1
|
Ganapathy S, Bharathi M, Hirad AH, Alarfaj AA, Thangavelu I, Arulselvan P, Jaganathan R, Ravindran R, Suriyaprakash J, Boopathi TS. Carboplatin-loaded zeolitic imidazolate framework-8: Induction of antiproliferative activity and apoptosis in breast cancer cell. Biotechnol Appl Biochem 2024. [PMID: 39491814 DOI: 10.1002/bab.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The challenge with breast cancer is its ongoing high prevalence and difficulties in early detection and access to effective care. A solution lies in creating tailored metal-organic frameworks to encapsulate anticancer drugs, enabling precise and targeted treatment with less adverse effects and improved effectiveness. Zeolitic imidazolate framework-8 (ZIF-8) and carboplatin (CP)-loaded ZIF-8 were synthesized and characterized using various analytical techniques. High Resolution-transmission electron microscopy of ZIF-8 and CP@ZIF-8 indicates that the particles had a spherical shape and were nanosized. The drug release rate of CP is 98% under an acidic medium (pH 5.5) because of the dissolution of ZIF-8 into its coordinating ions, whereas 35% in a physiological medium (pH 7.4) with the addition of CP, the high porosity, and pore diameter of ZIF-8 decrease from 1243 to 1041 m2/g. Breast cancer MCF-7 cells were shown greater IC50 in CP@ZIF-8 (15.01 ± 3.03 µg/mL) than free CP (34.98 ± 4.25 µg/mL) in an in vitro cytotoxicity assessment. The cytotoxicity of the CP@ZIF-8 against MCF-7 cells was studied using the methylthiazolyldiphenyl-tetrazolium bromide method. The morphological changes were examined using fluorescent staining (acridine orange-ethidium bromide and Hoechst 33258) methods. The comet assay assessed the DNA fragmentation (single-cell gel electrophoresis). The results from the study revealed that CP@ZIF-8 can be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Saravanan Ganapathy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamil Nadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Rajeswari Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Thalakulam Shanmugam Boopathi
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
2
|
Lin GSS, Lestari W, Muhamad Halil MH, Abd Aziz MS. Scoping review on the genotoxicity of silver nanoparticles in endodontics: therapeutic saviors or genetic saboteurs? Odontology 2024:10.1007/s10266-024-01012-1. [PMID: 39367937 DOI: 10.1007/s10266-024-01012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Silver nanoparticles (AgNPs) have gained prominence in endodontics due to their exceptional antimicrobial properties. However, concerns regarding their genotoxic potential have prompted investigations into their safety profiles. This scoping review aims to consolidate current knowledge on the genotoxic effects of AgNPs in the field of endodontics. A thorough literature search across seven electronic databases was conducted using specific keywords. Inclusion criteria included experimental studies published in English from January 1960 to March 2024, addressing the genotoxicity of AgNPs in endodontic applications. Study selection and data extraction were conducted independently. The Quality Assessment Tool For In Vitro Studies (QUIN) tool was employed to evaluate the risk of bias in each study. 5 articles were selected, of which 3 were in vitro experimental designs, while the remaining were ex vivo studies. All were published between 2009 and 2021. AgNPs have been used as root canal irrigating solutions, pulp-capping materials, and root canal sealers. Most studies employed the comet assay for genotoxic evaluation. One study was found to have a low risk of bias, while others were categorized as having a medium risk. Mixed findings were noted on the genotoxic effects of AgNPs using various assays. The genotoxic potential of AgNPs somewhat poses concerns for endodontic practices. This review highlights the need for further research to develop safer alternatives and optimize their concentrations and exposure durations.
Collapse
Affiliation(s)
- Galvin Sim Siang Lin
- Department of Restorative Dentistry, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, 25200, Kuantan, Pahang, Malaysia.
| | - Widya Lestari
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, 25200, Kuantan, Pahang, Malaysia
| | - Mohd Haikal Muhamad Halil
- Department of Restorative Dentistry, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan Campus, 25200, Kuantan, Pahang, Malaysia
| | - Mohd Syafiq Abd Aziz
- Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka, 76100, Melaka, Malaysia
- Tribology Group, Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
El-Samad LM, Bakr NR, Abouzid M, Shedid ES, Giesy JP, Khalifa SAM, El-Seedi HR, El Wakil A, Al Naggar Y. Nanoparticles-mediated entomotoxicology: lessons from biologica. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:305-324. [PMID: 38446268 DOI: 10.1007/s10646-024-02745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
Nanotechnology has grown in importance in medicine, manufacturing, and consumer products. Nanoparticles (NPs) are also widely used in the field of insect pest management, where they show a variety of toxicological effects on insects. As a result, the primary goal of this review is to compile and evaluate available information on effects of NPs on insects, by use of a timely, bibliometric analysis. We also discussed the manufacturing capacity of NPs from insect tissues and the toxic effects of NPs on insects. To do so, we searched the Web of Science database for literature from 1995 to 2023 and ran bibliometric analyses with CiteSpace© and Bibliometrix©. The analyses covered 614 journals and identified 1763 relevant documents. We found that accumulation of NPs was one of the top trending topics. China, India, and USA had the most published papers. The most overall reported models of insects were those of Aedes aegypti (yellow fever mosquito), Culex quinquefasciatus (southern house mosquito), Bombyx mori (silk moth), and Anopheles stephensi (Asian malaria mosquito). The application and methods of fabrication of NPs using insect tissues, as well as the mechanism of toxicity of NPs on insects, were also reported. A uniform legal framework is required to allow nanotechnology to fully realize its potential while minimizing harm to living organisms and reducing the release of toxic metalloid nanoparticles into the environment.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Damanhur, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Eslam S Shedid
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom, 32512, Egypt
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX, 76798-7266, USA
| | - Shaden A M Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19, Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing (Jiangsu University), Jiangsu Education Department, Nanjing, 210024, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt.
| | - Yahya Al Naggar
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
4
|
Varet J, Barranger A, Crochet C, Huet S, Hogeveen K, Le Hégarat L, Fessard V. New methodological developments for testing the in vitro genotoxicity of nanomaterials: Comparison of 2D and 3D HepaRG liver cell models and classical and high throughput comet assay formats. CHEMOSPHERE 2024; 350:140975. [PMID: 38142884 DOI: 10.1016/j.chemosphere.2023.140975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/26/2023]
Abstract
Nanomaterials (NMs) are defined as materials with at least one external dimension below 100 nm. Their small size confers them interesting unique physico-chemical properties, hence NMs are increasingly used in a diversity of applications. However, the specific properties of NMs could also make them more harmful than their bulk counterparts. Therefore, there is a crucial need to deliver efficient NM hazard assessment in order to sustain the responsible development of nanotechnology. This study analysed the genotoxic potential of several NMs: one titanium dioxide (TiO2) and two zinc oxide NMs (ZnO) that were tested up to 100 μg/mL on 2D and 3D hepatic HepaRG models. Genotoxicity analysis was performed comparing the alkaline comet assay in classical and high throughput formats. Moreover, oxidative DNA lesions were investigated with the Fpg-modified comet assay. Results showed that TiO2 NMs were not cytotoxic and not genotoxic in either cell model, although a small increase in the % tail DNA was observed in 3D HepaRG cells at 100 μg/mL in the classical format. The two ZnO NMs (ZnO S. NMs a commercial suspension and NM110 provided by the European Union Joint Research Centre) induced a concentration-dependent increase in cytotoxicity that was more pronounced in the 2D (>20% cytotoxicity was observed for ZnO S. at concentrations greater than 25 μg/mL, and for NM 110 at 50 μg/mL) than in the 3D model (more than 20% cytotoxicity for ZnO S. NMs at 50 μg/mL). While ZnO S. NMs induced DNA damage associated with cytotoxicity (at 25 and 50 μg/mL in 2D and 50 μg/mL in 3D), NM110 showed a clear genotoxic effect at non-cytotoxic concentrations (25 μg/mL in 2D and at 25 and 50 μg/mL in 3D). No major differences could be observed in the comet assay in the presence or absence of the Fpg enzyme. High throughput analysis using CometChip® mostly confirmed the results obtained with the classical format, and even enhanced the detection of genotoxicity in the 3D model. In conclusion, this study demonstrated that new approach methodologies (NAMs), 3D models and the high throughput format for the comet assay, were more efficient in the detection of genotoxic effects, and are therefore promising approaches to improve hazard assessment of NMs.
Collapse
Affiliation(s)
- Julia Varet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France.
| | - Audrey Barranger
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Camille Crochet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Sylvie Huet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Kevin Hogeveen
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Ludovic Le Hégarat
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France
| | - Valérie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères Laboratory, Toxicology of Contaminants Unit, Fougères, France.
| |
Collapse
|
5
|
Fatkhutdinova LM, Gabidinova GF, Daminova AG, Dimiev AM, Khamidullin TL, Valeeva EV, Cokou AEE, Validov SZ, Timerbulatova GA. Mechanisms related to carbon nanotubes genotoxicity in human cell lines of respiratory origin. Toxicol Appl Pharmacol 2024; 482:116784. [PMID: 38070752 DOI: 10.1016/j.taap.2023.116784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 μg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 μg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.
