1
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Jeon MS, Luo J, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. Cancer Cell 2024:S1535-6108(24)00447-1. [PMID: 39672168 DOI: 10.1016/j.ccell.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults with a poor prognosis despite aggressive therapy. Here, we hypothesized that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We find daily glucocorticoids promote or suppress GBM growth through glucocorticoid receptor (GR) signaling depending on time of day and the clock genes, Bmal1 and Cry. Blocking circadian signals, like vasoactive intestinal peptide or glucocorticoids, dramatically slows GBM growth and disease progression. Analysis of human GBM samples from The Cancer Genome Atlas (TCGA) shows that high GR expression significantly increases hazard of mortality. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, modulating its growth through clock-controlled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anna R Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Myung Sik Jeon
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jingqin Luo
- Department of Surgery, Division of Public Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua B Rubin
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erik D Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
2
|
Yoon S, Lee S, Joo Y, Ha E, Hong H, Song Y, Lee H, Kim S, Suh C, Lee CJ, Lyoo IK. Variations in brain glutamate and glutamine levels throughout the sleep-wake cycle. Biol Psychiatry 2024:S0006-3223(24)01785-2. [PMID: 39643103 DOI: 10.1016/j.biopsych.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/25/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Glutamatergic signaling is essential for modulating synaptic plasticity and cognition. However, the dynamics of glutamatergic activity over the 24-hour sleep-wake cycle, particularly in relation to sleep, remain poorly understood. This study aims to investigate diurnal variations in brain Glx levels-representing the combined concentrations of glutamate and glutamine-in humans and to explore their implications for cognitive performance and sleep pressure. METHODS We conducted two independent experiments to measure Glx levels across the sleep-wake cycle using proton magnetic resonance spectroscopy. In Experiment 1, 14 participants underwent 13 hours of Glx measurements during a typical sleep-wake cycle. Experiment 2 extended these measurements to an around-the-clock observation over a 6-day period. This period included two days of normal sleep-wake cycles, 24 hours of enforced wakefulness, and a three-day recovery phase. Seven participants took part in Experiment 2. RESULTS The study observed that brain Glx levels increased during wakefulness and decreased during sleep. Notably, Glx levels were lower during enforced wakefulness compared to those during normal wakefulness. Reduced Glx levels were associated with diminished cognitive performance, while greater Glx exposure over the preceding 24 hours correlated with increased sleep pressure. CONCLUSIONS These findings suggest that Glx accumulation may contribute to increased sleep pressure, while its reduction appears to support wakefulness. These observations, together with the diurnal variations in Glx levels, underscore the dynamic nature of glutamatergic activity across the daily cycle. Further research is warranted to explore the potential role of sleep in regulating glutamatergic homeostasis.
Collapse
Affiliation(s)
- Sujung Yoon
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Suji Lee
- College of Pharmacy, Dongduk W. University, Seoul 02748, South Korea
| | - Yoonji Joo
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - Eunji Ha
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - Haejin Hong
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - Yumi Song
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea
| | - Chaewon Suh
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha W. University, Seoul 03760, South Korea; Department of Brain and Cognitive Sciences, Ewha W. University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha W. University, Seoul 03760, South Korea.
| |
Collapse
|
3
|
Garcia-Malo C, Cano-Pumarega I, Castro-Villacañas-Farzamnia A, Boi S. Circadian Pattern in Restless Legs Syndrome: Implications for Treatment Posology. Sleep Sci 2024; 17:e470-e475. [PMID: 39698169 PMCID: PMC11651820 DOI: 10.1055/s-0044-1782176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/16/2023] [Indexed: 12/20/2024] Open
Abstract
The symptoms of restless legs syndrome (RLS) follow a circadian pattern, as inducated in the current RLS diagnostic criteria. Indeed, subjects with mild-to-moderate RLS suffer or not from RLS symptoms depending on the time of day, resembling an above-threshold state periodically followed by a below-threshold state. Although the circadian clock is crucial in the clinical features of RLS, research assessing the ultimate drivers of circadian rhythmicity is still very limited. In the present review, we show current evidence on circadian variations of neurotransmitters involved in the pathophysiology of RLS (systemic iron metabolism, brain iron homeostasis, adenosine, dopamine, glutamate, and endogenous opioids). Secondly, an overview of available therapies for RLS is presented, including information on current recommendations for symptomatic treatments in RLS. We discuss the importance of further research into the circadian oscillations that occur in RLS, so that they can be managed, and a protective below-threshold state can be established on an individualized basis. In addition, we also discuss the current dosing of the medications prescribed in RLS symptomatic treatments, and how circadian factors should be considered to better adjust dosing on an individualized basis and increase the therapeutic benefit.
Collapse
Affiliation(s)
- Celia Garcia-Malo
- Neurology Department, Centro Integral de Sueño y Neurociencias (CISNe), Madrid, Spain
| | - Irene Cano-Pumarega
- Neurology Department, Centro Integral de Sueño y Neurociencias (CISNe), Madrid, Spain
- Respiratory Department, Sleep Unit, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | - Sara Boi
- Neurology Department, Centro Integral de Sueño y Neurociencias (CISNe), Madrid, Spain
| |
Collapse
|
4
|
Xu S, Jia M, Guo J, He J, Chen X, Xu Y, Hu W, Wu D, Wu C, Ji X. Ticking Brain: Circadian Rhythm as a New Target for Cerebroprotection. Stroke 2024; 55:2385-2396. [PMID: 39011642 DOI: 10.1161/strokeaha.124.046684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Circadian rhythm is a master process observed in nearly every type of cell throughout the body, and it macroscopically regulates daily physiology. Recent clinical trials have revealed the effects of circadian variation on the incidence, pathophysiological processes, and prognosis of acute ischemic stroke. Furthermore, core clock genes, the cell-autonomous pacemakers of the circadian rhythm, affect the neurovascular unit-composing cells in a nonparallel manner after the same pathophysiological processes of ischemia/reperfusion. In this review, we discuss the influence of circadian rhythms and clock genes on each type of neurovascular unit cell in the pathophysiological processes of acute ischemic stroke.
