1
|
Katsarou A, Tsioulos G, Kassi E, Chatzigeorgiou A. Current and experimental pharmacotherapy for the management of non-alcoholic fatty liver disease. Hormones (Athens) 2024; 23:621-636. [PMID: 39112786 DOI: 10.1007/s42000-024-00588-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/17/2024] [Indexed: 10/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease, with its incidence increasing in parallel with the global prevalence of obesity and type 2 diabetes mellitus. Despite our steadily increasing knowledge of its pathogenesis, there is as yet no available pharmacotherapy specifically tailored for NAFLD. To define the appropriate management, it is important to clarify the context in which the disease appears. In the case of concurrent metabolic comorbidities, NAFLD patients are treated by targeting these comorbidities, such as diabetes and obesity. Thus, GLP-1 analogs, PPAR, and SGLT2 inhibitors have recently become central to the treatment of NAFLD. In parallel, randomized trials are being conducted to explore new agents targeting known pathways involved in NAFLD progression. However, there is an imperative need to intensify the effort to design new, safe drugs with biopsy-proven efficacy. Of note, the main target of the pharmacotherapy should be directed to the regression of fibrotic NASH, as this histologic stage has been correlated with increased overall as well as liver-related morbidity and mortality. Herein we discuss the drugs currently at the forefront of NAFLD treatment.
Collapse
Affiliation(s)
- Angeliki Katsarou
- 251 Hellenic Airforce General Hospital, 1 P.Kanellopoulou Str, Athens, 11525, Greece.
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece.
| | - Georgios Tsioulos
- 4th Department of Internal Medicine, Medical School, University General Hospital Attikon, National and Kapodistrian University of Athens, 1 Rimini Str, Athens, 12462, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 115 27, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens, 11527, Greece
| |
Collapse
|
2
|
Inia JA, Attema J, de Ruiter C, Menke AL, Caspers MPM, Verschuren L, Wilson M, Arlantico A, Brightbill HD, Jukema JW, van den Hoek AM, Princen HMG, Chen MZ, Morrison MC. Therapeutic effects of FGF21 mimetic bFKB1 on MASH and atherosclerosis in Ldlr-/-.Leiden mice. FASEB J 2024; 38:e70087. [PMID: 39463193 DOI: 10.1096/fj.202401397r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is a promising target for treatment of obesity-associated diseases including metabolic dysfunction-associated steatohepatitis (MASH) and atherosclerosis. We evaluated the effects of the bispecific anti-FGF21-β klotho (KLB) agonist antibody bFKB1 in a preclinical model of MASH and atherosclerosis. Low-density lipoprotein receptor knockout (Ldlr-/-).Leiden mice received a high-fat diet for 20 weeks, followed by treatment with an isotype control antibody or bFKB1 for 12 weeks. Effects on plasma risk markers and (histo)pathology of liver, adipose tissue, and heart were evaluated alongside hepatic transcriptomics analysis. bFKB1 lowered body weight (-21%) and adipose tissue mass (-22%) without reducing food intake. The treatment also improved plasma insulin (-80%), cholesterol (-48%), triglycerides (-76%), alanine transaminase (ALT: -79%), and liver weight (-43%). Hepatic steatosis and inflammation were strongly reduced (macrovesicular steatosis -34%; microvesicular steatosis -100%; inflammation -74%) and while the total amount of fibrosis was not affected, bFKB1 did decrease new collagen formation (-49%). Correspondingly, hepatic transcriptomics and pathway analysis revealed the mechanistic background underlying these histological improvements, demonstrating broad inactivation of inflammatory and profibrotic transcriptional programs by bFKB1. In epididymal white adipose tissue, bFKB1 reduced adipocyte size (-16%) and inflammation (-52%) and induced browning, signified by increased uncoupling protein-1 (UCP1) protein expression (8.5-fold increase). In the vasculature, bFKB1 had anti-atherogenic effects, lowering total atherosclerotic lesion area (-38%). bFKB1 has strong beneficial metabolic effects associated with a reduction in hepatic steatosis, inflammation, and atherosclerosis. Analysis of new collagen formation and profibrotic transcriptional programs indicate that bFKB1 treatment may have antifibrotic potential in a longer treatment duration as well.
Collapse
Affiliation(s)
- José A Inia
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
| | - Joline Attema
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Christa de Ruiter
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Aswin L Menke
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, TNO, Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, TNO, Leiden, The Netherlands
| | - Maria Wilson
- Genentech Inc., South San Francisco, California, USA
| | - Alexander Arlantico
- Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Hans D Brightbill
- Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, LUMC, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Hans M G Princen
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Mark Z Chen
- Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Martine C Morrison
- Department of Metabolic Health Research, The Netherlands Organisation for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
3
|
Xie X, Gao M, Zhao W, Li C, Zhang W, Yang J, Zhang Y, Chen E, Guo Y, Guo Z, Zhang M, Ngowi EE, Wang H, Wang X, Zhu Y, Wang Y, Li X, Yao H, Yan L, Fang F, Li M, Qiao A, Liu X. LncRNA Snhg3 aggravates hepatic steatosis via PPARγ signaling. eLife 2024; 13:RP96988. [PMID: 39436790 PMCID: PMC11495842 DOI: 10.7554/elife.96988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
LncRNAs are involved in modulating the individual risk and the severity of progression in metabolic dysfunction-associated fatty liver disease (MASLD), but their precise roles remain largely unknown. This study aimed to investigate the role of lncRNA Snhg3 in the development and progression of MASLD, along with the underlying mechanisms. The result showed that Snhg3 was significantly downregulated in the liver of high-fat diet-induced obesity (DIO) mice. Notably, palmitic acid promoted the expression of Snhg3 and overexpression of Snhg3 increased lipid accumulation in primary hepatocytes. Furthermore, hepatocyte-specific Snhg3 deficiency decreased body and liver weight, alleviated hepatic steatosis and promoted hepatic fatty acid metabolism in DIO mice, whereas overexpression induced the opposite effect. Mechanistically, Snhg3 promoted the expression, stability and nuclear localization of SND1 protein via interacting with SND1, thereby inducing K63-linked ubiquitination modification of SND1. Moreover, Snhg3 decreased the H3K27me3 level and induced SND1-mediated chromatin loose remodeling, thus reducing H3K27me3 enrichment at the Pparg promoter and enhancing PPARγ expression. The administration of PPARγ antagonist T0070907 improved Snhg3-aggravated hepatic steatosis. Our study revealed a new signaling pathway, Snhg3/SND1/H3K27me3/PPARγ, responsible for mice MASLD and indicates that lncRNA-mediated epigenetic modification has a crucial role in the pathology of MASLD.
Collapse
Affiliation(s)
- Xianghong Xie
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Mingyue Gao
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Wei Zhao
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chunmei Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Weihong Zhang
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Jiahui Yang
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Yinliang Zhang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Enhui Chen
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yanfang Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Zeyu Guo
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Minglong Zhang
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Ebenezeri Erasto Ngowi
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of SciencesZhongshanChina
| | - Heping Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaoman Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yinghan Zhu
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yiting Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Xiaolu Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Hong Yao
- Department of Microbiology and Immunology, Shanxi Medical UniversityTaiyuanChina
| | - Li Yan
- Department of Pathophysiology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Fude Fang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Meixia Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Aijun Qiao
- Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of SciencesZhongshanChina
| | - Xiaojun Liu
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences & School of Basic Medicine Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Milani I, Codini M, Guarisco G, Chinucci M, Gaita C, Leonetti F, Capoccia D. Hepatokines and MASLD: The GLP1-Ras-FGF21-Fetuin-A Crosstalk as a Therapeutic Target. Int J Mol Sci 2024; 25:10795. [PMID: 39409124 PMCID: PMC11477334 DOI: 10.3390/ijms251910795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
The introduction of the term "Metabolic Steatotic Liver Disease" (MASLD) underscores the critical role of metabolic dysfunction in the development and progression of chronic liver disease and emphasizes the need for strategies that address both liver disease and its metabolic comorbidities. In recent years, a liver-focused perspective has revealed that altered endocrine function of the fatty liver is a key contributor to the metabolic dysregulation observed in MASLD. Due to its secretory capacity, the liver's increased production of proteins known as "hepatokines" has been linked to the development of insulin resistance, explaining why MASLD often precedes dysfunction in other organs and ultimately contributes to systemic metabolic disease. Among these hepatokines, fibroblast growth factor 21 (FGF21) and fetuin-A play central roles in regulating the metabolic abnormalities associated with MASLD, explaining why their dysregulated secretion in response to metabolic stress has been implicated in the metabolic abnormalities of MASLD. This review postulates why their modulation by GLP1-Ras may mediate the beneficial metabolic effects of these drugs, which have increased attention to their emerging role as pharmacotherapy for MASLD. By discussing the crosstalk between GLP1-Ras-FGF21-fetuin-A, this review hypothesizes that the possible modulation of fetuin-A by the novel GLP1-FGF21 dual agonist pharmacotherapy may contribute to the management of metabolic and liver diseases. Although research is needed to go into the details of this crosstalk, this topic may help researchers explore the mechanisms by which this type of pharmacotherapy may manage the metabolic dysfunction of MASLD.
Collapse
Affiliation(s)
- Ilaria Milani
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti 48, 06123 Perugia, Italy;
| | - Gloria Guarisco
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Marianna Chinucci
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Chiara Gaita
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Frida Leonetti
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| | - Danila Capoccia
- Department of Medico-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome La Sapienza, 04100 Latina, Italy; (I.M.); (G.G.); (M.C.); (C.G.); (F.L.)
| |
Collapse
|
5
|
Ji Y, Lu Q, Duan Y, Chen X, Zhang Y, Yao W, Yin J, Gao X. Enhanced bioactivity and stability of a long-acting FGF21: A novel variant for the treatment of NASH. Biochimie 2024; 225:26-39. [PMID: 38740172 DOI: 10.1016/j.biochi.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Fibroblast growth factor 21 (FGF21) is pivotal in regulating energy metabolism, highlighting substantial therapeutic potential for non-alcoholic steatohepatitis (NASH). Previously, we reported a long-acting FGF21 fusion protein, PsTag-FGF21, which was prepared by genetically fusing human FGF21 with a 648-residue polypeptide (PsTag). While this fusion protein demonstrated therapeutic efficacy against NASH, our final product analysis revealed the presence of fixed impurities resistant to effective removal, indicating potential degradation of PsTag-FGF21. Here, we enriched and analyzed the impurities, confirming our hypothesis regarding the C-terminal degradation of PsTag-FGF21. We now describe a new variant developed to eliminate the C-terminal degradation. By introducing one mutation located at the C-terminal of PsTag-FGF21(V169L), we demonstrated that the new molecule, PsTag-FGF21(V169L), exhibits many improved attributes. Compared with PsTag-FGF21, PsTag-FGF21(V169L) displayed elevated bioactivity and stability, along with a twofold enhanced binding affinity to the coreceptor β-Klotho. In vivo, the circulating half-life of PsTag-FGF21(V169L) was further enhanced compared with that of PsTag-FGF21. In NASH mice, PsTag-FGF21(V169L) demonstrated efficacy with sustained improvements in multiple metabolic parameters. Besides, PsTag-FGF21(V169L) demonstrated the ability to alleviate NASH by decreasing hepatocyte apoptosis. The superior biophysical, pharmacokinetic, and pharmacodynamic properties, along with the positive metabolic effects, imply that further clinical development of PsTag-FGF21(V169L) as a metabolic therapy for NASH patients may be warranted.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingzhou Lu
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiliang Duan
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Xuan Chen
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuxi Zhang
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Draggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Brinker EJ, Hardcastle MR, Dittmer KE, Graff EC. Endocrine fibroblast growth factors in domestic animals. Domest Anim Endocrinol 2024; 89:106872. [PMID: 39059301 DOI: 10.1016/j.domaniend.2024.106872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Fibroblast growth factors (FGFs) are a group of structurally homologous yet functionally pleiotropic proteins. Canonical and intracellular FGFs have primarily autocrine or paracrine effects. However, the FGF19 subfamily, composed of FGF15/19, FGF21, and FGF23, act as endocrine hormones that regulate bile acid, metabolic, and phosphorus homeostasis, respectively. Current research in human and rodent models demonstrates the potential of these endocrine FGFs to target various diseases, including disorders of inherited hypophosphatemia, chronic liver disease, obesity, and insulin resistance. Many diseases targeted for therapeutic use in humans have pathophysiological overlaps in domestic animals. Despite the potential clinical and economic impact, little is known about endocrine FGFs and their signaling pathways in major domestic animal species compared with humans and laboratory animals. This review aims to describe the physiology of these endocrine FGFs, discuss their current therapeutic use, and summarize the contemporary literature regarding endocrine FGFs in domestic animals, focusing on potential future directions.
