1
|
Delannoy P, Tolan DR, Lanaspa MA, San Millán I, Bae SY, Johnson RJ. Aldose reductase, fructose and fat production in the liver. Biochem J 2025; 482:295-307. [PMID: 40040471 DOI: 10.1042/bcj20240748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 03/06/2025]
Abstract
There is an increasing interest in the role of fructose as a major driver of non-alcoholic fatty liver disease (NAFLD), and it is linked closely with the intake of sugar. However, there has also been the recognition that fructose can be produced directly from intracellular glucose via the evolutionarily conserved polyol pathway whose access is governed by aldose reductase (AR). The purpose of this article is to review the biochemistry of AR and the role of the polyol pathway in opening fructose metabolism. This article provides a new perspective about AR and the other key enzymes surrounding the decision to divert glucose into the polyol pathway which suggests that the production of endogenous fructose may be of much greater significance than historically viewed. There are important aspects of the regulation of the polyol pathway and its committal step catalyzed by AR, which supports the notion that fructose-uric acid pathway is activated by elevated glucose with the downstream consequence of NAFLD and perhaps other chronic metabolic diseases.
Collapse
Affiliation(s)
- Peter Delannoy
- Orgins of Human Metabolic Disease, Phoneix, AZ,85016, U.S.A
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, U.S.A
| | - Miguel A Lanaspa
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Denver, Aurora, CO, U.S.A
| | - Iñigo San Millán
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - So Young Bae
- Molecular Biology, Cell Biology, and Biochemistry Program, Boston University, Boston, U.S.A
| | - Richard J Johnson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| |
Collapse
|
2
|
Ghosh C, Kundu T, Pathak T, Saini S, Das N, Saini S, Sircar D, Kumar P, Roy P. Indian lychee honey ameliorates hepatic glucose uptake by regulating the ChREBP/Glut4 axis under insulin-resistant conditions. Food Funct 2025; 16:2031-2056. [PMID: 39963045 DOI: 10.1039/d4fo03900a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Many traditional treatments include honey owing to its magnificent health beneficiary effects. Recent studies have demonstrated the potent anti-diabetic activity of honey. However, its actual mechanism of action remains elusive. Moreover, being rich in sugar (75%-80%), its role in maintaining glucose homeostasis remains questionable. Although the polyphenol content of honey aids its hypoglycaemic activity, the small quantity of bioactive compounds in honey (0.5%-1.0%) may not be solely responsible for this. In the current study, an attempt was made to understand the role of Indian lychee honey (LyH) in regulating blood glucose levels under diabetic conditions. This study investigated whether LyH, although rich in sugars, can be used as an alternative to regulate glucose and lipid homeostasis under insulin-resistant conditions by regulating the ChREBP/Glut4 signalling pathway. This study was first performed in vitro in palmitic acid-induced insulin-resistant HepG2 cells. Various assays, such as FACS, GCMS, qRT-PCR, immunoblot and ChIP-qPCR, were performed to establish the anti-hyperglycaemic role of LyH in vitro. The in vitro results were subsequently confirmed in vivo using a high-fat diet-induced diabetic C57BL/6 mice model. The in vivo study was supported by several experiments, such as examining blood parameters, histopathology, double-immunohistochemistry and ELISA. Finally, the finding was validated by comparing it with a couple of GEO datasets from the NCBI database. This study found that LyH is an excellent choice for regulating blood sugar levels under diabetic conditions without significant harmful side effects. Moreover, LyH showed excellent hepatic glucose uptake activity in an insulin-independent manner. This activity is mainly governed by sugars as its main ingredient. LyH treatment also regulates hepatic lipid homeostasis by maintaining a balance between saturated and unsaturated fatty acids in insulin-resistant HepG2 cells. Further, sugar, when supplemented individually, caused severe inflammation, which was validated through histopathology, ELISA and IHC. Collectively, the findings of this study indicate that Indian LyH provides a better food matrix (the right proportion of sugars and different bioactive compounds), which significantly improves hyperglycemia and inflammation under diabetic conditions by regulating the hepatic ChREBP/Glut4 axis.
Collapse
Affiliation(s)
- Chandrachur Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Tathagata Kundu
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Tiyasa Pathak
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Saakshi Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Neeladrisingha Das
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Surendra Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
| | - Debabrata Sircar
- Plant Molecular Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| | - Prabhat Kumar
- National Bee Board, DA & FW, Ministry of Agriculture and Farmers Welfare, B Wing, 2nd Floor, Janpath Bhawan, Janpath, New Delhi - 110 001, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India.
