptor but also participates in ovotransferrin-mediated gene transcription. However, some of the key bone formatting factors such as ALP synthesis and serine residue phosphorylation of Akt by ovotransferrin remained independent of LRP1. Overall, this study shows that LRP1-ovotransferrin interaction might underline in part the ability of ovotransferrin to promote bone formation.
Collapse
Affiliation(s)
- Nan Shang
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Khushwant S Bhullar
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Jianping Wu
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
34
|
Food for Bone: Evidence for a Role for Delta-Tocotrienol in the Physiological Control of Osteoblast Migration. Int J Mol Sci 2020; 21:ijms21134661. [PMID: 32629979 PMCID: PMC7370057 DOI: 10.3390/ijms21134661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, indicating that stimulation of osteoblast migration could be a promising osteoanabolic strategy. We showed that purified δ-tocotrienol (δ-TT, 10 μg/mL), isolated from commercial palm oil (Elaeis guineensis) fraction, stimulates the migration of both MC3T3-E1 osteoblast-like cells and primary human bone marrow mesenchymal stem cells (BMSC) as detected by wound healing assay or Boyden chamber assay respectively. The ability of δ-TT to promote MC3T3-E1 cells migration is dependent on Akt phosphorylation detected by Western blotting and involves Wnt/β-catenin signalling pathway activation. In fact, δ-TT increased β-catenin transcriptional activity, measured using a Nano luciferase assay and pretreatment with procaine (2 µM), an inhibitor of the Wnt/β-catenin signalling pathway, reducing the wound healing activity of δ-TT on MC3T3-E1 cells. Moreover, δ-TT treatment increased the expression of β-catenin specific target genes, such as Osteocalcin and Bone Morphogenetic Protein-2, involved in osteoblast differentiation and migration, and increased alkaline phosphatase and collagen content, osteoblast differentiation markers. The ability of δ-TT to enhance the recruitment of BMSC, and to promote MC3T3-E1 differentiation and migratory behavior, indicates that δ-TT could be considered a promising natural anabolic compound.
Collapse
|
35
|
Dong J, Xu X, Zhang Q, Yuan Z, Tan B. The PI3K/AKT pathway promotes fracture healing through its crosstalk with Wnt/β-catenin. Exp Cell Res 2020; 394:112137. [PMID: 32534061 DOI: 10.1016/j.yexcr.2020.112137] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 12/27/2022]
Abstract
PI3K/AKT is one of the key pathways that regulate cell behaviors including apoptosis, proliferation, and differentiation. Although previous studies have demonstrated that this pathway is a crucial regulator of osteoblasts, the role of PI3K/AKT in fracture healing remains unclear. It is well known that the Wnt/β-catenin pathway plays an essential role in bone regeneration. However, whether there exists crosstalk between Wnt/β-catenin and PI3K/AKT in regulating osteoblasts and bone repair has not been reported. To address these issues, we establish a stabilized fracture model in mice and show that PI3K inhibitor LY294002 substantially inhibits the bone healing process, suggesting that PI3K/AKT promotes fracture repair. More importantly, we report that PI3K/AKT increases phosphorylation of GSK-3β at Ser9 and phosphorylation of β-catenin at Ser552 in fracture callus and murine osteoblastic MC3T3-E1 cells, both of which lead to β-catenin stabilization, nuclear translocation, as well as β-catenin-mediated TCF-dependent transcription, suggesting that β-catenin is activated downstream of PI3K/AKT. Furthermore, we show that ICG001, the inhibitor of β-catenin transcriptional activity, attenuates PI3K/AKT-induced osteoblast proliferation, differentiation, and mineralization, indicating that the PI3K/AKT/β-catenin axis is functional in regulating osteoblasts. Notably, the PI3K/AKT pathway is also activated by Wnt3a and is involved in Wnt3a-induced osteoblast proliferation and differentiation. Hence, our results reveal the existence of a Wnt/PI3K/AKT/β-catenin signaling nexus in osteoblasts, highlighting complex crosstalk between PI3K/AKT and Wnt/β-catenin pathways that are critically implicated in fracture healing.
