1
|
Xie F, Hu K, Fu R, Zhang Y, Xiao K, Tu J. Association between night shift work and the risk of type 2 diabetes mellitus: a cohort-based meta-analysis. BMC Endocr Disord 2024; 24:268. [PMID: 39696306 DOI: 10.1186/s12902-024-01808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND The impact of night shift work on the incidence of type 2 diabetes mellitus (T2DM) is not well understood. This meta-analysis assesses the association between night shift work and the risk of developing T2DM and explores this relationship across various subgroups. METHODS We systematically searched PubMed, Web of Science, EBSCO, and the Cochrane Library from their inception until February 2024. We employed hazard ratios (HR) and 95% confidence intervals (95%CI) to quantify the association between night shift work and T2DM risk. RESULTS Our analysis synthesized data from 9 articles encompassing 10 cohort studies. Overall, night shift workers exhibited a 30% increased incidence of T2DM compared to their daytime counterparts (HR = 1.30, 95% CI: [1.18, 1.43], P < 0.001). Among females, night shift workers had a higher incidence of T2DM (HR = 1.28, 95% CI: [1.16, 1.41]); however, in males, the association was not statistically significant (95% CI: [0.89, 2.63]). For individuals with a body mass index (BMI) > 30 kg/m2, night shift work was associated with an increased T2DM risk (HR = 1.14, P = 0.007), whereas there was no significant association for those with a BMI ≤ 30 kg/m2 (P = 0.255). Further, the risk of T2DM increased with longer durations of night shift work; workers with more than 10 years of night shift work faced a higher T2DM risk than those with 10 years or fewer (HR for > 10 years = 1.17, 95% CI: [1.10, 1.24]; HR for ≤ 10 years = 1.06, 95% CI: [1.03, 1.10]). CONCLUSION Findings suggest potential link between night shift work and T2DM risk. Longer durations of night shift work may increase the risk of T2DM. There may be gender differences (greater harm in women, but the male sample size is small) and obesity differences.
Collapse
Affiliation(s)
- Fei Xie
- Department of Endocrinology, Ningbo Yinzhou No. 2 Hospital, 998 North Qianhe Road, Yinzhou District, Ningbo, Zhejiang, 315100, China.
| | - Kangshuo Hu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Rongrong Fu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yueming Zhang
- Intensive Care Unit, Hospital of Zhejiang People's Armed Police, Hangzhou, Zhejiang, China
| | - Kaiqi Xiao
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jieni Tu
- The Second School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Lai TH, Hwang JS, Ngo QN, Lee DK, Kim HJ, Kim DR. A comparative assessment of reference genes in mouse brown adipocyte differentiation and thermogenesis in vitro. Adipocyte 2024; 13:2330355. [PMID: 38527945 PMCID: PMC10965104 DOI: 10.1080/21623945.2024.2330355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Adipogenic differentiation and thermogenesis in brown adipose tissue (BAT) undergo dynamic processes, altering phenotypes and gene expressions. Proper reference genes in gene expression analysis are crucial to mitigate experimental variances and ensure PCR efficacy. Unreliable reference genes can lead to erroneous gene expression quantification, resulting in data misinterpretation. This study focused on identifying suitable reference genes for mouse brown adipocyte research, utilizing brown adipocytes from the Ucp1-luciferase ThermoMouse model. Comparative analysis of gene expression data under adipogenesis and thermogenesis conditions was conducted, validating 13 housekeeping genes through various algorithms, including DeltaCq, BestKeeper, geNorm, Normfinder, and RefFinder. Tbp and Rer1 emerged as optimal references for Ucp1 and Pparg expression in brown adipogenesis, while Tbp and Ubc were ideal for the expression analysis of these target genes in thermogenesis. Conversely, certain conventional references, including Actb, Tubb5, and Gapdh, proved unstable as reference genes under both conditions. These findings stress the critical consideration of reference gene selection in gene expression analysis within specific biological systems to ensure accurate conclusions.
Collapse
Affiliation(s)
- Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Quang Nhat Ngo
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Dong-Kun Lee
- Department of Physiology and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| |
Collapse
|
3
|
Jeon YG, Kim SW, Kim JB. Decoding temporal thermogenesis: coregulator selectivity and transcriptional control in brown and beige adipocytes. Adipocyte 2024; 13:2391511. [PMID: 39155481 PMCID: PMC11340756 DOI: 10.1080/21623945.2024.2391511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
In mammals, brown adipose tissue (BAT) and beige adipocytes in white adipose tissue (WAT) play pivotal roles in maintaining body temperature and energy metabolism. In mice, BAT quickly stimulates thermogenesis by activating brown adipocytes upon cold exposure. In the presence of chronic cold stimuli, beige adipocytes are recruited in inguinal WAT to support heat generation. Accumulated evidence has shown that thermogenic execution of brown and beige adipocytes is regulated in a fat depot-specific manner. Recently, we have demonstrated that ubiquitin ligase ring finger protein 20 (RNF20) regulates brown and beige adipocyte thermogenesis through fat-depot-specific modulation. In BAT, RNF20 regulates transcription factor GA-binding protein alpha (GABPα), whereas in inguinal WAT, RNF20 potentiates transcriptional activity of peroxisome proliferator-activated receptor-gamma (PPARγ) through the degradation of nuclear corepressor 1 (NCoR1). This study proposes the molecular mechanisms by which co-regulator(s) selectively and temporally control transcription factors to coordinate adipose thermogenesis in a fat-depot-specific manner. In this Commentary, we provide molecular features of brown and beige adipocyte thermogenesis and discuss the underlying mechanisms of distinct thermogenic processes in two fat depots.
Collapse
Affiliation(s)
- Yong Geun Jeon
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sun Won Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
4
|
Dowker-Key PD, Jadi PK, Gill NB, Hubbard KN, Elshaarrawi A, Alfatlawy ND, Bettaieb A. A Closer Look into White Adipose Tissue Biology and the Molecular Regulation of Stem Cell Commitment and Differentiation. Genes (Basel) 2024; 15:1017. [PMID: 39202377 PMCID: PMC11353785 DOI: 10.3390/genes15081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
White adipose tissue (WAT) makes up about 20-25% of total body mass in healthy individuals and is crucial for regulating various metabolic processes, including energy metabolism, endocrine function, immunity, and reproduction. In adipose tissue research, "adipogenesis" is commonly used to refer to the process of adipocyte formation, spanning from stem cell commitment to the development of mature, functional adipocytes. Although, this term should encompass a wide range of processes beyond commitment and differentiation, to also include other stages of adipose tissue development such as hypertrophy, hyperplasia, angiogenesis, macrophage infiltration, polarization, etc.… collectively, referred to herein as the adipogenic cycle. The term "differentiation", conversely, should only be used to refer to the process by which committed stem cells progress through distinct phases of subsequent differentiation. Recognizing this distinction is essential for accurately interpreting research findings on the mechanisms and stages of adipose tissue development and function. In this review, we focus on the molecular regulation of white adipose tissue development, from commitment to terminal differentiation, and examine key functional aspects of WAT that are crucial for normal physiology and systemic metabolic homeostasis.