- Center for Indian Knowledge Systems, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand, India
| |
Collapse
|
3
|
Shao ZC, Sun WK, Deng QQ, Cheng L, Huang X, Hu LK, Li HN. Identification of Key lncRNAs in Gout Under Copper Death and Iron Death Mechanisms: A Study Based on ceRNA Network Analysis and Random Forest Algorithm. Mol Biotechnol 2025; 67:996-1013. [PMID: 38472694 DOI: 10.1007/s12033-024-01099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/17/2024] [Indexed: 03/14/2024]
Abstract
This study focused on identifying potential key lncRNAs associated with gout under the mechanisms of copper death and iron death through ceRNA network analysis and Random Forest (RF) algorithm, which aimed to provide new insights into the molecular mechanisms of gout, and potential molecular targets for future therapeutic strategies of gout. Initially, we conducted an in-depth bioinformatics analysis of gout microarray chips to screen the key cuproptosis-related genes (CRGs) and key ferroptosis-related genes (FRGs). Using these data, we constructed a key ceRNA network for gout. Finally, key lncRNAs associated with gout were identified through the RF algorithm combined with ROC curves, and validated using the Comparative Toxicogenomics Database (CTD). We successfully identified NLRP3, LIPT1, and DBT as key CRGs associated with gout, and G6PD, PRKAA1, LIG3, PHF21A, KLF2, PGRMC1, JUN, PANX2, and AR as key FRGs associated with gout. The key ceRNA network identified four downregulated key lncRNAs (SEPSECS-AS1, LINC01054, REV3L-IT1, and ZNF883) along with three downregulated mRNAs (DBT, AR, and PRKAA1) based on the ceRNA theory. According to CTD validation inference scores and biological functions of target mRNAs, we identified a potential gout-associated lncRNA ZNF883/hsa-miR-539-5p/PRKAA1 regulatory axis. This study identified the key lncRNA ZNF883 in the context of copper death and iron death mechanisms related to gout for the first time through the application of ceRNA network analysis and the RF algorithm, thereby filling a research gap in this field and providing new insights into the molecular mechanisms of gout. We further found that lncRNA ZNF883 might function in gout patients by regulating PRKAA1, the mechanism of which was potentially related to uric acid reabsorption in the proximal renal tubules and inflammation regulation. The proposed lncRNA ZNF883/hsa-miR-539-5p/PRKAA1 regulatory axis might represent a potential RNA regulatory pathway for controlling the progression of gout disease. This discovery offered new molecular targets for the treatment of gout, and had significant implications for future therapeutic strategies in managing the gout.
Collapse
Affiliation(s)
- Zi-Chen Shao
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Wei-Kang Sun
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Qin-Qin Deng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Ling Cheng
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Xin Huang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Lie-Kui Hu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Hua-Nan Li
- Affiliated Hospital of Jiangxi University of Chinese Medicine, No.445, Bayi Avenue, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Nair JM, Bandesh K, Giri AK, Prasad G, Rajashekhar D, Jha P, Basu A, Tandon N, Bharadwaj D. Uncovering novel regulatory variants in carbohydrate metabolism: a comprehensive multi-omics study of glycemic traits in the Indian population. Mol Genet Genomics 2024; 299:85. [PMID: 39230791 DOI: 10.1007/s00438-024-02176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Clinical biomarkers such as fasting glucose, HbA1c, and fasting insulin, which gauge glycemic status in the body, are highly influenced by diet. Indians are genetically predisposed to type 2 diabetes and their carbohydrate-centric diet further elevates the disease risk. Despite the combined influence of genetic and environmental risk factors, Indians have been inadequately explored in the studies of glycemic traits. Addressing this gap, we investigate the genetic architecture of glycemic traits at genome-wide level in 4927 Indians (without diabetes). Our analysis revealed numerous variants of sub-genome-wide significance, and their credibility was thoroughly assessed by integrating data from various levels. This identified key effector genes, ZNF470, DPP6, GXYLT2, PITPNM3, BEND7, and LORICRIN-PGLYRP3. While these genes were weakly linked with carbohydrate intake or glycemia earlier in other populations, our findings demonstrated a much stronger association in the Indian population. Associated genetic variants within these genes served as expression quantitative trait loci (eQTLs) in various gut tissues essential for digestion. Additionally, majority of these gut eQTLs functioned as methylation quantitative trait loci (meth-QTLs) observed in peripheral blood samples from 223 Indians, elucidating the underlying mechanism of their regulation of target gene expression. Specific co-localized eQTLs-meth-QTLs altered the binding affinity of transcription factors targeting crucial genes involved in glucose metabolism. Our study identifies previously unreported genetic variants that strongly influence the diet-glycemia relationship. These findings set the stage for future research into personalized lifestyle interventions integrating genetic insights with tailored dietary strategies to mitigate disease risk based on individual genetic profiles.