Collapse
Affiliation(s)
- Jun Dong
- Department of Orthopaedics, Shangdong Provincial Hospital, Shandong First Medical University, PR China
| | - Xiqiang Xu
- Department of Orthopaedics, Shangdong Provincial Hospital, Shandong First Medical University, PR China
| | - Qingyu Zhang
- Department of Orthopaedics, Shangdong Provincial Hospital, Shandong First Medical University, PR China
| | - Zenong Yuan
- Department of Orthopaedics, Shangdong Provincial Hospital, Shandong First Medical University, PR China
| | - Bingyi Tan
- Department of Orthopaedics, Shangdong Provincial Hospital, Shandong First Medical University, PR China.
| |
Collapse
|
36
|
Wang S, Qiu J, Guo A, Ren R, He W, Liu S, Liu Y. Nanoscale perfluorocarbon expediates bone fracture healing through selectively activating osteoblastic differentiation and functions. J Nanobiotechnology 2020; 18:84. [PMID: 32493334 PMCID: PMC7271395 DOI: 10.1186/s12951-020-00641-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND RATIONALE Fracture incidence increases with ageing and other contingencies. However, the strategy of accelerating fracture repair in clinical therapeutics remain a huge challenge due to its complexity and a long-lasting period. The emergence of nano-based drug delivery systems provides a highly efficient, targeted and controllable drug release at the diseased site. Thus far, fairly limited studies have been carried out using nanomedicines for the bone repair applications. Perfluorocarbon (PFC), FDA-approved clinical drug, is received increasing attention in nanomedicine due to its favorable chemical and biologic inertness, great biocompatibility, high oxygen affinity and serum-resistant capability. In the premise, the purpose of the current study is to prepare nano-sized PFC materials and to evaluate their advisable effects on promoting bone fracture repair. RESULTS Our data unveiled that nano-PFC significantly enhanced the fracture repair in the rabbit model with radial fractures, as evidenced by increased soft callus formation, collagen synthesis and accumulation of beneficial cytokines (e.g., vascular endothelial growth factor (VEGF), matrix metalloprotein 9 (MMP-9) and osteocalcin). Mechanistic studies unraveled that nano-PFC functioned to target osteoblasts by stimulating their differentiation and activities in bone formation, leading to accelerated bone remodeling in the fractured zones. Otherwise, osteoclasts were not affected upon nano-PFC treatment, ruling out the potential target of nano-PFC on osteoclasts and their progenitors. CONCLUSIONS These results suggest that nano-PFC provides a potential perspective for selectively targeting osteoblast cell and facilitating callus generation. This study opens up a new avenue for nano-PFC as a promising agent in therapeutics to shorten healing time in treating bone fracture.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anyi Guo
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China
| | - Ruanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei He
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yajun Liu
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
37
|
Wong SK, Chin KY, Ima-Nirwana S. The Skeletal-Protecting Action and Mechanisms of Action for Mood-Stabilizing Drug Lithium Chloride: Current Evidence and Future Potential Research Areas. Front Pharmacol 2020; 11:430. [PMID: 32317977 PMCID: PMC7154099 DOI: 10.3389/fphar.2020.00430] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
Lithium, the lightest natural-occurring alkali metal with an atomic number of three, stabilizes the mood to prevent episodes of acute manic and depression. Multiple lines of evidence point to lithium as an anti-suicidal, anti-viral, anti-cancer, immunomodulatory, neuroprotective and osteoprotective agent. This review article provides a comprehensive review of studies investigating the bone-enhancing effects of lithium and its possible underlying molecular mechanisms. Most of the animal experimental studies reported the beneficial effects of lithium in defective bones but not in healthy bones. In humans, the effects of lithium on bones remain heterogeneous. Mechanistically, lithium promotes osteoblastic activities by activating canonical Wingless (Wnt)/beta (β)-catenin, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and bone morphogenetic protein-2 (BMP-2) transduction pathways but suppresses osteoclastic activities by inhibiting the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG) system, nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and calcium signaling cascades. In conclusion, lithium confers protection to the skeleton but its clinical utility awaits further validation from human clinical trials.