Collapse
Affiliation(s)
| | | | | | - Ayrat M Dimiev
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Timur L Khamidullin
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Elena V Valeeva
- Kazan State Medical University, Kazan 420012, Russian Federation
| | | | | | | |
Collapse
|
6
|
Flak D, Zalewski T, Fiedorowicz K, Przysiecka Ł, Jarek M, Klimaszyk A, Kempka M, Zimna A, Rozwadowska N, Avaro J, Liebi M, Nowaczyk G. Hybrids of manganese oxide and lipid liquid crystalline nanoparticles (LLCNPs@MnO) as potential magnetic resonance imaging (MRI) contrast agents. J Mater Chem B 2023; 11:8732-8753. [PMID: 37655519 DOI: 10.1039/d3tb01110k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Due to the health risks associated with the use of Gd-chelates and the promising effects of using nanoparticles as T1 contrast agents (CAs) for MRI, Mn-based nanoparticles are considered a highly competitive alternative. The use of hybrid constructs with paramagnetic functionality of Mn-based nanoparticles is an effective approach, in particular, the use of biocompatible lipid liquid crystalline nanoparticles (LLCNPs) as a carrier of MnO nanoparticles. LLCNPs possess a unique internal structure ensuring a payload of different polarity MnO nanoparticles. In view of MRI application, the surface properties including the polarity of MnO are crucial factors determining their relaxation rate and thus the MRI efficiency. Two novel hybrid constructs consisting of LLCNPs loaded with hydrophobic MnO-oleate and hydrophilic MnO-DMSA NPs were prepared. These nanosystems were studied in terms of their physico-chemical properties, positive T1 contrast enhancement properties (in vitro and in vivo) and biological safety. LLCNPs@MnO-oleate and LLCNPs@MnO-DMSA hybrids exhibited a heterogeneous phase composition, however with differences in the inner periodic arrangement and structural parameters, as well as in the preferable localization of MnO NPs within the LLCNPs. Also, these hybrids differed in terms of particle size-related parameters and colloidal stability, which was found to be strongly dependent on the addition of differently functionalized MnO NPs. Embedding both types of MnO NPs into LLCNPs resulted in high relaxivity parameters, in comparison to bare MnO-DMSA NPs and also commercially developed CAs (e.g. Dotarem and Teslascan). Further biosafety studies revealed that cell internalization pathways were dependent on the prepared hybrid type, while viability, effects on the mitochondria membrane potential and cytoskeletal networks were rather related to the susceptibility of the particular cell line. The high relaxation rates achieved with the developed hybrid LLCNPs@MnO enable them to be possibly used as novel and biologically safe MRI T1-enhancing CAs in in vivo imaging.
Collapse
Affiliation(s)
- Dorota Flak
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Katarzyna Fiedorowicz
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Łucja Przysiecka
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marcin Jarek
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Adam Klimaszyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| | - Marek Kempka
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
- Department of Biomedical Physics, Faculty of Physics, Adam Mickiewicz University Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Natalia Rozwadowska
- Institute of Human Genetics Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Jonathan Avaro
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics and Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Marianne Liebi
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Grzegorz Nowaczyk
- NanoBioMedical Centre, Adam Mickiewicz University Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
| |
Collapse
|
7
|
Brandão F, Costa C, Bessa MJ, Valdiglesias V, Hellack B, Haase A, Fraga S, Teixeira JP. Multiparametric in vitro genotoxicity assessment of different variants of amorphous silica nanomaterials in rat alveolar epithelial cells. Nanotoxicology 2023; 17:511-528. [PMID: 37855675 DOI: 10.1080/17435390.2023.2265481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The hazard posed to human health by inhaled amorphous silica nanomaterials (aSiO2 NM) remains uncertain. Herein, we assessed the cyto- and genotoxicity of aSiO2 NM variants covering different sizes (7, 15, and 40 nm) and surface modifications (unmodified, phosphonate-, amino- and trimethylsilyl-modified) on rat alveolar epithelial (RLE-6TN) cells. Cytotoxicity was evaluated at 24 h after exposure to the aSiO2 NM variants by the lactate dehydrogenase (LDH) release and WST-1 reduction assays, while genotoxicity was assessed using different endpoints: DNA damage (single- and double-strand breaks [SSB and DSB]) by the comet assay for all aSiO2 NM variants; cell cycle progression and γ-H2AX levels (DSB) by flow cytometry for those variants that presented higher cytotoxic and DNA damaging potential. The variants with higher surface area demonstrated a higher cytotoxic potential (SiO2_7, SiO2_15_Unmod, SiO2_15_Amino, and SiO2_15_Phospho). SiO2_40 was the only variant that induced significant DNA damage on RLE-6TN cells. On the other hand, all tested variants (SiO2_7, SiO2_15_Unmod, SiO2_15_Amino, and SiO2_40) significantly increased total γ-H2AX levels. At high concentrations (28 µg/cm2), a decrease in G0/G1 subpopulation was accompanied by a significant increase in S and G2/M sub-populations after exposure to all tested materials except for SiO2_40 which did not affect cell cycle progression. Based on the obtained data, the tested variants can be ranked for its genotoxic DNA damage potential as follows: SiO2_7 = SiO2_40 = SiO2_15_Unmod > SiO2_15_Amino. Our study supports the usefulness of multiparametric approaches to improve the understanding on NM mechanisms of action and hazard prediction.
Collapse
Affiliation(s)
- Fátima Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Maria João Bessa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Bryan Hellack
- Institute of Energy and Environmental Technology (IUTA) e.V, Duisburg, Germany
- German Environment Agency (UBA), Dessau, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
8
|
Frisch E, Clavier L, Belhamdi A, Vrana NE, Lavalle P, Frisch B, Heurtault B, Gribova V. Preclinical in vitro evaluation of implantable materials: conventional approaches, new models and future directions. Front Bioeng Biotechnol 2023; 11:1193204. [PMID: 37576997 PMCID: PMC10416115 DOI: 10.3389/fbioe.2023.1193204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, implants and prostheses are widely used to repair damaged tissues or to treat different diseases, but their use is associated with the risk of infection, inflammation and finally rejection. To address these issues, new antimicrobial and anti-inflammatory materials are being developed. Aforementioned materials require their thorough preclinical testing before clinical applications can be envisaged. Although many researchers are currently working on new in vitro tissues for drug screening and tissue replacement, in vitro models for evaluation of new biomaterials are just emerging and are extremely rare. In this context, there is an increased need for advanced in vitro models, which would best recapitulate the in vivo environment, limiting animal experimentation and adapted to the multitude of these materials. Here, we overview currently available preclinical methods and models for biological in vitro evaluation of new biomaterials. We describe several biological tests used in biocompatibility assessment, which is a primordial step in new material's development, and discuss existing challenges in this field. In the second part, the emphasis is made on the development of new 3D models and approaches for preclinical evaluation of biomaterials. The third part focuses on the main parameters to consider to achieve the optimal conditions for evaluating biocompatibility; we also overview differences in regulations across different geographical regions and regulatory systems. Finally, we discuss future directions for the development of innovative biomaterial-related assays: in silico models, dynamic testing models, complex multicellular and multiple organ systems, as well as patient-specific personalized testing approaches.
Collapse
Affiliation(s)
- Emilie Frisch
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Lisa Clavier
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- SPARTHA Medical, Strasbourg, France
| | - Benoît Frisch
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Béatrice Heurtault
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
9
|
Standards for Quantitative Measurement of DNA Damage in Mammalian Cells. Int J Mol Sci 2023; 24:ijms24065427. [PMID: 36982502 PMCID: PMC10051712 DOI: 10.3390/ijms24065427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
As the potential applications of DNA diagnostics continue to expand, there is a need for improved methods and standards for DNA analysis. This report describes several methods that could be considered for the production of reference materials for the quantitative measurement of DNA damage in mammalian cells. With the focus on DNA strand breaks, potentially useful methods for assessing DNA damage in mammalian cells are reviewed. The advantages and limitations of each method, as well as additional concerns with respect to reference material development, are also discussed. In conclusion, we outline strategies for developing candidate DNA damage reference materials that could be adopted by research laboratories in a wide variety of applications.
Collapse
|
10
|
Experimental Methods for the Biological Evaluation of Nanoparticle-Based Drug Delivery Risks. Pharmaceutics 2023; 15:pharmaceutics15020612. [PMID: 36839932 PMCID: PMC9959606 DOI: 10.3390/pharmaceutics15020612] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Many novel medical therapies use nanoparticle-based drug delivery systems, including nanomaterials through drug delivery systems, diagnostics, or physiologically active medicinal products. The approval of nanoparticles with advanced therapeutic and diagnostic potentials for applications in medication and immunization depends strongly on their synthesizing procedure, efficiency of functionalization, and biological safety and biocompatibility. Nanoparticle biodistribution, absorption, bioavailability, passage across biological barriers, and biodistribution are frequently assessed using bespoke and biological models. These methods largely rely on in vitro cell-based evaluations that cannot predict the complexity involved in preclinical and clinical studies. Therefore, assessing the nanoparticle risk has to involve pharmacokinetics, organ toxicity, and drug interactions manifested at multiple cellular levels. At the same time, there is a need for novel approaches to examine nanoparticle safety risks due to increased constraints on animal exploitation and the demand for high-throughput testing. We focus here on biological evaluation methodologies that provide access to nanoparticle interactions with the organism (positive or negative via toxicity). This work aimed to provide a perception regarding the risks associated with the utilization of nanoparticle-based formulations with a particular focus on assays applied to assess the cytotoxicity of nanomaterials.
