1
|
Zhang H, Bao S, Zhao X, Bai Y, Lv Y, Gao P, Li F, Zhang W. Genome-Wide Association Study and Phenotype Prediction of Reproductive Traits in Large White Pigs. Animals (Basel) 2024; 14:3348. [PMID: 39682314 DOI: 10.3390/ani14233348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In a study involving 385 Large White pigs, a genome-wide association study (GWAS) was conducted to investigate reproductive traits, specifically the number of healthy litters (NHs) and the number of weaned litters (NWs). Several SNP loci, including ALGA0098819, ALGA0037969, and H3GA0032302, were significantly associated with these traits. In the combined-parity analysis, candidate genes, such as BLVRA, STK17A, PSMA2, and C7orf25, were identified. GO and KEGG pathway enrichment analyses revealed that these genes are involved in key biological processes, including organic synthesis, the regulation of sperm activity, spermatogenesis, and meiosis. In the by-parity analysis, the PLCXD3 gene was significantly associated with the NW trait in the second and fourth parities, while RNASEH1, PYM1, and SEPTIN9 were linked to cell proliferation, DNA repair, and metabolism, suggesting their potential role in regulating reproductive traits. These findings provide new molecular markers for the genetic study of reproductive traits in Large White pigs. For the phenotypic prediction of NH and NW traits, several machine learning models (GBDT, RF, LightGBM, and Adaboost.R2), as well as traditional models (GBLUP, BRR, and BL), were evaluated using SNP data in varying proportions. After PCA processing, the GBDT model achieved the highest PCC for NH (0.141), while LightGBM reached the highest PCC for NW (0.146). The MAE, MSE, and RMSE results showed that the traditional models exhibited stable error rates, while the machine learning models performed comparatively better across the different SNP ratios. Overall, PCA processing provided some improvement in the predictive performance of all of the models, though the overall increase in accuracy was limited.
Collapse
Affiliation(s)
- Hao Zhang
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Shiqian Bao
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaona Zhao
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yangfan Bai
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yangcheng Lv
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Pengfei Gao
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Fuzhong Li
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wuping Zhang
- School of Software Technology, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
2
|
Taneera J, Khalique A, Abdrabh S, Mohammed AK, Bouzid A, El-Huneidi W, Bustanji Y, Sulaiman N, Albasha S, Saber-Ayad M, Hamad M. Fat mass and obesity-associated (FTO) gene is essential for insulin secretion and β-cell function: In vitro studies using INS-1 cells and human pancreatic islets. Life Sci 2024; 339:122421. [PMID: 38232799 DOI: 10.1016/j.lfs.2024.122421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
AIMS In this study, we investigated the role of the FTO gene in pancreatic β-cell biology and its association with type 2 diabetes (T2D). To address this issue, human pancreatic islets and rat INS-1 (832/13) cells were used to perform gene silencing, overexpression, and functional analysis of FTO expression; levels of FTO were also measured in serum samples obtained from diabetic and obese individuals. RESULTS The findings revealed that FTO expression was reduced in islets from hyperglycemic/diabetic donors compared to normal donors. This reduction correlated with decreased INS and GLUT1 expression and increased PDX1, GCK, and SNAP25 expression. Silencing of Fto in INS-1 cells impaired insulin release and mitochondrial ATP production and increased apoptosis in pro-apoptotic cytokine-treated cells. However, glucose uptake and reactive oxygen species production rates remained unaffected. Downregulation of key β-cell genes was observed following Fto-silencing, while Glut2 and Gck were unaffected. RNA-seq analysis identified several dysregulated genes involved in metal ion binding, calcium ion binding, and protein serine/threonine kinase activity. Furthermore, our findings showed that Pdx1 or Mafa-silencing did not influence FTO protein expression. Overexpression of FTO in human islets promoted insulin secretion and upregulated INS, PDX1, MAFA, and GLUT1 expression. Serum FTO levels did not significantly differ between individuals with diabetes or obesity and their healthy counterparts. CONCLUSION These findings suggest that FTO plays a crucial role in β-cell survival, metabolism, and function and point to a potential therapeutic utility of FTO in T2D patients.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Center of Excellence of Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| | - Anila Khalique
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sham Abdrabh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Abdul Khader Mohammed
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Amal Bouzid
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Yasser Bustanji
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Nabil Sulaiman
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Sarah Albasha
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates; College of Health Sciences, University of Sharjah, Sharjah, P.O. Box 27272, United Arab Emirates
| |
Collapse
|
3
|
Vanheer L, Fantuzzi F, To SK, Schiavo A, Van Haele M, Ostyn T, Haesen T, Yi X, Janiszewski A, Chappell J, Rihoux A, Sawatani T, Roskams T, Pattou F, Kerr-Conte J, Cnop M, Pasque V. Inferring regulators of cell identity in the human adult pancreas. NAR Genom Bioinform 2023; 5:lqad068. [PMID: 37435358 PMCID: PMC10331937 DOI: 10.1093/nargab/lqad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.