Collapse
Affiliation(s)
- Presley D. Dowker-Key
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Praveen Kumar Jadi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Nicholas B. Gill
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Katelin N. Hubbard
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Elshaarrawi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Naba D. Alfatlawy
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996-0840, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996-0840, USA
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| |
Collapse
|
5
|
Tek NA, Şentüre ŞA, Ersoy N. Is Propolis a Potential Anti-Obesogenic Agent for Obesity? Curr Nutr Rep 2024; 13:186-193. [PMID: 38436884 PMCID: PMC11133030 DOI: 10.1007/s13668-024-00524-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE OF REVIEW Propolis is a bee product that has been used for thousands of years. The chemical composition and biological activity of propolis, which has been investigated in the twentieth century, may vary according to location. Propolis polyphenols can induce thermogenesis in brown and beige fat tissue via the uncoupled protein-1 and creatinine kinase metabolic pathways. This review provides a comprehensive investigation of the structural and biological properties of propolis and provides insights into their promising potential strategies in body weight management. RECENT FINDINGS By raising overall energy expenditure, it might lead to body weight management. Furthermore, the phenolic components artepillin C, quercetin, catechin, and chlorogenic acid found in its composition may have anti-obesogenic effect by stimulating the sympathetic nervous system, enhancing browning in white adipose tissue, and triggering AMP-activated protein kinase activation and mitochondrial biogenesis. Propolis, a natural product, is effective in preventing obesity which is a contemporary pandemic.
Collapse
Affiliation(s)
- Nilüfer Acar Tek
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Emek, Bişkek Main St. 6. St No: 2, 06490, Çankaya, Ankara, Turkey
| | - Şerife Akpınar Şentüre
- Faculty of Health Science, Department of Nutrition and Dietetic, Gazi University, Emek, Bişkek Main St. 6. St No: 2, 06490, Çankaya, Ankara, Turkey.
| | - Nursena Ersoy
- Faculty of Health Science, Department of Nutrition and Dietetic, Ankara University, Fatih Caddesi No:197/7 PK:06290, Keçiören, Ankara, Turkey
| |
Collapse
|
6
|
Hemba-Waduge RUS, Liu M, Li X, Sun JL, Budslick EA, Bondos SE, Ji JY. Metabolic control by the Bithorax Complex-Wnt signaling crosstalk in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596851. [PMID: 38853890 PMCID: PMC11160800 DOI: 10.1101/2024.05.31.596851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Adipocytes distributed throughout the body play crucial roles in lipid metabolism and energy homeostasis. Regional differences among adipocytes influence normal function and disease susceptibility, but the mechanisms driving this regional heterogeneity remain poorly understood. Here, we report a genetic crosstalk between the Bithorax Complex ( BX-C ) genes and Wnt/Wingless signaling that orchestrates regional differences among adipocytes in Drosophila larvae. Abdominal adipocytes, characterized by the exclusive expression of abdominal A ( abd-A ) and Abdominal B ( Abd-B ), exhibit distinct features compared to thoracic adipocytes, with Wnt signaling further amplifying these disparities. Depletion of BX-C genes in adipocytes reduces fat accumulation, delays larval-pupal transition, and eventually leads to pupal lethality. Depleting Abd-A or Abd-B reduces Wnt target gene expression, thereby attenuating Wnt signaling-induced lipid mobilization. Conversely, Wnt signaling stimulated abd-A transcription, suggesting a feedforward loop that amplifies the interplay between Wnt signaling and BX-C in adipocytes. These findings elucidate how the crosstalk between cell-autonomous BX-C gene expression and Wnt signaling define unique metabolic behaviors in adipocytes in different anatomical regions of fat body, delineating larval adipose tissue domains.
Collapse
|
7
|
Boyajian JL, Islam P, Abosalha A, Schaly S, Thareja R, Kassab A, Arora K, Santos M, Shum-Tim C, Prakash S. Probiotics, prebiotics, synbiotics and other microbiome-based innovative therapeutics to mitigate obesity and enhance longevity via the gut-brain axis. MICROBIOME RESEARCH REPORTS 2024; 3:29. [PMID: 39421246 PMCID: PMC11480732 DOI: 10.20517/mrr.2024.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 05/11/2024] [Indexed: 10/19/2024]
Abstract
The global prevalence of obesity currently exceeds 1 billion people and is accompanied by an increase in the aging population. Obesity and aging share many hallmarks and are leading risk factors for cardiometabolic disease and premature death. Current anti-obesity and pro-longevity pharmacotherapies are limited by side effects, warranting the development of novel therapies. The gut microbiota plays a major role in human health and disease, with a dysbiotic composition evident in obese and aged individuals. The bidirectional communication system between the gut and the central nervous system, known as the gut-brain axis, may link obesity to unhealthy aging. Modulating the gut with microbiome-targeted therapies, such as biotics, is a novel strategy to treat and/or manage obesity and promote longevity. Biotics represent material derived from living or once-living organisms, many of which have therapeutic effects. Pre-, pro-, syn- and post-biotics may beneficially modulate gut microbial composition and function to improve obesity and the aging process. However, the investigation of biotics as next-generation therapeutics has only just begun. Further research is needed to identify therapeutic biotics and understand their mechanisms of action. Investigating the function of the gut-brain axis in obesity and aging may lead to novel therapeutic strategies for obese, aged and comorbid (e.g., sarcopenic obese) patient populations. This review discusses the interrelationship between obesity and aging, with a particular emphasis on the gut microbiome, and presents biotics as novel therapeutic agents for obesity, aging and related disease states.
Collapse
Affiliation(s)
- Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Amal Kassab
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Madison Santos
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Cedrique Shum-Tim
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal H3A 2B4, Quebec, Canada
| |
Collapse
|
8
|
Krase AA, Giannaki CD, Flouris AD, Liakos D, Stefanidis I, Karatzaferi C, Sakkas GK. The Acute, Combined, and Separate Effects of Cold Hemodialysis and Intradialytic Exercise in Insulin Sensitivity and Glucose Disposal. ASAIO J 2024; 70:436-441. [PMID: 38261536 DOI: 10.1097/mat.0000000000002117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Hemodialysis (HD) patients suffer from multiple health problems, including severe insulin resistance. Both cold dialysis and intradialytic exercise training could elicit health benefits; however, it is still unknown whether the combination of those two approaches could enhance overall health. The current study aimed to evaluate the separate and combined acute effects of a single session of cold dialysis and intradialytic exercise in parameters related to insulin sensitivity and glucose disposal. Ten HD patients (57.2 ± 14.9 years) participated in the study. Each patient participated in four different scenarios during HD: a) typical dialysis with dialysate temperature at 37°C (TD), b) cold dialysis with dialysate temperature at 35°C, c) typical HD combined with a single exercise bout, d) cold dialysis combined with a single exercise bout. Glucose disposal and insulin resistance were assessed immediately after the end of the HD session. None of the examined parameters significantly differed between the four scenarios ( p > 0.05). However, slight numerical changes and moderate to high effect size ( d : 0.50-0.85) were observed between TD versus cold dialysis and TD versus TD + exercise in glucose and insulin disposal rates. A single session of cold and TD with intradialytic exercise may provide an "acute" time-efficient stimulus for consecutively improving glucose disposal and insulin sensitivity.