Collapse
Affiliation(s)
- Shuaili Xu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Milan Jia
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Jiaqi Guo
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Jiachen He
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Xi Chen
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Yi Xu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Wenbo Hu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Di Wu
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders (S.X., X.J.), Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital (M.J., X.C., Y.X., W.H., C.W., X.J.), Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Xuanwu Hospital (S.X., J.G., J.H., X.C., Y.X., W.H., D.W., X.J.), Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital (X.J.), Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Gonzalez-Aponte MF, Damato AR, Simon T, Aripova N, Darby F, Rubin JB, Herzog ED. Daily glucocorticoids promote glioblastoma growth and circadian synchrony to the host. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592418. [PMID: 38766060 PMCID: PMC11100585 DOI: 10.1101/2024.05.03.592418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor in adults with a poor prognosis despite aggressive therapy. A recent, retrospective clinical study found that administering Temozolomide in the morning increased patient overall survival by 6 months compared to evening. Here, we tested the hypothesis that daily host signaling regulates tumor growth and synchronizes circadian rhythms in GBM. We found daily Dexamethasone promoted or suppressed GBM growth depending on time of day of administration and on the clock gene, Bmal1. Blocking circadian signals, like VIP or glucocorticoids, dramatically slowed GBM growth and disease progression. Finally, mouse and human GBM models have intrinsic circadian rhythms in clock gene expression in vitro and in vivo that entrain to the host through glucocorticoid signaling, regardless of tumor type or host immune status. We conclude that GBM entrains to the circadian circuit of the brain, which modulates its growth through clockcontrolled cues, like glucocorticoids.
Collapse
Affiliation(s)
- Maria F. Gonzalez-Aponte
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anna R. Damato
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Tatiana Simon
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Nigina Aripova
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Fabrizio Darby
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joshua B. Rubin
- Department of Pediatrics, St. Louis Children’s Hospital, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Erik D. Herzog
- Department of Biology, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
6
|
Schwab K, Frahm S, Magbagbeolu M, Horsley D, Goatman EA, Melis V, Theuring F, Ishaq A, Storey JMD, Harrington CR, Wischik CM, Riedel G. LETC inhibits α-Syn aggregation and ameliorates motor deficiencies in the L62 mouse model of synucleinopathy. Eur J Pharmacol 2024; 970:176505. [PMID: 38503400 DOI: 10.1016/j.ejphar.2024.176505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
Alpha-Synuclein (α-Syn) aggregation is a pathological feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease (PD). Here, we explored the efficacy of N,N,N',N'-tetraethyl-10H-phenothiazine-3,7-diamine dihydrochloride (LETC), a protein aggregation inhibitor, on α-Syn aggregation. In both cellular models and transgenic mice, α-Syn aggregation was achieved by the overexpression of full-length human α-Syn fused with a signal sequence peptide. α-Syn accumulated in transfected DH60.21 neuroblastoma cells and α-Syn aggregation was inhibited by LETC with an EC50 of 0.066 ± 0.047 μM. Full-length human α-Syn overexpressing Line 62 (L62) mice accumulated neuronal α-Syn that was associated with a decreased motor performance in the open field and automated home cage. LETC, administered orally for 6 weeks at 10 mg/kg significantly decreased α-Syn-positive neurons in multiple brain regions and this resulted in a rescue of movement deficits in the open field in these mice. LETC however, did not improve activity deficits of L62 mice in the home cage environment. The results suggest that LETC may provide a potential disease modification therapy in synucleinopathies through the inhibition of α-Syn aggregation.
Collapse
Affiliation(s)
- Karima Schwab
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany.
| | - Silke Frahm
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Mandy Magbagbeolu
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - David Horsley
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Elizabeth A Goatman
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Valeria Melis
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Franz Theuring
- Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Hessische Str. 3-4, 10115, Berlin, Germany
| | - Ahtsham Ishaq
- Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | - John M D Storey
- Department of Chemistry, University of Aberdeen, Aberdeen, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; TauRx Therapeutics Ltd., 395 King Street, Aberdeen, AB24 5RP, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
7
|
Selçuk B, Aksu T, Dereli O, Adebali O. Downregulated NPAS4 in multiple brain regions is associated with major depressive disorder. Sci Rep 2023; 13:21596. [PMID: 38062059 PMCID: PMC10703936 DOI: 10.1038/s41598-023-48646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Major Depressive Disorder (MDD) is a commonly observed psychiatric disorder that affects more than 2% of the world population with a rising trend. However, disease-associated pathways and biomarkers are yet to be fully comprehended. In this study, we analyzed previously generated RNA-seq data across seven different brain regions from three distinct studies to identify differentially and co-expressed genes for patients with MDD. Differential gene expression (DGE) analysis revealed that NPAS4 is the only gene downregulated in three different brain regions. Furthermore, co-expressing gene modules responsible for glutamatergic signaling are negatively enriched in these regions. We used the results of both DGE and co-expression analyses to construct a novel MDD-associated pathway. In our model, we propose that disruption in glutamatergic signaling-related pathways might be associated with the downregulation of NPAS4 and many other immediate-early genes (IEGs) that control synaptic plasticity. In addition to DGE analysis, we identified the relative importance of KEGG pathways in discriminating MDD phenotype using a machine learning-based approach. We anticipate that our study will open doors to developing better therapeutic approaches targeting glutamatergic receptors in the treatment of MDD.