Collapse
Affiliation(s)
- Lotte Vanheer
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Federica Fantuzzi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - San Kit To
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Andrea Schiavo
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tessa Ostyn
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Tine Haesen
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Xiaoyan Yi
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Adrian Janiszewski
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Joel Chappell
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Adrien Rihoux
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| | - Toshiaki Sawatani
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Tania Roskams
- Department of Imaging and Pathology; Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven; Herestraat 49, B-3000 Leuven, Belgium
| | - Francois Pattou
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Julie Kerr-Conte
- University of Lille, Inserm, CHU Lille, Institute Pasteur Lille, U1190-EGID, F-59000 Lille, France
- European Genomic Institute for Diabetes, F-59000 Lille, France
- University of Lille, F-59000 Lille, France
| | - Miriam Cnop
- ULB Center for Diabetes Research; Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
- Division of Endocrinology; Erasmus Hospital, Université Libre de Bruxelles; Route de Lennik 808, B-1070 Brussels, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration; KU Leuven - University of Leuven; Single-cell Omics Institute and Leuven Stem Cell Institute, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
4
|
Taneera J, Khalique A, Salima A, Mohammed AK, Sawan AS, Aneis H, Habib P, Abdrabh S, Elemam NM, Sharif-Askari NS, Abu-Gharbieh E, Saber-Ayad M, El-Huneidi W. Disrupting of family with sequence similarity 105, member A (Fam105a) deteriorates pancreatic β-cell physiology and insulin secretion in INS-1 cells. Mol Cell Endocrinol 2023:111987. [PMID: 37311518 DOI: 10.1016/j.mce.2023.111987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/15/2023]
Abstract
The role of "Family with sequence similarity 105, member A" (FAM105A) in pancreatic β-cell function in relation to type 2 diabetes mellitus (T2D) is not fully understood. To address this issue, various molecular and functional experiments were conducted on primary human islets and INS-1 cells. RNA-seq expression analysis showed that FAM105A is highly expressed in human islets and its expression is reduced in diabetic islets compared to healthy islets. FAM105A expression correlated negatively with HbA1c levels and body mass index (BMI). Co-expression analysis showed a significant correlation between FAM105A with PDX1, GCK, GLUT1 and INSR, but not the INS gene. Silencing of Fam105a impaired insulin release, content, glucose uptake, and mitochondria ATP content but did not affect cell viability, reactive oxygen species (ROS) or apoptosis levels. Silencing of Fam105a was associated with reduced Pdx1 and Glut2 expression at mRNA and protein levels. RNA-seq analysis of dysregulated genes in Fam105a-silenced cells showed an overall downregulation of gene expression in β-cells and insulin secretion pathway. Disrupting Pdx1 did not affect Fam105a expression in INS-1 cells. Overall, the results suggest that FAM105A plays an important role in pancreatic β-cells biology and may be involved in the development of T2D.
Collapse
Affiliation(s)
- Jalal Taneera
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| | - Anila Khalique
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aissaoui Salima
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Laboratory of Molecular Toxicology, Faculty of Nature and Life Sciences, University of Mohammed Seddik Benyahia-Jijel, Jijel, Algeria
| | - Abdul Khader Mohammed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahmed Saad Sawan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hamam Aneis
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Peter Habib
- School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Sham Abdrabh
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Narjes Saheb Sharif-Askari
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Eman Abu-Gharbieh
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Waseem El-Huneidi
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Mo S, Wang Y, Yuan X, Wu W, Zhao H, Wei H, Qin H, Jiang H, Qin S. Identification of common signature genes and pathways underlying the pathogenesis association between nonalcoholic fatty liver disease and atherosclerosis. Front Cardiovasc Med 2023; 10:1142296. [PMID: 37063958 PMCID: PMC10098172 DOI: 10.3389/fcvm.2023.1142296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundAtherosclerosis (AS) is one of the leading causes of the cardio-cerebral vascular incident. The constantly emerging evidence indicates a close association between nonalcoholic fatty liver disease (NAFLD) and AS. However, the exact molecular mechanisms underlying the correlation between these two diseases remain unclear. This study proposed exploring the common signature genes, pathways, and immune cells among AS and NAFLD.MethodsThe common differentially expressed genes (co-DEGs) with a consistent trend were identified via bioinformatic analyses of the Gene Expression Omnibus (GEO) datasets GSE28829 and GSE49541, respectively. Further, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. We utilized machine learning algorithms of lasso and random forest (RF) to identify the common signature genes. Then the diagnostic nomogram models and receiver operator characteristic curve (ROC) analyses were constructed and validated with external verification datasets. The gene interaction network was established via the GeneMANIA database. Additionally, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), and immune infiltration analysis were performed to explore the co-regulated pathways and immune cells.ResultsA total of 11 co-DEGs were identified. GO and KEGG analyses revealed that co-DEGs were mainly enriched in lipid catabolic process, calcium ion transport, and regulation of cytokine. Moreover, three common signature genes (PLCXD3, CCL19, and PKD2) were defined. Based on these genes, we constructed the efficiently predictable diagnostic models for advanced AS and NAFLD with the nomograms, evaluated with the ROC curves (AUC = 0.995 for advanced AS, 95% CI 0.971–1.0; AUC = 0.973 for advanced NAFLD, 95% CI 0.938–0.998). In addition, the AUC of the verification datasets had a similar trend. The NOD-like receptors (NLRs) signaling pathway might be the most crucial co-regulated pathway, and activated CD4 T cells and central memory CD4 T cells were significantly excessive infiltration in advanced NAFLD and AS.ConclusionWe identified three common signature genes (PLCXD3, CCL19, and PKD2), co-regulated pathways, and shared immune features of NAFLD and AS, which might provide novel insights into the molecular mechanism of NAFLD complicated with AS.