Collapse
Affiliation(s)
- Emily J Brinker
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Department of Comparative Pathobiology, Cummings School of Veterinary Medicine at Tufts University, 200 Westboro Road, North Grafton, MA, USA 01536
| | - Michael R Hardcastle
- IDEXX Laboratories Pty. Ltd., 20A Maui Street, Pukete, Hamilton 3200, New Zealand
| | - Keren E Dittmer
- School of Veterinary Sciences, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, 166 Greene Hall, Auburn University, AL, USA 36849; Scott-Ritchey Research Center, College of Veterinary Medicine, Dr. Auburn University, 1265 HC Morgan, AL, USA 36849.
| |
Collapse
|
7
|
Kim B, Ronaldo R, Kweon BN, Yoon S, Park Y, Baek JH, Lee JM, Hyun CK. Mesenchymal Stem Cell-Derived Exosomes Attenuate Hepatic Steatosis and Insulin Resistance in Diet-Induced Obese Mice by Activating the FGF21-Adiponectin Axis. Int J Mol Sci 2024; 25:10447. [PMID: 39408777 PMCID: PMC11476820 DOI: 10.3390/ijms251910447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Exosomes derived from mesenchymal stem cells have shown promise in treating metabolic disorders, yet their specific mechanisms remain largely unclear. This study investigates the protective effects of exosomes from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs) against adiposity and insulin resistance in high-fat diet (HFD)-induced obese mice. HFD-fed mice treated with hWJMSC-derived exosomes demonstrated improved gut barrier integrity, which restored immune balance in the liver and adipose tissues by reducing macrophage infiltration and pro-inflammatory cytokine expression. Furthermore, these exosomes normalized lipid metabolism including lipid oxidation and lipogenesis, which alleviate lipotoxicity-induced endoplasmic reticulum (ER) stress, thereby decreasing fat accumulation and chronic tissue inflammation in hepatic and adipose tissues. Notably, hWJMSC-derived exosomes also promoted browning and thermogenic capacity of adipose tissues, which was linked to reduced fibroblast growth factor 21 (FGF21) resistance and increased adiponectin production. This process activated the AMPK-SIRT1-PGC-1α pathway, highlighting the role of the FGF21-adiponectin axis. Our findings elucidate the molecular mechanisms through which hWJMSC-derived exosomes counteract HFD-induced metabolic dysfunctions, supporting their potential as therapeutic agents for metabolic disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang 37554, Gyungbuk, Republic of Korea
| |
Collapse
|
8
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
9
|
Habib S. Team players in the pathogenesis of metabolic dysfunctions-associated steatotic liver disease: The basis of development of pharmacotherapy. World J Gastrointest Pathophysiol 2024; 15:93606. [PMID: 39220834 PMCID: PMC11362842 DOI: 10.4291/wjgp.v15.i4.93606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024] Open
Abstract
Nutrient metabolism is regulated by several factors. Social determinants of health with or without genetics are the primary regulator of metabolism, and an unhealthy lifestyle affects all modulators and mediators, leading to the adaptation and finally to the exhaustion of cellular functions. Hepatic steatosis is defined by presence of fat in more than 5% of hepatocytes. In hepatocytes, fat is stored as triglycerides in lipid droplet. Hepatic steatosis results from a combination of multiple intracellular processes. In a healthy individual nutrient metabolism is regulated at several steps. It ranges from the selection of nutrients in a grocery store to the last step of consumption of ATP as an energy or as a building block of a cell as structural component. Several hormones, peptides, and genes have been described that participate in nutrient metabolism. Several enzymes participate in each nutrient metabolism as described above from ingestion to generation of ATP. As of now several publications have revealed very intricate regulation of nutrient metabolism, where most of the regulatory factors are tied to each other bidirectionally, making it difficult to comprehend chronological sequence of events. Insulin hormone is the primary regulator of all nutrients' metabolism both in prandial and fasting states. Insulin exerts its effects directly and indirectly on enzymes involved in the three main cellular function processes; metabolic, inflammation and repair, and cell growth and regeneration. Final regulators that control the enzymatic functions through stimulation or suppression of a cell are nuclear receptors in especially farnesoid X receptor and peroxisome proliferator-activated receptor/RXR ligands, adiponectin, leptin, and adiponutrin. Insulin hormone has direct effect on these final modulators. Whereas blood glucose level, serum lipids, incretin hormones, bile acids in conjunction with microbiota are intermediary modulators which are controlled by lifestyle. The purpose of this review is to overview the key players in the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) that help us understand the disease natural course, risk stratification, role of lifestyle and pharmacotherapy in each individual patient with MASLD to achieve personalized care and target the practice of precision medicine. PubMed and Google Scholar databases were used to identify publication related to metabolism of carbohydrate and fat in states of health and disease states; MASLD, cardiovascular disease and cancer. More than 1000 publications including original research and review papers were reviewed.
Collapse
Affiliation(s)
- Shahid Habib
- Department of Hepatology, Liver Institute PLLC, Tucson, AZ 85712, United States
| |
Collapse
|
10
|
Liu L, Ito M, Sakai S, Liu J, Ohta K, Saito K, Nakashima K, Satoh S, Konno A, Suzuki T. FGF21 upregulation by hepatitis C virus via the eIF2α-ATF4 pathway: implications for interferon signaling suppression and TRIM31-mediated TSC degradation. Front Microbiol 2024; 15:1456108. [PMID: 39211324 PMCID: PMC11357932 DOI: 10.3389/fmicb.2024.1456108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver diseases and is known to induce endoplasmic reticulum (ER) stress, which alters cellular homeostasis and metabolic processes. While ER stress is implicated in HCV-related diseases, its precise role remains unclear. This study identifies fibroblast growth factor 21 (FGF21) as a key host factor significantly upregulated by HCV infection. Mechanistic analyses reveal that the activation of the FGF21 promoter by HCV is primarily mediated by the transcription factor ATF4, which is upregulated through the phosphorylation of eIF2α induced by ER stress. Additionally, CREBH activation further enhances ATF4 expression, contributing to increased FGF21 levels. TRIB3, upregulated by ATF4, acts as a negative regulator of FGF21 expression. The study also identifies FGF21-dependent upregulation of SOCS2 and TRIM31 in HCV-infected cells. SOCS2 contributes to the suppression of type 1 interferon signaling, aiding viral persistence, while TRIM31 promotes the degradation of the tumor suppressor protein TSC, activating the mTORC1 pathway and potentially promoting liver cell proliferation. These findings suggest that FGF21 upregulation in HCV-infected cells may play a role in both immune response regulation and cell proliferation, contributing to sustained viral infection and disease progression.
Collapse
Affiliation(s)
- Liang Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Masahiko Ito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Jie Liu
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kazuyoshi Ohta
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
- 2nd Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Saito
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Kenji Nakashima
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Shinya Satoh
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Alu Konno
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
11
|
Xue J, Liu Y, Liu B, Jia X, Fang X, Qin S, Zhang Y. Celastrus orbiculatus Thunb. extracts and celastrol alleviate NAFLD by preserving mitochondrial function through activating the FGF21/AMPK/PGC-1α pathway. Front Pharmacol 2024; 15:1444117. [PMID: 39161898 PMCID: PMC11330833 DOI: 10.3389/fphar.2024.1444117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a prevalent chronic liver disease globally, characterized by the accumulation of lipids, oxidative stress, and mitochondrial dysfunction in the liver. Celastrus orbiculatus Thunb. (COT) and its active compound celastrol (CEL) have demonstrated antioxidant and anti-inflammatory properties. Our prior research has shown the beneficial effects of COT in mitigating NAFLD induced by a high-fat diet (HFD) in guinea pigs by reducing hepatic lipid levels and inhibiting oxidative stress. This study further assessed the effects of COT on NAFLD and explored its underlying mitochondria-related mechanisms. Methods COT extract or CEL was administered as an intervention in C57BL/6J mice fed a HFD or in HepG2 cells treated with sodium oleate. Oral glucose tolerance test, biochemical parameters including liver enzymes, blood lipid, and pro-inflammatory factors, and steatosis were evaluated. Meanwhile, mitochondrial ultrastructure and indicators related to oxidative stress were tested. Furthermore, regulators of mitochondrial function were measured using RT-qPCR and Western blot. Results The findings demonstrated significant reductions in hepatic steatosis, oxidative stress, and inflammation associated with NAFLD in both experimental models following treatment with COT extract or CEL. Additionally, improvements were observed in mitochondrial structure, ATP content, and ATPase activity. This improvement can be attributed to the significant upregulation of mRNA and protein expression levels of key regulators including FGF21, AMPK, PGC-1α, PPARγ, and SIRT3. Conclusion These findings suggest that COT may enhance mitochondrial function by activating the FGF21/AMPK/PGC-1α signaling pathway to mitigate NAFLD, which indicated that COT has the potential to target mitochondria and serve as a novel therapeutic option for NAFLD.
Collapse
Affiliation(s)
- Junli Xue
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yunchao Liu
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Boyan Liu
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xiubin Jia
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xinsheng Fang
- College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, The Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| |
Collapse
|
12
|
Negroiu CE, Riza AL, Streață I, Tudorașcu I, Beznă CM, Ungureanu AI, Dănoiu S. Connecting the Dots: FGF21 as a Potential Link between Obesity and Cardiovascular Health in Acute Coronary Syndrome Patients. Curr Issues Mol Biol 2024; 46:8512-8525. [PMID: 39194718 DOI: 10.3390/cimb46080501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a hormone involved in regulating the metabolism, energy balance, and glucose homeostasis, with new studies demonstrating its beneficial effects on the heart. This study investigated the relationship between FGF21 levels and clinical, biochemical, and echocardiographic parameters in patients with acute coronary syndromes (ACSs). This study included 80 patients diagnosed with ACS between May and July 2023, categorized into four groups based on body mass index (BMI): Group 1 (BMI 18.5-24.9 kg/m2), Group 2 (BMI 25-29.9 kg/m2), Group 3 (BMI 30-34.9 kg/m2), and Group 4 (BMI ≥ 35 kg/m2). Serum FGF21 levels were measured by ELISA (Abclonal Catalog NO.: RK00084). Serum FGF21 levels were quantifiable in 55 samples (mean ± SD: 342.42 ± 430.17 pg/mL). Group-specific mean FGF21 levels were 238.98 pg/mL ± SD in Group 1 (n = 14), 296.78 pg/mL ± SD in Group 2 (n = 13), 373.77 pg/mL ± SD in Group 3 (n = 12), and 449.94 pg/mL ± SD in Group 4 (n = 16), with no statistically significant differences between groups (p = 0.47). Based on ACS diagnoses, mean FGF21 levels were 245.72 pg/mL for STEMI (n = 21), 257.89 pg/mL for NSTEMI (n = 9), and 456.28 pg/mL for unstable angina (n = 25), with no significant differences observed between these diagnostic categories. Significant correlations were identified between FGF21 levels and BMI, diastolic blood pressure, and serum chloride. Regression analyses revealed correlations with uric acid, chloride, and creatinine kinase MB. This study highlights the complex interplay between FGF21, BMI, and acute coronary syndromes. While no significant differences were found in FGF21 levels between the different BMI and ACS diagnostic groups, correlations with clinical and biochemical parameters suggest a multifaceted role of FGF21 in cardiovascular health. Further research with a larger sample size is warranted to elucidate these relationships.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca-Lelia Riza
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
- Regional Centre of Medical Genetics Dolj, Emergengy County Hospital Craiova, 200642 Craiova, Romania
| | - Iulia Tudorașcu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| | - Cristina Maria Beznă
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Adrian Ionuț Ungureanu
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Cardiology, County Clinical Emergency Hospital of Craiova, 200642 Craiova, Romania
| | - Suzana Dănoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200642 Craiova, Romania
| |
Collapse
|
13
|
Stamou MI, Chiu CJ, Jadhav SV, Lopes VF, Salnikov KB, Plummer L, Lippincott MF, Lee H, Seminara SB, Balasubramanian R. Defective FGFR1 Signaling Disrupts Glucose Regulation: Evidence From Humans With FGFR1 Mutations. J Endocr Soc 2024; 8:bvae118. [PMID: 38957656 PMCID: PMC11216325 DOI: 10.1210/jendso/bvae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 07/04/2024] Open
Abstract
Context Activation of fibroblast growth factor receptor 1 (FGFR1) signaling improves the metabolic health of animals and humans, while inactivation leads to diabetes in mice. Direct human genetic evidence for the role of FGFR1 signaling in human metabolic health has not been fully established. Objective We hypothesized that individuals with naturally occurring FGFR1 variants ("experiments of nature") will display glucose dysregulation. Methods Participants with rare FGFR1 variants and noncarrier controls. Using a recall-by-genotype approach, we examined the β-cell function and insulin sensitivity of 9 individuals with rare FGFR1 deleterious variants compared to 27 noncarrier controls, during a frequently sampled intravenous glucose tolerance test at the Reproductive Endocrine Unit and the Harvard Center for Reproductive Medicine, Massachusetts General Hospital. FGFR1-mutation carriers displayed higher β-cell function in the face of lower insulin sensitivity compared to controls. Conclusion These findings suggest that impaired FGFR1 signaling may contribute to an early insulin resistance phase of diabetes pathogenesis and support the candidacy of the FGFR1 signaling pathway as a therapeutic target for improving the human metabolic health.