Collapse
Affiliation(s)
- Berkay Selçuk
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Tuana Aksu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Onur Dereli
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey
| | - Ogün Adebali
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Istanbul, Turkey.
- TÜBİTAK Research Institute for Fundamental Sciences, 41470, Gebze, Turkey.
| |
Collapse
|
8
|
Kara N, Iweka CA, Blacher E. Chrono-Gerontology: Integrating Circadian Rhythms and Aging in Stroke Research. Adv Biol (Weinh) 2023; 7:e2300048. [PMID: 37409422 DOI: 10.1002/adbi.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/14/2023] [Indexed: 07/07/2023]
Abstract
Stroke is a significant public health concern for elderly individuals. However, the majority of pre-clinical studies utilize young and healthy rodents, which may result in failure of candidate therapies in clinical trials. In this brief review/perspective, the complex link between circadian rhythms, aging, innate immunity, and the gut microbiome to ischemic injury onset, progression, and recovery is discussed. Short-chain fatty acids and nicotinamide adenine dinucleotide+ (NAD+ ) production by the gut microbiome are highlighted as key mechanisms with profound rhythmic behavior, and it is suggested to boost them as prophylactic/therapeutic approaches. Integrating aging, its associated comorbidities, and circadian regulation of physiological processes into stroke research may increase the translational value of pre-clinical studies and help to schedule the optimal time window for existing practices to improve stroke outcome and recovery.
Collapse
Affiliation(s)
- Nirit Kara
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| | - Chinyere Agbaegbu Iweka
- Department of Neurology & Neurological Sciences, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Eran Blacher
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 9190401, Israel
| |
Collapse
|
9
|
Torres Soler C, Kanders SH, Rehn M, Olofsdotter S, Åslund C, Nilsson KW. A Three-Way Interaction of Sex, PER2 rs56013859 Polymorphism, and Family Maltreatment in Depressive Symptoms in Adolescents. Genes (Basel) 2023; 14:1723. [PMID: 37761863 PMCID: PMC10531402 DOI: 10.3390/genes14091723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The prevalence of depressive symptoms in adolescents is 12-18% and is twice as frequent in females. Sleep problems and thoughts of death are depressive symptoms or co-occurrent phenomena. Family maltreatment is a risk factor for later depressive symptoms and the period circadian regulator (PER) has been studied in relation to neurotransmitters, adaptation to stress, and winter depression. The purpose of this work was to study the relation of the three-way interactions of sex, PER2 rs56013859, and family maltreatment in relation to core depressive symptoms, sleep complaints, and thoughts of death and suicide in self-reports from a cohort of Swedish adolescents in 2012, 2015, and 2018. Cross-sectional and longitudinal analyses with linear and logistic regressions were used to study the relationships to the three outcomes. The three-way interaction was related to core depressive symptoms at both baseline and six years later. In contrast, the model did not show any relation to the other dependent variables. At 13-15 years, a sex-related differential expression was observed: females with the minor allele C:C/C:T exposed to family maltreatment showed higher levels of core depressive symptoms. Six years later, the trend was inverted among carriers of minor alleles.
Collapse
Affiliation(s)
- Catalina Torres Soler
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
| | - Sofia H. Kanders
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
| | - Mattias Rehn
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
| | - Susanne Olofsdotter
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
- Department of Psychology, Uppsala University, 751 05 Uppsala, Sweden
| | - Cecilia Åslund
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
- Department of Public Health and Caring Sciences, Uppsala University, 751 05 Uppsala, Sweden
| | - Kent W. Nilsson
- Centre for Clinical Research, Region Västmanland, Uppsala University, 721 89 Västerås, Sweden
- Department of Neuroscience, Uppsala University, 751 05 Uppsala, Sweden
- The School of Health, Care and Social Welfare, Mälardalen University, 721 23 Västerås, Sweden
| |
Collapse
|
10
|
Korostovtseva LS, Kolomeichuk SN. Circadian Factors in Stroke: A Clinician's Perspective. Cardiol Ther 2023; 12:275-295. [PMID: 37191897 DOI: 10.1007/s40119-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/27/2023] [Indexed: 05/17/2023] Open
Abstract
Stroke remains one of the leading causes of mortality and long-term and permanent disability worldwide despite technological innovations and developments in pharmacotherapy. In the last few decades, the growing data have evidenced the role of the circadian system in brain vulnerability to damage, the development and evolution of stroke, and short-term and long-term recovery. On the other hand, the stroke itself can affect the circadian system via direct injury of specific brain structures involved in circadian regulation (i.e., hypothalamus, retinohypothalamic tracts, etc.) and impairment of endogenous regulatory mechanisms, metabolic derangement, and a neurogenic inflammatory response in acute stroke. Moreover, the disruption of circadian rhythms can occur or exacerbate as a result of exogenous factors related to hospitalization itself, the conditions in the intensive care unit and the ward (light, noise, etc.), medication (sedatives and hypnotics), and loss of external factors entraining the circadian rhythms. In the acute phase of stroke, patients demonstrate abnormal circadian variations in circadian biomarkers (melatonin, cortisol), core body temperature, and rest-activity patterns. The approaches aimed at the restoration of disrupted circadian patterns include pharmacological (melatonin supplementation) and non-medication (bright light therapy, shifting feeding schedules, etc.) interventions; however, their effects on short- and long-term recovery after stroke are not well understood.