Collapse
Affiliation(s)
- Janaki M Nair
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushdeep Bandesh
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Anil K Giri
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gauri Prasad
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Donaka Rajashekhar
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
| | - Punam Jha
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, West Bengal, 741251, India
| | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dwaipayan Bharadwaj
- Systems Genomics Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
5
|
Buziau AM, Oosterveer MH, Wouters K, Bos T, Tolan DR, Agius L, Ford BE, Cassiman D, Stehouwer CDA, Schalkwijk CG, Brouwers MCGJ. Hepatic glucokinase regulatory protein and carbohydrate response element binding protein attenuation reduce de novo lipogenesis but do not mitigate intrahepatic triglyceride accumulation in Aldob deficiency. Mol Metab 2024; 87:101984. [PMID: 38972375 PMCID: PMC11300931 DOI: 10.1016/j.molmet.2024.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024] Open
Abstract
OBJECTIVE Stable isotope studies have shown that hepatic de novo lipogenesis (DNL) plays an important role in the pathogenesis of intrahepatic lipid (IHL) deposition. Furthermore, previous research has demonstrated that fructose 1-phosphate (F1P) not only serves as a substrate for DNL, but also acts as a signalling metabolite that stimulates DNL from glucose. The aim of this study was to elucidate the mediators of F1P-stimulated DNL, with special focus on two key regulators of intrahepatic glucose metabolism, i.e., glucokinase regulatory protein (GKRP) and carbohydrate response element binding protein (ChREBP). METHODS Aldolase B deficient mice (Aldob-/-), characterized by hepatocellular F1P accumulation, enhanced DNL, and hepatic steatosis, were either crossed with GKRP deficient mice (Gckr-/-) or treated with short hairpin RNAs directed against hepatic ChREBP. RESULTS Aldob-/- mice showed higher rates of de novo palmitate synthesis from glucose when compared to wildtype mice (p < 0.001). Gckr knockout reduced de novo palmitate synthesis in Aldob-/- mice (p = 0.017), without affecting the hepatic mRNA expression of enzymes involved in DNL. In contrast, hepatic ChREBP knockdown normalized the hepatic mRNA expression levels of enzymes involved in DNL and reduced fractional DNL in Aldob-/- mice (p < 0.05). Of interest, despite downregulation of DNL in response to Gckr and ChREBP attenuation, no reduction in intrahepatic triglyceride levels was observed. CONCLUSIONS Both GKRP and ChREBP mediate F1P-stimulated DNL in aldolase B deficient mice. Further studies are needed to unravel the role of GKRP and hepatic ChREBP in regulating IHL accumulation in aldolase B deficiency.
Collapse
Affiliation(s)
- Amée M Buziau
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Maaike H Oosterveer
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kristiaan Wouters
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Trijnie Bos
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dean R Tolan
- Department of Biology, Boston University, Boston, MA, USA
| | - Loranne Agius
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Brian E Ford
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Cassiman
- Department of Gastroenterology-Hepatology and Metabolic Center, University Hospital Leuven, Leuven, Belgium
| | - Coen D A Stehouwer
- Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Martijn C G J Brouwers
- Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Makanyane DM, Maikoo S, Van Heerden FR, Rhyman L, Ramasami P, Mabuza LP, Ngubane P, Khathi A, Mambanda A, Booysen IN. Bovine serum albumin uptake and polypeptide disaggregation studies of hypoglycemic ruthenium(II) uracil Schiff-base complexes. J Inorg Biochem 2024; 255:112541. [PMID: 38554578 DOI: 10.1016/j.jinorgbio.2024.112541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/13/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Our prior studies have illustrated that the uracil ruthenium(II) diimino complex, [Ru(H3ucp)Cl(PPh3)] (1) (H4ucp = 2,6-bis-((6-amino-1,3-dimethyluracilimino)methylene)pyridine) displayed high hypoglycemic effects in diet-induced diabetic rats. To rationalize the anti-diabetic effects of 1, three new derivatives have been prepared, cis-[Ru(bpy)2(urdp)]Cl2 (2) (urdp = 2,6-bis-((uracilimino)methylene)pyridine), trans-[RuCl2(PPh3)(urdp)] (3), and cis-[Ru(bpy)2(H4ucp)](PF6)2 (4). Various physicochemical techniques were utilized to characterize the structures of the novel ruthenium compounds. Prior to biomolecular interactions or in vitro studies, the stabilities of 1-4 were monitored in anhydrous DMSO, aqueous phosphate buffer containing 2% DMSO, and dichloromethane (DCM) via UV-Vis spectrophotometry. Time-dependent stability studies showed ligand exchange between DMSO nucleophiles and chloride co-ligands of 1 and 3, which was suppressed in the presence of an excess amount of chloride ions. In addition, the metal complexes 1 and 3 are stable in both DCM and an aqueous phosphate buffer containing 2% DMSO. In the case of compounds 2 and 4 with no chloride co-ligands within their coordination spheres, high stability in aqueous phosphate buffer containing 2% DMSO was observed. Fluorescence emission titrations of the individual ruthenium compounds with bovine serum albumin (BSA) showed that the metal compounds interact non-discriminately within the protein's hydrophobic cavities as moderate to strong binders. The metal complexes were capable of disintegrating mature amylin amyloid fibrils. In vivo glucose metabolism studies in liver (Chang) cell lines confirmed enhanced glucose metabolism as evidenced by the increased glucose utilization and glycogen synthesis in liver cell lines in the presence of complexes 2-4.
Collapse
Affiliation(s)
- Daniel M Makanyane
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Sanam Maikoo
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Fanie R Van Heerden
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Lydia Rhyman
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit 80837, Mauritius; Centre of Natural Product, Department of Chemical Sciences, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Lindokuhle P Mabuza
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Allen Mambanda
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Irvin N Booysen
- School of Chemistry and Physics, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| |
Collapse
|
7
|
Oliveri A, Rebernick RJ, Kuppa A, Pant A, Chen Y, Du X, Cushing KC, Bell HN, Raut C, Prabhu P, Chen VL, Halligan BD, Speliotes EK. Comprehensive genetic study of the insulin resistance marker TG:HDL-C in the UK Biobank. Nat Genet 2024; 56:212-221. [PMID: 38200128 PMCID: PMC10923176 DOI: 10.1038/s41588-023-01625-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Insulin resistance (IR) is a well-established risk factor for metabolic disease. The ratio of triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) is a surrogate marker of IR. We conducted a genome-wide association study of the TG:HDL-C ratio in 402,398 Europeans within the UK Biobank. We identified 369 independent SNPs, of which 114 had a false discovery rate-adjusted P value < 0.05 in other genome-wide studies of IR making them high-confidence IR-associated loci. Seventy-two of these 114 loci have not been previously associated with IR. These 114 loci cluster into five groups upon phenome-wide analysis and are enriched for candidate genes important in insulin signaling, adipocyte physiology and protein metabolism. We created a polygenic-risk score from the high-confidence IR-associated loci using 51,550 European individuals in the Michigan Genomics Initiative. We identified associations with diabetes, hyperglyceridemia, hypertension, nonalcoholic fatty liver disease and ischemic heart disease. Collectively, this study provides insight into the genes, pathways, tissues and subtypes critical in IR.