Collapse
Affiliation(s)
- Argyro A Krase
- From the LIVE Lab, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Christoforos D Giannaki
- Department of Life Sciences, University of Nicosia, Nicosia, Cyprus
- Research Centre for Exercise and Nutrition, University of Nicosia, Nicosia, Cyprus
| | - Andreas D Flouris
- FAME Lab, Department of Exercise Science, University of Thessaly, Trikala, Greece
| | | | - Ioannis Stefanidis
- Department of Nephrology, School of Medicine, University of Thessaly, Larisa, Greece
| | - Christina Karatzaferi
- From the LIVE Lab, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
| | - Giorgos K Sakkas
- From the LIVE Lab, Department of Physical Education and Sport Science, University of Thessaly, Trikala, Greece
- School of Sports and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
10
|
Li B, Liu S, He Z, Luo E, Liu H. The role of zinc finger proteins in the fate determination of mesenchymal stem cells during osteogenic and adipogenic differentiation. Int J Biochem Cell Biol 2024; 167:106507. [PMID: 38142772 DOI: 10.1016/j.biocel.2023.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Zinc finger proteins (ZFPs) constitute a crucial group of transcription factors widely present in various organisms. They act as transcription factors, nucleases, and RNA-binding proteins, playing significant roles in cell differentiation, growth, and development. With extensive research on ZFPs, their roles in the determination of mesenchymal stem cells (MSCs) fate during osteogenic and adipogenic differentiation processes have become increasingly clear. ZFP521, for instance, is identified as an inhibitor of the Wnt signaling pathway and RUNX2's transcriptional activity, effectively suppressing osteogenic differentiation. Moreover, ZFP217 contributes to the inhibition of adipogenic differentiation by reducing the M6A level of the cell cycle regulator cyclin D1 (CCND1). In addition, other ZFPs can also influence the fate of mesenchymal stem cells (MSCs) during osteogenic and adipogenic differentiation through various signaling pathways, transcription factors, and epigenetic controls, participating in the subsequent differentiation and maturation of precursor cells. Given the prevalent occurrence of osteoporosis, obesity, and related metabolic disorders, a comprehensive understanding of the regulatory mechanisms balancing bone and fat metabolism is essential, with a particular focus on the fate determination of MSCs in osteogenic and adipogenic differentiation. In this review, we provide a detailed summary of how zinc finger proteins influence the osteogenic and adipogenic differentiation of MSCs through different signaling pathways, transcription factors, and epigenetic mechanisms. Additionally, we outline the regulatory mechanisms of ZFPs in controlling osteogenic and adipogenic differentiation based on various stages of MSC differentiation.
Collapse
Affiliation(s)
- Bolun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ze He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
11
|
Crabtree A, Neikirk K, Marshall AG, Vang L, Whiteside AJ, Williams Q, Altamura CT, Owens TC, Stephens D, Shao B, Koh A, Killion M, Lopez EG, Lam J, Rodriguez B, Mungai M, Stanley J, Dean ED, Koh HJ, Gaddy JA, Scudese E, Sweetwyne MT, Davis J, Zaganjor E, Murray SA, Katti P, Damo SM, Vue Z, Hinton A. Defining Mitochondrial Cristae Morphology Changes Induced by Aging in Brown Adipose Tissue. Adv Biol (Weinh) 2024; 8:e2300186. [PMID: 37607124 PMCID: PMC10869235 DOI: 10.1002/adbi.202300186] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/20/2023] [Indexed: 08/24/2023]
Abstract
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, it is hypothesized that significant morphological changes in BAT mitochondria and cristae will be present with aging. A quantitative 3D electron microscopy approach is developed to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, the 3D morphology of mitochondrial cristae is investigated in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, an increase is found in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging.
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron J Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ben Rodriguez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jade Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jennifer A Gaddy
- Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH), Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, 22290-240, Brazil
- Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Rio de Janeiro, 22290-240, Brazil
| | - Mariya T Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, Pharmacology, Meharry Medical College, Nashville, TN, 37208, USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh, Pittsburg, PA, 15261, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
12
|
Tian D, Zeng X, Gong Y, Zheng Y, Zhang J, Wu Z. HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. Cell Signal 2023; 111:110875. [PMID: 37640195 DOI: 10.1016/j.cellsig.2023.110875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Obesity, one of the most serious public health issues, is caused by the imbalance of energy intake and energy expenditure. Increasing energy expenditure via induction of adipose tissue browning has become an appealing strategy to treat obesity and associated metabolic complications. Although histone modifications have been confirmed to regulate cellular energy metabolism, the involved biochemical mechanism of thermogenesis in adipose tissue is not completely understood. Herein, we report that class I histone deacetylases (HDAC) inhibitor MS275 increased PGC1α/UCP1 protein levels in inguinal white adipose tissue (iWAT) concomitant with elevated energy expenditure, reduced obesity and ameliorated glucose tolerance compared to control littermates. H3K18cr and H3K18ac levels were elevated after MS275 treatment. MS275 also promoted the transcription of Pgc1α and Ucp1 by enhancing the enrichment of H3K18cr and H3K18ac in the Pgc1α/Ucp1 enhancer and promoter, with a notable increase in H3K18cr. Mechanistically, the deletion of Hdac1 in beige adipocyte increases H3K18cr levels in enhancers and promoters of Pgc1α and Ucp1 genes, regulated the chromosomal state, thereby affecting the transcription of Pgc1α/Ucp1. Taken together, HDAC1 inhibits beige adipocyte-mediated thermogenesis through histone crotonylation of Pgc1a/Ucp1. This finding may provide a therapeutic strategy through increasing energy expenditure in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Dingyuan Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Xiaojiao Zeng
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China
| | - Yin Zheng
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jun Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300134, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
13
|
Bae IS, Lee JA, Cho SH, Kim HW, Kim Y, Seo K, Cho HW, Lee MY, Chun JL, Kim KH. Rabbit Meat Extract Induces Browning in 3T3-L1 Adipocytes via the AMP-Activated Protein Kinase Pathway. Foods 2023; 12:3671. [PMID: 37835324 PMCID: PMC10572372 DOI: 10.3390/foods12193671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
The browning of white adipocytes may be an innovative approach to address obesity. This study investigated the effects of rabbit meat extract on 3T3-L1 adipocytes, with a specific emphasis on inducing browning. The browning effects of rabbit meat extract were evaluated by analyzing genes specifically expressed in 3T3-L1 adipocytes using quantitative PCR and immunoblotting. Rabbit meat extract increased the expression of brown adipocyte-specific markers, UCP1 and PGC1α, and mitochondrial biogenesis factors, TFAM and NRF1, without affecting cell viability in fully differentiated 3T3-L1 adipocytes. Moreover, adipocyte differentiation and the triglyceride content were decreased; hormone-sensitive lipase activity was promoted. Rabbit meat extract activated the AMPK pathway in the differentiated 3T3-L1 cells. However, in adipocytes treated with rabbit meat extract, the expression of genes related to browning was reduced by the AMP-activated protein kinase (AMPK) inhibitor, dorsomorphin dihydrochloride. To the best of our knowledge, this is the first study to demonstrate that rabbit meat extract induces the browning of white adipocytes via the activation of the AMPK pathway, thereby demonstrating its therapeutic potential in preventing obesity.
Collapse
Affiliation(s)
- In-Seon Bae
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Jeong Ah Lee
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Soo-Hyun Cho
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Hyoun-Wook Kim
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Yunseok Kim
- Animal Products Utilization Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (J.A.L.); (S.-H.C.); (H.-W.K.); (Y.K.)
| | - Kangmin Seo
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Hyun-Woo Cho
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Min Young Lee
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Ju Lan Chun
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| | - Ki Hyun Kim
- Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.S.); (H.-W.C.); (M.Y.L.); (J.L.C.); (K.H.K.)