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Wang Y, Yang K, Li G, Liu R, Liu J, Li J, Tang M, Zhao M, Song J, Wen X. p75NTR -/- mice exhibit an alveolar bone loss phenotype and inhibited PI3K/Akt/β-catenin pathway. Cell Prolif 2020; 53:e12800. [PMID: 32215984 PMCID: PMC7162804 DOI: 10.1111/cpr.12800] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the role of p75 neurotrophin receptor (p75NTR) in regulating the mouse alveolar bone development and the mineralization potential of murine ectomesenchymal stem cells (EMSCs). Moreover, we tried to explore the underlying mechanisms associated with the PI3K/Akt/β-catenin pathway. MATERIALS AND METHODS p75NTR knockout (p75NTR-/- ) mice and wild-type (WT) littermates were used. E12.5d p75NTR-/- and WT EMSCs were isolated in the same pregnant p75NTR-/+ mice from embryonic maxillofacial processes separately. Mouse alveolar bone mass was evaluated using micro-CT. Differential osteogenic differentiation pathways between p75NTR-/- and WT EMSCs were analysed by RNA-sequencing. The PI3K inhibitor LY294002 and PI3K agonist 740Y-P were used to regulate the PI3K/Akt pathway in EMSCs. p75NTR overexpression lentiviruses, p75NTR knock-down lentiviruses and recombined mouse NGF were used to transfect cells. RESULTS The alveolar bone mass was found reduced in the p75NTR knockout mouse comparing to the WT mouse. During mineralization induction, p75NTR-/- EMSCs displayed decreased osteogenic capacity and downregulated PI3K/Akt/β-catenin signalling. The PI3K/Akt/β-catenin pathway positively regulates the potential of differential mineralization in EMSCs. The promotive effect of p75NTR overexpression can be attenuated by LY294002, while the inhibitory effect of p75NTR knock-down on Runx2 and Col1 expression can be reversed by 740Y-P. CONCLUSION Deletion of p75NTR reduced alveolar bone mass in mice. P75NTR positively regulated the osteogenic differentiation of EMSCs via enhancing the PI3K/Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Yingying Wang
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Kun Yang
- Department of PeriodontologyStomatological HospitalZunyi Medical UniversityZunyiChina
| | - Gang Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Rui Liu
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Junyu Liu
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jun Li
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Mengying Tang
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| | - Manzhu Zhao
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Jinlin Song
- College of StomatologyChongqing Medical UniversityChongqingChina
| | - Xiujie Wen
- Department of StomatologyDaping HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Hospital of StomatologySouthwest Medical UniversityLuzhouChina
| |
Collapse
|
39
|
Russell MA. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality. Front Cell Dev Biol 2020; 8:159. [PMID: 32258037 PMCID: PMC7090255 DOI: 10.3389/fcell.2020.00159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Historically synemin has been studied as an intermediate filament protein. However, synemin also binds the type II regulatory (R) subunit α of protein kinase A (PKA) and protein phosphatase type 2A, thus participating in the PKA and phosphoinositide 3-kinase (PI3K)-Akt and signaling pathways. In addition, recent studies using transgenic mice indicate that a significant function of synemin is its role in signaling pathways in various tissues, including the heart. Recent clinical reports have shown that synemin mutations led to multiple cases of dilated cardiomyopathy. Additionally, a single case of the rare condition ulnar-mammary-like syndrome with left ventricular tachycardia due to a mutation in the synemin gene (SYNM) has been reported. Therefore, this review uses these recent studies to provide a new framework for detailed discussions on synemin tissue distribution, binding partners and synemin in disease. Differences between α- and β-synemin are highlighted. The studies presented here indicate that while synemin does function as an intermediate filament protein, it is unique among this large family of proteins as it is also a regulator of signaling pathways and a crosslinker. Also evident is that the dominant function(s) are isoform-, developmental-, and tissue-specific.