Collapse
Affiliation(s)
- Antonino Oliveri
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Ryan J Rebernick
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Asmita Pant
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Kelly C Cushing
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chinmay Raut
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Ponnandy Prabhu
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Brian D Halligan
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA
| | - Elizabeth K Speliotes
- Division of Gastroenterology and Hepatology, University of Michigan Health System, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Singh C, Jin B, Shrestha N, Markhard AL, Panda A, Calvo SE, Deik A, Pan X, Zuckerman AL, Ben Saad A, Corey KE, Sjoquist J, Osganian S, AminiTabrizi R, Rhee EP, Shah H, Goldberger O, Mullen AC, Cracan V, Clish CB, Mootha VK, Goodman RP. ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits. Cell Metab 2024; 36:144-158.e7. [PMID: 38101397 PMCID: PMC10842884 DOI: 10.1016/j.cmet.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Common genetic variants in glucokinase regulator (GCKR), which encodes GKRP, a regulator of hepatic glucokinase (GCK), influence multiple metabolic traits in genome-wide association studies (GWASs), making GCKR one of the most pleiotropic GWAS loci in the genome. It is unclear why. Prior work has demonstrated that GCKR influences the hepatic cytosolic NADH/NAD+ ratio, also referred to as reductive stress. Here, we demonstrate that reductive stress is sufficient to activate the transcription factor ChREBP and necessary for its activation by the GKRP-GCK interaction, glucose, and ethanol. We show that hepatic reductive stress induces GCKR GWAS traits such as increased hepatic fat, circulating FGF21, and circulating acylglycerol species, which are also influenced by ChREBP. We define the transcriptional signature of hepatic reductive stress and show its upregulation in fatty liver disease and downregulation after bariatric surgery in humans. These findings highlight how a GCKR-reductive stress-ChREBP axis influences multiple human metabolic traits.
Collapse
Affiliation(s)
- Charandeep Singh
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Byungchang Jin
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nirajan Shrestha
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Andrew L Markhard
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Apekshya Panda
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xingxiu Pan
- The Scintillon Institute, San Diego, CA 92121, USA
| | - Austin L Zuckerman
- The Scintillon Institute, San Diego, CA 92121, USA; Program in Mathematics and Science Education, University of California, San Diego, La Jolla, CA 92093; Program in Mathematics and Science Education, San Diego State University, San Diego, CA 92120
| | - Amel Ben Saad
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Kathleen E Corey
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia Sjoquist
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Stephanie Osganian
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Roya AminiTabrizi
- Metabolomics Platform, Comprehensive Cancer Center, the University of Chicago, Chicago, IL 60637, USA
| | - Eugene P Rhee
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Nephrology Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hardik Shah
- Metabolomics Platform, Comprehensive Cancer Center, the University of Chicago, Chicago, IL 60637, USA
| | - Olga Goldberger
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alan C Mullen
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Valentin Cracan
- The Scintillon Institute, San Diego, CA 92121, USA; Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Russell P Goodman
- Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Krishnamurthy KA, Rutten MGS, Hoogerland JA, van Dijk TH, Bos T, Koehorst M, de Vries MP, Kloosterhuis NJ, Havinga H, Schomakers BV, van Weeghel M, Wolters JC, Bakker BM, Oosterveer MH. Hepatic ChREBP orchestrates intrahepatic carbohydrate metabolism to limit hepatic glucose 6-phosphate and glycogen accumulation in a mouse model for acute Glycogen Storage Disease type Ib. Mol Metab 2024; 79:101838. [PMID: 37995884 PMCID: PMC10716006 DOI: 10.1016/j.molmet.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVE Carbohydrate Response Element Binding Protein (ChREBP) is a glucose 6-phosphate (G6P)-sensitive transcription factor that acts as a metabolic switch to maintain intracellular glucose and phosphate homeostasis. Hepatic ChREBP is well-known for its regulatory role in glycolysis, the pentose phosphate pathway, and de novo lipogenesis. The physiological role of ChREBP in hepatic glycogen metabolism and blood glucose regulation has not been assessed in detail, and ChREBP's contribution to carbohydrate flux adaptations in hepatic Glycogen Storage Disease type 1 (GSD I) requires further investigation. METHODS The current study aimed to investigate the role of ChREBP as a regulator of glycogen metabolism in response to hepatic G6P accumulation, using a model for acute hepatic GSD type Ib. The immediate biochemical and regulatory responses to hepatic G6P accumulation were evaluated upon G6P transporter inhibition by the chlorogenic acid S4048 in mice that were either treated with a short hairpin RNA (shRNA) directed against ChREBP (shChREBP) or a scrambled shRNA (shSCR). Complementary stable isotope experiments were performed to quantify hepatic carbohydrate fluxes in vivo. RESULTS ShChREBP treatment normalized the S4048-mediated induction of hepatic ChREBP target genes to levels observed in vehicle- and shSCR-treated controls. In parallel, hepatic shChREBP treatment in S4048-infused mice resulted in a more pronounced accumulation of hepatic glycogen and further reduction of blood glucose levels compared to shSCR treatment. Hepatic ChREBP knockdown modestly increased glucokinase (GCK) flux in S4048-treated mice while it enhanced UDP-glucose turnover as well as glycogen synthase and phosphorylase fluxes. Hepatic GCK mRNA and