Collapse
Affiliation(s)
- Maria I Stamou
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Crystal J Chiu
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shreya V Jadhav
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Vanessa Ferreira Lopes
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn B Salnikov
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lacey Plummer
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Margaret F Lippincott
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- MGH Biostatistics Center and MGH Division of Clinical Research (DCR) Biostatistics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Stephanie B Seminara
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ravikumar Balasubramanian
- Reproductive Endocrine Unit and Harvard Center for Reproductive Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
14
|
Ghanem M, Archer G, Crestani B, Mailleux AA. The endocrine FGFs axis: A systemic anti-fibrotic response that could prevent pulmonary fibrogenesis? Pharmacol Ther 2024; 259:108669. [PMID: 38795981 DOI: 10.1016/j.pharmthera.2024.108669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease for which therapeutic options are limited, with an unmet need to identify new therapeutic targets. IPF is thought to be the consequence of repeated microlesions of the alveolar epithelium, leading to aberrant epithelial-mesenchymal communication and the accumulation of extracellular matrix proteins. The reactivation of developmental pathways, such as Fibroblast Growth Factors (FGFs), is a well-described mechanism during lung fibrogenesis. Secreted FGFs with local paracrine effects can either exert an anti-fibrotic or a pro-fibrotic action during this pathological process through their FGF receptors (FGFRs) and heparan sulfate residues as co-receptors. Among FGFs, endocrine FGFs (FGF29, FGF21, and FGF23) play a central role in the control of metabolism and tissue homeostasis. They are characterized by a low affinity for heparan sulfate, present in the cell vicinity, allowing them to have endocrine activity. Nevertheless, their interaction with FGFRs requires the presence of mandatory co-receptors, alpha and beta Klotho proteins (KLA and KLB). Endocrine FGFs are of growing interest for their anti-fibrotic action during liver, kidney, or myocardial fibrosis. Innovative therapies based on FGF19 or FGF21 analogs are currently being studied in humans during liver fibrosis. Recent data report a similar anti-fibrotic action of endocrine FGFs in the lung, suggesting a systemic regulation of the pulmonary fibrotic process. In this review, we summarize the current knowledge on the protective effect of endocrine FGFs during the fibrotic processes, with a focus on pulmonary fibrosis.
Collapse
Affiliation(s)
- Mada Ghanem
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Gabrielle Archer
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France
| | - Bruno Crestani
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France; Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Pneumologie A, FHU APOLLO, Paris, France
| | - Arnaud A Mailleux
- Université Paris Cité, Inserm, Physiopathologie et Épidémiologie des Maladies Respiratoires, F-75018 Paris, France.
| |
Collapse
|
15
|
Filtz A, Parihar S, Greenberg GS, Park CM, Scotti A, Lorenzatti D, Badimon JJ, Soffer DE, Toth PP, Lavie CJ, Bittner V, Virani SS, Slipczuk L. New approaches to triglyceride reduction: Is there any hope left? Am J Prev Cardiol 2024; 18:100648. [PMID: 38584606 PMCID: PMC10998004 DOI: 10.1016/j.ajpc.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024] Open
Abstract
Triglycerides play a crucial role in the efficient storage of energy in the body. Mild and moderate hypertriglyceridemia (HTG) is a heterogeneous disorder with significant association with atherosclerotic cardiovascular disease (ASCVD), including myocardial infarction, ischemic stroke, and peripheral artery disease and represents an important component of the residual ASCVD risk in statin treated patients despite optimal low-density lipoprotein cholesterol reduction. Individuals with severe HTG (>1,000 mg/dL) rarely develop atherosclerosis but have an incremental incidence of acute pancreatitis with significant morbidity and mortality. HTG can occur from a combination of genetic (both mono and polygenic) and environmental factors including poor diet, low physical activity, obesity, medications, and diseases like insulin resistance and other endocrine pathologies. HTG represents a potential target for ASCVD risk and pancreatitis risk reduction, however data on ASCVD reduction by treating HTG is still lacking and HTG-associated acute pancreatitis occurs too rarely to effectively demonstrate treatment benefit. In this review, we address the key aspects of HTG pathophysiology and examine the mechanisms and background of current and emerging therapies in the management of HTG.
Collapse
Affiliation(s)
- Annalisa Filtz
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Siddhant Parihar
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Garred S Greenberg
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christine M Park
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Scotti
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Lorenzatti
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan J Badimon
- Cardiology Department, Hospital General Jaen, Jaen, Spain
- Atherothrombosis Research Unit, Mount Sinai School of Medicine, New York, New York, USA
| | - Daniel E Soffer
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter P Toth
- CGH Medical Center, Sterling, Illinois
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the UQ School of Medicine, New Orleans, Louisiana, USA
| | - Vera Bittner
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Salim S Virani
- Section of Cardiology, Department of Medicine, The Aga Khan University, Karachi, Pakistan
- Section of Cardiology, Texas Heart Institute & Baylor College of Medicine, Houston, TX, USA
| | - Leandro Slipczuk
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
16
|
Puengel T, Tacke F. Pharmacotherapeutic options for metabolic dysfunction-associated steatotic liver disease: where are we today? Expert Opin Pharmacother 2024; 25:1249-1263. [PMID: 38954663 DOI: 10.1080/14656566.2024.2374463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is defined by hepatic steatosis and cardiometabolic risk factors like obesity, type 2 diabetes, and dyslipidemia. Persistent metabolic injury may promote inflammatory processes resulting in metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. Mechanistic insights helped to identify potential drug targets, thereby supporting the development of novel compounds modulating disease drivers. AREAS COVERED The U.S. Food and Drug Administration has recently approved the thyroid hormone receptor β-selective thyromimetic resmetirom as the first compound to treat MASH and liver fibrosis. This review provides a comprehensive overview of current and potential future pharmacotherapeutic options and their modes of action. Lessons learned from terminated clinical trials are discussed together with the first results of trials investigating novel combinational therapeutic approaches. EXPERT OPINION Approval of resmetirom as the first anti-MASH agent may revolutionize the therapeutic landscape. However, long-term efficacy and safety data for resmetirom are currently lacking. In addition, heterogeneity of MASLD reflects a major challenge to define effective agents. Several lead compounds demonstrated efficacy in reducing obesity and hepatic steatosis, while anti-inflammatory and antifibrotic effects of monotherapy appear less robust. Better mechanistic understanding, exploration of combination therapies, and patient stratification hold great promise for MASLD therapy.
Collapse
Affiliation(s)
- Tobias Puengel
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
17
|
Lin C, Zhang S, Yang P, Zhang B, Guo W, Wu R, Liu Y, Wang J, Wu H, Cai H. Combination of UGT1A1 polymorphism and baseline plasma bilirubin levels in predicting the risk of antipsychotic-induced dyslipidemia in schizophrenia patients. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:52. [PMID: 38760414 PMCID: PMC11101411 DOI: 10.1038/s41537-024-00473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
The prolonged usage of atypical antipsychotic drugs (AAPD) among individuals with schizophrenia often leads to metabolic side effects such as dyslipidemia. These effects not only limit one's selection of AAPD but also significantly reduce compliance and quality of life of patients. Recent studies suggest that bilirubin plays a crucial role in maintaining lipid homeostasis and may be a potential pre-treatment biomarker for individuals with dyslipidemia. The present study included 644 schizophrenia patients from two centers. Demographic and clinical characteristics were collected at baseline and 4 weeks after admission to investigate the correlation between metabolites, episodes, usage of AAPDs, and occurrence of dyslipidemia. Besides, we explored the combined predictive value of genotypes and baseline bilirubin for dyslipidemia by employing multiple PCR targeted capture techniques to sequence two pathways: bilirubin metabolism-related genes and lipid metabolism-related genes. Our results indicated that there existed a negative correlation between the changes in bilirubin levels and triglyceride (TG) levels in patients with schizophrenia. Among three types of bilirubin, direct bilirubin in the baseline (DBIL-bl) proved to be the most effective in predicting dyslipidemia in the ROC analysis (AUC = 0.627, p < 0.001). Furthermore, the odds ratio from multinomial logistic regression analysis showed that UGT1A1*6 was a protective factor for dyslipidemia (ß = -12.868, p < 0.001). The combination of baseline DBIL and UGT1A1*6 significantly improved the performance in predicting dyslipidemia (AUC = 0.939, p < 0.001). Schizophrenia patients with UGT1A1*6 mutation and a certain level of baseline bilirubin may be more resistant to dyslipidemia and have more selections for AAPD than other patients.
Collapse
Affiliation(s)
- Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shuangyang Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Renrong Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Yong Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Jianjian Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Haishan Wu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center on Mental Disorders, Changsha, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
- National Clinical Research Center on Mental Disorders, Changsha, China.
| |
Collapse
|
18
|
Kokkorakis M, Muzurović E, Volčanšek Š, Chakhtoura M, Hill MA, Mikhailidis DP, Mantzoros CS. Steatotic Liver Disease: Pathophysiology and Emerging Pharmacotherapies. Pharmacol Rev 2024; 76:454-499. [PMID: 38697855 DOI: 10.1124/pharmrev.123.001087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/22/2023] [Accepted: 01/25/2024] [Indexed: 05/05/2024] Open
Abstract
Steatotic liver disease (SLD) displays a dynamic and complex disease phenotype. Consequently, the metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH) therapeutic pipeline is expanding rapidly and in multiple directions. In parallel, noninvasive tools for diagnosing and monitoring responses to therapeutic interventions are being studied, and clinically feasible findings are being explored as primary outcomes in interventional trials. The realization that distinct subgroups exist under the umbrella of SLD should guide more precise and personalized treatment recommendations and facilitate advancements in pharmacotherapeutics. This review summarizes recent updates of pathophysiology-based nomenclature and outlines both effective pharmacotherapeutics and those in the pipeline for MASLD/MASH, detailing their mode of action and the current status of phase 2 and 3 clinical trials. Of the extensive arsenal of pharmacotherapeutics in the MASLD/MASH pipeline, several have been rejected, whereas other, mainly monotherapy options, have shown only marginal benefits and are now being tested as part of combination therapies, yet others are still in development as monotherapies. Although the Food and Drug Administration (FDA) has recently approved resmetirom, additional therapeutic approaches in development will ideally target MASH and fibrosis while improving cardiometabolic risk factors. Due to the urgent need for the development of novel therapeutic strategies and the potential availability of safety and tolerability data, repurposing existing and approved drugs is an appealing option. Finally, it is essential to highlight that SLD and, by extension, MASLD should be recognized and approached as a systemic disease affecting multiple organs, with the vigorous implementation of interdisciplinary and coordinated action plans. SIGNIFICANCE STATEMENT: Steatotic liver disease (SLD), including metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis, is the most prevalent chronic liver condition, affecting more than one-fourth of the global population. This review aims to provide the most recent information regarding SLD pathophysiology, diagnosis, and management according to the latest advancements in the guidelines and clinical trials. Collectively, it is hoped that the information provided furthers the understanding of the current state of SLD with direct clinical implications and stimulates research initiatives.