Collapse
|
11
|
Lim C, Shin K, Seo D. Genotoxicity study of 2-methoxyethanol and benzalkonium chloride through Comet assay using 3D cultured HepG2 cells. Environ Anal Health Toxicol 2022; 37:e2022031-0. [PMID: 36916044 PMCID: PMC10014747 DOI: 10.5620/eaht.2022031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Though the key data in identifying carcinogenicity is experience in human, long-term carcinogenicity tests using experimental animals are more realistic. Because carcinogenicity tests require much time and cost, performing the test is minimized through pre-screening. Recently, as bioethics has been strengthened, it is required to minimize animal testing in screening tests as well as carcinogenicity tests. The replacement of the micronucleus assay in experimental animal is the beginning, and the ultimate goal is to replace the carcinogenicity test using experimental animals. The micronucleus assay and the comet assay in 3D culture system of human-derived cells is considered as the most applicable practical measures at this stage. This study was conducted to provide more diverse information in the evaluation of carcinogenicity by establishing the comet test method in a three-dimensional cell culture system. In this study, HepG2 cells were cultured for 4 days in hang-in drop method, and then cultured for 7 days on a low adhesion plate to prepare spheroids. The methods were confirmed by d-mannitol (negative control), ethylmethane sulfonate (positive control), and cyclophosphamide (positive control for metabolite). 2-methoxyethanol and benzalkonium chloride were selected as test substances. Though 2-methoxyethanol is positive in in vivo comet assay and in vitro mammalian chromosome aberration test, it is considered negative in the comprehensive genotoxicity evaluation based on negative in bacterial reverse mutation assay, in vitro mammalian cell gene mutation test and mammalian chromosome aberration test. Benzalkonium chloride has been questioned on carcinogenicity because it is a disinfectant ingredient that has become a social issue in Korea. As a result of the Comet assay for 2-methoxyethanol and benzalkonium chloride in the cultured HepG2 cell line, 2-methoxyethanol was evaluated as positive in the metabolic activation system, but benzalkonium chloride was evaluated as negative in both the presence and absence of the metabolic activation system. Therefore, in order to clarify the carcinogenic potential of 2-methoxyethanol, it is judged that additional studies based on mechanistic studies are needed.
Collapse
Affiliation(s)
- Cheolhong Lim
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| | - Kyungmin Shin
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| | - Dongseok Seo
- Toxicological Study Department, Occupational Safety and Health Research Institute, KOSHA,
Korea
| |
Collapse
|
12
|
Landsiedel R, Honarvar N, Seiffert SB, Oesch B, Oesch F. Genotoxicity testing of nanomaterials. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1833. [DOI: 10.1002/wnan.1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Robert Landsiedel
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
- Pharmacy, Pharmacology and Toxicology Free University of Berlin Berlin Germany
| | - Naveed Honarvar
- Experimental Toxicology and Ecology BASF SE Ludwigshafen am Rhein Germany
| | | | - Barbara Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
| | - Franz Oesch
- Oesch‐Tox Toxicological Consulting and Expert Opinions, GmbH & Co KG Ingelheim Germany
- Institute of Toxicology Johannes Gutenberg University Mainz Germany
| |
Collapse
|
13
|
El Yamani N, Rundén-Pran E, Collins AR, Longhin EM, Elje E, Hoet P, Vinković Vrček I, Doak SH, Fessard V, Dusinska M. The miniaturized enzyme-modified comet assay for genotoxicity testing of nanomaterials. FRONTIERS IN TOXICOLOGY 2022; 4:986318. [PMID: 36310692 PMCID: PMC9597874 DOI: 10.3389/ftox.2022.986318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
The in vitro comet assay is a widely applied method for investigating genotoxicity of chemicals including engineered nanomaterials (NMs). A big challenge in hazard assessment of NMs is possible interference between the NMs and reagents or read-out of the test assay, leading to a risk of biased results. Here, we describe both the standard alkaline version of the in vitro comet assay with 12 mini-gels per slide for detection of DNA strand breaks and the enzyme-modified version that allows detection of oxidized DNA bases by applying lesion-specific endonucleases (e.g., formamidopyrimidine DNA glycosylase or endonuclease III). We highlight critical points that need to be taken into consideration when assessing the genotoxicity of NMs, as well as basic methodological considerations, such as the importance of carrying out physicochemical characterization of the NMs and investigating uptake and cytotoxicity. Also, experimental design-including treatment conditions, cell number, cell culture, format and volume of medium on the plate-is crucial and can have an impact on the results, especially when testing NMs. Toxicity of NMs depends upon physicochemical properties that change depending on the environment. To facilitate testing of numerous NMs with distinct modifications, the higher throughput miniaturized version of the comet assay is essential.
Collapse
Affiliation(s)
- N. El Yamani
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - E. Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - A. R. Collins
- Comet Biotech AS, Department of Nutrition, University of Oslo, Oslo, Norway
| | - E. M. Longhin
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - E. Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| | - P. Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - I. Vinković Vrček
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - S. H. Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - V. Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, French Agency for Food, Environmental and Occupational Health and Safety, Fougères, France
| | - M. Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, Kjeller, Norway
| |
Collapse
|
14
|
de Luna LAV, Loret T, Fordham A, Arshad A, Drummond M, Dodd A, Lozano N, Kostarelos K, Bussy C. Lung recovery from DNA damage induced by graphene oxide is dependent on size, dose and inflammation profile. Part Fibre Toxicol 2022; 19:62. [PMID: 36131347 PMCID: PMC9490925 DOI: 10.1186/s12989-022-00502-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A key aspect of any new material safety assessment is the evaluation of their in vivo genotoxicity. Graphene oxide (GO) has been studied for many promising applications, but there are remaining concerns about its safety profile, especially after inhalation. Herein we tested whether GO lateral dimension, comparing micrometric (LGO) and nanometric (USGO) GO sheets, has a role in the formation of DNA double strand breaks in mouse lungs. We used spatial resolution and differential cell type analysis to measure DNA damages in both epithelial and immune cells, after either single or repeated exposure. RESULTS GO induced DNA damages were size and dose dependent, in both exposure scenario. After single exposure to a high dose, both USGO and LGO induced significant DNA damage in the lung parenchyma, but only during the acute phase response (p < 0.05 for USGO; p < 0.01 for LGO). This was followed by a fast lung recovery at day 7 and 28 for both GOs. When evaluating the chronic impact of GO after repeated exposure, only a high dose of LGO induced long-term DNA damages in lung alveolar epithelia (at 84 days, p < 0.05). Regardless of size, low dose GO did not induce any significant DNA damage after repeated exposure. A multiparametric correlation analysis of our repeated exposure data revealed that transient or persistent inflammation and oxidative stress were associated to either recovery or persistent DNA damages. For USGO, recovery from DNA damage was correlated to efficient recovery from acute inflammation (i.e., significant secretion of SAA3, p < 0.001; infiltration of neutrophils, p < 0.01). In contrast, the persistence of LGO in lungs was associated to a long-lasting presence of multinucleated macrophages (up to 84 days, p < 0.05), an underlying inflammation (IL-1α secretion up to 28 days, p < 0.05) and the presence of persistent DNA damages at 84 days. CONCLUSIONS Overall these results highlight the importance of the exposure scenario used. We showed that LGO was more genotoxic after repeated exposure than single exposure due to persistent lung inflammation. These findings are important in the context of human health risk assessment and toward establishing recommendations for a safe use of graphene based materials in the workplace.
Collapse
Affiliation(s)
- Luis Augusto Visani de Luna
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Thomas Loret
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Alexander Fordham
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Atta Arshad
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Matthew Drummond
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Abbie Dodd
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK
| | - Neus Lozano
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Kostas Kostarelos
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK.,Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Cyrill Bussy
- Nanomedicine Lab 2.0, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK. .,National Graphene Institute, The University of Manchester, Manchester, M13 9PL, UK. .,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
15
|
Azqueta A, Stopper H, Zegura B, Dusinska M, Møller P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503520. [PMID: 36031332 DOI: 10.1016/j.mrgentox.2022.503520] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
The comet assay is used to measure DNA damage induced by chemical and physical agents. High concentrations of test agents may cause cytotoxicity or cell death, which may give rise to false positive results in the comet assay. Systematic studies on genotoxins and cytotoxins (i.e. non-genotoxic poisons) have attempted to establish a threshold of cytotoxicity or cell death by which DNA damage results measured by the comet assay could be regarded as a false positive result. Thresholds of cytotoxicity/cell death range from 20% to 50% in various publications. Curiously, a survey of the latest literature on comet assay results from cell culture studies suggests that one-third of publications did not assess cytotoxicity or cell death. We recommend that it should be mandatory to include results from at least one type of assay on cytotoxicity, cell death or cell proliferation in publications on comet assay results. A combination of cytotoxicity (or cell death) and proliferation (or colony forming efficiency assay) is preferable in actively proliferating cells because it covers more mechanisms of action. Applying a general threshold of cytotoxicity/cell death to all types of agents may not be applicable; however, 25% compared to the concurrent negative control seems to be a good starting value to avoid false positive comet assay results. Further research is needed to establish a threshold value to distinguish between true and potentially false positive genotoxic effects detected by the comet assay.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain and IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Würzburg, Versbacher Str. 9, 97078 Würzburg, Germany
| | - Bojana Zegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2002 Kjeller, Norway
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen, Denmark
| |
Collapse
|
16
|
Pagar RR, Musale SR, Pawar G, Kulkarni D, Giram PS. Comprehensive Review on the Degradation Chemistry and Toxicity Studies of Functional Materials. ACS Biomater Sci Eng 2022; 8:2161-2195. [PMID: 35522605 DOI: 10.1021/acsbiomaterials.1c01304] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent decades there has been growing interest of material chemists in the successful development of functional materials for drug delivery, tissue engineering, imaging, diagnosis, theranostic, and other biomedical applications with advanced nanotechnology tools. The efficacy and safety of functional materials are determined by their pharmacological, toxicological, and immunogenic effects. It is essential to consider all degradation pathways of functional materials and to assess plausible intermediates and final products for quality control. This review provides a brief insight into chemical degradation mechanisms of functional materials like oxidation, photodegradation, and physical and enzymatic degradation. The intermediates and products of degradation were confirmed with analytical methods such as proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), UV-vis spectroscopy (UV-vis), infrared spectroscopy (IR), differential scanning calorimetry (DSC), mass spectroscopy, and other sophisticated analytical methods. These analytical methods are also used for regulatory, quality control, and stability purposes in industry. The assessment of degradation is important to predetermine the behavior of functional materials in specific storage conditions and can be relevant to their behavior during in vivo applications. Another important aspect is the evaluation of the toxicity of functional materials. Toxicity can be accessed with various methods using in vitro, in vivo, ex vivo, and in silico models. In vitro cell culture methods are used to determine mitochondrial damage, reactive oxygen species, stress responses, and cellular toxicity. In vitro cellular toxicity can be measured by MTT assay, LDH leakage assay, and hemolysis. In vivo studies are performed using various animal models involving zebrafish, rodents (mice and rats), and nonhuman primates. Ex vivo studies are also used for efficacy and toxicity determinations of functional materials like ex vivo potency assay and precision-cut liver slice (PCLS) models. The in silico tools with computational simulations like quantitative structure-activity relationships (QSAR), pharmacokinetics (PK) and pharmacodynamics (PD), dose and time response, and quantitative cationic-activity relationships ((Q)CARs) are used for prediction of the toxicity of functional materials. In this review, we studied the principle methods used for degradation studies, different degradation pathways, and mechanisms of functional material degradation with prototype examples. We discuss toxicity assessments with different toxicity approaches used for estimation of the safety and efficacy of functional materials.