| |
Collapse
|
14
|
Crabtree A, Neikirk K, Marshall AG, Vang L, Whiteside AJ, Williams Q, Altamura CT, Owens TC, Stephens D, Shao B, Koh A, Killion M, Lopez EG, Lam J, Rodriguez B, Mungai M, Stanley J, Dean ED, Koh HJ, Gaddy JA, Scudese E, Sweetwyne M, Davis J, Zaganjor E, Murray SA, Katti P, Damo SM, Vue Z, Hinton A. Defining Mitochondrial Cristae Morphology Changes Induced by Aging in Brown Adipose Tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540609. [PMID: 37577723 PMCID: PMC10418056 DOI: 10.1101/2023.05.12.540609] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Mitochondria are required for energy production and even give brown adipose tissue (BAT) its characteristic color due to their high iron content and abundance. The physiological function and bioenergetic capacity of mitochondria are connected to the structure, folding, and organization of its inner-membrane cristae. During the aging process, mitochondrial dysfunction is observed, and the regulatory balance of mitochondrial dynamics is often disrupted, leading to increased mitochondrial fragmentation in aging cells. Therefore, we hypothesized that significant morphological changes in BAT mitochondria and cristae would be present with aging. We developed a quantitative three-dimensional (3D) electron microscopy approach to map cristae network organization in mouse BAT to test this hypothesis. Using this methodology, we investigated the 3D morphology of mitochondrial cristae in adult (3-month) and aged (2-year) murine BAT tissue via serial block face-scanning electron microscopy (SBF-SEM) and 3D reconstruction software for manual segmentation, analysis, and quantification. Upon investigation, we found increases in mitochondrial volume, surface area, and complexity and decreased sphericity in aged BAT, alongside significant decreases in cristae volume, area, perimeter, and score. Overall, these data define the nature of the mitochondrial structure in murine BAT across aging. Abstract Figure
Collapse
Affiliation(s)
- Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea G Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron J Whiteside
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Qiana Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Christopher T Altamura
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Trinity Celeste Owens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Bryanna Shao
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Alice Koh
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Mason Killion
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Edgar Garza Lopez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jacob Lam
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Ben Rodriguez
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Margaret Mungai
- Department of Internal Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Jade Stanley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - E Danielle Dean
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University Medical Center, TN, 37232, USA
| | - Ho-Jin Koh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jennifer A Gaddy
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209
- Tennessee Valley Healthcare Systems, U.S. Department of Veterans Affairs, Nashville, TN, 37232, USA
| | - Estevão Scudese
- Laboratory of Biosciences of Human Motricity (LABIMH) of the Federal University of State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil; Sport Sciences and Exercise Laboratory (LaCEE), Catholic University of Petrópolis (UCP), Brazil
| | - Mariya Sweetwyne
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, Pharmacology, Meharry Medical College, Nashville, TN 37208 USA
| | - Elma Zaganjor
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sandra A Murray
- Department of Cell Biology, University of Pittsburgh; Pittsburg h, PA, 15261 USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| |
Collapse
|
15
|
Zavros A, Andreou E, Aphamis G, Bogdanis GC, Sakkas GK, Roupa Z, Giannaki CD. The Effects of Zinc and Selenium Co-Supplementation on Resting Metabolic Rate, Thyroid Function, Physical Fitness, and Functional Capacity in Overweight and Obese People under a Hypocaloric Diet: A Randomized, Double-Blind, and Placebo-Controlled Trial. Nutrients 2023; 15:3133. [PMID: 37513551 PMCID: PMC10386647 DOI: 10.3390/nu15143133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Evidence of the effectiveness of zinc (Zn) and selenium (Se) on resting metabolic rate (RMR) and physical function parameters in people with overweight and obesity is scarce, while the effects of zinc and selenium on thyroid function and body composition are still a topic of debate and controversy. The aim of this randomized, double-blind, and placebo-controlled trial was to examine the effects of a hypocaloric diet and Se-Zn co-supplementation on RMR, thyroid function, body composition, physical fitness, and functional capacity in overweight or obese individuals. Twenty-eight overweight-obese participants (mean BMI: 29.4 ± 4.7) were randomly allocated (1:1) to the supplementation group (n = 14, 31.1 ± 5.5 yrs, 9 females) and the placebo group (n = 14, 32.1 ± 4.8 yrs, 6 females). The participants received Zn (25 mg of zinc gluconate/day) and Se (200 mcg of L-selenomethionine/day) or placebo tablets containing starch for eight weeks. The participants of both groups followed a hypocaloric diet during the intervention. RMR, thyroid function, body composition, cardiorespiratory fitness (VO2max), and functional capacity (sit-to-stand tests, timed up-and-go test, and handgrip strength) were assessed before and after the intervention. A significant interaction was found between supplementation and time on RMR (p = 0.045), with the intervention group's RMR increasing from 1923 ± 440 to 2364 ± 410 kcal/day. On the other hand, no interaction between supplementation and time on the thyroid function was found (p > 0.05). Regarding the effects of Zn/Se co-administration on Se levels, a significant interaction between supplementation and time on Se levels was detected (p = 0.004). Specifically, the intervention group's Se serum levels were increased from 83.04 ± 13.59 to 119.40 ± 23.93 μg/L. However, Zn serum levels did not change over time (90.61 ± 23.23 to 89.58 ± 10.61 umol/L). Even though all body composition outcomes improved in the intervention group more than placebo at the second measurement, no supplement × time interaction was detected on body composition (p > 0.05). Cardiorespiratory fitness did not change over the intervention. Yet, a main effect of time was found for some functional capacity tests, with both groups improving similarly over the eight-week intervention period (p < 0.05). In contrast, a supplement x group interaction was found in the performance of the timed up-and-go test (TUG) (p = 0.010), with the supplementation group improving more. In conclusion, an eight-week intervention with Zn/Se co-supplementation combined with a hypocaloric diet increased the RMR, TUG performance, and Se levels in overweight and obese people. However, thyroid function, Zn levels, body composition, and the remaining outcomes of exercise performance remained unchanged.
Collapse
Affiliation(s)
- Antonis Zavros
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| | - Eleni Andreou
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| | - George Aphamis
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| | - Gregory C Bogdanis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 10679 Athens, Greece
| | - Giorgos K Sakkas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Zoe Roupa
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
| | - Christoforos D Giannaki
- Department of Life Sciences, University of Nicosia, Nicosia 2417, Cyprus
- Research Centre for Exercise and Nutrition (RECEN), Nicosia 2417, Cyprus
| |
Collapse
|
16
|
Bienboire-Frosini C, Wang D, Marcet-Rius M, Villanueva-García D, Gazzano A, Domínguez-Oliva A, Olmos-Hernández A, Hernández-Ávalos I, Lezama-García K, Verduzco-Mendoza A, Gómez-Prado J, Mota-Rojas D. The Role of Brown Adipose Tissue and Energy Metabolism in Mammalian Thermoregulation during the Perinatal Period. Animals (Basel) 2023; 13:2173. [PMID: 37443971 DOI: 10.3390/ani13132173] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Hypothermia is one of the most common causes of mortality in neonates, and it could be developed after birth because the uterus temperature is more elevated than the extrauterine temperature. Neonates use diverse mechanisms to thermoregulate, such as shivering and non-shivering thermogenesis. These strategies can be more efficient in some species, but not in others, i.e., altricials, which have the greatest difficulty with achieving thermoneutrality. In addition, there are anatomical and neurological differences in mammals, which may present different distributions and amounts of brown fat. This article aims to discuss the neuromodulation mechanisms of thermoregulation and the importance of brown fat in the thermogenesis of newborn mammals, emphasizing the analysis of the biochemical, physiological, and genetic factors that determine the distribution, amount, and efficiency of this energy resource in newborns of different species. It has been concluded that is vital to understand and minimize hypothermia causes in newborns, which is one of the main causes of mortality in neonates. This would be beneficial for both animals and producers.
Collapse
Affiliation(s)
- Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Míriam Marcet-Rius
- Animal Behaviour and Welfare Department, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, 56124 Pisa, Italy
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Ismael Hernández-Ávalos
- Clinical Pharmacology and Veterinary Anesthesia, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli 54714, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City 04960, Mexico
| |
Collapse
|
17
|
Harbin NH, Lustberg DJ, Hurst C, Pare J, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 limits seizure-induced mitochondrial oxidative stress and pathology in hippocampus. Neurobiol Dis 2023; 181:106128. [PMID: 37075948 PMCID: PMC10259180 DOI: 10.1016/j.nbd.2023.106128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. In these neurons, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies showed that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity, possibly affording protection to CA2 PCs. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show that the loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Our proteomics data show that the loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro. As a readout of oxidative stress, we found that RGS14 KO dramatically increased 3- nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we unexpectedly found no differences in neuronal injury in CA2 PCs. However, we observed a striking and surprising lack of microgliosis in CA1 and CA2 of RGS14 KO compared to WT. Together, our data demonstrate a newly appreciated role for RGS14 in limiting intense seizure activity and pathology in hippocampus. Our findings are consistent with a model where RGS14 limits seizure onset and mortality and, after seizure, is upregulated to support mitochondrial function, prevent oxidative stress in CA2 PCs, and promote microglial activation in hippocampus.