Collapse
Affiliation(s)
- Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Emir Muzurović
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Špela Volčanšek
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Marlene Chakhtoura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Michael A Hill
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Dimitri P Mikhailidis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (M.K., C.S.M.); Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands (M.K.); Endocrinology Section, Department of Internal Medicine, Clinical Center of Montenegro, Podgorica, Montenegro (E.M.); Faculty of Medicine, University of Montenegro, Podgorica, Montenegro (E.M.); Department of Endocrinology, Diabetes, and Metabolic Diseases, University Medical Center Ljubljana, Ljubljana, Slovenia (Š.V.); Medical Faculty Ljubljana, Ljubljana, Slovenia (Š.V.); Division of Endocrinology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon (M.C.); Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri (M.A.H.); Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri (M.A.H.); Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom (D.P.M.); Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates (D.P.M.); and Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts (C.S.M.)
| |
Collapse
|
19
|
Li S, Zou T, Chen J, Li J, You J. Fibroblast growth factor 21: An emerging pleiotropic regulator of lipid metabolism and the metabolic network. Genes Dis 2024; 11:101064. [PMID: 38292170 PMCID: PMC10825286 DOI: 10.1016/j.gendis.2023.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/20/2023] [Accepted: 06/27/2023] [Indexed: 02/01/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) was originally identified as an important metabolic regulator which plays a crucial physiological role in regulating a variety of metabolic parameters through the metabolic network. As a novel multifunctional endocrine growth factor, the role of FGF21 in the metabolic network warrants extensive exploration. This insight was obtained from the observation that the FGF21-dependent mechanism that regulates lipid metabolism, glycogen transformation, and biological effectiveness occurs through the coordinated participation of the liver, adipose tissue, central nervous system, and sympathetic nerves. This review focuses on the role of FGF21-uncoupling protein 1 (UCP1) signaling in lipid metabolism and how FGF21 alleviates non-alcoholic fatty liver disease (NAFLD). Additionally, this review reveals the mechanism by which FGF21 governs glucolipid metabolism. Recent research on the role of FGF21 in the metabolic network has mostly focused on the crucial pathway of glucolipid metabolism. FGF21 has been shown to have multiple regulatory roles in the metabolic network. Since an adequate understanding of the concrete regulatory pathways of FGF21 in the metabolic network has not been attained, this review sheds new light on the metabolic mechanisms of FGF21, explores how FGF21 engages different tissues and organs, and lays a theoretical foundation for future in-depth research on FGF21-targeted treatment of metabolic diseases.
Collapse
Affiliation(s)
| | | | - Jun Chen
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jiaming Li
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
20
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
21
|
Negroiu CE, Tudoraşcu RI, Beznă MC, Ungureanu AI, Honţaru SO, Dănoiu S. The role of FGF21 in the interplay between obesity and non-alcoholic fatty liver disease: a narrative review. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2024; 65:159-172. [PMID: 39020530 PMCID: PMC11384831 DOI: 10.47162/rjme.65.2.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Obesity poses a significant and escalating challenge in contemporary society, increasing the risk of developing various metabolic disorders such as dyslipidemia, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and certain types of cancer. The current array of therapeutic interventions for obesity remains insufficient, prompting a pressing demand for novel and more effective treatments. In response, scientific attention has turned to the fibroblast growth factor 21 (FGF21) due to its remarkable and diverse impacts on lipid, carbohydrate, and energy metabolism. This comprehensive review aims to delve into the multifaceted aspects of FGF21, encompassing its discovery, synthesis, functional roles, and potential as a biomarker and therapeutic agent, with a specific focus on its implications for NAFLD.
Collapse
Affiliation(s)
- Cristina Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Romania; ; Department of Health Care and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University Center of Piteşti, National University for Science and Technology Politehnica, Bucharest, Romania;
| | | | | | | | | | | |
Collapse
|
22
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
23
|
Hu C, Qiao W, Li X, Ning ZK, Liu J, Dalangood S, Li H, Yu X, Zong Z, Wen Z, Gui J. Tumor-secreted FGF21 acts as an immune suppressor by rewiring cholesterol metabolism of CD8 +T cells. Cell Metab 2024; 36:630-647.e8. [PMID: 38309268 DOI: 10.1016/j.cmet.2024.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/19/2023] [Accepted: 01/10/2024] [Indexed: 02/05/2024]
Abstract
Tumors employ diverse strategies for immune evasion. Unraveling the mechanisms by which tumors suppress anti-tumor immunity facilitates the development of immunotherapies. Here, we have identified tumor-secreted fibroblast growth factor 21 (FGF21) as a pivotal immune suppressor. FGF21 is upregulated in multiple types of tumors and promotes tumor progression. Tumor-secreted FGF21 significantly disrupts anti-tumor immunity by rewiring cholesterol metabolism of CD8+T cells. Mechanistically, FGF21 sustains the hyperactivation of AKT-mTORC1-sterol regulatory-element-binding protein 1 (SREBP1) signal axis in the activated CD8+T cells, resulting in the augment of cholesterol biosynthesis and T cell exhaustion. FGF21 knockdown or blockade using a neutralizing antibody normalizes AKT-mTORC1 signaling and reduces excessive cholesterol accumulation in CD8+T cells, thus restoring CD8+T cytotoxic function and robustly suppressing tumor growth. Our findings reveal FGF21 as a "secreted immune checkpoint" that hampers anti-tumor immunity, suggesting that inhibiting FGF21 could be a valuable strategy to enhance the cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Cegui Hu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Qiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Kun Ning
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Jiang Liu
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiang Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhen Zong
- Department of Gastroenterological Surgery, the Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi, China.
| | - Zhenke Wen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Jun Gui
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
24
|
Harrison SA, Frias JP, Lucas KJ, Reiss G, Neff G, Bollepalli S, Su Y, Chan D, Tillman EJ, Moulton A, de Temple B, Zari A, Shringarpure R, Rolph T, Cheng A, Yale K. Safety and Efficacy of Efruxifermin in Combination With a GLP-1 Receptor Agonist in Patients With NASH/MASH and Type 2 Diabetes in a Randomized Phase 2 Study. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00226-X. [PMID: 38447814 DOI: 10.1016/j.cgh.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND & AIMS In phase 2 studies, efruxifermin, an Fc-FGF21 analog, significantly reduced steatohepatitis and fibrosis in patients with non-alcoholic steatohepatitis, now called metabolic dysfunction-associated steatohepatitis (MASH), for which there is no approved treatment. Type 2 diabetes (T2D) and obesity are prevalent among patients with MASH and increasingly treated with glucagon-like peptide-1 receptor agonists (GLP-1RAs). This study evaluated the safety and efficacy of efruxifermin in patients with MASH, fibrosis, and T2D taking a GLP-1RA. METHODS Cohort D was a double-blind, placebo-controlled, phase 2b study in adults with T2D and MASH with fibrosis (F1-F3) on stable GLP-1RA therapy randomized (2:1) to receive efruxifermin 50 mg or placebo, once weekly for 12 weeks. The primary endpoint was safety and tolerability of efruxifermin added to a stable dose of GLP-1RA. Secondary endpoints included changes in hepatic fat fraction (HFF), markers of liver injury and fibrosis, and metabolic parameters. RESULTS Adults (N = 31) with T2D and MASH fibrosis (F1-F3) on a stable GLP-1RA (semaglutide, 48.4%; dulaglutide, 45.2%; liraglutide, 6.5%) received efruxifermin 50 mg (n = 21) or placebo (n = 10) for 12 weeks. The addition of efruxifermin to a GLP-1RA appeared safe and well-tolerated. The most frequent efruxifermin-related adverse events were mild to moderate gastrointestinal events. One patient receiving efruxifermin discontinued due to nausea, and another withdrew consent. There were no treatment-related serious adverse events. After 12 weeks, efruxifermin reduced HFF by 65% (P < .0001 vs placebo) compared with a 10% reduction for placebo (GLP-1RA alone). Efruxifermin also improved noninvasive markers of liver injury, fibrosis, glucose, and lipid metabolism while maintaining GLP-1RA-mediated weight loss. CONCLUSIONS The tolerability profile of efruxifermin added to GLP-1RA appeared comparable to that of either drug alone, while also significantly reducing HFF and noninvasive markers of fibrosis in patients with MASH and T2D. Liver health in patients already on a GLP-1RA may be further improved by addition of efruxifermin. CLINICALTRIALS gov, Number: NCT05039450.
Collapse
Affiliation(s)
- Stephen A Harrison
- University of Oxford, Oxford, United Kingdom; Pinnacle Clinical Research, San Antonio, Texas
| | - Juan P Frias
- Velocity Clinical Research, Los Angeles, California
| | | | - Gary Reiss
- Tandem Clinical Research, Marrero, Louisiana
| | - Guy Neff
- Covenant Metabolic Specialists, LLC, Sarasota, Florida; Covenant Research and Clinics LLC, Ft. Myers, Florida
| | | | - Yan Su
- Medpace, Cincinnati, Ohio
| | - Doreen Chan
- Akero Therapeutics Inc, South San Francisco, California
| | | | - Ali Moulton
- Akero Therapeutics Inc, South San Francisco, California
| | | | - Arian Zari
- Akero Therapeutics Inc, South San Francisco, California
| | | | - Timothy Rolph
- Akero Therapeutics Inc, South San Francisco, California
| | - Andrew Cheng
- Akero Therapeutics Inc, South San Francisco, California
| | - Kitty Yale
- Akero Therapeutics Inc, South San Francisco, California
| |
Collapse
|
25
|
Jackson TC, Herrmann JR, Fink EL, Au AK, Kochanek PM. Harnessing the Promise of the Cold Stress Response for Acute Brain Injury and Critical Illness in Infants and Children. Pediatr Crit Care Med 2024; 25:259-270. [PMID: 38085024 PMCID: PMC10932834 DOI: 10.1097/pcc.0000000000003424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Affiliation(s)
- Travis C. Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jeremy R. Herrmann
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ericka L. Fink
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Alicia K. Au
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Martins FF, Martins BC, Teixeira AVS, Ajackson M, Souza-Mello V, Daleprane JB. Brown Adipose Tissue, Batokines, and Bioactive Compounds in Foods: An Update. Mol Nutr Food Res 2024; 68:e2300634. [PMID: 38402434 DOI: 10.1002/mnfr.202300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/20/2023] [Indexed: 02/26/2024]
Abstract
The discovery of metabolically active brown adipose tissue (BAT) in human adults and the worldwide increase in obesity and obesity-related chronic noncommunicable diseases (NCDs) has made BAT a therapeutic target in the last two decades. The potential of BAT to oxidize fatty acids rapidly and increase energy expenditure inversely correlates with adiposity, insulin and glucose resistance, and cardiovascular and metabolic diseases. Currently, BAT is recognized by a new molecular signature; several BAT-derived molecules that act positively on target tissues have been identified and collectively called batokines. Bioactive compounds present in foods are endowed with thermogenic properties that increase BAT activation signaling. Understanding the mechanisms that lead to BAT activation and the batokines secreted by it within the thermogenic state is fundamental for its recruitment and management of obesity and NCDs. This review contributes to recent updates on the morphophysiology of BAT, its endocrine role in obesity, and the main bioactive compounds present in foods involved in classical and nonclassical thermogenic pathways activation.