Collapse
Affiliation(s)
- Roshani R Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Shubham R Musale
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Ganesh Pawar
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India
| | - Deepak Kulkarni
- Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra 431136, India
| | - Prabhanjan S Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Pune, Maharashtra 411018, India.,Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214, United States
| |
Collapse
|
17
|
Evaluating nanobiomaterial-induced DNA strand breaks using the alkaline comet assay. Drug Deliv Transl Res 2022; 12:2243-2258. [PMID: 35612707 PMCID: PMC9360128 DOI: 10.1007/s13346-022-01178-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Due to their unique chemical and physical properties, nanobiomaterials (NBMs) are extensively studied for applications in medicine and drug delivery. Despite these exciting properties, their small sizes also make them susceptible to toxicity. Whilst nanomaterial immunotoxicity and cytotoxicity are studied in great depth, there is still limited data on their potential genotoxicity or ability to cause DNA damage. In the past years, new medical device regulations, which came into place in 2020, were developed, which require the assessment of long-term NBM exposure; therefore, in recent years, increased attention is being paid to genotoxicity screening of these materials. In this article, and through an interlaboratory comparison (ILC) study conducted within the Horizon 2020 REFINE project, we assess five different NBM formulations, each with different uses, namely, a bio-persistent gold nanoparticle (AuNP), an IR-780 dye-loaded liposome which is used in deep tissue imaging (LipImage™815), an unloaded PACA polymeric nanoparticle used as a drug delivery system (PACA), and two loaded PACA NBMs, i.e. the cabazitaxel drug-loaded PACA (CBZ-PACA) and the NR668 dye-loaded PACA (NR668 PACA) for their potential to cause DNA strand breaks using the alkaline comet assay and discuss the current state of genotoxicity testing for nanomaterials. We have found through our interlaboratory comparison that the alkaline comet assay can be suitably applied to the pre-clinical assessment of NBMs, as a reproducible and repeatable methodology for assessing NBM-induced DNA damage.
Collapse
|
18
|
Genotoxicity of Graphene-Based Materials. NANOMATERIALS 2022; 12:nano12111795. [PMID: 35683650 PMCID: PMC9182450 DOI: 10.3390/nano12111795] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023]
Abstract
Graphene-based materials (GBMs) are a broad family of novel carbon-based nanomaterials with many nanotechnology applications. The increasing market of GBMs raises concerns on their possible impact on human health. Here, we review the existing literature on the genotoxic potential of GBMs over the last ten years. A total of 50 articles including in vitro, in vivo, in silico, and human biomonitoring studies were selected. Graphene oxides were the most analyzed materials, followed by reduced graphene oxides. Most of the evaluations were performed in vitro using the comet assay (detecting DNA damage). The micronucleus assay (detecting chromosome damage) was the most used validated assay, whereas only two publications reported results on mammalian gene mutations. The same material was rarely assessed with more than one assay. Despite inhalation being the main exposure route in occupational settings, only one in vivo study used intratracheal instillation, and another one reported human biomonitoring data. Based on the studies, some GBMs have the potential to induce genetic damage, although the type of damage depends on the material. The broad variability of GBMs, cellular systems and methods used in the studies precludes the identification of physico-chemical properties that could drive the genotoxicity response to GBMs.
Collapse
|
19
|
In Vitro Genotoxicity Evaluation of an Antiseptic Formulation Containing Kaolin and Silver Nanoparticles. NANOMATERIALS 2022; 12:nano12060914. [PMID: 35335725 PMCID: PMC8948953 DOI: 10.3390/nano12060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Worldwide antimicrobial resistance is partly caused by the overuse of antibiotics as growth promoters. Based on the known bactericidal effect of silver, a new material containing silver in a clay base was developed to be used as feed additive. An in vitro genotoxicity evaluation of this silver-kaolin clay formulation was conducted, which included the mouse lymphoma assay in L5178Y TK+/− cells and the micronucleus test in TK6 cells, following the principles of the OECD guidelines 490 and 487, respectively. As a complement, the standard and Fpg-modified comet assays for the evaluation of strand breaks, alkali labile sites and oxidative DNA damage were also performed in TK6 cells. The formulation was tested without metabolic activation after an exposure of 3 h and 24 h; its corresponding release in medium, after the continuous agitation of the silver-kaolin for 24 h was also evaluated. Under the conditions tested, the test compound did not produce gene mutations, chromosomal aberrations or DNA damage (i.e., strand breaks, alkali labile sites or oxidized bases). Considering the results obtained in the present study, the formulation seems to be a promising material to be used as antimicrobial in animal feed.
Collapse
|
20
|
May S, Hirsch C, Rippl A, Bürkle A, Wick P. Assessing Genotoxicity of Ten Different Engineered Nanomaterials by the Novel Semi-Automated FADU Assay and the Alkaline Comet Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:220. [PMID: 35055238 PMCID: PMC8781421 DOI: 10.3390/nano12020220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 01/16/2023]
Abstract
Increased engineered nanomaterial (ENM) production and incorporation in consumer and biomedical products has raised concerns about the potential adverse effects. The DNA damaging capacity is of particular importance since damaged genetic material can lead to carcinogenesis. Consequently, reliable and robust in vitro studies assessing ENM genotoxicity are of great value. We utilized two complementary assays based on different measurement principles: (1) comet assay and (2) FADU (fluorimetric detection of alkaline DNA unwinding) assay. Assessing cell viability ruled out false-positive results due to DNA fragmentation during cell death. Potential structure-activity relationships of 10 ENMs were investigated: three silica nanoparticles (SiO2-NP) with varying degrees of porosity, titanium dioxide (TiO2-NP), polystyrene (PS-NP), zinc oxide (ZnO-NP), gold (Au-NP), graphene oxide (GO) and two multi-walled carbon nanotubes (MWNT). SiO2-NPs, TiO2-NP and GO were neither cytotoxic nor genotoxic to Jurkat E6-I cells. Quantitative interference corrections derived from GO results can make the FADU assay a promising screening tool for a variety of ENMs. MWNT merely induced cytotoxicity, while dose- and time-dependent cytotoxicity of PS-NP was accompanied by DNA fragmentation. Hence, PS-NP served to benchmark threshold levels of cytotoxicity at which DNA fragmentation was expected. Considering all controls revealed the true genotoxicity for Au-NP and ZnO-NP at early time points.
Collapse
Affiliation(s)
- Sarah May
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
- Molecular Toxicology Group, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany;
| | - Cordula Hirsch
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
| | - Alexandra Rippl
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany;
| | - Peter Wick
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
| |
Collapse
|
21
|
Girardello F, Leite CC, Touguinha LB, Roesch-Ely M, da Silva CKH, de Oliveira RM, Borges DLG, Villela IV, Fernandes AN, Salvador M, Henriques JAP. ZnO nanoparticles alter redox metabolism of Limnoperna fortunei. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:69416-69425. [PMID: 34302239 DOI: 10.1007/s11356-021-15257-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticles such as zinc oxide nanoparticles (ZnO-NP) that are incorporated in consumer and industrial products have caused concern about their potential ecotoxicological impact when released into the environment. Bivalve mollusks are susceptible targets for nanoparticle toxicity since nanomaterials can enter the cells by endocytosis mechanisms. The aim of this study was to evaluate the influence of ZnO-NP on the redox metabolism in Limnoperna fortunei and the DNA damage after exposure to ZnO-NP. Adult bivalves were incubated with 1-, 10-, and 50-μg mL-1 ZnO-NP for 2, 4, and 24 h. Ionic Zn release, enzymatic and non-enzymatic antioxidant activity, oxidative damage, and DNA damage were evaluated. Oxidative damage to proteins and lipids were observed after 4-h exposure and returned to baseline levels after 24 h. Superoxide dismutase levels decreased after 4-h exposure and increased after 24 h. No significant alteration was observed in the catalase activity or even DNA double-strand cleavage. The dissociation of ZnO may occur after 24 h, releasing ionic zinc (Zn2+) by hydrolysis, which was confirmed by the increase in the ionic Zn concentration following 24-h exposure. In conclusion, ZnO-NP were able to induce oxidative stress in exposed golden mussels. The golden mussel can modulate its own antioxidant defenses in response to oxidative stress and seems to be able to hydrolyze the nanoparticles and consequently, release Zn2+ into the cellular compartment.