Collapse
Affiliation(s)
- Shuangyang Mo
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Yingwei Wang
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Xin Yuan
- Cardiovascular Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Wenhong Wu
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Huaying Zhao
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixiao Wei
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haiyan Qin
- Gastroenterology Department, Liuzhou Peoples’ Hospital Affiliated to Guangxi Medical University, Liuzhou, China
| | - Haixing Jiang
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence: Shanyu Qin Haixing Jiang
| | - Shanyu Qin
- Gastroenterology Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence: Shanyu Qin Haixing Jiang
| |
Collapse
|
6
|
Lasconi C, Pahl MC, Pippin JA, Su C, Johnson ME, Chesi A, Boehm K, Manduchi E, Ou K, Golson ML, Wells AD, Kaestner KH, Grant SFA. Variant-to-gene-mapping analyses reveal a role for pancreatic islet cells in conferring genetic susceptibility to sleep-related traits. Sleep 2022; 45:zsac109. [PMID: 35537191 PMCID: PMC9366645 DOI: 10.1093/sleep/zsac109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/24/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the potential role of sleep-trait associated genetic loci in conferring a degree of their effect via pancreatic α- and β-cells, given that both sleep disturbances and metabolic disorders, including type 2 diabetes and obesity, involve polygenic contributions and complex interactions. We determined genetic commonalities between sleep and metabolic disorders, conducting linkage disequilibrium genetic correlation analyses with publicly available GWAS summary statistics. Then we investigated possible enrichment of sleep-trait associated SNPs in promoter-interacting open chromatin regions within α- and β-cells, intersecting public GWAS reports with our own ATAC-seq and high-resolution promoter-focused Capture C data generated from both sorted human α-cells and an established human beta-cell line (EndoC-βH1). Finally, we identified putative effector genes physically interacting with sleep-trait associated variants in α- and EndoC-βH1cells running variant-to-gene mapping and establish pathways in which these genes are significantly involved. We observed that insomnia, short and long sleep-but not morningness-were significantly correlated with type 2 diabetes, obesity and other metabolic traits. Both the EndoC-βH1 and α-cells were enriched for insomnia loci (p = .01; p = .0076), short sleep loci (p = .017; p = .022) and morningness loci (p = 2.2 × 10-7; p = .0016), while the α-cells were also enriched for long sleep loci (p = .034). Utilizing our promoter contact data, we identified 63 putative effector genes in EndoC-βH1 and 76 putative effector genes in α-cells, with these genes showing significant enrichment for organonitrogen and organophosphate biosynthesis, phosphatidylinositol and phosphorylation, intracellular transport and signaling, stress responses and cell differentiation. Our data suggest that a subset of sleep-related loci confer their effects via cells in pancreatic islets.
Collapse
Affiliation(s)
- Chiara Lasconi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew C Pahl
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James A Pippin
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Chun Su
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessandra Chesi
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith Boehm
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabetta Manduchi
- Institute for Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA,USA
| | - Kristy Ou
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew D Wells
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Klaus H Kaestner
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Khalique A, Mohammed AK, Al-khadran NM, Gharaibeh MA, Abu-Gharbieh E, El-Huneidi W, Sulaiman N, Taneera J. Reduced Retinoic Acid Receptor Beta (Rarβ) Affects Pancreatic β-Cell Physiology. BIOLOGY 2022; 11:biology11071072. [PMID: 36101450 PMCID: PMC9312298 DOI: 10.3390/biology11071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022]
Abstract
Various studies have suggested a link between vitamin A (VA), all-trans-retinol, and type 2 diabetes (T2D). However, the functional role/expression of vitamin A receptors (Rarα, β, and γ) in pancreatic β-cells is not clear yet. Accordingly, we performed a series of bioinformatics, molecular and functional experiments in human islet and INS-1 cells to evaluate the role of Rarβ on insulin secretion and pancreatic β-cell function. Microarray and RNA-sequencing (RAN-seq) expression analysis showed that RARα, β, and γ are expressed in human pancreatic islets. RNA-seq expression of RARβ in diabetic/hyperglycemic human islets (HbA1c ≥ 6.3%) revealed a significant reduction (p = 0.004) compared to nondiabetic/normoglycemic cells (HbA1c < 6%). The expression of RARβ with INS and PDX1 showed inverse association, while positive correlations were observed with INSR and HbA1c levels. Exploration of the T2D knowledge portal (T2DKP) revealed that several genetic variants in RARβ are associated with BMI. The most associated variant is rs6804842 (p = 1.2 × 10−25). Silencing of Rarβ in INS-1 cells impaired insulin secretion without affecting cell viability or apoptosis. Interestingly, reactive oxygen species (ROS) production levels were elevated and glucose uptake was reduced in Rarβ-silenced cells. mRNA expression of Ins1, Pdx1, NeuroD1, Mafa, Snap25, Vamp2, and Gck were significantly (p < 0.05) downregulated in Rarβ-silenced cells. For protein levels, Pro/Insulin, PDX1, GLUT2, GCK, pAKT/AKT, and INSR expression were downregulated considerably (p < 0.05). The expression of NEUROD and VAMP2 were not affected. In conclusion, our results indicate that Rarβ is an important molecule for β-cell function. Hence, our data further support the potential role of VA receptors in the development of T2D.