Collapse
Affiliation(s)
- Lyudmila S Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Str., St Petersburg, 197341, Russia.
| | - Sergey N Kolomeichuk
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Str., St Petersburg, 197341, Russia
- Laboratory of Genetics Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Almazov National Medical Research Centre, St Petersburg, Russia
| |
Collapse
|
11
|
Brécier A, Li VW, Smith CS, Halievski K, Ghasemlou N. Circadian rhythms and glial cells of the central nervous system. Biol Rev Camb Philos Soc 2023; 98:520-539. [PMID: 36352529 DOI: 10.1111/brv.12917] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022]
Abstract
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types - astrocytes, microglia, and oligodendrocytes - across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.
Collapse
Affiliation(s)
- Aurélie Brécier
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Vina W Li
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Chloé S Smith
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Katherine Halievski
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
| | - Nader Ghasemlou
- Pain Chronobiology & Neuroimmunology Laboratory, Queen's University, Botterell Hall, room 754, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical & Molecular Sciences, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
- Department of Anesthesiology & Perioperative Medicine, 76 Stuart Street, Kingston, ON, K7L 2V7, Canada
- Centre for Neuroscience Studies, Queen's University, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
12
|
The Circadian Clocks, Oscillations of Pain-Related Mediators, and Pain. Cell Mol Neurobiol 2023; 43:511-523. [PMID: 35179680 DOI: 10.1007/s10571-022-01205-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/06/2022] [Indexed: 01/07/2023]
Abstract
The circadian clock is a biochemical oscillator that is synchronized with solar time. Normal circadian rhythms are necessary for many physiological functions. Circadian rhythms have also been linked with many physiological functions, several clinical symptoms, and diseases. Accumulating evidence suggests that the circadian clock appears to modulate the processing of nociceptive information. Many pain conditions display a circadian fluctuation pattern clinically. Thus, the aim of this review is to summarize the existing knowledge about the circadian clocks involved in diurnal rhythms of pain. Possible cellular and molecular mechanisms regarding the connection between the circadian clocks and pain are discussed.
Collapse
|
13
|
杨 秋, 李 思, 郝 虎, 古 霞, 石 聪, 肖 昕, 蔡 尧. [Blood metabolites in preterm infants with retinopathy of prematurity based on tandem mass spectrometry: a preliminary study]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:140-146. [PMID: 36854689 PMCID: PMC9979382 DOI: 10.7499/j.issn.1008-8830.2209142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/17/2022] [Indexed: 03/03/2023]
Abstract
OBJECTIVES To study new biomarkers for the early diagnosis of retinopathy of prematurity (ROP) by analyzing the differences in blood metabolites based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and metabolomics. METHODS Dried blood spots were collected from 21 infants with ROP (ROP group) and 21 infants without ROP (non-ROP group) who were hospitalized in the Sixth Affiliated Hospital of Sun Yat-sen University from January 2013 to December 2016. LC-MS/MS was used to measure the metabolites, and orthogonal partial least squares-discriminant analysis was used to search for differentially expressed metabolites and biomarkers. RESULTS There was a significant difference in blood metabolic profiles between the ROP and non-ROP groups. The pattern recognition analysis, Score-plot, and weight analysis obtained 10 amino acids with a relatively large difference. Further statistical analysis showed that the ROP group had significant increases in blood levels of glutamic acid, leucine, aspartic acid, ornithine, and glycine compared with the non-ROP group (P<0.05). The receiver operating characteristic curve analysis showed that glutamic acid and ornithine had the highest value in diagnosing ROP. CONCLUSIONS Blood metabolites in preterm infants with ROP are different from those without ROP. Glutamic acid and ornithine are the metabolic markers for diagnosing ROP. LC-MS/MS combined with metabolomics analysis has a potential application value in the early identification and diagnosis of ROP.
Collapse
Affiliation(s)
| | | | - 虎 郝
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | | | - 聪聪 石
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | - 昕 肖
- 中山大学附属第六医院小儿遗传代谢病实验室,广东广州510655
| | | |
Collapse
|
14
|
Gudkov SV, Burmistrov DE, Kondakova EV, Sarimov RM, Yarkov RS, Franceschi C, Vedunova MV. An emerging role of astrocytes in aging/neuroinflammation and gut-brain axis with consequences on sleep and sleep disorders. Ageing Res Rev 2023; 83:101775. [PMID: 36334910 DOI: 10.1016/j.arr.2022.101775] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022]
Abstract
Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia; Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Dmitriy E Burmistrov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Elena V Kondakova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Ruslan M Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov str., 119991 Moscow, Russia.
| | - Roman S Yarkov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Claudio Franceschi
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., 603022 Nizhny Novgorod, Russia.