Collapse
Affiliation(s)
- Francine Girardello
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul, RS, 95070-560, Brazil.
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil.
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Campus do Vale Setor 4, Porto Alegre, RS, 91501-970, Brazil.
| | - Camila Custódio Leite
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Luciana Bavaresco Touguinha
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Mariana Roesch-Ely
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - Chrys Katielli Hoinacki da Silva
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Richard Macedo de Oliveira
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), AC Cidade Universitária, Florianópolis, SC, 88040970, Brazil
| | - Daniel Lazaro Gallindo Borges
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), AC Cidade Universitária, Florianópolis, SC, 88040970, Brazil
| | - Izabel Vianna Villela
- InnVitro Pesquisa e Desenvolvimento, Rua Mariante 180, Sala 902, Porto Alegre, RS, 90430-180, Brazil
| | - Andreia Neves Fernandes
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Mirian Salvador
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul, RS, 95070-560, Brazil
| | - João Antonio Pêgas Henriques
- Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas 1130, Caxias do Sul, RS, 95070-560, Brazil
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves 9500, Campus do Vale Setor 4, Porto Alegre, RS, 91501-970, Brazil
- InnVitro Pesquisa e Desenvolvimento, Rua Mariante 180, Sala 902, Porto Alegre, RS, 90430-180, Brazil
| |
Collapse
|
22
|
Genotoxicity Assessment of Metal-Based Nanocomposites Applied in Drug Delivery. MATERIALS 2021; 14:ma14216551. [PMID: 34772074 PMCID: PMC8585152 DOI: 10.3390/ma14216551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Nanocomposites as drug delivery systems (e.g., metal nanoparticles) are being exploited for several applications in the biomedical field, from therapeutics to diagnostics. Green nanocomposites stand for nanoparticles of biocompatible, biodegradable and non-toxic profiles. When using metal nanoparticles for drug delivery, the question of how hazardous these "virus-sized particles" can be is posed, due to their nanometer size range with enhanced reactivity compared to their respective bulk counterparts. These structures exhibit a high risk of being internalized by cells and interacting with the genetic material, with the possibility of inducing DNA damage. The Comet Assay, or Single-Cell Gel Electrophoresis (SCGE), stands out for its capacity to detect DNA strand breaks in eukaryotic cells. It has huge potential in the genotoxicity assessment of nanoparticles and respective cells' interactions. In this review, the Comet assay is described, discussing several examples of its application in the genotoxicity evaluation of nanoparticles commonly administered in a set of routes (oral, skin, inhaled, ocular and parenteral administration). In the nanoparticles boom era, where guidelines for their evaluation are still very limited, it is urgent to ensure their safety, alongside their quality and efficacy. Comet assay or SCGE can be considered an essential tool and a reliable source to achieve a better nanotoxicology assessment of metal nanoparticles used in drug delivery.
Collapse
|
23
|
Jalili P, Huet S, Burel A, Krause BC, Fontana C, Chevance S, Gauffre F, Guichard Y, Lampen A, Laux P, Luch A, Hogeveen K, Fessard V. Genotoxic impact of aluminum-containing nanomaterials in human intestinal and hepatic cells. Toxicol In Vitro 2021; 78:105257. [PMID: 34688838 DOI: 10.1016/j.tiv.2021.105257] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022]
Abstract
Exposure of consumers to aluminum-containing nanomaterials (Al NMs) is an area of concern for public health agencies. As the available data on the genotoxicity of Al2O3 and Al0 NMs are inconclusive or rare, the present study investigated their in vitro genotoxic potential in intestinal and liver cell models, and compared with the ionic form AlCl3. Intestinal Caco-2 and hepatic HepaRG cells were exposed to Al0 and Al2O3 NMs (0.03 to 80 μg/cm2). Cytotoxicity, oxidative stress and apoptosis were measured using High Content Analysis. Genotoxicity was investigated through γH2AX labelling, the alkaline comet and micronucleus assays. Moreover, oxidative DNA damage and carcinogenic properties were assessed using the Fpg-modified comet assay and the cell transforming assay in Bhas 42 cells respectively. The three forms of Al did not induce chromosomal damage. However, although no production of oxidative stress was detected, Al2O3 NMs induced oxidative DNA damage in Caco-2 cells but not likely related to ion release in the cell media. Considerable DNA damage was observed with Al0 NMs in both cell lines in the comet assay, likely due to interference with these NMs. No genotoxic effects were observed with AlCl3. None of the Al compounds induced cytotoxicity, apoptosis, γH2AX or cell transformation.
Collapse
Affiliation(s)
- Pégah Jalili
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Agnès Burel
- MRic Cell Imaging Platform, BIOSIT, University of Rennes 1, campus Santé de Villejean, 2 avenue du Pr Léon Bernard - CS, 34317, 35043 Rennes, France
| | - Benjamin-Christoph Krause
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Caroline Fontana
- INRS, 1, rue du Morvan - CS 60027, 54519 Vandoeuvre les Nancy, France
| | - Soizic Chevance
- Université de Rennes 1, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000 Rennes, France
| | - Fabienne Gauffre
- Université de Rennes 1, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, F-35000 Rennes, France
| | - Yves Guichard
- INRS, 1, rue du Morvan - CS 60027, 54519 Vandoeuvre les Nancy, France
| | - Alfonso Lampen
- Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Andreas Luch
- Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10B rue C. Bourgelat, 35306 Fougères, France.
| |
Collapse
|
24
|
Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021; 12:612659. [PMID: 34566630 PMCID: PMC8458898 DOI: 10.3389/fphar.2021.612659] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.
Collapse
Affiliation(s)
- Mounika Gayathri Tirumala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Susmitha Raja
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
25
|
Jiang L, Zhang Q, Wang J, Liu W. Ecotoxicological effects of titanium dioxide nanoparticles and Galaxolide, separately and as binary mixtures, in radish (Raphanus sativus). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112972. [PMID: 34147857 DOI: 10.1016/j.jenvman.2021.112972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Nano-TiO2 and Galaxolide (HHCB) are continually released into the environment because they are common ingredients of personal care products. In this study, the effects of nano-TiO2 and HHCB, individually and as binary mixtures, on Raphanus sativus were investigated. Growth indices (germination rate, root length, and shoot elongation), random amplification of polymorphic DNA profiles of DNA damage in the seedling roots, and expression of genes related to DNA damage, repair, and the cell cycle were assessed. Radish germination was not affected by nano-TiO2 (5-200 mg L-1) but was inhibited by HHCB (≥50 mg L-1). Nano-TiO2 and HHCB both caused severe DNA damage, including DNA mismatch damage, DNA double-strand breaks, and chromosomal damage. The binary mixtures indicated antagonistic effects occurred, and 200 mg L-1 nano-TiO2 decreased the genetic toxicity of HHCB. Of the genes that were examined, MRE11 and WRKY40 were the most sensitive to nano-TiO2 and HHCB, indicating that these genes could be used as sensitive biomarkers for exposure of R. sativus to nano-TiO2 and HHCB. The results improve our understanding of the risks posed by nano-TiO2 and HHCB to R. sativus in particular and possibly to other plants.
Collapse
Affiliation(s)
- Lisi Jiang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jianmei Wang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
26
|
Wan D, Sun T, Qi L, Huang D. WITHDRAWN: Precise engineering of Iguratimod and Rapamycin drugs loaded polymeric nanomaterials for the treatment of glioma cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Won H, Jeong DH, Shin HS, Lee JH, Lee JP, Yang JY, Jung K, Jeong J, Oh JH. Toxicological Assessment of Bromochlorophene: Single and Repeated-Dose 28-Day Oral Toxicity, Genotoxicity, and Dermal Application in Sprague-Dawley Rats. Front Pharmacol 2021; 12:690141. [PMID: 34335256 PMCID: PMC8316990 DOI: 10.3389/fphar.2021.690141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Bromochlorophene (BCP) has shown good properties in sterilization and antibacterial activity and is widely used as a household chemical. We evaluated the genotoxicity, single and repeated-dose 28-day oral toxicity, and dermal application of a BCP suspension in Sprague–Dawley (SD) rats. For the single-dose toxicity study, a dose of 25–1,000 mg per kg of bodyweight (mg/kg b.w.) of BCP was given once orally to SD rats. Mortality and clinical signs were observed and recorded for the first 30 min after treatment, at 4 h post-administration, and then at least once daily for 14 days after administration. For the repeated-dose 28-day toxicity study, the high dose was set at 1,000 mg/kg b.w. and the middle, middle-low, and low dose were set to 500, 250, and 125 mg/kg, respectively. Hematology and biochemistry parameters were examined. Gross pathologic and histopathologic examinations were performed on selected tissues from all animals. A bacterial reverse mutation assay, in vitro chromosomal aberration assay, and in vivo micronucleus assay were performed to assess genotoxicity-dermal application exposure assessment of BCP in rats. A high oral approximate lethal dose (ALD) of 1,000 mg/kg was observed in the single-dose toxicity test. During the repeated-dose 28-day time period, most animal deaths after administration occurred during the first 3 weeks. The 1,000 mg/kg b.w. oral dose caused the death of six male rats (6/7) and four female rats (4/7). At 500 mg/kg b.w., the female rats showed mortality (1/7). For the biochemistry assays, cholesterol was increased significantly compared to vehicle in both sexes in the 250 and 500 mg/kg groups. Histopathological changes with treatment-related findings were observed in the pancreas in female rats treated with a high dose of BCP compared with the vehicle group. BCP showed no genotoxic effect. These data suggested that the ALD of BCP, estimated as a non-genotoxic substance, was over 1,000 mg/kg b.w. in the single-dose toxicity study, and the NOAEL of BCP was considered to be 250 mg/kg b.w. for male and female rats after repeated oral administration for 28 days under the present study conditions.