Collapse
Affiliation(s)
- Anila Khalique
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Nujood Mohammed Al-khadran
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mutaz Al Gharaibeh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
| | - Eman Abu-Gharbieh
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Nabil Sulaiman
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; (A.K.); (A.K.M.); (M.A.G.); (E.A.-G.); (W.E.-H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Correspondence: ; Tel.: +97-165-057-743
| |
Collapse
|
8
|
Abaj F, Rafiee M, Koohdani F. A Personalized Diet Approach Study: Interaction between PPAR-γ Pro12Ala and Dietary Insulin Indices on Metabolic Markers in Diabetic Patients. J Hum Nutr Diet 2022; 35:663-674. [PMID: 35560467 DOI: 10.1111/jhn.13033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The objectives were to investigate the effect of the interaction between peroxisome proliferator-activated receptor gamma (PPAR-γ) Pro12Ala polymorphisms and dietary insulin load and insulin index (DIL and DII) on Cardio-metabolic Markers among diabetic patients. METHODS This cross-sectional study was conducted on 393 diabetic patients. Food-frequency questionnaire (FFQ) was used for DIL and DII calculation. PPAR-γ Pro12Ala was genotyped by the PCR-RFLP method. Biochemical markers including TC, LDL, HDL, TG, SOD, CRP, TAC, PTX3, PGF2α. IL18, leptin and ghrelin were measured by standard protocol. RESULT Risk-allele carriers (CG, GG) had higher obesity indices WC (P interaction =0.04), BMI (P interaction =0.006) and, WC (P interaction =0.04) compared with individuals with the CC genotype when they consumed a diet with higher DIL and DII respectively. Besides, carriers of the G allele who were in the highest tertile of DIL, had lower HDL (P interaction =0.04) and higher PGF2α (P interaction =0.03) and PTX3 (P interaction =0.03). Moreover, the highest tertile of the DII, showed an increase in IL18 (P interaction =0.01) and lower SOD (P interaction =0.03) for risk allele carriers compared to those with CC homozygotes. CONCLUSION We revealed PPAR-γ Pro12Ala polymorphism was able to intensify the effect of DIL and DII on CVD risk factors; risk-allele carriers who consumed a diet with high DIL and DII score have more likely to be obese and have higher inflammatory markers. Also, protective factor against CVD risk factors were reduced significantly in this group compared to CC homozygotes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Rafiee
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Fariba Koohdani
- Department of Cellular, Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
9
|
El-Huneidi W, Anjum S, Mohammed AK, Unnikannan H, Saeed R, Bajbouj K, Abu-Gharbieh E, Taneera J. Copine 3 "CPNE3" is a novel regulator for insulin secretion and glucose uptake in pancreatic β-cells. Sci Rep 2021; 11:20692. [PMID: 34667273 PMCID: PMC8526566 DOI: 10.1038/s41598-021-00255-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 12/18/2022] Open
Abstract
Copine 3 (CPNE3) is a calcium-dependent phospholipid-binding protein that has been found to play an essential role in cancer progression and stages. However, its role in pancreatic β-cell function has not been investigated. Therefore, we performed a serial of bioinformatics and functional experiments to explore the potential role of Cpne3 on insulin secretion and β-cell function in human islets and INS-1 (832/13) cells. RNA sequencing and microarray data revealed that CPNE3 is highly expressed in human islets compared to other CPNE genes. In addition, expression of CPNE3 was inversely correlated with HbA1c and reduced in human islets from hyperglycemic donors. Silencing of Cpne3 in INS-1 cells impaired glucose-stimulated insulin secretion (GSIS), insulin content and glucose uptake efficiency without affecting cell viability or inducing apoptosis. Moreover, mRNA and protein expression of the key regulators in glucose sensing and insulin secretion (Insulin, GLUT2, NeuroD1, and INSR) were downregulated in Cpne3-silenced cells. Taken together, data from the present study provides a new understanding of the role of CPNE3 in maintaining normal β-cell function, which might contribute to developing a novel target for future management of type 2 diabetes therapy.