Collapse
Affiliation(s)
- Fabiane Ferreira Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
- Department of Morphology, Federal University of Rio Grande do Norte, Rio Grande do Norte, 59078-970, Brazil
| | - Bruna Cadete Martins
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| | - Ananda Vitoria Silva Teixeira
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| | - Matheus Ajackson
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Biomedical Center, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, 205521031, Brazil
| | - Julio Beltrame Daleprane
- Laboratory for Studies of Interactions Between Nutrition and Genetics, LEING, Department of Basic and Experimental Nutrition, Rio de Janeiro State University, São Francisco Xavier 524, Rio de Janeiro, 20550900, Brazil
| |
Collapse
|
27
|
Eeda V, Patil NY, Joshi AD, Awasthi V. Advancements in metabolic-associated steatotic liver disease research: Diagnostics, small molecule developments, and future directions. Hepatol Res 2024; 54:222-234. [PMID: 38149861 PMCID: PMC10923026 DOI: 10.1111/hepr.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023]
Abstract
Metabolic (dysfunction)-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease, is a growing global health concern with no approved pharmacological treatments. At the same time, there are no standard methods to definitively screen for the presence of MASLD because of its progressive nature and symptomatic commonality with other disorders. Recent advances in molecular understanding of MASLD pathophysiology have intensified research on development of new drug molecules, repurposing of existing drugs approved for other indications, and an educated use of dietary supplements for its treatment and prophylaxis. This review focused on depicting the latest advancements in MASLD research related to small molecule development for prophylaxis or treatment and diagnosis, with emphasis on mechanistic basis at the molecular level.
Collapse
Affiliation(s)
- Venkateswararao Eeda
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Nikhil Yuvaraj Patil
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Aditya Dilip Joshi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
28
|
Zhu B, Wu H, Li KS, Eisa-Beygi S, Singh B, Bielenberg DR, Huang W, Chen H. Two sides of the same coin: Non-alcoholic fatty liver disease and atherosclerosis. Vascul Pharmacol 2024; 154:107249. [PMID: 38070759 DOI: 10.1016/j.vph.2023.107249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 02/03/2024]
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Kathryn S Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Diane R Bielenberg
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes and Metabolic Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, United States of America
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
29
|
Alkhouri N, Tseng L, Balic K, Mansbach H, Margalit M. Letter: Severe underweight and sarcopenia in decompensated cirrhosis are associated with high FGF21 levels-authors' reply. Aliment Pharmacol Ther 2024; 59:797-798. [PMID: 38401143 DOI: 10.1111/apt.17907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
LINKED CONTENTThis article is linked to Alkhouri et al papers. To view these articles, visit https://doi.org/10.1111/apt.17709 and https://doi.org/10.1111/apt.17881
Collapse
Affiliation(s)
| | - Leo Tseng
- 89bio, San Francisco, California, USA
| | | | | | | |
Collapse
|
30
|
Wu X, Yu Y, Wang M, Dai D, Yin J, Liu W, Kong D, Tang S, Meng M, Gao T, Zhang Y, Zhou Y, Guan N, Zhao S, Ye H. AAV-delivered muscone-induced transgene system for treating chronic diseases in mice via inhalation. Nat Commun 2024; 15:1122. [PMID: 38321056 PMCID: PMC10847102 DOI: 10.1038/s41467-024-45383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Gene therapies provide treatment options for many diseases, but the safe and long-term control of therapeutic transgene expression remains a primary issue for clinical applications. Here, we develop a muscone-induced transgene system packaged into adeno-associated virus (AAV) vectors (AAVMUSE) based on a G protein-coupled murine olfactory receptor (MOR215-1) and a synthetic cAMP-responsive promoter (PCRE). Upon exposure to the trigger, muscone binds to MOR215-1 and activates the cAMP signaling pathway to initiate transgene expression. AAVMUSE enables remote, muscone dose- and exposure-time-dependent control of luciferase expression in the livers or lungs of mice for at least 20 weeks. Moreover, we apply this AAVMUSE to treat two chronic inflammatory diseases: nonalcoholic fatty liver disease (NAFLD) and allergic asthma, showing that inhalation of muscone-after only one injection of AAVMUSE-can achieve long-term controllable expression of therapeutic proteins (ΔhFGF21 or ΔmIL-4). Our odorant-molecule-controlled system can advance gene-based precision therapies for human diseases.
Collapse
Affiliation(s)
- Xin Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Institute of Medical Technology, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
| | - Yuanhuan Yu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Meiyan Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Di Dai
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jianli Yin
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Wenjing Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Deqiang Kong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Shasha Tang
- Department of Breast Surgery, Tongji Hospital, School of Medicine, Tongji University, Xincun Road 389, Shanghai, 200065, China
| | - Meiyao Meng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Tian Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yuanjin Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Yang Zhou
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
- Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu, Anhui, China
| | - Ningzi Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Shangang Zhao
- Division of Endocrinology, Department of Medicine, Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Haifeng Ye
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- Wuhu Hospital, Health Science Center, East China Normal University, Middle Jiuhua Road 263, Wuhu, Anhui, China.
| |
Collapse
|
31
|
Hu Y, Yuan C, Abdulnaimu M, Memetmin J, Jie Z, Tuhuti A, Abudueini H, Guo Y. U-Shaped relationship of insulin-like growth factor I and incidence of nonalcoholic fatty liver in patients with pituitary neuroendocrine tumors: a cohort study. Front Endocrinol (Lausanne) 2024; 15:1290007. [PMID: 38370349 PMCID: PMC10869555 DOI: 10.3389/fendo.2024.1290007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Context Although the role of insulin-like growth factor I (IGF-1) in nonalcoholic fatty liver disease (NAFLD) has garnered attention in recent years, few studies have examined both reduced and elevated levels of IGF-1. Objective The aim of this study was to examine the potential relationship between IGF-1 levels and the risk of new-onset NAFLD in patients with pituitary neuroendocrine tumors (PitNET). Methods We employed multivariable Cox regression models and two-piecewise regression models to assess the association between IGF-1 and new-onset NAFLD. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were calculated to quantify this association. Furthermore, a dose-response correlation between lgIGF-1 and the development of NAFLD was plotted. Additionally, we also performed subgroup analysis and a series sensitivity analysis. Results A total of 3,291 PitNET patients were enrolled in the present study, and the median duration of follow-up was 65 months. Patients with either reduced or elevated levels of IGF-1 at baseline were found to be at a higher risk of NAFLD compared to PitNET patients with normal IGF-1(log-rank test, P < 0.001). In the adjusted Cox regression analysis model (model IV), compared with participants with normal IGF-1, the HRs of those with elevated and reduced IGF-1 were 2.33 (95% CI 1.75, 3.11) and 2.2 (95% CI 1.78, 2.7). Furthermore, in non-adjusted or adjusted models, our study revealed a U-shaped relationship between lgIGF-1 and the risk of NAFLD. Moreover, the results from subgroup and sensitivity analyses were consistent with the main results. Conclusions There was a U-shaped trend between IGF-1 and new-onset NAFLD in patients with PitNET. Further evaluation of our discoveries is warranted.
Collapse
Affiliation(s)
- Yan Hu
- Graduate School, Xinjiang Medical University, Urumqi, China
| | - Chen Yuan
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Muila Abdulnaimu
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Jimilanmu Memetmin
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Zhang Jie
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Aihemaitijiang Tuhuti
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Hanikzi Abudueini
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| | - Yanying Guo
- Department of Endocrinology, People’s Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, China
| |
Collapse
|
32
|
Bai XP, Li TT, Guo LL, Wang J, Dong F. The Influence of Hyperglycemia on Liver Triglyceride Deposition in Partially Pancreatectomized Rats. Horm Metab Res 2024; 56:159-166. [PMID: 37992721 PMCID: PMC10824583 DOI: 10.1055/a-2198-1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
Nonalcoholic fatty liver disease and diabetes always coexist. The relationship of fatty liver and hyperglycemia is not clear. We studied the influence of hyperglycemia on triglyceride (TG) accumulation in the liver and explored its possible mechanisms. SD rats were divided into three groups: Group A (sham operation control), Group B (partially pancreatectomized rats), and Group C (partially pancreatectomized rats treated with insulin). At 4 weeks after surgery, pancreatic weights and liver TG contents were measured. Serum biochemical parameters were determined, and oral glucose tolerance tests (OGTT) were performed. The gene expression of sterol regulatory element-binding protein1c (SREBP-1c), carbohydrate regulatory element-binding protein (ChREBP), fatty acid synthase(FAS), carnitine palmitoyltransferase 1 (CPT-1), and fibroblast growth factor 21 (FGF21) was determined by real-time PCR. Compared with Group A, postprandial glucose increased significantly; the concentrations of insulin and C-peptides, pancreatic weights and serum FGF21 levels were decreased, liver TG was increased significantly in Group B, and insulin treatment improved these changes. Compared with Group A, the gene expressions of FGF21, CPT-1 and FAS in the liver were decreased in Group B (all p<0.05). Compared with Group B, the gene expressions of FGF21, FAS, ChREBP, SREBP-1c and CPT-1 in the liver in Group C were all increased significantly (p<0.05, respectively). Hyperglycemia induced by partial pancreatectomy could lead to increased liver TG. Insulin treatment could decrease glucose levels and improve fatty liver, and genes related to lipid metabolism may play a role in this process.
Collapse
Affiliation(s)
- Xiu-Ping Bai
- Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan,
China
| | - Ting-Ting Li
- Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan,
China
| | - Lai-Li Guo
- Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan,
China
| | - Jing Wang
- Endocrinology, Second Hospital of Shanxi Medical University, Taiyuan,
China
| | - Feng Dong
- Radiation Oncology, UTHSC at San Antonio, San Antonio,
USA
| |
Collapse
|
33
|
Branković M, Dukić M, Gmizić T, Popadić V, Nikolić N, Sekulić A, Brajković M, Đokić J, Mahmutović E, Lasica R, Vojnović M, Milovanović T. New Therapeutic Approaches for the Treatment of Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Increased Cardiovascular Risk. Diagnostics (Basel) 2024; 14:229. [PMID: 38275476 PMCID: PMC10814440 DOI: 10.3390/diagnostics14020229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) was previously known as nonalcoholic fatty liver disease (NAFLD). The main characteristic of the disease is the process of long-term liver inflammation, which leads to hepatocyte damage followed by liver fibrosis and eventually cirrhosis. Additionally, these patients are at a greater risk for developing cardiovascular diseases (CVD). They have several pathophysiological mechanisms in common, primarily lipid metabolism disorders and lipotoxicity. Lipotoxicity is a factor that leads to the occurrence of heart disease and the occurrence and progression of atherosclerosis. Atherosclerosis, as a multifactorial disease, is one of the predominant risk factors for the development of ischemic heart disease. Therefore, CVD are one of the most significant carriers of mortality in patients with metabolic syndrome. So far, no pharmacotherapy has been established for the treatment of MASLD, but patients are advised to reduce their body weight and change their lifestyle. In recent years, several trials of different drugs, whose basic therapeutic indications include other diseases, have been conducted. Because it has been concluded that they can have beneficial effects in the treatment of these conditions as well, in this paper, the most significant results of these studies will be presented.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Ana Sekulić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Jelena Đokić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Edvin Mahmutović
- Department of Internal Medicine, General Hospital Novi Pazar, 36300 Novi Pazar, Serbia;
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| |
Collapse
|
34
|
Melander SA, Kayed A, Andreassen KV, Karsdal MA, Henriksen K. OXM-104, a potential candidate for the treatment of obesity, NASH and type 2 diabetes. Eur J Pharmacol 2024; 962:176215. [PMID: 38056618 DOI: 10.1016/j.ejphar.2023.176215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
35
|
Hirai T, Wang W, Murono N, Iwasa K, Inoue M. Potential role of Akt in the regulation of fibroblast growth factor 21 by berberine. J Nat Med 2024; 78:169-179. [PMID: 37951850 DOI: 10.1007/s11418-023-01755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is expressed in several organs, including the liver, adipose tissue, and cardiovascular system, and plays an important role in cross-talk with other organs by binding to specific FGF receptors and their co-receptors. FGF21 represents a potential target for the treatment of obesity, type 2 diabetes mellitus, and non-alcoholic steatohepatitis (NASH). The production of FGF21 in skeletal muscle was recently suggested to be beneficial for metabolic health through its autocrine and paracrine effects. However, the regulatory mechanisms of FGF21 in skeletal muscle remain unclear. In the present study, we showed that berberine regulated FGF21 production in C2C12 myotubes in a dose-dependent manner. We also examined the effects of A-674563, a selective Akt1 inhibitor, on the berberine-mediated regulation of FGF21 expression in C2C12 myotubes. Berberine significantly increased the secretion of FGF21 in C2C12 myotubes, while A-674563 attenuated this effect. Moreover, a pre-treatment with A-674563 effectively suppressed berberine-induced increases in Bmal1 expression in C2C12 myotubes, indicating that the up-regulation of Bmal1 after the berberine treatment was dependent on Akt1. Additionally, berberine-induced increases in FGF21 secretion were significantly attenuated in C2C12 cells transfected with Bmal1 siRNA, indicating the contribution of the core clock transcription factor BMAL1 to Akt-regulated FGF21 in response to berberine. Collectively, these results indicate that berberine regulates the expression of FGF21 through the Akt1 pathway in C2C12 myotubes. Moreover, the core clock gene Bmal1 may participate in the control of the myokine FGF21. Berberine stimulated Akt1-dependent FGF21 expression in C2C12 myotubes. The up-regulation of FGF21 through the modulation of PI3K/AKT1/BMAL1 in response to berberine may be involved in the regulation of cellular function (such as Glut1 expression) by acting in an autocrine and/or paracrine manner in skeletal muscle.