Collapse
Affiliation(s)
- Hansol Won
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Da Hye Jeong
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Hyo-Sook Shin
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jin Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jeong Pyo Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jun-Young Yang
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Kikyung Jung
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jayoung Jeong
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| | - Jae Ho Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Osong, South Korea
| |
Collapse
|
28
|
Brandão F, Costa C, Bessa MJ, Dumortier E, Debacq-Chainiaux F, Hubaux R, Salmon M, Laloy J, Stan MS, Hermenean A, Gharbia S, Dinischiotu A, Bannuscher A, Hellack B, Haase A, Fraga S, Teixeira JP. Genotoxicity and Gene Expression in the Rat Lung Tissue following Instillation and Inhalation of Different Variants of Amorphous Silica Nanomaterials (aSiO 2 NM). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1502. [PMID: 34200147 PMCID: PMC8228975 DOI: 10.3390/nano11061502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Several reports on amorphous silica nanomaterial (aSiO2 NM) toxicity have been questioning their safety. Herein, we investigated the in vivo pulmonary toxicity of four variants of aSiO2 NM: SiO2_15_Unmod, SiO2_15_Amino, SiO2_7 and SiO2_40. We focused on alterations in lung DNA and protein integrity, and gene expression following single intratracheal instillation in rats. Additionally, a short-term inhalation study (STIS) was carried out for SiO2_7, using TiO2_NM105 as a benchmark NM. In the instillation study, a significant but slight increase in oxidative DNA damage in rats exposed to the highest instilled dose (0.36 mg/rat) of SiO2_15_Amino was observed in the recovery (R) group. Exposure to SiO2_7 or SiO2_40 markedly increased oxidative DNA lesions in rat lung cells of the exposure (E) group at every tested dose. This damage seems to be repaired, since no changes compared to controls were observed in the R groups. In STIS, a significant increase in DNA strand breaks of the lung cells exposed to 0.5 mg/m3 of SiO2_7 or 50 mg/m3 of TiO2_NM105 was observed in both groups. The detected gene expression changes suggest that oxidative stress and/or inflammation pathways are likely implicated in the induction of (oxidative) DNA damage. Overall, all tested aSiO2 NM were not associated with marked in vivo toxicity following instillation or STIS. The genotoxicity findings for SiO2_7 from instillation and STIS are concordant; however, changes in STIS animals were more permanent/difficult to revert.
Collapse
Affiliation(s)
- Fátima Brandão
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Carla Costa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - Maria João Bessa
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
- ICBAS—Institute of Biomedical Sciences Abel Salazar, U. Porto—University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Elise Dumortier
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur, 5000 Namur, Belgium; (E.D.); (F.D.-C.)
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (Narilis), University of Namur, 5000 Namur, Belgium; (E.D.); (F.D.-C.)
| | - Roland Hubaux
- StratiCELL Laboratories, Research and Development, 5032 Les Isnes, Belgium; (R.H.); (M.S.)
| | - Michel Salmon
- StratiCELL Laboratories, Research and Development, 5032 Les Isnes, Belgium; (R.H.); (M.S.)
| | - Julie Laloy
- Namur Nanosafety Centre, Department of Pharmacy, Namur Research Institute for Life Sciences (Narilis), University of Namur, 5000 Namur, Belgium;
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania
| | - Sami Gharbia
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310414 Arad, Romania
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (M.S.S.); (A.H.); (S.G.); (A.D.)
| | - Anne Bannuscher
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.B.); (A.H.)
- Adolphe Merkle Institute (AMI), University of Fribourg, 1700 Fribourg, Switzerland
| | - Bryan Hellack
- Institute of Energy and Environmental Technology (IUTA) e.V., 47229 Duisburg, Germany;
- German Environment Agency (UBA), 06844 Dessau-Roβlau, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.B.); (A.H.)
| | - Sónia Fraga
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| | - João Paulo Teixeira
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, 4050-600 Porto, Portugal; (F.B.); (C.C.); (M.J.B.); (J.P.T.)
- Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health Dr. Ricardo Jorge, Rua Alexandre Herculano 321, 4000-053 Porto, Portugal
| |
Collapse
|
29
|
Li Z, Hu M, Song H, Lin D, Wang Y. Toxic effects of nano-TiO 2 in bivalves-A synthesis of meta-analysis and bibliometric analysis. J Environ Sci (China) 2021; 104:188-203. [PMID: 33985722 DOI: 10.1016/j.jes.2020.11.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Since the beginning of the 21st century, the increasing production and application of nano-TiO2 in consumer products have inevitably led to its release into aquatic systems and therefore caused the exposure of aquatic organisms, resulting in growing environmental concerns. However, the safety of nano-TiO2 in aquatic environments has not been systematically assessed, especially in coastal and estuary waters where a large number of filter-feeding animals live. Bivalves are considered around the world to be a unique target group for nanoparticle toxicity, and numerous studies have been conducted to test the toxic effects of nano-TiO2 on bivalves. The aim of this review was to systematically summarize and analyze published data concerning the toxicological effects of nano-TiO2 in bivalves. In particular, the toxicity of nano-TiO2 to the antioxidant system and cell physiology was subjected to meta-analysis to reveal the mechanism of the toxicological effects of nano-TiO2 and the factors affecting its toxicological effects. To reveal the cooperation, hot keywords and co-citations in this field, bibliometric analysis was conducted, and the results showed that the toxicological molecular mechanisms of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors are two major hot spots. Finally, some perspectives and insights were provided in this review for future research on nano-TiO2 toxicology in bivalves.
Collapse
Affiliation(s)
- Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hanting Song
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
30
|
Muruzabal D, Collins A, Azqueta A. The enzyme-modified comet assay: Past, present and future. Food Chem Toxicol 2020; 147:111865. [PMID: 33217526 DOI: 10.1016/j.fct.2020.111865] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022]
Abstract
The enzyme-modified comet assay was developed in order to detect DNA lesions other than those detected by the standard version (single and double strand breaks and alkali-labile sites). Various lesion-specific enzymes, from the DNA repair machinery of bacteria and humans, have been combined with the comet assay, allowing detection of different oxidized and alkylated bases as well as cyclobutane pyrimidine dimers, mis-incorporated uracil and apurinic/apyrimidinic sites. The enzyme-modified comet assay has been applied in different fields - human biomonitoring, environmental toxicology, and genotoxicity testing (both in vitro and in vivo) - as well as in basic research. Up to now, twelve enzymes have been employed; here we describe the enzymes and give examples of studies in which they have been applied. The bacterial formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII) have been extensively used while others have been used only rarely. Adding further enzymes to the comet assay toolbox could potentially increase the variety of DNA lesions that can be detected. The enzyme-modified comet assay can play a crucial role in the elucidation of the mechanism of action of both direct and indirect genotoxins, thus increasing the value of the assay in the regulatory context.
Collapse
Affiliation(s)
- Damián Muruzabal
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain
| | - Andrew Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372, Oslo, Norway
| | - Amaya Azqueta
- Universidad de Navarra, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Irunlarrea 1, 310008, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
31
|
Anticancer potential of myricetin bulk and nano forms in vitro in lymphocytes from myeloma patients. Arch Toxicol 2020; 95:337-343. [PMID: 33128380 PMCID: PMC7811500 DOI: 10.1007/s00204-020-02938-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023]
Abstract
Evading apoptosis and chemo-resistance are considered as very important factors which help tumour progression and metastasis. Hence, to overcome chemo-resistance, there is an urgent requirement for emergence of more effective treatment options. Myricetin, a naturally occurring flavonoid, is present in various plant-derived foods and shows antitumour potential in different cancers. In the present in vitro study, results from the comet assay demonstrated that myricetin bulk (10 µM) and nano (20 µM) forms exhibited a non-significant level of genotoxicity in lymphocytes from multiple myeloma patients when compared to those from healthy individuals. Western blot results showed a decrease in Bcl-2/Bax ratio and an increase in P53 protein levels in lymphocytes from myeloma patients, but not in lymphocytes from healthy individuals. A significant increase in intracellular reactive oxygen species level was also observed, suggesting that regulation of apoptotic proteins triggered by myricetin exposure in lymphocytes from myeloma patients occurred through P53 and oxidative stress-dependent pathways. The potency of myricetin against lymphocytes from myeloma patients marks it a potential candidate to be considered as an alternative to overcome chemo-resistance in cancer therapies.
Collapse
|
32
|
Kohl Y, Rundén-Pran E, Mariussen E, Hesler M, El Yamani N, Longhin EM, Dusinska M. Genotoxicity of Nanomaterials: Advanced In Vitro Models and High Throughput Methods for Human Hazard Assessment-A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1911. [PMID: 32992722 PMCID: PMC7601632 DOI: 10.3390/nano10101911] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Changes in the genetic material can lead to serious human health defects, as mutations in somatic cells may cause cancer and can contribute to other chronic diseases. Genotoxic events can appear at both the DNA, chromosomal or (during mitosis) whole genome level. The study of mechanisms leading to genotoxicity is crucially important, as well as the detection of potentially genotoxic compounds. We consider the current state of the art and describe here the main endpoints applied in standard human in vitro models as well as new advanced 3D models that are closer to the in vivo situation. We performed a literature review of in vitro studies published from 2000-2020 (August) dedicated to the genotoxicity of nanomaterials (NMs) in new models. Methods suitable for detection of genotoxicity of NMs will be presented with a focus on advances in miniaturization, organ-on-a-chip and high throughput methods.