Collapse
Affiliation(s)
- Waseem El-Huneidi
- grid.412789.10000 0004 4686 5317Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates ,grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Shabana Anjum
- grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Abdul Khader Mohammed
- grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Hema Unnikannan
- grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Rania Saeed
- grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| | - Eman Abu-Gharbieh
- grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates ,grid.412789.10000 0004 4686 5317Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jalal Taneera
- grid.412789.10000 0004 4686 5317Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates ,grid.412789.10000 0004 4686 5317University of Sharjah, Sharjah Institute for Medical Research, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Demir S, Nawroth PP, Herzig S, Ekim Üstünel B. Emerging Targets in Type 2 Diabetes and Diabetic Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100275. [PMID: 34319011 PMCID: PMC8456215 DOI: 10.1002/advs.202100275] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/07/2021] [Indexed: 05/06/2023]
Abstract
Type 2 diabetes is a metabolic, chronic disorder characterized by insulin resistance and elevated blood glucose levels. Although a large drug portfolio exists to keep the blood glucose levels under control, these medications are not without side effects. More importantly, once diagnosed diabetes is rarely reversible. Dysfunctions in the kidney, retina, cardiovascular system, neurons, and liver represent the common complications of diabetes, which again lack effective therapies that can reverse organ injury. Overall, the molecular mechanisms of how type 2 diabetes develops and leads to irreparable organ damage remain elusive. This review particularly focuses on novel targets that may play role in pathogenesis of type 2 diabetes. Further research on these targets may eventually pave the way to novel therapies for the treatment-or even the prevention-of type 2 diabetes along with its complications.
Collapse
Affiliation(s)
- Sevgican Demir
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Peter P. Nawroth
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| | - Bilgen Ekim Üstünel
- Institute for Diabetes and Cancer (IDC)Helmholtz Center MunichIngolstädter Landstr. 1Neuherberg85764Germany
- Joint Heidelberg ‐ IDC Translational Diabetes ProgramInternal Medicine 1Heidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
- DZDDeutsches Zentrum für DiabetesforschungIngolstädter Landstraße 1Neuherberg85764Germany
- Department of Internal Medicine 1 and Clinical ChemistryHeidelberg University HospitalIm Neuenheimer Feld 410Heidelberg69120Germany
| |
Collapse
|
11
|
Farhadnejad H, Mokhtari E, Teymoori F, Sohouli MH, Moslehi N, Mirmiran P, Azizi F. Association of the insulinemic potential of diet and lifestyle with risk of diabetes incident in Tehranian adults: a population based cohort study. Nutr J 2021; 20:39. [PMID: 33892738 PMCID: PMC8067662 DOI: 10.1186/s12937-021-00697-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background We aimed to assess the associations between insulinemic potential of diet and lifestyle and the risk of diabetes incident, using four empirical indices including the empirical dietary index for hyperinsulinemia (EDIH), the empirical dietary index for insulin resistance (EDIR), empirical lifestyle index for hyperinsulinemia (ELIH), and empirical lifestyle index for insulin resistance (ELIR). Methods A total of 3734 individuals, aged ≥ 20 years old, who were free of diabetes at baseline (2008–2011), were followed for 6.2 years (2015–2018) to ascertain incident diabetes. The food frequency questionnaire was used to collect dietary intakes at baseline. Odds ratio (OR) of diabetes were calculated across quartiles of EDIH, EDIR, ELIH, and ELIR using logistic regression, which controlled for confounding factors. Results The mean ± SD age and BMI of individuals (45.1 % male) were 40.9 ± 12.0 years and 27.1 ± 4.1 kg/m2, respectively. At the end of follow-up, 253 (6.8 %) diabetes cases were identified. In the multivariable-adjusted model, individuals in the highest quartile of EDIR (1.58;95 %CI:1.03–2.44, P for trend = 0.025), ELIH (1.89;95 %CI:1.20–2.97, P for trend = 0.004), and ELIR (1.74; 95 %CI:1.11–2.72, P for trend = 0.031) had increased the risk of diabetes. However, no significant associations were found between the score of EDIH and diabetes incident. Conclusions Higher adherence to EDIR, ELIH, and ELIR scores were associated with increased risk of diabetes, while no significant association was found between EDIH score and diabetes incident.