Collapse
Affiliation(s)
- N H Harbin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - D J Lustberg
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States
| | - C Hurst
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - J Pare
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States.
| | - K M Crotty
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - A L Waters
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| | - S M Yeligar
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University, 1364 Clifton Road NE, Suite H-153, Atlanta, GA 30322, United States; Atlanta Veterans Affairs Health Care System, 1670 Clairmont Road, Decatur, GA 30033, United States.
| | - Y Smith
- Emory National Primate Research Center, Emory University, 954, Gatewood Rd NE, Atlanta, GA 30329, United States; Department of Neurology, Emory University School of Medicine, 12 Executive Park Dr NE, Atlanta, GA, 30322, United States.
| | - N T Seyfried
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Rd, 4001 Rollins Research Center, Atlanta, GA 30322, United States.
| | - D Weinshenker
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, United States.
| | - J R Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 1510 Clifton Rd, 5001 Rollins Research Ctr, Atlanta, GA 30322, United States.
| |
Collapse
|
18
|
Graceli JB, da Costa CS, Laws MJ, Deviney ARK, Meling D, Flaws JA. Chronic exposure to a mixture of phthalates shifts the white and brown adipose tissue phenotypes in female mice. Toxicol Sci 2023; 193:204-218. [PMID: 37021957 PMCID: PMC10230284 DOI: 10.1093/toxsci/kfad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
Phthalates are endocrine-disrupting chemicals used in consumer products. Although phthalates are obesogens and affect metabolic function, it is unknown if chronic exposure for 6 months to a phthalate mixture alters adipose tissue phenotype in female mice. After vehicle or mixture exposure, white adipose tissue and brown adipose tissue (WAT and BAT) were analyzed for expression of adipogenesis, proliferation, angiogenesis, apoptosis, oxidative stress, inflammation, and collagen deposition markers. The mixture altered WAT morphology, leading to an increase in hyperplasia, blood vessel number, and expression of BAT markers (Adipoq and Fgf2) in WAT. The mixture increased the expression of the inflammatory markers, Il1β, Ccl2, and Ccl5, in WAT. The mixture also increased expression of the proapoptotic (Bax and Bcl2) and antiapoptotic (Bcl2l10) factors in WAT. The mixture increased expression of the antioxidant Gpx1 in WAT. The mixture changed BAT morphology by increasing adipocyte diameter, whitening area, and blood vessel number and decreased expression of the thermogenic markers Ucp1, Pgargc1a, and Adrb3. Furthermore, the mixture increased the expression of adipogenic markers Plin1 and Cebpa, increased mast cell number, and increased Il1β expression in BAT. The mixture also increased expression of the antioxidant markers Gpx and Nrf2 and the apoptotic marker Casp2 in BAT. Collectively, these data indicate that chronic exposure to a phthalate mixture alters WAT and BAT lipid metabolism phenotypes in female mice, leading to an apparent shift in their normal morphology. Following long-term exposure to a phthalate mixture, WAT presented BAT-like features and BAT presented WAT-like features.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| | - Charles S da Costa
- Department of Morphology, Federal University of Espirito Santo, Vitoria, Brazil
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Ashley R K Deviney
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Daryl Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
19
|
Behl T, Makkar R, Anwer MK, Hassani R, Khuwaja G, Khalid A, Mohan S, Alhazmi HA, Sachdeva M, Rachamalla M. Mitochondrial Dysfunction: A Cellular and Molecular Hub in Pathology of Metabolic Diseases and Infection. J Clin Med 2023; 12:jcm12082882. [PMID: 37109219 PMCID: PMC10141031 DOI: 10.3390/jcm12082882] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Mitochondria are semiautonomous doubly membraned intracellular components of cells. The organelle comprises of an external membrane, followed by coiled structures within the membrane called cristae, which are further surrounded by the matrix spaces followed by the space between the external and internal membrane of the organelle. A typical eukaryotic cell contains thousands of mitochondria within it, which make up 25% of the cytoplasm present in the cell. The organelle acts as a common point for the metabolism of glucose, lipids, and glutamine. Mitochondria chiefly regulate oxidative phosphorylation-mediated aerobic respiration and the TCA cycle and generate energy in the form of ATP to fulfil the cellular energy needs. The organelle possesses a unique supercoiled doubly stranded mitochondrial DNA (mtDNA) which encodes several proteins, including rRNA and tRNA crucial for the transport of electrons, oxidative phosphorylation, and initiating genetic repair processors. Defects in the components of mitochondria act as the principal factor for several chronic cellular diseases. The dysfunction of mitochondria can cause a malfunction in the TCA cycle and cause the leakage of the electron respiratory chain, leading to an increase in reactive oxygen species and the signaling of aberrant oncogenic and tumor suppressor proteins, which further alter the pathways involved in metabolism, disrupt redox balance, and induce endurance towards apoptosis and several treatments which play a major role in developing several chronic metabolic conditions. The current review presents the knowledge on the aspects of mitochondrial dysfunction and its role in cancer, diabetes mellitus, infections, and obesity.
Collapse
Affiliation(s)
- Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
| | - Rashita Makkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Stattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan 45142, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2404, Khartoum 11123, Sudan
| | - Syam Mohan
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun 248007, India
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602105, India
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain P.O. Box 24162, United Arab Emirates
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
20
|
Harbin NH, Lustberg DJ, Hurst C, Pare JF, Crotty KM, Waters AL, Yeligar SM, Smith Y, Seyfried NT, Weinshenker D, Hepler JR. RGS14 is neuroprotective against seizure-induced mitochondrial oxidative stress and pathology in hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526349. [PMID: 36778349 PMCID: PMC9915580 DOI: 10.1101/2023.02.01.526349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. There, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies show that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Utilizing proteomics, we saw loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro . As a readout of oxidative stress, we found RGS14 KO dramatically increased 3-nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we observed worse neuronal injury in area CA3 (but none in CA2 or CA1), and a lack of microgliosis in CA1 and CA2 compared to WT. Together, our data demonstrates a newly appreciated neuroprotective role for RGS14 against intense seizure activity in hippocampus. Our findings are consistent with a model where, after seizure, RGS14 is upregulated to support mitochondrial function and prevent oxidative stress in CA2 PCs, limit seizure onset and hippocampal neuronal injury, and promote microglial activation in hippocampus.
Collapse
|
21
|
Crowder MK, Shrestha S, Cartailler J, Collins S. Protein kinase D1 (Prkd1) deletion in brown adipose tissue leads to altered myogenic gene expression after cold exposure, while thermogenesis remains intact. Physiol Rep 2023; 11:e15576. [PMID: 36807778 PMCID: PMC9937785 DOI: 10.14814/phy2.15576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/31/2022] [Indexed: 02/19/2023] Open
Abstract
Brown adipose tissue (BAT) has in recent times been rediscovered in adult humans, and together with work from preclinical models, has shown to have the potential of providing a variety of positive metabolic benefits. These include lower plasma glucose, improved insulin sensitivity, and reduced susceptibility to obesity and its comorbidities. As such, its continued study could offer insights to therapeutically modulate this tissue to improve metabolic health. It has been reported that adipose-specific deletion of the gene for protein kinase D1 (Prkd1) in mice enhances mitochondrial respiration and improves whole-body glucose homeostasis. We sought to determine whether these effects were mediated specifically through brown adipocytes using a Prkd1 brown adipose tissue (BAT) Ucp1-Cre-specific knockout mouse model, Prkd1BKO . We unexpectedly observed that upon both cold exposure and β3 -AR agonist administration, Prkd1 loss in BAT did not alter canonical thermogenic gene expression or adipocyte morphology. We took an unbiased approach to assess whether other signaling pathways were affected. RNA from cold-exposed mice was subjected to RNA-Seq analysis. These studies revealed that myogenic gene expression is altered in Prkd1BKO BAT after both acute and extended cold exposure. Given that brown adipocytes and skeletal myocytes share a common precursor cell lineage expressing myogenic factor 5 (Myf5), these data suggest that loss of Prkd1 in BAT may alter the biology of mature brown adipocytes and preadipocytes in this depot. The data presented herein clarify the role of Prkd1 in BAT thermogenesis and present new avenues for the further study of Prkd1 function in BAT.