Collapse
Affiliation(s)
- Takao Hirai
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan.
- Laboratory of Biochemical Pharmacology, Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, 1-1 Gakuendai, Kahoku, Ishikawa, 929-1210, Japan.
| | - Wei Wang
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| | - Naoko Murono
- Community Health Nursing, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Kazuo Iwasa
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Kahoku, Ishikawa, 929-1210, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, 464-8650, Japan
| |
Collapse
|
36
|
Machado MV. MASLD treatment-a shift in the paradigm is imminent. Front Med (Lausanne) 2023; 10:1316284. [PMID: 38146424 PMCID: PMC10749497 DOI: 10.3389/fmed.2023.1316284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
MASLD prevalence is growing towards the leading cause of end-stage liver disease. Up to today, the most effective treatment is weight loss. Weight loss interventions are moving from lifestyle changes to bariatric surgery or endoscopy, and, more recently, to a new wave of anti-obesity drugs that can compete with bariatric surgery. Liver-targeted therapy is a necessity for those patients who already present liver fibrosis. The field is moving fast, and in the near future, we will testify to a disruptive change in MASLD treatment, similar to the paradigm-shift that occurred for hepatitis C almost one decade ago with direct antiviral agents.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Hospital de Vila Franca de Xira, Vila Franca de Xira, Portugal
| |
Collapse
|
37
|
Domouzoglou EM, Vlahos AP, Papafaklis MI, Cholevas VK, Chaliasos N, Siomou E, Michalis LK, Tsatsoulis A, Naka KK. Role of FGF21 and Leptin for the Diagnosis of Metabolic Health in Children with and without Obesity. J Pers Med 2023; 13:1680. [PMID: 38138907 PMCID: PMC10744927 DOI: 10.3390/jpm13121680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Obesity and unfavorable metabolic profiles increase the risk for cardiovascular complications in adults. Although it is important to distinguish different metabolic health states at an early stage, there are limited data on the related value of biomarkers in childhood. We aimed to identify biomarkers for the detection of different metabolic health states in children with and without obesity. The serum levels of metabolic regulators (fibroblast growth factor 21 [FGF21], leptin, adiponectin and insulin-like growth factor binding protein 1) and vascular indices (flow-mediated dilation [FMD] and carotid intima-media thickness) were assessed in 78 children. Differences between the metabolically healthy and unhealthy state within children with normal weight (MHN vs. MUN), and within children with overweight/obesity (MHO vs. MUO) were investigated; the discriminatory power of the biomarkers was studied. Both MUN and MUO groups expressed altered lipid and glucose homeostasis compared to their healthy counterparts. The metabolic unhealthy state in children with normal weight was linked to higher FGF21 levels which had good discriminatory ability (area under the curve [AUC]: 0.71, 95% CI: 0.54-0.88; p = 0.044). In overweight/obese children, leptin was increased in the metabolically unhealthy subgroup (AUC: 0.81, 95% CI: 0.68-0.95; p = 0.01). There was a decrease in FMD indicating worse endothelial function in overweight/obese children versus those with normal weight. Distinct states of metabolic health exist in both children with normal weight and overweight/obese children. FGF21 and leptin may help to identify the metabolic unhealthy state in children with normal weight and in overweight/obese children, respectively, early in life.
Collapse
Affiliation(s)
- Eleni M. Domouzoglou
- Child Health Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece
| | - Antonios P. Vlahos
- Child Health Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece
| | - Michail I. Papafaklis
- Second Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece; (M.I.P.); (K.K.N.)
| | - Vasileios K. Cholevas
- Child Health Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece
| | - Nikolaos Chaliasos
- Child Health Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece
| | - Ekaterini Siomou
- Child Health Department, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece
| | - Lampros K. Michalis
- Second Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece; (M.I.P.); (K.K.N.)
| | - Agathocles Tsatsoulis
- Department of Endocrinology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece
| | - Katerina K. Naka
- Second Department of Cardiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou, 45110 Ioannina, Greece; (M.I.P.); (K.K.N.)
| |
Collapse
|
38
|
Harrison SA, Frias JP, Neff G, Abrams GA, Lucas KJ, Sanchez W, Gogia S, Sheikh MY, Behling C, Bedossa P, Shao L, Chan D, Fong E, de Temple B, Shringarpure R, Tillman EJ, Rolph T, Cheng A, Yale K. Safety and efficacy of once-weekly efruxifermin versus placebo in non-alcoholic steatohepatitis (HARMONY): a multicentre, randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol 2023; 8:1080-1093. [PMID: 37802088 DOI: 10.1016/s2468-1253(23)00272-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) regulates metabolism and protects cells against stress. Efruxifermin is a bivalent Fc-FGF21 analogue that replicates FGF21 agonism of fibroblast growth factor receptor 1c, 2c, or 3c. The aim of this phase 2b study was to assess its efficacy and safety in patients with non-alcoholic steatohepatitis (NASH) and moderate (F2) or severe (F3) fibrosis. METHODS HARMONY is a multicentre, randomised, double-blind, placebo-controlled, 96-week, phase 2b trial that was initiated at 41 clinics in the USA. Adults with biopsy-confirmed NASH, defined by a non-alcoholic fatty liver disease activity score (NAS) of 4 or higher and scores of 1 or higher in each of steatosis, ballooning, and lobular inflammation, with histological stage F2 or F3 fibrosis, were randomly assigned (1:1:1), via an interactive response system, to receive placebo or efruxifermin (28 mg or 50 mg), subcutaneously once weekly. Patients, investigators, pathologists, site staff, and the sponsor were masked to group assignments during the study. The primary endpoint was the proportion of patients with improvement in fibrosis of at least 1 stage and no worsening of NASH, based on analyses of baseline and week 24 biopsies (liver biopsy analysis set [LBAS]). A sensitivity analysis evaluated the endpoint in the full analysis set (FAS), for which patients with missing biopsies were considered non-responders. This trial is registered with ClinicalTrials.gov, NCT04767529, and is ongoing. FINDINGS Between March 22, 2021, and Feb 7, 2022, 747 patients were assessed for eligibility and 128 patients (mean age 54·7 years [SD 10·4]; 79 [62%] female and 49 male [38%]; 118 [92%] white; and 56 [41%] Hispanic or Latino) were enrolled and randomly assigned to receive placebo (n=43), efruxifermin 28 mg (n=42; two randomised patients were not dosed because of an administrative error), or efruxifermin 50 mg (n=43). In the LBAS (n=113), eight (20%) of 41 patients in the placebo group had an improvement in fibrosis of at least 1 stage and no worsening of NASH by week 24 versus 15 (39%) of 38 patients in the efruxifermin 28 mg group (risk ratio [RR] 2·3 [95% CI 1·1-4·8]; p=0·025) and 14 (41%) of 34 patients in the efruxifermin 50 mg group (2·2 [1·0-5·0]; p=0·036). Based on the FAS (n=128), eight (19%) of 43 patients in the placebo group met this endpoint versus 15 (36%) of 42 in the efruxifermin 28 mg group (RR 2·2 [95% CI 1·0-4·8]; p=0·033) and 14 (33%) of 43 in the efruxifermin 50 mg group (1·9 [0·8-4·3]; p=0·123). The most frequent efruxifermin-related adverse events were diarrhoea (16 [40%] of 40 patients in the efruxifermin 28 mg group and 17 [40%] of 43 patients in efruxifermin 50 mg group vs eight [19%] of 43 patients in the placebo group; all events except one were grade 1-2) and nausea (11 [28%] patients in the efruxifermin 28 mg group and 18 [42%] patients in the efruxifermin 50 mg group vs ten [23%] patients in the placebo group; all grade 1-2). Five patients (two in the 28 mg group and three in the 50 mg group) discontinued due to adverse events. Serious adverse events occurred in four patients in the 50 mg group; one was defined as drug related (ulcerative esophagitis in a participant with a history of gastro-oesophageal reflux disease). No deaths occurred. INTERPRETATION Efruxifermin improved liver fibrosis and resolved NASH over 24 weeks in patients with F2 or F3 fibrosis, with acceptable tolerability, supporting further assessment in phase 3 trials. FUNDING Akero Therapeutics.
Collapse
Affiliation(s)
- Stephen A Harrison
- Department of Hepatology, University of Oxford, Oxford, UK; Pinnacle Clinical Research, San Antonio, TX, USA
| | - Juan P Frias
- Velocity Clinical Research, Los Angeles, CA, USA
| | - Guy Neff
- Covenant Metabolic Specialists, Sarasota, FL, USA
| | - Gary A Abrams
- Department of Medicine, Prisma Health Upstate, Greenville, SC, USA
| | | | | | | | | | - Cynthia Behling
- Department of Pathology, Sharp Memorial Hospital, San Diego, CA, USA
| | - Pierre Bedossa
- Liverpat, Paris, France; Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Lan Shao
- Statistics, Labcorp, Burlington, NC, USA
| | - Doreen Chan
- Akero Therapeutics, South San Francisco, CA, USA
| | - Erica Fong
- Akero Therapeutics, South San Francisco, CA, USA
| | | | | | | | | | - Andrew Cheng
- Akero Therapeutics, South San Francisco, CA, USA
| | - Kitty Yale
- Akero Therapeutics, South San Francisco, CA, USA
| |
Collapse
|
39
|
Tseng CML, Balic K, Charlton RW, Margalit M, Mansbach H, Savic RM. Population Pharmacokinetics and Pharmacodynamics of Pegozafermin in Patients with Nonalcoholic Steatohepatitis. Clin Pharmacol Ther 2023; 114:1323-1331. [PMID: 37696614 DOI: 10.1002/cpt.3046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Pegozafermin is a long-acting glycoPEGylated analog of fibroblast growth factor 21 (FGF21) in development for the treatment of nonalcoholic steatohepatitis (NASH) and severe hypertriglyceridemia. In a phase Ib/IIa placebo-controlled, double-blind, multiple ascending dose study in patients with NASH (NCT04048135), administration of pegozafermin resulted in clinically meaningful reductions in hepatic fat fraction (HFF), with a favorable safety and tolerability profile. We aimed to characterize the relationship between pegozafermin dosing, exposure and effects on HFF reduction. We used pharmacokinetic (PK) and pharmacodynamic (PD) modeling of data from the phase Ib/IIa study to identify model parameters and covariates affecting the exposure-response relationship. Clinical simulations were performed to help support dose selection for larger studies. Pegozafermin exposure was adequately described by a one compartment PK model, with one additional transit absorption compartment. PK/PD modeling demonstrated that HFF reduction was significantly related to pegozafermin exposure. HFF outcomes were correlated with average pegozafermin concentrations regardless of weekly dosing (q.w.) or dosing every 2 weeks (q2w). The significant PK/PD model covariates included baseline body weight, alanine aminotransferase level, and liver volume. Simulations showed that the 30 mg q.w. dose approximated the full PD effect; almost all patients would benefit from a greater than or equal to 30% HFF reduction, suggesting fibrosis regression. Furthermore, 44 mg q2w dosing (~22 mg q.w.) appeared to be an effective regimen for HFF reduction. Our modeling supports the feasibility of q.w. and q2w dosing for achieving favorable treatment outcomes in patients with NASH, and provides the rationale for dose selection for the phase IIb ENLIVEN study (NCT04929483).