Collapse
Affiliation(s)
- Hossein Farhadnejad
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mokhtari
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad Teymoori
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Sohouli
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Nazanin Moslehi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parvin Mirmiran
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Sohouli MH, Sayyari AA, Lari A, Nameni G, Lotfi M, Fatahi S, Saneie S, Găman MA, Moodi F, Raee P, Aghamiri S, Rayi A, Shahriari A, Moodi V. Association of dietary insulinaemic potential and odds of non-alcoholic fatty liver disease among adults: A case-control study. J Hum Nutr Diet 2021; 34:901-909. [PMID: 33586811 DOI: 10.1111/jhn.12865] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hyperinsulinaemia is considered as a major risk factor for the development of a myriad of chronic diseases. We examined the association between the dietary insulinaemic potential and the odds of non-alcoholic fatty liver disease (NAFLD) among Iranian adults. METHODS After being subjected to a liver ultrasound, 166 patients with NAFLD and 200 controls were included in the study. The dietary intakes and the physical activity levels of the participants were evaluated using a validated semi-quantitative food frequency questionnaire and the International Physical Activity Questionnaire (short IPAQ), respectively. The insulinaemic potential of the diet was assessed by computing the scores of the Empirical Dietary Index for Hyperinsulinemia (EDIH) and the Empirical Dietary Index for Insulin Resistance (EDIR). RESULTS Compared with the control subjects, patients with NAFLD were significantly older; had higher values for body mass index, fasting blood sugar, triglycerides, low-density lipoprotein cholesterol, total cholesterol and alanine transaminase; and were more likely to smoke. Moreover, NAFLD patients had significant lower levels of high-density lipoprotein cholesterol and were less likely to perform physical activity. The risk of NAFLD was higher in the individuals in the highest tertile of the EDIH (odds ratio [OR] = 2.79; 95% confidence interval [CI] = 1.32-5.90; p value for trend < 0.05) and EDIR (OR = 2.42; 95% CI = 1.22-4.79; p value for trend < 0.05) compared to those in the lowest tertile of these scores. CONCLUSIONS Our study indicates that a higher dietary insulinaemic potential is associated with an increased risk of NAFLD.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Akbar Sayyari
- Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Lari
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Nameni
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Lotfi
- Department of Pediatric Endocrinology and Metabolism, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Pediatric Gastroenterology, Hepatology, and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solaleh Saneie
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mihnea-Alexandru Găman
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzan Moodi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Appaji Rayi
- Department of Neurology, Charleston Area Medical Center Charleston, Charleston, WV, USA
| | - Ali Shahriari
- Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Vihan Moodi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Müller JA, Groß R, Conzelmann C, Krüger J, Merle U, Steinhart J, Weil T, Koepke L, Bozzo CP, Read C, Fois G, Eiseler T, Gehrmann J, van Vuuren J, Wessbecher IM, Frick M, Costa IG, Breunig M, Grüner B, Peters L, Schuster M, Liebau S, Seufferlein T, Stenger S, Stenzinger A, MacDonald PE, Kirchhoff F, Sparrer KMJ, Walther P, Lickert H, Barth TFE, Wagner M, Münch J, Heller S, Kleger A. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3:149-165. [PMID: 33536639 DOI: 10.1038/s42255-021-00347-1] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Infection-related diabetes can arise as a result of virus-associated β-cell destruction. Clinical data suggest that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), impairs glucose homoeostasis, but experimental evidence that SARS-CoV-2 can infect pancreatic tissue has been lacking. In the present study, we show that SARS-CoV-2 infects cells of the human exocrine and endocrine pancreas ex vivo and in vivo. We demonstrate that human β-cells express viral entry proteins, and SARS-CoV-2 infects and replicates in cultured human islets. Infection is associated with morphological, transcriptional and functional changes, including reduced numbers of insulin-secretory granules in β-cells and impaired glucose-stimulated insulin secretion. In COVID-19 full-body postmortem examinations, we detected SARS-CoV-2 nucleocapsid protein in pancreatic exocrine cells, and in cells that stain positive for the β-cell marker NKX6.1 and are in close proximity to the islets of Langerhans in all four patients investigated. Our data identify the human pancreas as a target of SARS-CoV-2 infection and suggest that β-cell infection could contribute to the metabolic dysregulation observed in patients with COVID-19.
Collapse
Affiliation(s)
- Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jana Krüger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Uta Merle
- Department of Internal Medicine 4, University of Heidelberg, Heidelberg, Germany
| | | | - Tatjana Weil
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Clarissa Read
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Giorgio Fois
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Julia Gehrmann
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Joanne van Vuuren
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Isabel M Wessbecher
- Tissue Bank of the German Center for Infection Research, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH Aachen University, Aachen, Germany
| | - Markus Breunig
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Beate Grüner
- Department of Internal Medicine 3, Ulm University Hospital, Ulm, Germany
| | - Lynn Peters
- Department of Internal Medicine 3, Ulm University Hospital, Ulm, Germany
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Steffen Stenger
- Institute for Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | | | - Patrick E MacDonald
- Alberta Diabetes Institute and Department of Pharmacology, University of Alberta, Edmonton, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | - Martin Wagner
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany.
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany.
| | - Sandra Heller
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany.
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany.