Collapse
Affiliation(s)
- Mark K. Crowder
- Department of PharmacologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Shristi Shrestha
- Creative Data Solutions Shared ResourceVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Sheila Collins
- Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Molecular Physiology and BiophysicsVanderbilt University, School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
22
|
Phan TT, Chakraborty A, Tatum MA, Lima-Orellana A, Reyna AJ, Rutkowski JM. Increased adipose tissue lymphatic vessel density inhibits thermogenesis through elevated neurotensin levels. Front Cell Dev Biol 2023; 11:1100788. [PMID: 36776563 PMCID: PMC9911872 DOI: 10.3389/fcell.2023.1100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
During cold exposure, white adipose tissue can remodel to dissipate energy as heat under cold similar to thermogenic brown adipose tissue. This "browning" and the regulation of body temperature is under the control of neural and hormonal signaling. It was recently discovered that neurotensin, a small neuropeptide, not only acts to inhibit thermogenesis, but also that lymphatic vessels may be a surprisingly potent source of neurotensin production. We hypothesized that the induction of adipose tissue lymphangiogenesis would therefore increase tissue neurotensin levels and impair thermogenesis. Methods: We utilized AdipoVD mice that have inducible expression of vascular endothelial growth factor (VEGF)-D, a potent lymphangiogenic stimulator, specifically in adipose tissue. Overexpression of VEGF-D induced significant lymphangiogenesis in both white and brown adipose tissues of AdipoVD mice. Results: Obese Adipo-VD mice demonstrated no differences in adipose morphology or browning under room temperature conditions compared to controls but did express significantly higher levels of neurotensin in their adipose tissues. Upon acute cold exposure, AdipoVD mice were markedly cold intolerant; inhibition of neurotensin signaling ameliorated this cold intolerance as AdipoVD mice were then able to maintain body temperature on cold challenge equivalent to their littermates. Conclusion: In total, these data demonstrate that adipose tissue lymphatic vessels are a potent paracrine source of neurotensin and that lymphangiogenesis therefore impairs the tissues' thermogenic ability.
Collapse
Affiliation(s)
- Thien T. Phan
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Adri Chakraborty
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States,Currently the Arthritis and Autoimmune Disease Research Center, Boston University School of Medicine, Boston, MA, United States
| | - Madison A. Tatum
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Ana Lima-Orellana
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Andrea J. Reyna
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States
| | - Joseph M. Rutkowski
- Department of Medical Physiology, Texas A&M University School of Medicine, Bryan, TX, United States,*Correspondence: Joseph M. Rutkowski,
| |
Collapse
|
23
|
Thermogenic Adipose Redox Mechanisms: Potential Targets for Metabolic Disease Therapies. Antioxidants (Basel) 2023; 12:antiox12010196. [PMID: 36671058 PMCID: PMC9854447 DOI: 10.3390/antiox12010196] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Metabolic diseases, such as diabetes and non-alcoholic fatty liver disease (NAFLD), have several negative health outcomes on affected humans. Dysregulated energy metabolism is a key component underlying the pathophysiology of these conditions. Adipose tissue is a fundamental regulator of energy homeostasis that utilizes several redox reactions to carry out the metabolism. Brown and beige adipose tissues, in particular, perform highly oxidative reactions during non-shivering thermogenesis to dissipate energy as heat. The appropriate regulation of energy metabolism then requires coordinated antioxidant mechanisms to counterbalance the oxidation reactions. Indeed, non-shivering thermogenesis activation can cause striking changes in concentrations of both oxidants and antioxidants in order to adapt to various oxidative environments. Current therapeutic options for metabolic diseases either translate poorly from rodent models to humans (in part due to the challenges of creating a physiologically relevant rodent model) or tend to have numerous side effects, necessitating novel therapies. As increased brown adipose tissue activity results in enhanced energy expenditure and is associated with beneficial effects on metabolic health, such as decreased obesity, it has gathered great interest as a modulator of metabolic disease. One potential reason for the beneficial health effects may be that although non-shivering thermogenesis is enormously oxidative, it is also associated with decreased oxidant formation after its activation. However, targeting its redox mechanisms specifically to alter metabolic disease remains an underexplored area. Therefore, this review will discuss the role of adipose tissue in energy homeostasis, non-shivering thermogenesis in adults, and redox mechanisms that may serve as novel therapeutic targets of metabolic disease.
Collapse
|
24
|
Lemaitre M, Christin-Maitre S, Kerlan V. Polycystic ovary syndrome and adipose tissue. ANNALES D'ENDOCRINOLOGIE 2023; 84:308-315. [PMID: 36623807 DOI: 10.1016/j.ando.2022.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 11/30/2022] [Indexed: 01/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine metabolic disorder in women of reproductive age. Typically, it is associated with ovulatory dysfunction: dysovulation or anovulation, and symptoms of hyperandrogenism. It incurs risk of metabolic disorders such as diabetes, dyslipidemia and fatty liver. As a key endocrine organ in metabolic homeostasis, adipose tissue is often implicated in these complications. Studies of white adipose tissue (WAT) in PCOS have focused on the mechanism of insulin resistance in this tissue. Clinically, abnormalities in WAT distribution are seen, with decreased waist-to-hip ratio and increased ratio of adipose to lean mass. Such abnormalities are greater when total circulating androgens are elevated. At tissue level, white adipocyte hyperplasia occurs, along with infiltration of macrophages. Secretion of adipokines, cytokines and chemo-attractant proteins is increased in a pro-inflammatory manner, leading to reduced insulin sensitivity via alteration of glucose transporters, and hence decreased glucose uptake. The kinetics of non-esterified fatty acids (or free fatty acids) is also altered, leading to lipotoxicity. In recent years, brown adipose tissue (BAT) has been studied in women with PCOS. Although abundance is low in the body, BAT appears to play a significant role in energy expenditure and metabolic parameters. Both supra-clavicular skin temperature, which reflects BAT activity, and BAT mass are reduced in women with PCOS. Moreover, BAT mass and body mass index (BMI) are inversely correlated in patients. In the adipocyte, increased total circulating androgen levels reduce expression of uncoupling protein 1 (UCP1), a key protein in the brown adipocyte, leading to reduced biogenesis and mitochondrial respiration and hence a reduction in post-prandial thermogenesis. BAT is currently being investigated as a possible new therapeutic application.
Collapse
Affiliation(s)
- Madleen Lemaitre
- CHU Lille, Department of Diabetology, Endocrinology, Metabolism and Nutrition, Lille University Hospital, 59000 Lille, France.
| | - Sophie Christin-Maitre
- Center for rare endocrine diseases of growth and development, ERN-HCP, Sorbonne University, Endocrinology, Diabetology and Reproductive Medicine, Saint-Antoine Hospital, AP-HP, 75012 Paris, France
| | - Véronique Kerlan
- CHU Brest, Department of Diabetology and Endocrinology, Brest University Hospital, 29200 Brest, France
| |
Collapse
|
25
|
Chen Y, He A. Isolation and Differentiation of Adipocyte Precursors Derived from Neonatal Murine Brown Adipose Tissue. Methods Mol Biol 2023; 2662:25-31. [PMID: 37076668 DOI: 10.1007/978-1-0716-3167-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Brown adipose tissue (BAT) is an important regulator of energy homeostasis. Primary brown adipocyte culture provides a powerful and physiologically relevant tool for in vitro studies related to BAT. Here, we describe a detailed procedure for isolation and differentiation of adipocyte precursors from neonatal murine interscapular BAT (iBAT).