Collapse
Affiliation(s)
| | - Kemal Balic
- Clinical Development, 89bio, Inc., San Francisco, California, USA
| | - R Will Charlton
- Clinical Development, 89bio, Inc., San Francisco, California, USA
| | | | - Hank Mansbach
- Clinical Development, 89bio, Inc., San Francisco, California, USA
| | - Rada M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA
| |
Collapse
|
40
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
41
|
Filipovic B, Marjanovic-Haljilji M, Mijac D, Lukic S, Kapor S, Kapor S, Starcevic A, Popovic D, Djokovic A. Molecular Aspects of MAFLD-New Insights on Pathogenesis and Treatment. Curr Issues Mol Biol 2023; 45:9132-9148. [PMID: 37998750 PMCID: PMC10669943 DOI: 10.3390/cimb45110573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Metabolic-associated liver disease (MAFLD) affects up to 70% of overweight and more than 90% of morbidly obese people, and its pathogenesis is rather complex and multifactorial. The criteria for MAFLD include the presence of hepatic steatosis in addition to one of the following three criteria: overweight or obesity, presence of type 2 diabetes mellitus (T2DM), or evidence of metabolic dysregulation. If the specific criteria are present, the diagnosis of MAFLD can be made regardless of alcohol consumption and previous liver disease. The pathophysiological mechanisms of MAFLD, including inflammation, lipotoxicity, mitochondrial disfunction, and oxidative stress, as well as the impact of intestinal gut microbiota, are constantly being elucidated. Treatment strategies that are continually emerging are based on different key points in MAFLD pathogenesis. Yet, the ideal therapeutic option has still not been found and future research is of great importance, as MAFLD represents a multisystemic disease with numerous complications.
Collapse
Affiliation(s)
- Branka Filipovic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic—Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.P.)
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
| | - Marija Marjanovic-Haljilji
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic—Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.P.)
| | - Dragana Mijac
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
- Clinic of Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Snezana Lukic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
- Clinic of Gastroenterology and Hepatology, Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Suncica Kapor
- Department of Hematology, Clinical and Hospital Center “Dr Dragisa Misovic—Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia;
| | - Slobodan Kapor
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
- Institute of Anatomy “Niko Miljanic”, Dr Subotica Starijeg 4/2, 11000 Belgrade, Serbia
| | - Ana Starcevic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
- Institute of Anatomy “Niko Miljanic”, Dr Subotica Starijeg 4/2, 11000 Belgrade, Serbia
| | - Dusan Popovic
- Department of Gastroenterology, Clinical and Hospital Center “Dr Dragisa Misovic—Dedinje”, Heroja Milana Tepica 1, 11020 Belgrade, Serbia; (B.F.); (D.P.)
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
| | - Aleksandra Djokovic
- Faculty of Medicine, University of Belgrade, Dr Subotica Starijeg 8, 11000 Belgrade, Serbia; (D.M.); (S.L.); (S.K.); (A.S.); (A.D.)
- Department of Cardiology, Clinical and Hospital Center “Bezanijska Kosa”, Dr Zorza Matea s/n, 11080 Belgrade, Serbia
| |
Collapse
|
42
|
Kim J, Chang N, Kim Y, Lee J, Oh D, Choi J, Kim O, Kim S, Choi M, Lee J, Lee J, Kim J, Cho M, Kim M, Lee K, Hwang D, Sa JK, Park S, Baek S, Im D. The Novel Tetra-Specific Drug C-192, Conjugated Using UniStac, Alleviates Non-Alcoholic Steatohepatitis in an MCD Diet-Induced Mouse Model. Pharmaceuticals (Basel) 2023; 16:1601. [PMID: 38004466 PMCID: PMC10674394 DOI: 10.3390/ph16111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a complex disease resulting from chronic liver injury associated with obesity, type 2 diabetes, and inflammation. Recently, the importance of developing multi-target drugs as a strategy to address complex diseases such as NASH has been growing; however, their manufacturing processes remain time- and cost-intensive and inefficient. To overcome these limitations, we developed UniStac, a novel enzyme-mediated conjugation platform for multi-specific drug development. UniStac demonstrated high conjugation yields, optimal thermal stabilities, and robust biological activities. We designed a tetra-specific compound, C-192, targeting glucagon-like peptide 1 (GLP-1), glucagon (GCG), fibroblast growth factor 21 (FGF21), and interleukin-1 receptor antagonist (IL-1RA) simultaneously for the treatment of NASH using UniStac. The biological activity and treatment efficacy of C-192 were confirmed both in vitro and in vivo using a methionine-choline-deficient (MCD) diet-induced mouse model. C-192 exhibited profound therapeutic efficacies compared to conventional drugs, including liraglutide and dulaglutide. C-192 significantly improved alanine transaminase levels, triglyceride accumulation, and the non-alcoholic fatty liver disease activity score. In this study, we demonstrated the feasibility of UniStac in creating multi-specific drugs and confirmed the therapeutic potential of C-192, a drug that integrates multiple mechanisms into a single molecule for the treatment of NASH.
Collapse
Affiliation(s)
- Jihye Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Nakho Chang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Yunki Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaehyun Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Daeseok Oh
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jaeyoung Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Onyou Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Sujin Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Myongho Choi
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junyeob Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Junghwa Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jungyul Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minji Cho
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Minsu Kim
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Kwanghwan Lee
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Dukhyun Hwang
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Jason K. Sa
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Sungjin Park
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| | - Seungjae Baek
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Daeseong Im
- Onegene Biotechnology, Inc., 205 Ace Gwanggyo Tower 2, 91 Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si 16229, Republic of Korea; (J.K.); (J.C.); (J.K.); (K.L.)
| |
Collapse
|
43
|
Alkhouri N, Lazas D, Loomba R, Frias JP, Feng S, Tseng L, Balic K, Agollah GD, Kwan T, Iyer JS, Morrow L, Mansbach H, Margalit M, Harrison SA. Clinical trial: Effects of pegozafermin on the liver and on metabolic comorbidities in subjects with biopsy-confirmed nonalcoholic steatohepatitis. Aliment Pharmacol Ther 2023; 58:1005-1015. [PMID: 37718721 DOI: 10.1111/apt.17709] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND An approved therapy for nonalcoholic steatohepatitis (NASH) and fibrosis remains a major unmet medical need. AIM To investigate the histological and metabolic benefits of pegozafermin, a glycoPEGylated FGF21 analogue, in subjects with biopsy-confirmed NASH. METHODS This proof-of-concept, open-label, single-cohort study, part 2 of a phase 1b/2a clinical trial, was conducted at 16 centres in the United States. Adults (age 21-75 years) with NASH (stage 2 or 3 fibrosis, NAS≥4) and magnetic resonance imaging proton density fat fraction (MRI-PDFF) ≥8% received subcutaneous pegozafermin 27 mg once weekly for 20 weeks. Primary outcomes were improvements in liver histology, and safety and tolerability. RESULTS Of 20 enrolled subjects, 19 completed the study. Twelve subjects (63%) met the primary endpoint of ≥2-point improvement in NAFLD activity score with ≥1-point improvement in ballooning or lobular inflammation and no worsening of fibrosis. Improvement of fibrosis without worsening of NASH was observed in 26% of subjects, and NASH resolution without worsening of fibrosis in 32%. Least-squares mean relative change from baseline in MRI-PDFF was -64.7% (95% CI: -71.7, -57.7; p < 0.0001). Significant improvements from baseline were also seen in serum aminotransferases, noninvasive fibrosis tests, serum lipids, glycaemic control and body weight. Adverse events (AEs) were reported in 18 subjects (90%). The most frequently reported AEs were mild/moderate nausea and diarrhoea. There were no serious AEs, discontinuations due to AEs, or deaths. CONCLUSIONS Pegozafermin treatment for 20 weeks had beneficial effects on hepatic and metabolic parameters and was well tolerated in subjects with NASH. CLINICALTRIALS gov: NCT04048135.
Collapse
Affiliation(s)
| | - Donald Lazas
- ObjectiveHealth/Digestive Health Research, Nashville, Tennessee, USA
| | - Rohit Loomba
- University of California San Diego, San Diego, California, USA
| | - Juan P Frias
- Velocity Clinical Research, Los Angeles, California, USA
| | | | - Leo Tseng
- 89bio Inc., San Francisco, California, USA
| | | | | | - Tinna Kwan
- 89bio Inc., San Francisco, California, USA
| | | | | | | | | | - Stephen A Harrison
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Pinnacle Clinical Research, San Antonio, Texas, USA
| |
Collapse
|
44
|
Rosenstock M, Tseng L, Pierce A, Offman E, Chen CY, Charlton RW, Margalit M, Mansbach H. The Novel GlycoPEGylated FGF21 Analog Pegozafermin Activates Human FGF Receptors and Improves Metabolic and Liver Outcomes in Diabetic Monkeys and Healthy Human Volunteers. J Pharmacol Exp Ther 2023; 387:204-213. [PMID: 37562970 DOI: 10.1124/jpet.123.001618] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Pegozafermin (also known as BIO89-100) is a glycoPEGylated analog of fibroblast growth factor 21 (FGF21) under development to treat nonalcoholic steatohepatitis (NASH) and severe hypertriglyceridemia (SHTG). In cell-based assays, pegozafermin had a similar receptor engagement profile as recombinant FGF21, with approximately eightfold higher potency at fibroblast growth factor receptor 1c (FGFR1c). In diabetic monkeys, once-weekly and once-every-2-weeks regimens of subcutaneous pegozafermin provided rapid and robust benefits for an array of metabolic biomarkers, including triglycerides, cholesterol, fasting glucose, glycated hemoglobin, adiponectin, alanine aminotransferase, food intake, and body weight. In a single ascending dose study in healthy volunteers, subcutaneously administered pegozafermin was associated with statistically significant improvements in triglycerides, low- and high-density lipoprotein-cholesterol, and adiponectin, an insulin-sensitizing and anti-inflammatory adipokine. Pharmacokinetic half-lives ranged from 55 to 100 hours over the clinically relevant dose range, consistent with the expected half-life extension by glycoPEGylation. These findings provide evidence that pegozafermin is a promising candidate molecule for the treatment of patients with NASH or SHTG. SIGNIFICANCE STATEMENT: Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that has important roles in regulating energy balance and glucose and lipid homeostasis. Studies presented here demonstrate that a novel long-acting FGF21 analog, pegozafermin, has similar pharmacologic properties as FGF21 and that repeated, subcutaneous dosing of pegozafermin in diabetic monkeys and healthy humans improves lipid metabolism, glucose metabolism, weight, and liver transaminases. These results support future development of pegozafermin for the treatment of metabolic diseases, including nonalcoholic steatohepatitis and severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Moti Rosenstock
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Leo Tseng
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Andrew Pierce
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Elliot Offman
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Chao-Yin Chen
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - R Will Charlton
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Maya Margalit
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Hank Mansbach
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| |
Collapse
|
45
|
Liu O, Chinni BK, Manlhiot C, Vernon HJ. FGF21 and GDF15 are elevated in Barth Syndrome and are correlated to important clinical measures. Mol Genet Metab 2023; 140:107676. [PMID: 37549445 DOI: 10.1016/j.ymgme.2023.107676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Barth Syndrome (BTHS) is a rare X-linked disorder that is caused by defects TAFAZZIN, which leads to an abnormal cardiolipin (CL) profile of the inner mitochondrial membrane and clinical features including cardiomyopathy, neutropenia and skeletal myopathy. The ratio of monolysocardiolipin (MLCL, the remodeling intermediate of cardiolipin) to remodeled CL is always abnormal in Barth Syndrome and 3-methylglutaconic acid is often elevated affected patients, however neither of these biomarkers has been shown to temporally correlate to clinical status. In this study, we measured plasma FGF21 and GDF15 levels in 16 individuals with Barth Syndrome and evaluated whether these biomarkers were correlated to the MLCL/CL ratio in patient bloodspots and clinical laboratory parameters indicative of organ involvement in Barth Syndrome including: neutrophil and monocyte counts, liver function, and cardiac function (NT-proBNP). We found that FGF21 and GDF15 were elevated in all 16 patients and that FGF21 was significantly correlated to AST, ALT GGT, percentage of neutrophils comprising total white blood cells, percent monocytes comprising total white blood cells, and NT-proBNP levels. GDF-15 was significantly positively associated with NT-proBNP. We conclude that clinical measurements of FGF21 and GDF-15 may be relevant in the monitoring multi-organ system involvement in Barth Syndrome.