Collapse
Affiliation(s)
- Mary A Russell
- Department of Biological Sciences, Kent State University at Trumbull, Warren, OH, United States
| |
Collapse
|
40
|
Xi Y, Huang H, Zhao Z, Ma J, Chen Y. Tissue inhibitor of metalloproteinase 1 suppresses growth and differentiation of osteoblasts and differentiation of osteoclasts by targeting the AKT pathway. Exp Cell Res 2020; 389:111930. [PMID: 32113948 DOI: 10.1016/j.yexcr.2020.111930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Tissue inhibitor of metalloproteinase 1 (TIMP1) has various biological activities including the regulation of cell growth and differentiation. However, its role in bone homeostasis and remodeling remains poorly understood. In this study, we investigate the effects of TIMP1 on osteoblast and osteoclast activity at both cellular and molecular level using siRNA-mediated knockdown technique. Our results show that knockdown of TIMP1 stimulates proliferation and survival, but decreases apoptosis in osteoblastic MC3T3-E1 cells, suggesting that TIMP1 inhibits cell growth. TIMP1 also dampens differentiation of committed osteoblasts, as well as osteoblastogenesis of bone marrow-derived mesenchymal stem cells (BMSCs). We further show that the modulation of TIMP1 on osteoblast activity is independent of its MMP inhibition. Importantly, we uncover that TIMP1 suppresses osteoblast growth and differentiation by targeting the AKT pathway, and this is associated with TIMP1-mediated induction of PTEN via its binding to the cell surface receptor CD44. Therefore, our results highlight a novel TIMP1/CD44/PTEN/AKT signaling nexus that functions as a suppressor of osteoblast activity. Moreover, we show that TIMP1 also inhibits osteoclast differentiation in osteoclast precursor RAW 264.7 cells by targeting the AKT. In conclusion, our results demonstrate that TIMP1 can act as a suppressor of growth and differentiation of osteoblasts and differentiation of osteoclasts through the negative regulation of the AKT pathway. We propose that TIMP1 may serve as a potential target for low bone mass-related skeletal diseases, such as osteoporosis.
Collapse
Affiliation(s)
- Yongming Xi
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Hui Huang
- Department of Anesthesia, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zheng Zhao
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinfeng Ma
- Department of Orthopaedics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Chen
- Princess Margaret Cancer Center, University Health Network, Toronto, Canada.
| |
Collapse
|
41
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
42
|
Zheng D, Tao M, Liang X, Li Y, Jin J, He Q. p66Shc regulates podocyte autophagy in high glucose environment through the Notch-PTEN-PI3K/Akt/mTOR pathway. Histol Histopathol 2019; 35:405-415. [PMID: 31650524 DOI: 10.14670/hh-18-178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Autophagy has been found to be involved in podocyte injury, which is a key factor in the progression of diabetic kidney disease (DKD). p66Shc is an important protein adaptor that regulates production of reactive oxygen species (ROS) and induction of apoptosis, and is a novel biomarker for oxidative damage of renal tubules. Our preliminary studies showed that p66Shc expression in podocytes of DKD patients is increased, while autophagic flux and podocyte number is decreased in DKD patients. The mechanism by which p66Shc may regulate podocyte autophagy and injury remains unknown. The present study aimed to investigate the molecular function of p66Shc under high glucose condition and its possible therapeutic utility in DKD. METHODS We histologically evaluated kidney injury in a streptozocin (STZ)-induced mouse model of diabetes using HE, PAS, PASM, and Masson staining and assessed glomerular structure by transmission electron microscopy. The apoptosis rate of high glucose-treated podocytes was assessed by TUNEL and Annexin V/PI staining. Markers of podocyte autophagy were measured by immunofluorescence and western blotting. DHE/ET fluorescence quantification was used for ROS detection and quantification. RESULTS Urine creatinine, serum creatinine, urinary microalbumin, and p66Shc expression were significantly increased in STZ-induced diabetic mice. Cultured MPC5 podocytes subjected to high glucose showed reduced viability, and p66Shc overexpression further accelerated apoptosis. p66Shc knockdown enhanced HG-induced autophagy, while p66Shc overexpression reduced the expression of PTEN and increased the expression of mTOR and phospho-mTOR. LC3 protein expression was higher in cells with p66Shc knockdown, indicating that activation of p66Shc inhibits podocyte autophagy. DAPT, an inhibitor of the Notch pathway, downregulated the expression of p66Shc. CONCLUSION These findings indicate that p66Shc inhibits podocyte autophagy and induces apoptosis through the Notch -PTEN-PI3K/Akt/ mTOR signaling pathway in high glucose environment, providing novel evidence for its potential role in DKD treatment.