Collapse
Affiliation(s)
- Yali Chen
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Anyuan He
- School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Tsuji T, Kajimoto K, Inada N. Measurement of Intracellular Temperature in Brown Adipocytes Using a Cationic Fluorescent Polymeric Thermometer. Methods Mol Biol 2023; 2662:87-102. [PMID: 37076673 DOI: 10.1007/978-1-0716-3167-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Brown adipose tissue specializes in expending energy through non-shivering thermogenesis, and many studies have associated its activity with protection and treatment of obesity and metabolic diseases. To reveal the mechanisms involved in heat production, primary cultured brown adipose cells (BACs) have been used because of their ease of genetic engineering and similarity to living tissue. However, thermogenic activity has often been evaluated as an indirect method, such as the measurement of oxygen consumption. Recently, fluorescent nanothermometers for the direct measurement of intracellular temperature have been developed and applied to elucidate the mechanisms of heat production in BACs. In this chapter, we introduce a protocol that uses a cationic fluorescent polymeric thermometer to directly measure the temperature within primary cultured BACs. We anticipate that this protocol will be beneficial in elucidating the mechanism of thermogenesis in BACs.
Collapse
Affiliation(s)
- Toshikazu Tsuji
- Kirin Central Research Institute, Kirin Holdings Company Limited, Fujisawa, Kanagawa, Japan.
| | - Kazuaki Kajimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa, Japan
| | - Noriko Inada
- School of Agriculture, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
27
|
Zhu Y, Qi Z, Ding S. Exercise-Induced Adipose Tissue Thermogenesis and Browning: How to Explain the Conflicting Findings? Int J Mol Sci 2022; 23:13142. [PMID: 36361929 PMCID: PMC9657384 DOI: 10.3390/ijms232113142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 07/25/2023] Open
Abstract
Brown adipose tissue (BAT) has been widely studied in targeting against metabolic diseases such as obesity, type 2 diabetes and insulin resistance due to its role in nutrient metabolism and energy regulation. Whether exercise promotes adipose tissue thermogenesis and browning remains controversial. The results from human and rodent studies contradict each other. In our opinion, fat thermogenesis or browning promoted by exercise should not be a biomarker of health benefits, but an adaptation under the stress between body temperature regulation and energy supply and expenditure of multiple organs. In this review, we discuss some factors that may contribute to conflicting experimental results, such as different thermoneutral zones, gender, training experience and the heterogeneity of fat depots. In addition, we explain that a redox state in cells potentially causes thermogenesis heterogeneity and different oxidation states of UCP1, which has led to the discrepancies noted in previous studies. We describe a network by which exercise orchestrates the browning and thermogenesis of adipose tissue with total energy expenditure through multiple organs (muscle, brain, liver and adipose tissue) and multiple pathways (nerve, endocrine and metabolic products), providing a possible interpretation for the conflicting findings.
Collapse
Affiliation(s)
- Yupeng Zhu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Shuzhe Ding
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- Sino-French Joint Research Center of Sport Science, East China Normal University, Shanghai 200241, China
| |
Collapse
|
28
|
Liao FH, Yao CN, Chen SP, Wu TH, Lin SY. Transdermal Delivery of Succinate Accelerates Energy Dissipation of Brown Adipocytes to Reduce Remote Fat Accumulation. Mol Pharm 2022; 19:4299-4310. [DOI: 10.1021/acs.molpharmaceut.2c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang-Hsuean Liao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Chun-Nien Yao
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Ping Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Te-Haw Wu
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| | - Shu-Yi Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, 35 Keyan Road,
Zhunan Town, Miaoli County 35053, Taiwan
| |
Collapse
|
29
|
Yin X, Chen Y, Ruze R, Xu R, Song J, Wang C, Xu Q. The evolving view of thermogenic fat and its implications in cancer and metabolic diseases. Signal Transduct Target Ther 2022; 7:324. [PMID: 36114195 PMCID: PMC9481605 DOI: 10.1038/s41392-022-01178-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractThe incidence of metabolism-related diseases like obesity and type 2 diabetes mellitus has reached pandemic levels worldwide and increased gradually. Most of them are listed on the table of high-risk factors for malignancy, and metabolic disorders systematically or locally contribute to cancer progression and poor prognosis of patients. Importantly, adipose tissue is fundamental to the occurrence and development of these metabolic disorders. White adipose tissue stores excessive energy, while thermogenic fat including brown and beige adipose tissue dissipates energy to generate heat. In addition to thermogenesis, beige and brown adipocytes also function as dynamic secretory cells and a metabolic sink of nutrients, like glucose, fatty acids, and amino acids. Accordingly, strategies that activate and expand thermogenic adipose tissue offer therapeutic promise to combat overweight, diabetes, and other metabolic disorders through increasing energy expenditure and enhancing glucose tolerance. With a better understanding of its origins and biological functions and the advances in imaging techniques detecting thermogenesis, the roles of thermogenic adipose tissue in tumors have been revealed gradually. On the one hand, enhanced browning of subcutaneous fatty tissue results in weight loss and cancer-associated cachexia. On the other hand, locally activated thermogenic adipocytes in the tumor microenvironment accelerate cancer progression by offering fuel sources and is likely to develop resistance to chemotherapy. Here, we enumerate current knowledge about the significant advances made in the origin and physiological functions of thermogenic fat. In addition, we discuss the multiple roles of thermogenic adipocytes in different tumors. Ultimately, we summarize imaging technologies for identifying thermogenic adipose tissue and pharmacologic agents via modulating thermogenesis in preclinical experiments and clinical trials.
Collapse
|
30
|
Zhou Q, Zhang F, Kerbl-Knapp J, Korbelius M, Kuentzel KB, Vujić N, Akhmetshina A, Hörl G, Paar M, Steyrer E, Kratky D, Madl T. Phosphatidylethanolamine N-Methyltransferase Knockout Modulates Metabolic Changes in Aging Mice. Biomolecules 2022; 12:1270. [PMID: 36139111 PMCID: PMC9496051 DOI: 10.3390/biom12091270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/11/2022] Open
Abstract
Phospholipid metabolism, including phosphatidylcholine (PC) biosynthesis, is crucial for various biological functions and is associated with longevity. Phosphatidylethanolamine N-methyltransferase (PEMT) is a protein that catalyzes the biosynthesis of PC, the levels of which change in various organs such as the brain and kidneys during aging. However, the role of PEMT for systemic PC supply is not fully understood. To address how PEMT affects aging-associated energy metabolism in tissues responsible for nutrient absorption, lipid storage, and energy consumption, we employed NMR-based metabolomics to study the liver, plasma, intestine (duodenum, jejunum, and ileum), brown/white adipose tissues (BAT and WAT), and skeletal muscle of young (9-10 weeks) and old (91-132 weeks) wild-type (WT) and PEMT knockout (KO) mice. We found that the effect of PEMT-knockout was tissue-specific and age-dependent. A deficiency of PEMT affected the metabolome of all tissues examined, among which the metabolome of BAT from both young and aged KO mice was dramatically changed in comparison to the WT mice, whereas the metabolome of the jejunum was only slightly affected. As for aging, the absence of PEMT increased the divergence of the metabolome during the aging of the liver, WAT, duodenum, and ileum and decreased the impact on skeletal muscle. Overall, our results suggest that PEMT plays a previously underexplored, critical role in both aging and energy metabolism.