protein levels were induced by shChREBP treatment in both vehicle- and S4048-treated mice, while glycogen synthase 2 (GYS2) and glycogen phosphorylase (PYGL) mRNA and protein levels were reduced. Finally, knockdown of hepatic ChREBP expression reduced starch domain binding protein 1 (STBD1) mRNA and protein levels while it inhibited acid alpha-glucosidase (GAA) activity, suggesting reduced capacity for lysosomal glycogen breakdown. CONCLUSIONS Our data show that ChREBP activation controls hepatic glycogen and blood glucose levels in acute hepatic GSD Ib through concomitant regulation of glucose phosphorylation, glycogenesis, and glycogenolysis. ChREBP-mediated control of GCK enzyme levels aligns with corresponding adaptations in GCK flux. In contrast, ChREBP activation in response to acute hepatic GSD Ib exerts opposite effects on GYS2/PYGL enzyme levels and their corresponding fluxes, indicating that GYS2/PYGL expression levels are not limiting to their respective fluxes under these conditions.
Collapse
Affiliation(s)
- K A Krishnamurthy
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M G S Rutten
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - J A Hoogerland
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - T H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - T Bos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M Koehorst
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M P de Vries
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands; Interfaculty Mass Spectrometry Center, University of Groningen, University Medical Center Groningen, The Netherlands
| | - N J Kloosterhuis
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - H Havinga
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - B V Schomakers
- Laboratory Genetic Metabolic Diseases, UMC Amsterdam, The Netherlands; Core Facility Metabolomics, UMC Amsterdam, The Netherlands
| | - M van Weeghel
- Laboratory Genetic Metabolic Diseases, UMC Amsterdam, The Netherlands; Core Facility Metabolomics, UMC Amsterdam, The Netherlands
| | - J C Wolters
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands; Interfaculty Mass Spectrometry Center, University of Groningen, University Medical Center Groningen, The Netherlands
| | - B M Bakker
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands
| | - M H Oosterveer
- Laboratory of Pediatrics, University of Groningen, University Medical Center Groningen, The Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands.
| |
Collapse
|
10
|
Ribeiro DM, Leclercq CC, Charton SAB, Costa MM, Carvalho DFP, Cocco E, Sergeant K, Renaut J, Freire JPB, Prates JAM, de Almeida AM. Enhanced ileum function in weaned piglets via Laminaria digitata and alginate lyase dietary inclusion: A combined proteomics and metabolomics analysis. J Proteomics 2023; 289:105013. [PMID: 37775079 DOI: 10.1016/j.jprot.2023.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Laminaria digitata, a brown seaweed with prebiotic properties, can potentially enhance the resilience of weaned piglets to nutritional distress. However, their cell wall polysaccharides elude digestion by monogastric animals' endogenous enzymes. In vitro studies suggest alginate lyase's ability to degrade such polysaccharides. This study aimed to assess the impact of a 10% dietary inclusion of L. digitata and alginate lyase supplementation on the ileum proteome and metabolome, adopting a hypothesis-generating approach. Findings indicated that control piglets escalated glucose usage as an enteric energy source, as evidenced by the increased abundance of PKLR and PCK2 proteins and decreased tissue glucose concentration. Additionally, the inclusion of seaweed fostered a rise in proteins linked to enhanced enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), elevated peptidase activity (NAALADL1 and CAPNS1), and heightened anti-inflammatory activity (C3), underscoring improved intestinal function. In addition, seaweed-fed piglets showed a reduced abundance of proteins related to apoptosis (ERN2) and proteolysis (DPP4). Alginate lyase supplementation appeared to amplify the initial effects of seaweed-only feeding, by boosting the number of differential proteins within the same pathways. This amplification is potentially due to increased intracellular nutrient availability, making a compelling case for further exploration of this dietary approach. SIGNIFICANCE: Pig production used to rely heavily on antibiotics and zinc oxide to deal with post-weaning stress in a cost-effective way. Their negative repercussions on public health and the environment have motivated heavy restrictions, and a consequent search for alternative feed ingredients/supplements. One of such alternatives is Laminaria digitata, a brown seaweed whose prebiotic components that can help weaned piglets deal with nutritional stress, by improving their gut health and immune status. However, their recalcitrant cell walls have antinutritional properties, for which alginate lyase supplementation is a possible solution. By evaluating ileal metabolism as influenced by dietary seaweed and enzyme supplementation, we aim at discovering how the weaned piglet adapts to them and what are their effects on this important segment of the digestive system.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Céline C Leclercq
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Sophie A B Charton
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Daniela Filipa Pires Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Emmanuelle Cocco
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Kjell Sergeant
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - Jenny Renaut
- LIST- Luxembourg Institute of Science and Technology, Biotechnologies and Environmental Analytics Platform (BEAP), Environmental Research and Innovation Department (ERIN), 5, rue Bommel, L-4940 Hautcharage, Luxembourg
| | - João Pedro Bengala Freire
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - André Martinho de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Centre, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal.