Collapse
Affiliation(s)
- Danna Zheng
- Zhejiang Chinese Medical University, Zhejiang, PR China.,Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Mei Tao
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Xudong Liang
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Yiwen Li
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Juan Jin
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| | - Qiang He
- Department of Nephrology, Zhejiang Provincial People's Hospital, Zhejiang, PR China.,People's Hospital of Hangzhou Medical College, Zhejiang, PR China.,Chinese Medical Nephrology Key Laboratory of Zhejiang Province, Zhejiang, PR China
| |
Collapse
|
43
|
Coates BA, McKenzie JA, Buettmann EG, Liu X, Gontarz PM, Zhang B, Silva MJ. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 2019; 127:577-591. [PMID: 31369916 PMCID: PMC6708791 DOI: 10.1016/j.bone.2019.07.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Bone fracture repair represents an important clinical challenge with nearly 1 million non-union fractures occurring annually in the U.S. Gene expression differs between non-union and healthy repair, suggesting there is a pattern of gene expression that is indicative of optimal repair. Despite this, the gene expression profile of fracture repair remains incompletely understood. In this work, we used RNA-seq of two well-established murine fracture models to describe gene expression of intramembranous and endochondral bone formation. We used top differentially expressed genes, enriched gene ontology terms and pathways, callus cellular phenotyping, and histology to describe and contrast these bone formation processes across time. Intramembranous repair, as modeled by ulnar stress fracture, and endochondral repair, as modeled by femur full fracture, exhibited vastly different transcriptional profiles throughout repair. Stress fracture healing had enriched differentially expressed genes associated with bone repair and osteoblasts, highlighting the strong osteogenic repair process of this model. Interestingly, the PI3K-Akt signaling pathway was one of only a few pathways uniquely enriched in stress fracture repair. Full fracture repair involved a higher level of inflammatory and immune cell related genes than did stress fracture repair. Full fracture repair also differed from stress fracture in a robust downregulation of ion channel genes following injury, the role of which in fracture repair is unclear. This study offers a broad description of gene expression in intramembranous and endochondral ossification across several time points throughout repair and suggests several potentially intriguing genes, pathways, and cells whose role in fracture repair requires further study.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| | - Xiaochen Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Paul M Gontarz
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
44
|
Bobek J, Oralova V, Kratochvilova A, Zvackova I, Lesot H, Matalova E. Tuftelin and HIFs expression in osteogenesis. Histochem Cell Biol 2019; 152:355-363. [PMID: 31520138 DOI: 10.1007/s00418-019-01813-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
Tuftelin was originally discovered and mostly studied in the tooth, but later found also in other organs. Despite its wide distribution among tissues, tuftelin's function has so far been specified only in the formation of enamel crystals. Nevertheless, in many cases, tuftelin was suggested to be associated with cellular adaptation to hypoxia and recently even with cell differentiation. Therefore, we aimed to investigate tuftelin expression along with hypoxia-inducible factors (HIFs) during the early development of the mandibular/alveolar (m/a) bone, when osteoblasts started to differentiate in vivo and to compare their expression levels in undifferentiated versus differentiated osteoblastic cells in vitro. Immunohistochemistry demonstrated the presence of tuftelin already in osteoblastic precursors which were also HIF1-positive, but HIF2-negative. Nevertheless, HIF2 protein appeared when osteoblasts differentiated, one day later. This is in agreement with observations made with MC3T3-E1 cells, where there was no significant difference in tuftelin and Hif1 expression in undifferentiated vs. differentiated cells, although Hif2 increased upon differentiation induction. In differentiated osteoblasts of the m/a bone, all three proteins accumulated, first, prenatally, in the cytoplasm and later, particularly at postnatal stages, they displayed also peri/nuclear localization. Such a dynamic time-space pattern of tuftelin expression has recently been reported in neurons, which, as the m/a bone, differentiate under less hypoxic conditions as indicated also by a prevalent cytoplasmic expression of HIF1 in osteoblasts. However, unlike what was shown in cultured neurons, tuftelin does not seem to participate in final osteoblastic differentiation and its functions, thus, appears to be tissue specific.