Collapse
Affiliation(s)
- Olivia Liu
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Bhargava Kumar Chinni
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cedric Manlhiot
- The Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, Department of Pediatrics, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hilary J Vernon
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA..
| |
Collapse
|
46
|
Rivera FB, Adizas A, Cubarrubias D, Bantayan NR, Choi S, Carado GP, Yu MG, Lerma E, Vijayaraghavan K. The Roles of Non-Pharmacologic and Emerging Pharmacologic Management of Non-alcoholic Fatty Liver Disease and Sarcopenia: A Narrative Review. J ASEAN Fed Endocr Soc 2023; 39:84-94. [PMID: 38863907 PMCID: PMC11163315 DOI: 10.15605/jafes.039.01.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/30/2023] [Indexed: 06/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent causes of chronic liver disease worldwide which is often seen in patients with metabolic abnormalities such as those with obesity and insulin resistance. On the other hand, sarcopenia is a generalized and progressive skeletal muscle disorder characterized by low muscle strength, low muscle quality, low physical performance, or a combination of the three. Both disease entities share several underlying risk factors and pathophysiologic mechanisms. These include: (1) cardiometabolic overlaps such as insulin resistance, chronic systemic inflammation, decreased vitamin D levels, sex hormone modifications; (2) muscle-related factors such as those mitigated by myostatin signaling, and myokines (i.e., irisin); and (3) liver-dysfunction related factors such as those associated with growth hormone/insulin-like growth factor 1 Axis, hepatokines (i.e., selenoprotein P and leukocyte cell-derived chemotaxin-2), fibroblast growth factors 21 and 19 (FGF21 and FGF19), and hyperammonemia. This narrative review will examine the pathophysiologic overlaps that can explain the links between NAFLD and sarcopenia. Furthermore, this review will explore the emerging roles of nonpharmacologic (e.g., weight reduction, diet, alcohol, and smoking cessation, and physical activity) and pharmacologic management (e.g., roles of β-hydroxy-β-methylbutyrate, branched-chain amino acid supplements, and testosterone therapy) to improve care, intervention sustainability, and acceptability for patients with sarcopenia-associated NAFLD.
Collapse
Affiliation(s)
| | - Arcel Adizas
- College of Medicine, University of the Philippines, Ermita, Manila, Philippines
| | - Deanna Cubarrubias
- College of Medicine, University of the Philippines, Ermita, Manila, Philippines
| | | | - Sarang Choi
- Ateneo de Manila School of Medicine and Public Health, Pasig City, Philippines
| | - Genquen Philip Carado
- College of Medicine, University of the East Ramon Magsaysay Memorial Medical Center, Philippines
| | - Marc Gregory Yu
- Section of Vascular Cell Biology, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Edgar Lerma
- Section of Nephrology, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
47
|
Minciuna I, Gallage S, Heikenwalder M, Zelber-Sagi S, Dufour JF. Intermittent fasting-the future treatment in NASH patients? Hepatology 2023; 78:1290-1305. [PMID: 37057877 DOI: 10.1097/hep.0000000000000330] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
NASH is one of the leading causes of chronic liver disease with the potential of evolving towards end-stage liver disease and HCC, even in the absence of cirrhosis. Apart from becoming an increasingly prevalent indication for liver transplantation in cirrhotic and HCC patients, its burden on the healthcare system is also exerted by the increased number of noncirrhotic NASH patients. Intermittent fasting has recently gained more interest in the scientific community as a possible treatment approach for different components of metabolic syndrome. Basic science and clinical studies have shown that apart from inducing body weight loss, improving cardiometabolic parameters, namely blood pressure, cholesterol, and triglyceride levels; insulin and glucose metabolism; intermittent fasting can reduce inflammatory markers, endoplasmic reticulum stress, oxidative stress, autophagy, and endothelial dysfunction, as well as modulate gut microbiota. This review aims to further explore the main NASH pathogenetic metabolic drivers on which intermittent fasting can act upon and improve the prognosis of the disease, and summarize the current clinical evidence.
Collapse
Affiliation(s)
- Iulia Minciuna
- Regional Institute of Gastroenterology and Hepatology Octavian Fodor, Cluj-Napoca, Romania
- University of Medicine and Pharmacy Iuliu Hatieganu, Cluj-Napoca, Romania
| | - Suchira Gallage
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
| | - Mathias Heikenwalder
- M3 Research Institute, Medical Faculty Tuebingen (MFT), Tuebingen, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shira Zelber-Sagi
- School of Public Health, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | | |
Collapse
|
48
|
Kinne AS, Tillman EJ, Abdeen SJ, Johnson DE, Parmer ES, Hurst JP, de Temple B, Rinker S, Rolph TP, Bowsher RR. Noncompetitive immunoassay optimized for pharmacokinetic assessments of biologically active efruxifermin. J Pharm Biomed Anal 2023; 232:115402. [PMID: 37141854 DOI: 10.1016/j.jpba.2023.115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023]
Abstract
Efruxifermin (EFX) is a homodimeric human IgG1 Fc-FGF21 fusion protein undergoing investigation for treatment of liver fibrosis due to nonalcoholic steatohepatitis (NASH), a prevalent and serious metabolic disease for which there is no approved treatment. Biological activity of FGF21 requires its intact C-terminus, which enables binding to its obligate co-receptor β-Klotho on the surface of target cells. This interaction is a prerequisite for FGF21 signal transduction through its canonical FGF receptors: FGFR1c, 2c, and 3c. Therefore, the C-terminus of each FGF21 polypeptide chain must be intact, with no proteolytic truncation, for EFX to exert its pharmacological activity in patients. A sensitive immunoassay for quantification of biologically active EFX in human serum was therefore needed to support pharmacokinetic assessments in patients with NASH. We present a validated noncompetitive electrochemiluminescent immunoassay (ECLIA) that employs a rat monoclonal antibody for specific capture of EFX via its intact C-terminus. Bound EFX is detected by a SULFO-TAG™-conjugated, affinity purified chicken anti-EFX antiserum. The ECLIA reported herein for quantification of EFX demonstrated suitable analytical performance, with a sensitivity (LLOQ) of 20.0 ng/mL, to support reliable pharmacokinetic assessments of EFX. The validated assay was used to quantify serum EFX concentrations in a phase 2a study of NASH patients (BALANCED) with either moderate-to-advanced fibrosis or compensated cirrhosis. The pharmacokinetic profile of EFX was dose-proportional and did not differ between patients with moderate-to-advanced fibrosis and those with compensated cirrhosis. This report presents the first example of a validated pharmacokinetic assay specific for a biologically active Fc-FGF21 fusion protein, as well as the first demonstration of use of a chicken antibody conjugate as a detection reagent specific for an FGF21 analog.
Collapse
Affiliation(s)
- Adam S Kinne
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Erik J Tillman
- Akero Therapeutics, 601 Gateway Blvd. #350, South San Francisco, CA 94080, USA
| | - Sanofar J Abdeen
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Derrick E Johnson
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Elijah S Parmer
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Jacob P Hurst
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Brittany de Temple
- Akero Therapeutics, 601 Gateway Blvd. #350, South San Francisco, CA 94080, USA
| | - Sherri Rinker
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA
| | - Timothy P Rolph
- Akero Therapeutics, 601 Gateway Blvd. #350, South San Francisco, CA 94080, USA
| | - Ronald R Bowsher
- B2S Life Sciences LLC, 97 East Monroe Street, Franklin, IN 46131, USA.
| |
Collapse
|
49
|
De Luca A, Delaye JB, Fauchier G, Bourbao-Tournois C, Champion H, Bourdon G, Dupont J, Froment P, Dufour D, Ducluzeau PH. 3-Month Post-Operative Increase in FGF21 is Predictive of One-Year Weight Loss After Bariatric Surgery. Obes Surg 2023; 33:2468-2474. [PMID: 37391682 DOI: 10.1007/s11695-023-06702-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE The association between bariatric surgery outcome and blood levels of fibroblast growth factor 21 (FGF21) remains controversial. Many patients displayed stable or decreased FGF21 one year after bariatric surgery. Nevertheless, there is often an early increase FGF21 concentration in the post-surgery period. The aim of this study was to investigate the relationship between 3-month FGF21 response and percentage total weight loss at one year after bariatric surgery. MATERIALS AND METHODS In this prospective monocentric study, a total of 144 patients with obesity grade 2-3 were included; 61% of them underwent a sleeve gastrectomy and 39% a Roux-en-Y gastric bypass. Data analysis was carried out to determine the relation between 3-month plasma FGF21 response and weight loss one year after bariatric surgery. Multiple adjustments were done including degree of weight loss after 3 months. RESULTS FGF21 significantly increased between baseline and Month 3 (n = 144, p < 10-3), then decreased between Month 3 and Month 6 (n = 142, p = 0.047) and was not different from baseline at Month 12 (n = 142, p = 0.86). The 3-month-FGF21 response adjusted to body weight loss was not different between types of bariatric surgery. The 3-month-FGF21 response was associated to body weight loss at Month 6 (r = -0.19, p = 0.02) and Month 12 (r = -0.34, p < 10-4). After multiple regression analysis, only Month 12 body weight loss remained associated to 3-month FGF21 response (r = -0.3, p = 0.02). CONCLUSION This study showed that the magnitude of changes in FGF21 at 3 months after bariatric surgery emerged as an independent predictor of one-year body weight loss irrespective of the type of surgery.
Collapse
Affiliation(s)
- Arnaud De Luca
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
- INSERM UMR 1069, Nutrition, Croissance Et Cancer, 37000, Tours, France
| | - Jean-Baptiste Delaye
- Laboratoire de Biochimie Et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Grégoire Fauchier
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | | | - Hélène Champion
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
| | - Guillaume Bourdon
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Joëlle Dupont
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Pascal Froment
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| | - Diane Dufour
- Laboratoire de Biochimie Et de Biologie Moléculaire, CHRU de Tours, 37044, Tours, France
| | - Pierre-Henri Ducluzeau
- Unité d'endocrinologie-Diabétologie-Nutrition, CHRU de Tours, 37044, Tours, France
- INRAE, UMR 85 Physiologie de La Reproduction Et Des Comportements, 37380, Nouzilly, France
| |
Collapse
|
50
|
Tang Y, Zhang M. Fibroblast growth factor 21 and bone homeostasis. Biomed J 2023; 46:100548. [PMID: 35850479 PMCID: PMC10345222 DOI: 10.1016/j.bj.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a member of the FGF subfamily, is produced primarily in the liver and adipose tissue. The main function of FGF21 is to regulate energy metabolism of carbohydrates and lipids in the body through endocrine and other means, making FGF21 have potential clinical value in the treatment of metabolic disorders. Although FGF21 and its receptors play a role in the regulation of bone homeostasis through a variety of signaling pathways, a large number of studies have reported that the abuse of FGF21 and its analogues and the abnormal expression of FGF21 in vivo may be associated with bone abnormalities. Due to limited research information on the effect of FGF21 on bone metabolism regulation, the role of FGF21 in the process of bone homeostasis regulation and the mechanism of its occurrence and development have not been fully clarified. Certainly, the various roles played by FGF21 in the regulation of bone homeostasis deserve increasing attention. In this review, we summarize the basic physiological knowledge of FGF21 and the effects of FGF21 on metabolic homeostasis of the skeletal system in animal and human studies. The information provided in this review may prove beneficial for the intervention of bone diseases.
Collapse
Affiliation(s)
- Yan Tang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China
| | - Mei Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|