| |
Collapse
|
14
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
15
|
Hu Y, Xia H, Li M, Xu C, Ye X, Su R, Zhang M, Nash O, Sonstegard TS, Yang L, Liu GE, Zhou Y. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics 2020; 21:682. [PMID: 33004001 PMCID: PMC7528262 DOI: 10.1186/s12864-020-07097-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Bos taurus and Bos indicus are two main sub-species of cattle. However, the differential copy number variations (CNVs) between them are not yet well studied. RESULTS Based on the new high-quality cattle reference genome ARS-UCD1.2, we identified 13,234 non-redundant CNV regions (CNVRs) from 73 animals of 10 cattle breeds (4 Bos taurus and 6 Bos indicus), by integrating three detection strategies. While 6990 CNVRs (52.82%) were shared by Bos taurus and Bos indicus, large CNV differences were discovered between them and these differences could be used to successfully separate animals into two subspecies. We found that 2212 and 538 genes uniquely overlapped with either indicine-specific CNVRs and or taurine-specific CNVRs, respectively. Based on FST, we detected 16 candidate lineage-differential CNV segments (top 0.1%) under selection, which overlapped with eight genes (CTNNA1, ENSBTAG00000004415, PKN2, BMPER, PDE1C, DNAJC18, MUSK, and PLCXD3). Moreover, we obtained 1.74 Mbp indicine-specific sequences, which could only be mapped on the Bos indicus reference genome UOA_Brahman_1. We found these sequences and their associated genes were related to heat resistance, lipid and ATP metabolic process, and muscle development under selection. We further analyzed and validated the top significant lineage-differential CNV. This CNV overlapped genes related to muscle cell differentiation, which might be generated from a retropseudogene of CTH but was deleted along Bos indicus lineage. CONCLUSIONS This study presents a genome wide CNV comparison between Bos taurus and Bos indicus. It supplied essential genome diversity information for understanding of adaptation and phenotype differences between the Bos taurus and Bos indicus populations.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxun Li
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Chang Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaowei Ye
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruixue Su
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mai Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | | | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Building 306, Room 111, BARC-East, Beltsville, MD, 20705, USA.
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Hu W, Wang G, Yarmus LB, Wan Y. Combined Methylome and Transcriptome Analyses Reveals Potential Therapeutic Targets for EGFR Wild Type Lung Cancers with Low PD-L1 Expression. Cancers (Basel) 2020; 12:cancers12092496. [PMID: 32899191 PMCID: PMC7563876 DOI: 10.3390/cancers12092496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/22/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Low expression of programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLCs) are refractory, and only few therapeutic options exist. This study aims to clarify the molecular basis of this special subtype of NSCLC and identify potential therapeutic targets. We performed integrating data from multiple sources including transcriptome, methylome, and clinical outcome to uncover the effect of epigenetic changes acting this special subtype lung cancer. We elucidated both aberrant methylation and associated aberrant gene expression and the emerging methylation-transcription patterns were classified as HypoUp, HypoDown, HyperUp, or HyperDown. We found that the aberrant methylation-transcription patterns significantly affect the overall survival time of the patients. We used protein–drug interaction data and molecular docking analysis to identify potential therapeutic candidates. This study uncovered the distinct methylation-transcription characteristics of this special subtype lung cancer, and provided an adaptable way to identify potential therapeutic targets. Abstract Immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 have demonstrated remarkable treatment efficacy in advanced non-small cell lung cancer (NSCLC). However, low expression of programmed death-ligand 1 (PD-L1), epidermal growth factor receptor (EGFR) wild-type NSCLCs are refractory, and only few therapeutic options exist. Currently, combination therapy with ICIs is frequently used in order to enhance the treatment response rates. Yet, this regimen is still associated with poor treatment outcome. Therefore, identification of potential therapeutic targets for this subgroup of NSCLC is strongly desired. Here, we report the distinct methylation signatures of this special subgroup. Moreover, several druggable targets and relevant drugs for targeted therapy were incidentally identified. We found hypermethylated differentially methylated regions (DMRs) in three regions (TSS200, TSS1500, and gene body) are significantly higher than hypomethylated ones. Downregulated methylated genes were found to be involved in negative regulation of immune response and T cell-mediated immunity. Moreover, expression of four methylated genes (PLCXD3 (Phosphatidylinositol-Specific Phospholipase C, X Domain Containing 3), BAIAP2L2 (BAR/IMD Domain Containing Adaptor Protein 2 Like 2), NPR3 (Natriuretic Peptide Receptor 3), SNX10 (Sorting Nexin 10)) can influence patients’ prognosis. Subsequently, based on DrugBank data, NetworkAnalyst 3.0 was used for protein–drug interaction analysis of up-regulated differentially methylated genes. Protein products of nine genes were identified as potential druggable targets, of which the tumorigenic potential of XDH (Xanthine Dehydrogenase), ATIC (5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase), CA9 (Carbonic Anhydrase 9), SLC7A11 (Solute Carrier Family 7 Member 11), and GAPDH (Glyceraldehyde-3-Phosphate Dehydrogenase) have been demonstrated in previous studies. Next, molecular docking and molecular dynamics simulation were performed to verify the structural basis of the therapeutic targets. It is noteworthy that the identified pemetrexed targeting ATIC has been recently approved for first-line use in combination with anti-PD1 inhibitors against lung cancer, irrespective of PD-L1 expression. In future work, a pivotal clinical study will be initiated to further validate our findings.