| |
Collapse
|
11
|
Witman N, Zhou C, Häneke T, Xiao Y, Huang X, Rohner E, Sohlmér J, Grote Beverborg N, Lehtinen ML, Chien KR, Sahara M. Placental growth factor exerts a dual function for cardiomyogenesis and vasculogenesis during heart development. Nat Commun 2023; 14:5435. [PMID: 37669989 PMCID: PMC10480216 DOI: 10.1038/s41467-023-41305-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023] Open
Abstract
Cardiogenic growth factors play important roles in heart development. Placental growth factor (PLGF) has previously been reported to have angiogenic effects; however, its potential role in cardiogenesis has not yet been determined. We analyze single-cell RNA-sequencing data derived from human and primate embryonic hearts and find PLGF shows a biphasic expression pattern, as it is expressed specifically on ISL1+ second heart field progenitors at an earlier stage and on vascular smooth muscle cells (SMCs) and endothelial cells (ECs) at later stages. Using chemically modified mRNAs (modRNAs), we generate a panel of cardiogenic growth factors and test their effects on enhancing cardiomyocyte (CM) and EC induction during different stages of human embryonic stem cell (hESC) differentiations. We discover that only the application of PLGF modRNA at early time points of hESC-CM differentiation can increase both CM and EC production. Conversely, genetic deletion of PLGF reduces generation of CMs, SMCs and ECs in vitro. We also confirm in vivo beneficial effects of PLGF modRNA for development of human heart progenitor-derived cardiac muscle grafts on murine kidney capsules. Further, we identify the previously unrecognized PLGF-related transcriptional networks driven by EOMES and SOX17. These results shed light on the dual cardiomyogenic and vasculogenic effects of PLGF during heart development.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Timm Häneke
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Xiaoting Huang
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Eduarde Rohner
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Jesper Sohlmér
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Miia L Lehtinen
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden.
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, A6 Biomedicum, SE-171 77, Stockholm, Sweden.
- Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CN, 06510, USA.
| |
Collapse
|
12
|
Lee J, Kim H, Kang YW, Kim Y, Park MY, Song JH, Jo Y, Dao T, Ryu D, Lee J, Oh CM, Park S. LY6D is crucial for lipid accumulation and inflammation in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1479-1491. [PMID: 37394588 PMCID: PMC10394021 DOI: 10.1038/s12276-023-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/07/2023] [Accepted: 04/17/2023] [Indexed: 07/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious metabolic disorder characterized by excess fat accumulation in the liver. Over the past decade, NAFLD prevalence and incidence have risen globally. There are currently no effective licensed drugs for its treatment. Thus, further study is required to identify new targets for NAFLD prevention and treatment. In this study, we fed C57BL6/J mice one of three diets, a standard chow diet, high-sucrose diet, or high-fat diet, and then characterized them. The mice fed a high-sucrose diet had more severely compacted macrovesicular and microvesicular lipid droplets than those in the other groups. Mouse liver transcriptome analysis identified lymphocyte antigen 6 family member D (Ly6d) as a key regulator of hepatic steatosis and the inflammatory response. Data from the Genotype-Tissue Expression project database showed that individuals with high liver Ly6d expression had more severe NAFLD histology than those with low liver Ly6d expression. In AML12 mouse hepatocytes, Ly6d overexpression increased lipid accumulation, while Ly6d knockdown decreased lipid accumulation. Inhibition of Ly6d ameliorated hepatic steatosis in a diet-induced NAFLD mouse model. Western blot analysis showed that Ly6d phosphorylated and activated ATP citrate lyase, which is a key enzyme in de novo lipogenesis. In addition, RNA- and ATAC-sequencing analyses revealed that Ly6d drives NAFLD progression by causing genetic and epigenetic changes. In conclusion, Ly6d is responsible for the regulation of lipid metabolism, and inhibiting Ly6d can prevent diet-induced steatosis in the liver. These findings highlight Ly6d as a novel therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jibeom Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hyeonhui Kim
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yun-Won Kang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Moon-Young Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Ji-Hong Song
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Tam Dao
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University (SKKU) School of Medicine, Suwon, Korea
| | - Junguee Lee
- Department of Pathology, St Mary's Hospital, the Catholic University of Korea, Daejeon, Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea.
| | - Sangkyu Park
- Department of Precision Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
- Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, Korea.