Collapse
Affiliation(s)
- Jan Bobek
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Veveri 97, Brno, Czech Republic
| | - Veronika Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Veveri 97, Brno, Czech Republic
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Veveri 97, Brno, Czech Republic
| | - Ivana Zvackova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Veveri 97, Brno, Czech Republic
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Veveri 97, Brno, Czech Republic
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, v.v.i, Academy of Sciences of the Czech Republic, Veveri 97, Brno, Czech Republic. .,Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, Brno, Czech Republic.
| |
Collapse
|
45
|
Gustafson JA, Park SS, Cunningham ML. Calvarial osteoblast gene expression in patients with craniosynostosis leads to novel polygenic mouse model. PLoS One 2019; 14:e0221402. [PMID: 31442251 PMCID: PMC6707563 DOI: 10.1371/journal.pone.0221402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
Craniosynostosis is the premature fusion of the sutures of the calvaria and is principally designated as being either syndromic (demonstrating characteristic extracranial malformations) or non-syndromic. While many forms of syndromic craniosynostosis are known to be caused by specific mutations, the genetic etiology of non-syndromic, single-suture craniosynostosis (SSC) is poorly understood. Based on the low recurrence rate (4-7%) and the fact that recurrent mutations have not been identified for most cases of SSC, we propose that some cases of isolated, single suture craniosynostosis may be polygenic. Previous work in our lab identified a disproportionately high number of rare and novel gain-of-function IGF1R variants in patients with SSC as compared to controls. Building upon this result, we used expression array data from calvarial osteoblasts isolated from infants with and without SSC to ascertain correlations between high IGF1 expression and expression of other osteogenic genes of interest. We identified a positive correlation between increased expression of IGF1 and RUNX2, a gene known to cause SSC with increased gene dosage. Subsequent phosphorylation assays revealed that osteoblast cell lines from cases with high IGF1 expression demonstrated inhibition of GSK3β, a serine/threonine kinase known to inhibit RUNX2, thus activating osteogenesis through the IRS1-mediated Akt pathway. With these findings, we have utilized established mouse strains to examine a novel model of polygenic inheritance (a phenotype influenced by more than one gene) of SSC. Compound heterozygous mice with selective disinhibition of RUNX2 and either overexpression of IGF1 or loss of function of GSK3β demonstrated an increase in the frequency and severity of synostosis as compared to mice with the RUNX2 disinhibition alone. These polygenic mouse models reinforce, in-vivo, that the combination of activation of the IGF1 pathway and disinhibition of the RUNX2 pathway leads to an increased risk of developing craniosynostosis and serves as a model of human SSC.
Collapse
Affiliation(s)
- Jonas A. Gustafson
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States of America
| | - Sarah S. Park
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States of America
| | - Michael L. Cunningham
- Seattle Children’s Research Institute, Center for Developmental Biology and Regenerative Medicine, Seattle, Washington, United States of America
- Seattle Children’s Hospital Craniofacial Center, Seattle, Washington, United States of America
- University of Washington, Department of Pediatrics, Seattle, Washington, United States of America
| |
Collapse
|
46
|
Valer JA, Sánchez-de-Diego C, Gámez B, Mishina Y, Rosa JL, Ventura F. Inhibition of phosphatidylinositol 3-kinase α (PI3Kα) prevents heterotopic ossification. EMBO Mol Med 2019; 11:e10567. [PMID: 31373426 PMCID: PMC6728602 DOI: 10.15252/emmm.201910567] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Heterotopic ossification (HO) is the pathological formation of ectopic endochondral bone within soft tissues. HO occurs following mechanical trauma, burns, or congenitally in patients suffering from fibrodysplasia ossificans progressiva (FOP). FOP patients carry a conserved mutation in ACVR1 that becomes neomorphic for activin A responses. Here, we demonstrate the efficacy of BYL719, a PI3Kα inhibitor, in preventing HO in mice. We found that PI3Kα inhibitors reduce SMAD, AKT, and mTOR/S6K activities. Inhibition of PI3Kα also impairs skeletogenic responsiveness to BMPs and the acquired response to activin A of the Acvr1R206H allele. Further, the efficacy of PI3Kα inhibitors was evaluated in transgenic mice expressing Acvr1Q207D . Mice treated daily or intermittently with BYL719 did not show ectopic bone or cartilage formation. Furthermore, the intermittent treatment with BYL719 was not associated with any substantial side effects. Therefore, this work provides evidence supporting PI3Kα inhibition as a therapeutic strategy for HO.