| |
Collapse
|
15
|
Tiedt S, Buchan AM, Dichgans M, Lizasoain I, Moro MA, Lo EH. The neurovascular unit and systemic biology in stroke - implications for translation and treatment. Nat Rev Neurol 2022; 18:597-612. [PMID: 36085420 DOI: 10.1038/s41582-022-00703-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2022] [Indexed: 12/24/2022]
Abstract
Ischaemic stroke is a leading cause of disability and death for which no acute treatments exist beyond recanalization. The development of novel therapies has been repeatedly hindered by translational failures that have changed the way we think about tissue damage after stroke. What was initially a neuron-centric view has been replaced with the concept of the neurovascular unit (NVU), which encompasses neuronal, glial and vascular compartments, and the biphasic nature of neural-glial-vascular signalling. However, it is now clear that the brain is not the private niche it was traditionally thought to be and that the NVU interacts bidirectionally with systemic biology, such as systemic metabolism, the peripheral immune system and the gut microbiota. Furthermore, these interactions are profoundly modified by internal and external factors, such as ageing, temperature and day-night cycles. In this Review, we propose an extension of the concept of the NVU to include its dynamic interactions with systemic biology. We anticipate that this integrated view will lead to the identification of novel mechanisms of stroke pathophysiology, potentially explain previous translational failures, and improve stroke care by identifying new biomarkers of and treatment targets in stroke.
Collapse
Affiliation(s)
- Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Alastair M Buchan
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Martin Dichgans
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Ignacio Lizasoain
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain
| | - Maria A Moro
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA).,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Eng H Lo
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), . .,Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Damato AR, Herzog ED. Circadian clock synchrony and chronotherapy opportunities in cancer treatment. Semin Cell Dev Biol 2022; 126:27-36. [PMID: 34362656 PMCID: PMC8810901 DOI: 10.1016/j.semcdb.2021.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 07/27/2021] [Indexed: 01/29/2023]
Abstract
Cell-autonomous, tissue-specific circadian rhythms in gene expression and cellular processes have been observed throughout the human body. Disruption of daily rhythms by mistimed exposure to light, food intake, or genetic mutation has been linked to cancer development. Some medications are also more effective at certain times of day. However, a limited number of clinical studies have examined daily rhythms in the patient or drug timing as treatment strategies. This review highlights advances and challenges in cancer biology as a function of time of day. Recent evidence for daily rhythms and their entrainment in tumors indicate that personalized medicine should include understanding and accounting for daily rhythms in cancer patients.
Collapse
Affiliation(s)
- Anna R Damato
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA
| | - Erik D Herzog
- Department of Biology, Washington University, Box 1137, St. Louis, MO 63130, USA.
| |
Collapse
|
17
|
Salihu S, Meor Azlan NF, Josiah SS, Wu Z, Wang Y, Zhang J. Role of the cation-chloride-cotransporters in the circadian system. Asian J Pharm Sci 2021; 16:589-597. [PMID: 34849164 PMCID: PMC8609385 DOI: 10.1016/j.ajps.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023] Open
Abstract
The circadian system plays an immense role in controlling physiological processes in our body. The suprachiasmatic nucleus (SCN) supervises this system, regulating and harmonising the circadian rhythms in our body. Most neurons present in the SCN are GABAergic neurons. Although GABA is considered the main inhibitory neurotransmitter of the CNS, recent studies have shown that excitatory responses were recorded in this area. These responses are enabled by an increase in intracellular chloride ions [Cl-]i levels. The chloride (Cl-) levels in GABAergic neurons are controlled by two solute carrier 12 (SLC12) cation-chloride-cotransporters (CCCs): Na+/K+/Cl- co-transporter (NKCC1) and K+/Cl- co-transporter (KCC2), that respectively cause an influx and efflux of Cl-. Recent works have found altered expression and/or activity of either of these co-transporters in SCN neurons and have been associated with circadian rhythms. In this review, we summarize and discuss the role of CCCs in circadian rhythms, and highlight these recent advances which attest to CCC's growing potential as strong research and therapeutic targets.
Collapse
Affiliation(s)
- Shihan Salihu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Zhijuan Wu
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Hatherly Laboratories, Exeter EX4 4PS, UK
- Corresponding authors.
| |
Collapse
|
18
|
Jiménez-Zárate BS, Piña-Leyva C, Rodríguez-Sánchez M, Florán-Garduño B, Jiménez-Zamudio LA, Jiménez-Estrada I. Day-Night Variations in the Concentration of Neurotransmitters in the Rat Lumbar Spinal Cord. J Circadian Rhythms 2021; 19:9. [PMID: 34326881 PMCID: PMC8300578 DOI: 10.5334/jcr.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to analyze the light-dark variations in the concentrations of several neurotransmitters in the lumbar spinal cord of rats. Six groups of male Wistar rats were exposed to a 12 h light-12 h dark cycle for 70 days. At different time points of the experimental day (8, 12, 16, 20, 24 and 4 h), one of the groups of rats was randomly selected to be sacrificed, and the spinal cords were removed. The gamma-aminobutyric acid (GABA), glutamate (GLU), dopamine, serotonin, epinephrine (E), and norepinephrine (NE) levels in each extracted spinal cord were measured with high-pressure liquid chromatography (HPLC)-EQ and HPLC-fluorescence systems. Our results indicate that the spinal concentrations of GABA and GLU showed sinusoidal variation in a 24 h cycle, with the highest peak in the dark period (~20 h). Dopamine and serotonin also fluctuated in concentration but peaked in the light period (between 8 and 12 h), while E and NE concentrations showed no significant fluctuations. The possible relationship between neurotransmitter spinal concentration and sensitivity to pain and locomotor activity is discussed. It was concluded that most of the neurotransmitter levels in the lumbar spinal cord showed circadian fluctuations coupled to a light-dark cycle.