Collapse
Affiliation(s)
- Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Elise Rundén-Pran
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Espen Mariussen
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Michelle Hesler
- Fraunhofer Institute for Biomedical Engineering IBMT, 66280 Sulzbach, Germany;
| | - Naouale El Yamani
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Eleonora Marta Longhin
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| | - Maria Dusinska
- Health Effects Laboratory, NILU-Norwegian Institute for Air Research, 2007 Kjeller, Norway; (E.R.-P.); (E.M.); (N.E.Y.); (E.M.L.); (M.D.)
| |
Collapse
|
33
|
Qiu TA, Guidolin V, Hoang KNL, Pho T, Carra' A, Villalta PW, He J, Yao X, Hamers RJ, Balbo S, Feng ZV, Haynes CL. Nanoscale battery cathode materials induce DNA damage in bacteria. Chem Sci 2020; 11:11244-11258. [PMID: 34094365 PMCID: PMC8162401 DOI: 10.1039/d0sc02987d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/19/2020] [Indexed: 11/21/2022] Open
Abstract
The increasing use of nanoscale lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co1-y-z O2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano-bio interactions.
Collapse
Affiliation(s)
- Tian A Qiu
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Khoi Nguyen L Hoang
- Chemistry Department, Augsburg University 2211 Riverside Ave Minneapolis MN 55454 USA
| | - Thomas Pho
- Chemistry Department, Augsburg University 2211 Riverside Ave Minneapolis MN 55454 USA
| | - Andrea Carra'
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Jiayi He
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Xiaoxiao Yao
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| | - Robert J Hamers
- Department of Chemistry, University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota 2231 6th Street SE Minneapolis MN 55455 USA
| | - Z Vivian Feng
- Chemistry Department, Augsburg University 2211 Riverside Ave Minneapolis MN 55454 USA
| | - Christy L Haynes
- Department of Chemistry, University of Minnesota 207 Pleasant St SE Minneapolis MN 55455 USA
| |
Collapse
|
34
|
An in vitro investigation into the protective and genotoxic effects of myricetin bulk and nano forms in lymphocytes of MGUS patients and healthy individuals. Toxicol Lett 2020; 327:33-40. [DOI: 10.1016/j.toxlet.2020.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022]
|
35
|
Akhtar S, Najafzadeh M, Isreb M, Newton L, Gopalan RC, Anderson D. Ex vivo/in vitro protective effect of myricetin bulk and nano-forms on PhIP-induced DNA damage in lymphocytes from healthy individuals and pre-cancerous MGUS patients. Arch Toxicol 2020; 94:2349-2357. [PMID: 32342131 PMCID: PMC7367907 DOI: 10.1007/s00204-020-02754-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
2-Amino-1-methyl-6-phenylimidazo [4,5-b]pyridine (PhIP) is a central dietary mutagen, produced when proteinaceous food is heated at very high temperatures potentially causing DNA strand breaks. This study investigates the protective potential of a well-researched flavonoid, myricetin in its bulk and nano-forms against oxidative stress induced ex vivo/in vitro by PhIP in lymphocytes from pre-cancerous monoclonal gammopathy of undetermined significance (MGUS) patients and those from healthy individuals. The results from the Comet assay revealed that in the presence of myricetin bulk (10 µM) and myricetin nano (20 µM), the DNA damage caused by a high dose of PhIP (100 µM) was significantly (P < 0.001) reduced in both groups. However, nano has shown better protection in lymphocytes from pre-cancerous patients. Consistent results were obtained from the micronucleus assay where micronuclei frequency in binucleated cells significantly decreased upon supplementing PhIP with myricetin bulk (P < 0.01) and myricetin nano (P < 0.001), compared to the PhIP treatment alone. To briefly determine the cellular pathways involved in the protective role of myricetin against PhIP, we studied gene expression of P53 and ATR kinase (ATM- and Rad3-related), using the real-time PCR technique.
Collapse
Affiliation(s)
- Shabana Akhtar
- School of Chemistry and Biosciences, University of Bradford, Richmond Building, Bradford, BD7 1DP, UK
| | - Mojgan Najafzadeh
- School of Chemistry and Biosciences, University of Bradford, Richmond Building, Bradford, BD7 1DP, UK
| | - Mohammad Isreb
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Lisa Newton
- Bradford Royal Infirmary (BRI), Bradford, UK
| | - Rajendran C Gopalan
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Diana Anderson
- School of Chemistry and Biosciences, University of Bradford, Richmond Building, Bradford, BD7 1DP, UK.
| |
Collapse
|
36
|
ROS-induced oxidative damage in lymphocytes ex vivo/in vitro from healthy individuals and MGUS patients: protection by myricetin bulk and nanoforms. Arch Toxicol 2020; 94:1229-1239. [PMID: 32107588 PMCID: PMC7225194 DOI: 10.1007/s00204-020-02688-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
We investigated the protective role of myricetin bulk and nanoforms, against reactive oxygen species (ROS)-induced oxidative stress caused by hydrogen peroxide and tertiary-butyl hydro peroxide in lymphocytes in vitro from healthy individuals and those from pre-cancerous patients suffering with monoclonal gammopathy of undetermined significance (MGUS). The change in intracellular reactive oxygen species was measured once cells were treated with myricetin bulk forms and nanoforms with and without either hydrogen peroxide or tertiary-butyl hydro peroxide co-supplementation. The direct and indirect antioxidant activity of myricetin was spectrofluometrically measured using the fluorescent dye 2',7'-dichlorofluorescin diacetate and using the Comet assay, respectively. Hydrogen peroxide (50 µM) and tertiary-butyl hydro peroxide (300 µM) induced a higher level of reactive oxygen species-related DNA damage and strand breaks. Addition of myricetin nanoform (20 µM) and bulk (10 µM) form could, however, significantly prevent hydrogen peroxide- and tertiary-butyl hydro peroxide-induced oxidative imbalances and the nanoform was more effective. Glutathione levels were also quantified using a non-fluorescent dye. Results suggest that myricetin treatment had no significant effect on the cellular antioxidant enzyme, glutathione. The current study also investigates the effect of myricetin on the induction of double-strand breaks by staining the gamma-H2AX foci immunocytochemically. It was observed that myricetin does not induce double-strand breaks at basal levels rather demonstrated a protective effect.
Collapse
|
37
|
Rodriguez-Garraus A, Azqueta A, Vettorazzi A, López de Cerain A. Genotoxicity of Silver Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E251. [PMID: 32023837 PMCID: PMC7075128 DOI: 10.3390/nano10020251] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in diverse sectors such as medicine, food, cosmetics, household items, textiles and electronics. Given the extent of human exposure to AgNPs, information about the toxicological effects of such products is required to ensure their safety. For this reason, we performed a bibliographic review of the genotoxicity studies carried out with AgNPs over the last six years. A total of 43 articles that used well-established standard assays (i.e., in vitro mouse lymphoma assays, in vitro micronucleus tests, in vitro comet assays, in vivo micronucleus tests, in vivo chromosome aberration tests and in vivo comet assays), were selected. The results showed that AgNPs produce genotoxic effects at all DNA damage levels evaluated, in both in vitro and in vivo assays. However, a higher proportion of positive results was obtained in the in vitro studies. Some authors observed that coating and size had an effect on both in vitro and in vivo results. None of the studies included a complete battery of assays, as recommended by ICH and EFSA guidelines, and few of the authors followed OECD guidelines when performing assays. A complete genotoxicological characterization of AgNPs is required for decision-making.
Collapse
Affiliation(s)
- Adriana Rodriguez-Garraus
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ariane Vettorazzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adela López de Cerain
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Nutrition, Universidad de Navarra, Irunlarrea 1, 31008 Pamplona, Spain; (A.R.-G.); (A.V.); (A.L.d.C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
38
|
Cellular Reference Materials for DNA Damage Using Electrochemical Oxidation. J Nucleic Acids 2020; 2020:2928104. [PMID: 32411438 PMCID: PMC7212329 DOI: 10.1155/2020/2928104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/25/2019] [Indexed: 11/18/2022] Open
Abstract
Reference materials are needed to quantify the level of DNA damage in cells, to assess sources of measurement variability and to compare results from different laboratories. The comet assay (single cell gel electrophoresis) is a widely used method to determine DNA damage in the form of strand breaks. Here we examine the use of electrochemical oxidation to produce DNA damage in cultured mammalian cells and quantify its percentage using the comet assay. Chinese hamster ovary (CHO) cells were grown on an indium tin oxide electrode surface and exposed 12 h to electrochemical potentials ranging from 0.5 V to 1.5 V (vs Ag/AgCl). The resulting cells were harvested and analyzed by comet and a cell viability assay. We observed a linear increase in the percentage (DNA in tail) of strand breaks along with a loss of cell viability with increasing oxidation potential value. The results indicate that electrochemically induced DNA damage can be produced in mammalian cells under well-controlled conditions and could be considered in making a cellular reference material for the comet assay.