Collapse
Affiliation(s)
- José Antonio Valer
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Cristina Sánchez-de-Diego
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Beatriz Gámez
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - José Luis Rosa
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| | - Francesc Ventura
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, Hospitalet de Llobregat, Spain
| |
Collapse
|
47
|
Beneficial effects of δ-tocotrienol against oxidative stress in osteoblastic cells: studies on the mechanisms of action. Eur J Nutr 2019; 59:1975-1987. [PMID: 31280345 PMCID: PMC7351870 DOI: 10.1007/s00394-019-02047-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/02/2019] [Indexed: 12/22/2022]
Abstract
Purpose Natural antioxidants are considered as promising compounds in the prevention/treatment of osteoporosis. We studied the ability of purified δ-tocotrienol (δ-TT) isolated from a commercial palm oil (Elaeis guineensis) fraction to protect osteoblast MC3T3-E1 and osteocyte MLO-Y4 cells against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage and the mechanisms involved in its protective action in MC3T3-E1. Methods MC3T3-E1 and MLO-Y4 cells were treated with δ-TT (1.25–20 µg/ml for 2 h) followed by t-BHP at 250 µM or 125 µM for 3 h, respectively. MTT test was used to measure cell viability. Apoptotic cells were stained with Hoechst-33258 dye. Intracellular ROS levels were measured by dichlorofluorescein CM-DCFA. The OPT fluorimetric assay was used to detect the reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents. Results δ-TT significantly prevented the effects of t-BHP on cell viability and apoptosis reaching a maximum protective activity at 10 and 5 µg/ml in MC3T3-E1 and MLO-Y4 cells, respectively. This protective effect was due to a reduction of intracellular ROS levels and an increase in the defense systems shown by the increase in the GSH/GSSG. GSH loss induced by an inhibitor of GSH synthesis significantly reduced the δ-TT-positive effect on ROS levels. δ-TT prevention of oxidative damage was completely removed by combined treatment with the specific inhibitors of PI3K/AKT (LY294002) and Nrf2 (ML385). Conclusions The δ-TT protective effect against oxidative damage in MC3T3-E1 cells is due to a reduction of intracellular ROS levels and an increase of the GSH/GSSG ratio, and involves an interaction between the PI3K/Akt–Nrf2 signaling pathways.
Collapse
|
48
|
Zheng H, Liu J, Tycksen E, Nunley R, McAlinden A. MicroRNA-181a/b-1 over-expression enhances osteogenesis by modulating PTEN/PI3K/AKT signaling and mitochondrial metabolism. Bone 2019; 123:92-102. [PMID: 30898695 PMCID: PMC6491221 DOI: 10.1016/j.bone.2019.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs are small non-coding RNAs that play important roles in many cellular processes including proliferation, metabolism and differentiation. They function by binding to specific regions within the 3'UTR of target mRNAs resulting in suppression of protein synthesis and modulation of potentially many cellular pathways. We previously showed that miRNA expression levels differed between cells from distinct regions of developing human embryonic long bones. Specifically, we found that miR-181a-1 was significantly more highly expressed in hypertrophic chondrocytes compared to proliferating differentiated or progenitor chondrocytes, suggesting a potential role in regulating chondrocyte hypertrophy and/or endochondral bone formation. The goal of this study was to determine how miR-181a-1 together with its clustered miRNA, miR-181b-1, regulates osteogenesis. We show that over-expression of the miR-181a/b-1 cluster enhanced osteogenesis and that cellular pathways associated with protein synthesis and mitochondrial metabolism were significantly up-regulated. Metabolic assays revealed that the oxygen consumption rate and ATP-linked respiration were increased by miR-181a/b-1. To further decipher a potential mechanism causing these metabolic changes, we showed that PTEN (phosphatase and tensin homolog) levels were suppressed following miR-181a/b-1 over-expression, and that PI3K/AKT signaling was subsequently increased. Over-expression of PTEN was found to attenuate the enhancing effects of miR-181a/b-1, providing further evidence that miR-181a/b-1 regulates the PTEN/PI3K/AKT axis to enhance osteogenic differentiation and mitochondrial metabolism. These findings have important implications for the design of miR-181a/b targeting strategies to treat bone conditions such as fractures or heterotopic ossification.
Collapse
Affiliation(s)
- Hongjun Zheng
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Jin Liu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Eric Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St Louis, MO, United States of America.
| | - Ryan Nunley
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America.