Collapse
Affiliation(s)
- Beatriz Shantal Jiménez-Zárate
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, IPN, México
- Department of Physiology, ENCB, IPN, México City, México
| | - Celia Piña-Leyva
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, IPN, México
| | | | | | | | | |
Collapse
|
19
|
Lo EH, Albers GW, Dichgans M, Donnan G, Esposito E, Foster R, Howells DW, Huang YG, Ji X, Klerman EB, Lee S, Li W, Liebeskind DS, Lizasoain I, Mandeville ET, Moro MA, Ning M, Ray D, Sakadžić S, Saver JL, Scheer FAJL, Selim M, Tiedt S, Zhang F, Buchan AM. Circadian Biology and Stroke. Stroke 2021; 52:2180-2190. [PMID: 33940951 DOI: 10.1161/strokeaha.120.031742] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circadian biology modulates almost all aspects of mammalian physiology, disease, and response to therapies. Emerging data suggest that circadian biology may significantly affect the mechanisms of susceptibility, injury, recovery, and the response to therapy in stroke. In this review/perspective, we survey the accumulating literature and attempt to connect molecular, cellular, and physiological pathways in circadian biology to clinical consequences in stroke. Accounting for the complex and multifactorial effects of circadian rhythm may improve translational opportunities for stroke diagnostics and therapeutics.
Collapse
Affiliation(s)
- Eng H Lo
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Gregory W Albers
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Stanford Stroke Center, Stanford University, Palo Alto (G.W.A., S.L.)
| | - Martin Dichgans
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,German Center for Neurodegenerative Diseases (DZNE, Munich) and Munich Cluster for Systems Neurology (SyNergy), Germany (M.D.).,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D., S.T.)
| | - Geoffrey Donnan
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Australia (G.D.)
| | - Elga Esposito
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Russell Foster
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences (R.F.), University of Oxford, United Kingdom
| | - David W Howells
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Tasmanian School of Medicine, University of Tasmania, Australia (D.W.H.)
| | - Yi-Ge Huang
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Stroke Medicine (Y.H., A.M.B.), University of Oxford, United Kingdom
| | - Xunming Ji
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Beijing Institute for Brain Disorders, China (X.J.)
| | - Elizabeth B Klerman
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Neurology (E.B.K., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sarah Lee
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Stanford Stroke Center, Stanford University, Palo Alto (G.W.A., S.L.)
| | - Wenlu Li
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David S Liebeskind
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Geffen School of Medicine, University of California Los Angeles (J.L.S., D.S.L.)
| | - Ignacio Lizasoain
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Pharmacology and Toxicology, Complutense Medical School, Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain (I.L.)
| | - Emiri T Mandeville
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria A Moro
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain (M.A.M.)
| | - MingMing Ning
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Neurology (E.B.K., M.N.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - David Ray
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, United Kingdom (D.R.)
| | - Sava Sakadžić
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey L Saver
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Geffen School of Medicine, University of California Los Angeles (J.L.S., D.S.L.)
| | - Frank A J L Scheer
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Medicine and Neurology, Brigham & Women's Hospital (F.A.J.L.S.), Harvard Medical School, Boston
| | - Magdy Selim
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Neurology, Beth Israel Deaconess Medical Center (M.S.), Harvard Medical School, Boston
| | - Steffen Tiedt
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany (M.D., S.T.)
| | - Fang Zhang
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Departments of Radiology (E.H.L., E.E., W.L., E.T.M., S.S., F.Z.), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Alastair M Buchan
- CIRCA consortium (E.H.L., G.W.A., M.D., G.D., E.E., R.F., D.W.H., Y-G.H., X.J., E.B.K., S.L., W.L., D.S.L., I.L., E.T.M., M.A.M., M.N., D.R., S.S., J.L.S., F.A.J.L.S., M.S., S.T., F.Z., A.M.B.), Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Stroke Medicine (Y.H., A.M.B.), University of Oxford, United Kingdom
| |
Collapse
|
20
|
Costa R, Montagnese S. The role of astrocytes in generating circadian rhythmicity in health and disease. J Neurochem 2021; 157:42-52. [PMID: 33539604 DOI: 10.1111/jnc.15312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 01/26/2023]
Abstract
Evidence is accumulating that the mammalian circadian clock system is considerably more complex than previously believed, also in terms of the cell types that actually contribute to generating the oscillation within the master clock, in the suprachiasmatic nuclei of the hypothalamus. Here we review the evidence that has lead to the identification of a bona fide astrocytic circadian clock, and that of the potential contribution of such clock to the generation of circadian and seasonal rhythmicity in health and in neurodegenerative disorders. Finally, we speculate on the role of the astrocytic clock in determining some of the clinical features of hepatic encephalopathy, a reversible neuropsychiatric syndrome associated with advanced liver disease, which is characterized by transient, profound morphological and functional astrocytic abnormalities, in the absence of significant, structural neuronal changes.