Collapse
Affiliation(s)
- Weilei Hu
- Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China;
- Center for Disease Prevention Research and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guosheng Wang
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, NY 13902, USA;
| | - Lonny B. Yarmus
- Department of Medicine, Division of Pulmonary and Critical Care, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA;
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University—SUNY, Binghamton, NY 13902, USA;
- Correspondence: ; Tel.: +1-607-777-5477; Fax: +1-607-777-5780
| |
Collapse
|
17
|
Expression Profile of SARS-CoV-2 Host Receptors in Human Pancreatic Islets Revealed Upregulation of ACE2 in Diabetic Donors. BIOLOGY 2020; 9:biology9080215. [PMID: 32784802 PMCID: PMC7465557 DOI: 10.3390/biology9080215] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023]
Abstract
Cellular entry of SARS-CoV-2 is thought to occur through the binding of viral spike S1 protein to ACE2. The entry process involves priming of the S protein by TMPRSS2 and ADAM17, which collectively mediate the binding and promote ACE2 shedding. In this study, microarray and RNA-sequencing (RNA-seq) expression data were utilized to profile the expression pattern of ACE2, ADAM17, and TMPRSS2 in type 2 diabetic (T2D) and non-diabetic human pancreatic islets. Our data show that pancreatic islets express all three receptors irrespective of diabetes status. The expression of ACE2 was significantly increased in diabetic/hyperglycemic islets compared to non-diabetic/normoglycemic. Islets from female donors showed higher ACE2 expression compared to males; the expression of ADAM17 and TMPRSS2 was not affected by gender. The expression of the three receptors was statistically similar in young (≤40 years old) versus old (≥60 years old) donors. Obese (BMI > 30) donors have significantly higher expression levels of ADAM17 and TMPRSS2 relative to those from non-obese donors (BMI < 25). TMPRSS2 expression correlated positively with HbA1c and negatively with age, while ADAM17 and TMPRSS2 correlated positively with BMI. The expression of the three receptors was statistically similar in muscle and subcutaneous adipose tissues obtained from diabetic and nondiabetic donors. Lastly, ACE2 expression was higher in sorted pancreatic β-cell relative to other endocrine cells. In conclusion, ACE2 expression is increased in diabetic human islets. More studies are required to investigate whether variations of ACE2 expression could explain the severity of COVID-19 infection-related symptoms between diabetics and non-diabetic patients.
Collapse
|
18
|
Aljaibeji H, Mohammed AK, Alkayyali S, Hachim MY, Hasswan H, El-Huneidi W, Taneera J, Sulaiman N. Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population. Genes (Basel) 2020; 11:genes11060665. [PMID: 32570874 PMCID: PMC7349663 DOI: 10.3390/genes11060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Phosphatidylinositol-specific phospholipase C X domain 3 (PLCXD3) has been shown to influence pancreatic β-cell function by disrupting insulin signaling. Herein, we investigated two genetic variants in the PLCXD3 gene in relation to type 2 diabetes (T2D) or metabolic syndrome (MetS) in the Emirati population. In total, 556 adult Emirati individuals (306 T2D and 256 controls) were genotyped for two PLCXD3 variants (rs319013 and rs9292806) using TaqMan genotyping assays. The frequency distribution of minor homozygous CC genotype of rs9292806 and GG genotype of rs319013 were significantly higher in subjects with MetS compared to Non-MetS (p < 0.01). The minor homozygous rs9292806-CC and rs319013-GG genotypes were significantly associated with increased risk of MetS (adj. OR 2.92; 95% CI 1.61–5.3; p < 0.001) (adj. OR 2.62; 95% CI 1.42–4.83; p = 0.002), respectively. However, no associations were detected with T2D. In healthy participants, the homozygous minor genotypes of both rs9292806 and rs319013 were significantly higher fasting glucose (adj. p < 0.005), HbA1c (adj. p < 0.005) and lower HDL-cholesterol (adj. p < 0.05) levels. Data from T2D Knowledge Portal database disclosed a nominal association of rs319013 and rs9292806 with T2D and components of MetS. Bioinformatics prediction analysis showed a deleterious effect of rs9292806 on the regulatory regions of PLCXD3. In conclusion, this study identifies rs319013 and rs9292806 variants of PLCXD3 as additional risk factors for MetS in the Emirati population.
Collapse
Affiliation(s)
- Hayat Aljaibeji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (H.A.); (A.K.M.); (H.H.)
| | - Abdul Khader Mohammed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (H.A.); (A.K.M.); (H.H.)
| | - Sami Alkayyali
- Laboratory of Clinical Chemistry and Transfusion Medicine, Central Hospital of Växjö, Växjö 35188, Sweden;
| | - Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, UAE;
| | - Hind Hasswan
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (H.A.); (A.K.M.); (H.H.)
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE;
| | - Jalal Taneera
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; (H.A.); (A.K.M.); (H.H.)
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE;
- Correspondence: (J.T.); (N.S.); Tel.: +971-65057743 (J.T.); +971-65057206 (N.S.); Fax: +971-65585879 (J.T. or N.S.)
| | - Nabil Sulaiman
- Department of Family Medicine, College of Medicine, University of Sharjah, Sharjah 27272, UAE
- Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia
- Correspondence: (J.T.); (N.S.); Tel.: +971-65057743 (J.T.); +971-65057206 (N.S.); Fax: +971-65585879 (J.T. or N.S.)
| |
Collapse
|