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, United States of America; Department of Cell Biology, Washington University School of Medicine, St. Louis, MO, United States of America; Shriners Hospital for Children - St Louis, St Louis, MO, United States of America.
| |
Collapse
|
49
|
Noda S, Kawashima N, Yamamoto M, Hashimoto K, Nara K, Sekiya I, Okiji T. Effect of cell culture density on dental pulp-derived mesenchymal stem cells with reference to osteogenic differentiation. Sci Rep 2019; 9:5430. [PMID: 30931957 PMCID: PMC6443725 DOI: 10.1038/s41598-019-41741-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/11/2019] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are a good source for tissue regeneration, however, the number of DPSCs in the pulp tissue is limited. Cell propagation is essential for tissue engineering using DPSCs and the cell culture conditions may affect the properties of DPSCs. The purpose of this study was to analyze the effect of cell culture condition, especially dense culture condition, on the property and differentiation pathway of DPSCs. We cultured DPSCs under sparse (sDPSCs; 5 × 103 cells/cm2) or dense (dDPSCs; 1 × 105 cells/cm2) conditions for 4 days and compared their properties. The populations of CD73+ and CD105+ cells were significantly decreased in dDPSCs. Both groups showed multi-differentiation potential, but mineralized nodule formation was enhanced in dDPSCs. The phosphorylation of focal adhesion kinase (FAK) and phosphoinositide 3-kinase (PI3K) proteins was promoted in dDPSCs, and alkaline phosphatase (ALP) mRNA expression in dDPSCs was abolished in the presence of pan-PI3K and FAK inhibitors. dDPSCs implanted into mouse bone cavities induced more mineralized tissue formation than sDPSCs and control. These findings indicate that dense culture conditions modified the properties of DPSCs and gave rise to osteogenic-lineage commitment via integrin signaling and suggest that dense culture conditions favor the propagation of DPSCs to be used for mineralized tissue regeneration.
Collapse
Affiliation(s)
- Sonoko Noda
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Mioko Yamamoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kentaro Hashimoto
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Keisuke Nara
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Ichiro Sekiya
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| |
Collapse
|
50
|
Baroncelli M, Fuhler GM, van de Peppel J, Zambuzzi WF, van Leeuwen JP, van der Eerden BCJ, Peppelenbosch MP. Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: Comparative kinome profile analysis. J Cell Physiol 2019; 234:2984-2996. [PMID: 30058720 PMCID: PMC6585805 DOI: 10.1002/jcp.27116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
The extracellular matrix (ECM) physically supports cells and influences stem cell behaviour, modulating kinase-mediated signalling cascades. Cell-derived ECMs have emerged in bone regeneration as they reproduce physiological tissue-architecture and ameliorate mesenchymal stromal cell (MSC) properties. Titanium scaffolds show good mechanical properties, facilitate cell adhesion, and have been routinely used for bone tissue engineering (BTE). We analyzed the kinomic signature of human MSCs in adhesion to an osteopromotive osteoblast-derived ECM, and compared it to MSCs on titanium. PamChip kinase-array analysis revealed 63 phosphorylated peptides on ECM and 59 on titanium, with MSCs on ECM exhibiting significantly higher kinase activity than on titanium. MSCs on the two substrates showed overlapping kinome profiles, with activation of similar signalling pathways (FAK, ERK, and PI3K signalling). Inhibition of PI3K signalling in cells significantly reduced adhesion to ECM and increased the number of nonadherent cells on both substrates. In summary, this study comprehensively characterized the kinase activity in MSCs on cell-derived ECM and titanium, highlighting the role of PI3K signalling in kinomic changes regulating osteoblast viability and adhesion. Kinome profile analysis represents a powerful tool to select pathways to better understand cell behaviour. Osteoblast-derived ECM could be further investigated as titanium scaffold-coating to improve BTE.
Collapse
Affiliation(s)
- Marta Baroncelli
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Gwenny M. Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Jeroen van de Peppel
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Willian F. Zambuzzi
- Laboratorio de Bioensaios e Dinâmica Celular, Departamento de Quimica e BioquimicaInstituto de Biociências, Universidade Estadual Paulista‐UNESPSão PauloBrazil
| | - Johannes P. van Leeuwen
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Bram C. J. van der Eerden
- Department of Internal Medicine, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Maikel P. Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| |
Collapse
|