Collapse
Affiliation(s)
- Qishun Zhou
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Fangrong Zhang
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- Key Laboratory of Gastrointestinal Cancer, Fujian Medical University, Ministry of Education, Fuzhou 350122, China
| | - Jakob Kerbl-Knapp
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
| | - Melanie Korbelius
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Katharina Barbara Kuentzel
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Gerd Hörl
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Margret Paar
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ernst Steyrer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Tobias Madl
- Research Unit Integrative Structural Biology, Division of Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
31
|
Weber BZC, Arabaci DH, Kir S. Metabolic Reprogramming in Adipose Tissue During Cancer Cachexia. Front Oncol 2022; 12:848394. [PMID: 35646636 PMCID: PMC9135324 DOI: 10.3389/fonc.2022.848394] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a disorder of energy balance characterized by the wasting of adipose tissue and skeletal muscle resulting in severe weight loss with profound influence on morbidity and mortality. Treatment options for cancer cachexia are still limited. This multifactorial syndrome is associated with changes in several metabolic pathways in adipose tissue which is affected early in the course of cachexia. Adipose depots are involved in energy storage and consumption as well as endocrine functions. In this mini review, we discuss the metabolic reprogramming in all three types of adipose tissues – white, brown, and beige – under the influence of the tumor macro-environment. Alterations in adipose tissue lipolysis, lipogenesis, inflammation and adaptive thermogenesis of beige/brown adipocytes are highlighted. Energy-wasting circuits in adipose tissue impacts whole-body metabolism and particularly skeletal muscle. Targeting of key molecular players involved in the metabolic reprogramming may aid in the development of new treatment strategies for cancer cachexia.
Collapse
|
32
|
Križančić Bombek L, Čater M. Skeletal Muscle Uncoupling Proteins in Mice Models of Obesity. Metabolites 2022; 12:metabo12030259. [PMID: 35323702 PMCID: PMC8955650 DOI: 10.3390/metabo12030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity and accompanying type 2 diabetes are among major and increasing worldwide problems that occur fundamentally due to excessive energy intake during its expenditure. Endotherms continuously consume a certain amount of energy to maintain core body temperature via thermogenic processes, mainly in brown adipose tissue and skeletal muscle. Skeletal muscle glucose utilization and heat production are significant and directly linked to body glucose homeostasis at rest, and especially during physical activity. However, this glucose balance is impaired in diabetic and obese states in humans and mice, and manifests as glucose resistance and altered muscle cell metabolism. Uncoupling proteins have a significant role in converting electrochemical energy into thermal energy without ATP generation. Different homologs of uncoupling proteins were identified, and their roles were linked to antioxidative activity and boosting glucose and lipid metabolism. From this perspective, uncoupling proteins were studied in correlation to the pathogenesis of diabetes and obesity and their possible treatments. Mice were extensively used as model organisms to study the physiology and pathophysiology of energy homeostasis. However, we should be aware of interstrain differences in mice models of obesity regarding thermogenesis and insulin resistance in skeletal muscles. Therefore, in this review, we gathered up-to-date knowledge on skeletal muscle uncoupling proteins and their effect on insulin sensitivity in mouse models of obesity and diabetes.
Collapse
|
33
|
PET/MRI-evaluated brown adipose tissue activity may be related to dietary MUFA and omega-6 fatty acids intake. Sci Rep 2022; 12:4112. [PMID: 35260768 PMCID: PMC8904502 DOI: 10.1038/s41598-022-08125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
An investigation of new ways to activate brown adipose tissue (BAT) is highly valuable, as it is a possible tool for obesity prevention and treatment. The aim of our study was to evaluate the relationships between dietary intake and BAT activity. The study group comprised 28 healthy non-smoking males aged 21–42 years. All volunteers underwent a physical examination and 75-g OGTT and completed 3-day food intake diaries to evaluate macronutrients and fatty acid intake. Body composition measurements were assessed using DXA scanning. An FDG-18 PET/MR was performed to visualize BAT activity. Brown adipose tissue was detected in 18 subjects (67% normal-weight individuals and 33% overweight/obese). The presence of BAT corresponded with a lower visceral adipose tissue (VAT) content (p = 0.04, after adjustment for age, daily kcal intake, and DXA Lean mass). We noted significantly lower omega-6 fatty acids (p = 0.03) and MUFA (p = 0.02) intake in subjects with detected BAT activity after adjustment for age, daily average kcal intake, and DXA Lean mass, whereas omega-3 fatty acids intake was comparable between the two groups. BAT presence was positively associated with the concentration of serum IL-6 (p = 0.01) during cold exposure. Our results show that BAT activity may be related to daily omega-6 fatty acids intake.
Collapse
|
34
|
Adipocyte Biology from the Perspective of In Vivo Research: Review of Key Transcription Factors. Int J Mol Sci 2021; 23:ijms23010322. [PMID: 35008748 PMCID: PMC8745732 DOI: 10.3390/ijms23010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.
Collapse
|
35
|
Li Y, Tian X, Zhang Q, Yan C, Han Y. A novel function of CREG in metabolic disorders. MEDICAL REVIEW (BERLIN, GERMANY) 2021; 1:18-22. [PMID: 37724076 PMCID: PMC10388757 DOI: 10.1515/mr-2021-0031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/13/2021] [Indexed: 09/20/2023]
Abstract
Metabolic disorders are public health problems that require prevention and new efficient drugs for treatment. Cellular repressor of E1A-stimulated genes (CREG) is ubiquitously expressed in mature tissues and cells in mammals and plays a critical role in keeping cells or tissues in a mature, homeostatic state. Recently, CREG turns to be an important mediator in the development of metabolic disorders. Here in this review, we briefly discuss the structure and molecular regulation of CREG along with the therapeutic strategy to combat the metabolic disorders.
Collapse
Affiliation(s)
- Yang Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Xiaoxiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Quanyu Zhang
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Chenghui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yaling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| |
Collapse
|
36
|
Takei Y, Hirai R, Fukuda A, Miyazaki S, Shimada R, Okamatsu-Ogura Y, Saito M, Leproux P, Hisatake K, Kano H. Visualization of intracellular lipid metabolism in brown adipocytes by time-lapse ultra-multiplex CARS microspectroscopy with an onstage incubator. J Chem Phys 2021; 155:125102. [PMID: 34598561 DOI: 10.1063/5.0063250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We visualized a dynamic process of fatty acid uptake of brown adipocytes using a time-lapse ultra-broadband multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopic imaging system with an onstage incubator. Combined with the deuterium labeling technique, the intracellular uptake of saturated fatty acids was traced up to 9 h, a substantial advance over the initial multiplex CARS system, with an analysis time of 80 min. Characteristic metabolic activities of brown adipocytes, such as resistance to lipid saturation, were elucidated, supporting the utility of the newly developed system.
Collapse
Affiliation(s)
- Yuki Takei
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Rie Hirai
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Aya Fukuda
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Miyazaki
- Ph.D. Program in Humanics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Rintaro Shimada
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Masayuki Saito
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Philippe Leproux
- Institut de Recherche XLIM, UMR CNRS No. 7252, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Koji Hisatake
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hideaki Kano
- Department of Applied Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
37
|
Mcclement S. Adipose Tissue and Cancer Cachexia: What Nurses Need to Know. Asia Pac J Oncol Nurs 2021; 8:445-449. [PMID: 34527774 PMCID: PMC8420924 DOI: 10.4103/apjon.apjon-2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this article is to discuss the different types of adipose tissue involved in cachexia and describe their role in contributing to increased energy expenditure and negative energy balance. Armed with this knowledge, nurses will be better positioned to understand the clinical picture of cachexia, appreciate the rationale for proposed therapeutic interventions, and confidently dialogue with patients, families, and members of interdisciplinary health care teams about this prevalent condition.
Collapse
Affiliation(s)
- Susan Mcclement
- College of Nursing, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|