| |
Collapse
|
13
|
Rutten MGS, Lei Y, Hoogerland JH, Bloks VW, Yang H, Bos T, Krishnamurthy KA, Bleeker A, Koster MH, Thomas RE, Wolters JC, van den Bos H, Mithieux G, Rajas F, Mardinoglu A, Spierings DCJ, de Bruin A, van de Sluis B, Oosterveer MH. Normalization of hepatic ChREBP activity does not protect against liver disease progression in a mouse model for Glycogen Storage Disease type Ia. Cancer Metab 2023; 11:5. [PMID: 37085901 PMCID: PMC10122297 DOI: 10.1186/s40170-023-00305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Glycogen storage disease type 1a (GSD Ia) is an inborn error of metabolism caused by a defect in glucose-6-phosphatase (G6PC1) activity, which induces severe hepatomegaly and increases the risk for liver cancer. Hepatic GSD Ia is characterized by constitutive activation of Carbohydrate Response Element Binding Protein (ChREBP), a glucose-sensitive transcription factor. Previously, we showed that ChREBP activation limits non-alcoholic fatty liver disease (NAFLD) in hepatic GSD Ia. As ChREBP has been proposed as a pro-oncogenic molecular switch that supports tumour progression, we hypothesized that ChREBP normalization protects against liver disease progression in hepatic GSD Ia. METHODS Hepatocyte-specific G6pc knockout (L-G6pc-/-) mice were treated with AAV-shChREBP to normalize hepatic ChREBP activity. RESULTS Hepatic ChREBP normalization in GSD Ia mice induced dysplastic liver growth, massively increased hepatocyte size, and was associated with increased hepatic inflammation. Furthermore, nuclear levels of the oncoprotein Yes Associated Protein (YAP) were increased and its transcriptional targets were induced in ChREBP-normalized GSD Ia mice. Hepatic ChREBP normalization furthermore induced DNA damage and mitotic activity in GSD Ia mice, while gene signatures of chromosomal instability, the cytosolic DNA-sensing cGAS-STING pathway, senescence, and hepatocyte dedifferentiation emerged. CONCLUSIONS In conclusion, our findings indicate that ChREBP activity limits hepatomegaly while decelerating liver disease progression and protecting against chromosomal instability in hepatic GSD Ia. These results disqualify ChREBP as a therapeutic target for treatment of liver disease in GSD Ia. In addition, they underline the importance of establishing the context-specific roles of hepatic ChREBP to define its therapeutic potential to prevent or treat advanced liver disease.
Collapse
Affiliation(s)
- Martijn G S Rutten
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Yu Lei
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joanne H Hoogerland
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Trijnie Bos
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kishore A Krishnamurthy
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Aycha Bleeker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam H Koster
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rachel E Thomas
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gilles Mithieux
- Institut National de La Santé Et de La Recherche Médicale, U1213, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Fabienne Rajas
- Institut National de La Santé Et de La Recherche Médicale, U1213, Lyon, France
- Université de Lyon, Lyon, France
- Université Lyon 1, Villeurbanne, France
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alain de Bruin
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maaike H Oosterveer
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
14
|
Katz LS, Brill G, Zhang P, Kumar A, Baumel-Alterzon S, Honig LB, Gómez-Banoy N, Karakose E, Tanase M, Doridot L, Alvarsson A, Davenport B, Wang P, Lambertini L, Stanley SA, Homann D, Stewart AF, Lo JC, Herman MA, Garcia-Ocaña A, Scott DK. Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nat Commun 2022; 13:4423. [PMID: 35908073 PMCID: PMC9339008 DOI: 10.1038/s41467-022-32162-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/18/2022] [Indexed: 01/05/2023] Open
Abstract
Preservation and expansion of β-cell mass is a therapeutic goal for diabetes. Here we show that the hyperactive isoform of carbohydrate response-element binding protein (ChREBPβ) is a nuclear effector of hyperglycemic stress occurring in β-cells in response to prolonged glucose exposure, high-fat diet, and diabetes. We show that transient positive feedback induction of ChREBPβ is necessary for adaptive β-cell expansion in response to metabolic challenges. Conversely, chronic excessive β-cell-specific overexpression of ChREBPβ results in loss of β-cell identity, apoptosis, loss of β-cell mass, and diabetes. Furthermore, β-cell "glucolipotoxicity" can be prevented by deletion of ChREBPβ. Moreover, ChREBPβ-mediated cell death is mitigated by overexpression of the alternate CHREBP gene product, ChREBPα, or by activation of the antioxidant Nrf2 pathway in rodent and human β-cells. We conclude that ChREBPβ, whether adaptive or maladaptive, is an important determinant of β-cell fate and a potential target for the preservation of β-cell mass in diabetes.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Gabriel Brill
- Pharmacologic Sciences Department, Stony Brook University, Stony Brook, NY, USA
| | - Pili Zhang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Anil Kumar
- Metabolic Phenotyping Core, University of Utah, 15N 2030 E, 585, Radiobiology building, Room 151, Salt Lake City, UT, 84112, USA
| | - Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Lee B Honig
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Nicolás Gómez-Banoy
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Esra Karakose
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Marius Tanase
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Ludivine Doridot
- Institut Cochin, Université de Paris, INSERM, CNRS, F-75014, Paris, France
| | - Alexandra Alvarsson
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
- Alpenglow Biosciences, Inc., 98103, Seattle, WA, USA
| | - Bennett Davenport
- 12800 East 19th Ave, Anschutz Medical Campus, Room P18-9403, University of Colorado, Aurora, CO, 80045, USA
| | - Peng Wang
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Sarah A Stanley
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Dirk Homann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Andrew F Stewart
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - James C Lo
- Weill Center for Metabolic Health and Division of Cardiology, Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mark A Herman
- Division of Endocrinology and Metabolism and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
- Section of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, One Baylor Plaza, MS: 185, R614, 77030, Houston, TX, USA
| | - Adolfo Garcia-Ocaña
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1152, New York, 10029, USA.