Collapse
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
| | | |
Collapse
|
21
|
Moravcová S, Červená K, Míková H, Pačesová D, Pallag G, Novotný J, Bendová Z. Social defeat stress affects resident's clock gene and bdnf expression in the brain. Stress 2021; 24:206-212. [PMID: 32323597 DOI: 10.1080/10253890.2020.1759548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/18/2020] [Indexed: 12/21/2022] Open
Abstract
Social defeat stress affects behavior and changes the expression of the genes underlying neuronal plasticity in the brain. The circadian clock regulates most neuronal processes in the brain, which results in daily variations of complex behavior, and any disturbance in circadian clock oscillations increases the risk of mood and cognitive disbalance. In this study, we assessed the effect of acute and repeated social defeat stress on Per2 and Nr1d1 expression in prefrontal cortexes, hippocampi, pineal glands, olfactory bulbs, cerebella, and pituitary glands. We also evaluated the effect of our experimental setting on levels of Bdnf and plasma corticosterone, two markers widely used to asses the impact of stress on mammalian physiology. Our data show that single and repeated social defeat stress upregulates the expression of both clock genes and Bdnf in all brain structures, and corticosterone in the blood. While the general pattern of Bdnf upregulation suggests higher sensitivity in the intruder group, the clock genes are induced more significantly in residents, especially by repeated stress sessions. Our work thus suggests that the model of stress-induced anxiety and depression should consider a group of residents because, for some parameters, they may respond more distinctively than intruders.LAY SUMMARYThe resident/intruder experimental paradigm affects the expression of clock genes Per2, Nr1d1and Bdnf in the brain structures and plasma corticosterone level. The induction of clock genes is evident in both experimental groups; however, it is more marked in residents. Together with the significant increase in Bdnf levels in the majority of brain structures and plasma corticosterone in residents, our data suggest that in the model of social defeat stress, the utility of an experimental group of residents could be contributive.
Collapse
Affiliation(s)
- Simona Moravcová
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| | - Kateřina Červená
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| | - Hana Míková
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| | - Dominika Pačesová
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| | - Gergely Pallag
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| | - Jiří Novotný
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| | - Zdeňka Bendová
- Faculty of Science, Department of Physiology, Charles University, Prague, Czech Republic
| |
Collapse
|
22
|
Study of influence of the glutamatergic concentration of [ 18F]FPEB binding to metabotropic glutamate receptor subtype 5 with N-acetylcysteine challenge in rats and SRM/PET study in human healthy volunteers. Transl Psychiatry 2021; 11:66. [PMID: 33473111 PMCID: PMC7817831 DOI: 10.1038/s41398-020-01152-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
Altered glutamate signaling is thought to be involved in a myriad of psychiatric disorders. Positron emission tomography (PET) imaging with [18F]FPEB allows assessing dynamic changes in metabotropic glutamate receptor 5 (mGluR5) availability underlying neuropathological conditions. The influence of endogenous glutamatergic levels into receptor binding has not been well established yet. The purpose of this study was to explore the [18F]FPEB binding regarding to physiological fluctuations or acute changes of glutamate synaptic concentrations by a translational approach; a PET/MRS imaging study in 12 healthy human volunteers combined to a PET imaging after an N-acetylcysteine (NAc) pharmacological challenge in rodents. No significant differences were observed with small-animal PET in the test and retest conditions on the one hand and the NAc condition on the other hand for any regions. To test for an interaction of mGuR5 density and glutamatergic concentrations in healthy subjects, we correlated the [18F]FPEB BPND with Glu/Cr, Gln/Cr, Glx/Cr ratios in the anterior cingulate cortex VOI; respectively, no significance correlation has been revealed (Glu/Cr: r = 0.51, p = 0.09; Gln/Cr: r = -0.46, p = 0.13; Glx/Cr: r = -0.035, p = 0.92).These data suggest that the in vivo binding of [18F]FPEB to an allosteric site of the mGluR5 is not modulated by endogenous glutamate in vivo. Thus, [18F]FPEB appears unable to measure acute fluctuations in endogenous levels of glutamate.
Collapse
|
23
|
Sueviriyapan N, Tso CF, Herzog ED, Henson MA. Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling. J Biol Rhythms 2020; 35:287-301. [PMID: 32285754 PMCID: PMC7401727 DOI: 10.1177/0748730420913672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus consists of a highly heterogeneous neuronal population networked together to allow precise and robust circadian timekeeping in mammals. While the critical importance of SCN neurons in regulating circadian rhythms has been extensively studied, the roles of SCN astrocytes in circadian system function are not well understood. Recent experiments have demonstrated that SCN astrocytes are circadian oscillators with the same functional clock genes as SCN neurons. Astrocytes generate rhythmic outputs that are thought to modulate neuronal activity through pre- and postsynaptic interactions. In this study, we developed an in silico multicellular model of the SCN clock to investigate the impact of astrocytes in modulating neuronal activity and affecting key clock properties such as circadian rhythmicity, period, and synchronization. The model predicted that astrocytes could alter the rhythmic activity of neurons via bidirectional interactions at tripartite synapses. Specifically, astrocyte-regulated extracellular glutamate was predicted to increase neuropeptide signaling from neurons. Consistent with experimental results, we found that astrocytes could increase the circadian period and enhance neural synchronization according to their endogenous circadian period. The impact of astrocytic modulation of circadian rhythm amplitude, period, and synchronization was predicted to be strongest when astrocytes had periods between 0 and 2 h longer than neurons. Increasing the number of neurons coupled to the astrocyte also increased its impact on period modulation and synchrony. These computational results suggest that signals that modulate astrocytic rhythms or signaling (e.g., as a function of season, age, or treatment) could cause disruptions in circadian rhythm or serve as putative therapeutic targets.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chak Foon Tso
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Current Affiliation: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
24
|
Sandhu MRS, Dhaher R, Gruenbaum SE, Raaisa R, Spencer DD, Pavlova MK, Zaveri HP, Eid T. Circadian-Like Rhythmicity of Extracellular Brain Glutamate in Epilepsy. Front Neurol 2020; 11:398. [PMID: 32499751 PMCID: PMC7242976 DOI: 10.3389/fneur.2020.00398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
Seizures often exhibit striking circadian-like (~24-h) rhythms. While chronotherapy has shown promise in treating epilepsy, it is not widely used, in part because the patterns of seizure rhythmicity vary considerably among patients and types of epilepsy. A better understanding of the mechanisms underlying rhythmicity in epilepsy could be expected to result in more effective approaches which can be tailored to each individual patient. The excitatory neurotransmitter glutamate is an essential modulator of circadian rhythms, and changes in the extracellular levels of glutamate likely affect the threshold to seizures. We used a reverse translational rodent model of mesial temporal lobe epilepsy (MTLE) combined with long-term intracerebral microdialysis to monitor the hourly concentrations of glutamate in the seizure onset area (epileptogenic hippocampus) over several days. We observed significant 24-h oscillations of extracellular glutamate in the epileptogenic hippocampus (n = 4, JTK_CYCLE test, p < 0.05), but not in the hippocampus of control animals (n = 4). To our knowledge, circadian glutamate oscillations have not been observed in a seizure onset region, and we speculate that the oscillations contribute to the rhythmicity of seizures in MTLE.