| |
Collapse
|
15
|
Taneva I, Grumann D, Schmidt D, Taneva E, von Arnim U, Ansorge T, Wex T. Gene variants of the SLC2A5 gene encoding GLUT5, the major fructose transporter, do not contribute to clinical presentation of acquired fructose malabsorption. BMC Gastroenterol 2022; 22:167. [PMID: 35387598 PMCID: PMC8985300 DOI: 10.1186/s12876-022-02244-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Background While role of ALDOB-related gene variants for hereditary fructose intolerance is well established, contribution of gene variants for acquired fructose malabsorption (e.g. SLC2A5, GLUT5) is not well understood. Methods Patients referred to fructose breath test were further selected to identify those having acquired fructose malabsorption. Molecular analysis of genomic DNA included (I) exclusion of 3 main ALDOB gene variants causing hereditary fructose intolerance and (II) sequencing analysis of SLC2A5 gene comprising complete coding region, at least 20 bp of adjacent intronic regions and 700 bp of proximal promoter. Results Among 494 patients, 35 individuals with acquired fructose malabsorption were identified based on pathological fructose-breath test and normal lactose-breath test. Thirty four of them (97%) had negative tissue anti-transglutaminase and/or deamidated gliadin antibodies in their medical records. Molecular analysis of SLC2A5 gene of all 35 subjects identified 5 frequent and 5 singular gene variants mostly in noncoding regions (promoter and intron). Allele frequencies of gene variants were similar to those reported in public databases strongly implying that none of them was associated with acquired fructose malabsorption. Conclusions Gene variants of coding exons, adjacent intronic regions and proximal promoter region of SLC2A5 gene are unlikely to contribute to genetic predisposition of acquired fructose malabsorption.
Collapse
Affiliation(s)
- Irina Taneva
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Dorothee Grumann
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Dietmar Schmidt
- Medical Office Internal Medicine and Gastroenterology, Olvenstedter Str. 11, 39108, Magdeburg, Germany
| | - Elina Taneva
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Ulrike von Arnim
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Thomas Ansorge
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany
| | - Thomas Wex
- Department of Molecular Genetics, Medical Laboratory for Clinical Chemistry, Microbiology, Infectious Diseases and Genetics "Prof. Schenk/Dr. Ansorge and Colleagues", Schwiesaustr. 11, 39124, Magdeburg, Germany. .,Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
16
|
Yang H, Zhang MZH, Sun HW, Chai YT, Li X, Jiang Q, Hou J. A Novel Microcrystalline BAY-876 Formulation Achieves Long-Acting Antitumor Activity Against Aerobic Glycolysis and Proliferation of Hepatocellular Carcinoma. Front Oncol 2021; 11:783194. [PMID: 34869036 PMCID: PMC8636331 DOI: 10.3389/fonc.2021.783194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
BAY-876 is an effective antagonist of the Glucose transporter type 1 (GLUT1) receptor, a mediator of aerobic glycolysis, a biological process considered a hallmark of hepatocellular carcinoma (HCC) together with cell proliferation, drug-resistance, and metastasis. However, the clinical application of BAY-876 has faced many challenges. In the presence study, we describe the formulation of a novel microcrystalline BAY-876 formulation. A series of HCC tumor models were established to determine not only the sustained release of microcrystalline BAY-876, but also its long-acting antitumor activity. The clinical role of BAY-876 was confirmed by the increased expression of GLUT1, which was associated with the worse prognosis among advanced HCC patients. A single dose of injection of microcrystalline BAY-876 directly in the HCC tissue achieved sustained localized levels of Bay-876. Moreover, the single injection of microcrystalline BAY-876 in HCC tissues not only inhibited glucose uptake and prolonged proliferation of HCC cells, but also inhibited the expression of epithelial-mesenchymal transition (EMT)-related factors. Thus, the microcrystalline BAY-876 described in this study can directly achieve promising localized effects, given its limited diffusion to other tissues, thereby reducing the occurrence of potential side effects, and providing an additional option for advanced HCC treatment.
Collapse
Affiliation(s)
- Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Mu-Zi-He Zhang
- Department of Pharmacy, Medical Security Center of PLA General Hospital, Beijing, China
| | - Hui-Wei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Tao Chai
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Towards Understanding the Direct and Indirect Actions of Growth Hormone in Controlling Hepatocyte Carbohydrate and Lipid Metabolism. Cells 2021; 10:cells10102532. [PMID: 34685512 PMCID: PMC8533955 DOI: 10.3390/cells10102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Growth hormone (GH) is critical for achieving normal structural growth. In addition, GH plays an important role in regulating metabolic function. GH acts through its GH receptor (GHR) to modulate the production and function of insulin-like growth factor 1 (IGF1) and insulin. GH, IGF1, and insulin act on multiple tissues to coordinate metabolic control in a context-specific manner. This review will specifically focus on our current understanding of the direct and indirect actions of GH to control liver (hepatocyte) carbohydrate and lipid metabolism in the context of normal fasting (sleep) and feeding (wake) cycles and in response to prolonged nutrient deprivation and excess. Caveats and challenges related to the model systems used and areas that require further investigation towards a clearer understanding of the role GH plays in metabolic health and disease are discussed.
Collapse
|