Collapse
Affiliation(s)
- Mani Ratnesh S Sandhu
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Roni Dhaher
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Shaun E Gruenbaum
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, FL, United States
| | - Raaisa Raaisa
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Dennis D Spencer
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Milena K Pavlova
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Hitten P Zaveri
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
25
|
Wang S, Liao L, Huang Y, Wang M, Zhou H, Chen D, Liu F, Ji D, Xia X, Jiang B, Huang J, Xiong K. Pin1 Is Regulated by CaMKII Activation in Glutamate-Induced Retinal Neuronal Regulated Necrosis. Front Cell Neurosci 2019; 13:276. [PMID: 31293391 PMCID: PMC6603237 DOI: 10.3389/fncel.2019.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 06/07/2019] [Indexed: 12/28/2022] Open
Abstract
In our previous study, we reported that peptidyl-prolyl isomerase 1 (Pin1)-modulated regulated necrosis (RN) occurred in cultured retinal neurons after glutamate injury. In the current study, we investigated the role of calcium/calmodulin-dependent protein kinase II (CaMKII) in Pin1-modulated RN in cultured rat retinal neurons, and in an animal in vivo model. We first demonstrated that glutamate might lead to calcium overloading mainly through ionotropic glutamate receptors activation. Furthermore, CaMKII activation induced by overloaded calcium leads to Pin1 activation and subsequent RN. Inactivation of CaMKII by KN-93 (KN, i.e., a specific CaMKII inhibitor) application can decrease the glutamate-induced retinal neuronal RN. Finally, by using an animal in vivo model, we also demonstrated the important role of CaMKII in glutamate-induced RN in rat retina. In addition, flash electroretinogram results provided evidence that the impaired visual function induced by glutamate can recover after CaMKII inhibition. In conclusion, CaMKII is an up-regulator of Pin1 and responsible for the RN induced by glutamate. This study provides further understanding of the regulatory pathway of RN and is a complementary mechanism for Pin1 activation mediated necrosis. This finding will provide a potential target to protect neurons from necrosis in neurodegenerative diseases, such as glaucoma, diabetic retinopathy, and even central nervous system diseases.
Collapse
Affiliation(s)
- Shuchao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China.,Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Lvshuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yanxia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Mi Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hongkang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi, China
| | - Dan Ji
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
26
|
Gillman AG, Rebec GV, Pecoraro NC, Kosobud AEK. Circadian entrainment by food and drugs of abuse. Behav Processes 2019; 165:23-28. [PMID: 31132444 DOI: 10.1016/j.beproc.2019.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
Circadian rhythms organize behavior and physiological processes to be appropriate to the predictable cycle of daily events. These rhythms are entrained by stimuli that provide time of day cues (zeitgebers), such as light, which regulates the sleep-wake cycle and associated rhythms. But other events, including meals, social cues, and bouts of locomotor activity, can act as zeitgebers. Recent evidence shows that most organs and tissues contain cells that are capable of some degree of independent circadian cycling, suggesting the circadian system is broadly and diffusely distributed. Within laboratory studies of behavior, circadian rhythms tend to be treated as a complication to be minimized, but they offer a useful model of predictable shifts in behavioral tendencies. In the present review, we summarize the evidence that formed the basis for a hypothesis that drugs of abuse can entrain circadian rhythms and describe the outcome of a series of experiments designed to test that hypothesis. We propose that such drug-entrained rhythms may contribute to demonstrated daily variations in drug metabolism, tolerance, and sensitivity to drug reward. Of particular importance, these rhythms may be evoked by a single episode of drug taking, strengthen with repeated episodes, and re-emerge after long periods of abstinence, thereby contributing to drug abuse, addiction, and relapse.
Collapse
Affiliation(s)
- Andrea G Gillman
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George V Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Norman C Pecoraro
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Ann E K Kosobud
- Dept. of Neurology, IU School of Medicine, 362 W 15th St, GH 4600, Indianapolis, Indiana, 46202-2266, United States.
| |
Collapse
|