Collapse
|
39
|
Gu C, Li C, Zhang J, Li X, Wang L, Ju Y, Liu Y, Xu Y. Ultra-effective near-infrared Photothermal therapy for the prostate cancer Nursing care through novel intended and surface tailored photo-responsive Ga-Au@MPS nanovesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 202:111685. [DOI: 10.1016/j.jphotobiol.2019.111685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
|
40
|
Karbaschi M, Ji Y, Abdulwahed AMS, Alohaly A, Bedoya JF, Burke SL, Boulos TM, Tempest HG, Cooke MS. Evaluation of the Major Steps in the Conventional Protocol for the Alkaline Comet Assay. Int J Mol Sci 2019; 20:E6072. [PMID: 31810189 PMCID: PMC6929057 DOI: 10.3390/ijms20236072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Single cell gel electrophoresis, also known as the comet assay, has become a widespread DNA damage assessment tool due to its sensitivity, adaptability, low cost, ease of use, and reliability. Despite these benefits, this assay has shortcomings, such as long assay running time, the manipulation of multiple slides, individually, through numerous process steps, the challenge of working in a darkened environment, and reportedly considerable inter- and intra-laboratory variation. All researchers typically perform the comet assay based upon a common core approach; however, it appears that some steps in this core have little proven basis, and may exist, partly, out of convenience, or dogma. The aim of this study was to critically re-evaluate key steps in the comet assay, using our laboratory's protocol as a model, firstly to understand the scientific basis for why certain steps in the protocol are performed in a particular manner, and secondly to simplify the assay, and decrease the cost and run time. Here, the shelf life of the lysis and neutralization buffers, the effect of temperature and incubation period during the lysis step, the necessity for drying the slides between the electrophoresis and staining step, and the need to perform the sample workup and electrophoresis steps under subdued light were all evaluated.
Collapse
Affiliation(s)
- Mahsa Karbaschi
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (Y.J.); (A.M.S.A.); (J.F.B.); (T.M.B.); (M.S.C.)
- Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
| | - Yunhee Ji
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (Y.J.); (A.M.S.A.); (J.F.B.); (T.M.B.); (M.S.C.)
| | - Abdulhadi Mohammed S. Abdulwahed
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (Y.J.); (A.M.S.A.); (J.F.B.); (T.M.B.); (M.S.C.)
| | - Alhanoof Alohaly
- Department of Dietetics and Nutrition, Florida International University, Miami, FL 33199, USA;
| | - Juan F. Bedoya
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (Y.J.); (A.M.S.A.); (J.F.B.); (T.M.B.); (M.S.C.)
| | - Shanna L. Burke
- School of Social Work, Florida International University, Miami, FL 33199, USA;
| | - Thomas M. Boulos
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (Y.J.); (A.M.S.A.); (J.F.B.); (T.M.B.); (M.S.C.)
| | - Helen G. Tempest
- Department of Human and Molecular Genetics, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Marcus S. Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; (Y.J.); (A.M.S.A.); (J.F.B.); (T.M.B.); (M.S.C.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
41
|
Monaheng NM, Parani S, Gulumian M, Oluwafemi OS. Eco-friendly synthesis of glutathione-capped CdTe/CdSe/ZnSe core/double shell quantum dots: their cytotoxicity and genotoxicity effects on Chinese hamster ovary cells. Toxicol Res (Camb) 2019; 8:868-874. [PMID: 32055393 PMCID: PMC6991175 DOI: 10.1039/c9tx00113a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/23/2019] [Indexed: 01/23/2023] Open
Abstract
In this work, we report green one-pot synthesis, cytotoxicity and genotoxicity of glutathione-capped CdTe/CdSe/ZnSe heterostructured quantum dots (QDs) using a label-free xCELLigence RTCA system as well as the Cytokinesis Blocked Micronucleus assay. The as-synthesised nanocrystals displayed good optical properties and were spherical in shape with an average particle diameter of 5.9 ± 1.13 nm. The intracellular uptake study showed that most of the as-synthesised glutathione stabilized QDs penetrated the cell membranes and were found randomly localized in the cytoplasm of Chinese Hamster Ovary (CHO) cells even at a lower concentration of 0.5 μg ml-1. The QDs showed no cytotoxicity to Chinese Hamster Ovary (CHO) cells at six concentrations tested (0.5, 1.0, 2.5, 5.0, 10, and 25 μg ml-1). However, at 50 and 100 μg ml-1 the material was cytotoxic at significant p values of 3.1 × 10-4 and 9.47 × 10-10, respectively. Likewise, the material was found to be genotoxic at almost all concentrations tested. The genotoxicity of the nanocrystals in question confers unfavorable potential to all complex heterostructured nanocrystals. Hence, more studies are needed to negate the prevailing assumption that multishell passivation provides enough protection against intracellular QD core dissolution or the production of reactive oxygen species (ROS) before these nanomaterials can be used in vivo for human health applications.
Collapse
Affiliation(s)
- Neo Mervyn Monaheng
- Department of Chemical Sciences (formerly Applied Chemistry) , University of Johannesburg Doornfontein Campus , P.O. Box 17011 , Doornfontein , Johannesburg , South Africa .
- Centre for Nanomaterials Science Research , University of Johannesburg Doornfontein Campus , Johannesburg , South Africa
| | - Sundararajan Parani
- Department of Chemical Sciences (formerly Applied Chemistry) , University of Johannesburg Doornfontein Campus , P.O. Box 17011 , Doornfontein , Johannesburg , South Africa .
- Centre for Nanomaterials Science Research , University of Johannesburg Doornfontein Campus , Johannesburg , South Africa
| | - Mary Gulumian
- Biochemistry & Toxicology Section , National Institute for Occupational Health , Johannesburg , South Africa
- Haematology and Molecular Medicine , University of the Witwatersrand , Johannesburg , South Africa .
| | - Oluwatobi Samuel Oluwafemi
- Department of Chemical Sciences (formerly Applied Chemistry) , University of Johannesburg Doornfontein Campus , P.O. Box 17011 , Doornfontein , Johannesburg , South Africa .
- Centre for Nanomaterials Science Research , University of Johannesburg Doornfontein Campus , Johannesburg , South Africa
| |
Collapse
|
42
|
Çal T, Bucurgat ÜÜ. In vitro investigation of the effects of boron nitride nanotubes and curcumin on DNA damage. Daru 2019; 27:203-218. [PMID: 30941633 PMCID: PMC6593132 DOI: 10.1007/s40199-019-00263-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKROUND Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for their ability to differentiate into blood cells, and also for bone marrow diseases therapy. Boron nitride nanotubes and curcumin are potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is important to evaluate their possible effects on different cell lines. OBJECTIVES In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompatibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant properties. METHODS The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and V79 cells were evaluated by MTT assay and Comet assay, respectively. RESULTS AND CONCLUSION Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells, HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration - dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by further analysis for potential targeted drug development. Graphical abstract.
Collapse
Affiliation(s)
- Tuğbagül Çal
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey
| | - Ülkü Ündeğer Bucurgat
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Sıhhıye, Ankara, Turkey.
| |
Collapse
|
43
|
Mycoplasma infection of cultured cells induces oxidative stress and attenuates cellular base excision repair activity. Mutat Res 2019; 845:403054. [PMID: 31561888 DOI: 10.1016/j.mrgentox.2019.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/11/2019] [Accepted: 05/19/2019] [Indexed: 11/23/2022]
Abstract
Mycoplasma contamination is a major concern for in vitro cell culture models as its resistance to most antibiotics, which makes the prevention and treatment of infection challenging. Furthermore, numerous studies show that Mycoplasma infection alters a variety of cellular processes, in a wide range of cell lines. However, there is a lack of information pertaining to the effects of Mycoplasma infection on genomic stability. In this study, a dopaminergic neuronal cell line (BE-M17), a popular in vitro model for Parkinson's disease, was used to evaluate the effect of Mycoplasma infection on genomic instability, and base excision repair (BER) activity, using single cell gel electrophoresis (the comet assay). The results showed that Mycoplasma infection induced oxidative stress in the absence of an inflammatory response, with markedly increased levels of DNA damage [strand breaks/alkali-labile sites (SB/ALS), and oxidised purines], compared to uninfected cells. The source of the oxidative stress may have been increased ROS generation, or attenuation of cellular antioxidant capacity (or a combination of both). Uninfected cells initially repaired SB/ALS more rapidly than infected cells, although SB/ALS were fully repaired in both uninfected and infected cells 2 h after H2O2 challenge. However, while uninfected cells showed complete repair of oxidised purines within 24 h, for the infected cells, these were not fully repaired even after 30 h. In conclusion, this study showed that not only does Mycoplasma infection induce oxidative stress and DNA damage, but it also decreases the efficiency of the main pathway responsible for the repair of oxidatively damaged DNA i.e. BER. In this in vitro model, there is no mechanism for infection-induced inflammation, which could be a source of increased ROS production. Therefore, further studies are needed to evaluate how Mycoplasma infection causes oxidatively damaged DNA, and how it modulates cellular DNA repair.
Collapse
|
44
|
Elias CDMV, Maia Filho ALM, Silva LRD, Amaral FPDMD, Webster TJ, Marciano FR, Lobo AO. In Vivo Evaluation of the Genotoxic Effects of Poly (Butylene adipate-co-terephthalate)/Polypyrrole with Nanohydroxyapatite Scaffolds for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1330. [PMID: 31022828 PMCID: PMC6515421 DOI: 10.3390/ma12081330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
Abstract
Here, butylene adipate-co-terephthalate/polypyrrole with nanohydroxyapatite (PBAT/PPy/nHAp) scaffolds were fabricated and characterized. The electrospinning process was carried out using 12 kV, a needle of 23 G, an infusion pump set at 0.3 mL/h, and 10 cm of distance. Afterwards, nHAp was directly electrodeposited onto PBAT/PPy scaffolds using a classical three-electrode apparatus. For in vivo assays (comet assay, acute and chronic micronucleus), 60 male albino Wistar rats with 4 groups were used in each test (n = 5): PBAT/PPy; PBAT/PPy/nHAp; positive control (cyclophosphamide); and the negative control (distilled water). Peripheral blood samples were collected from the animals to perform the comet test after 4 h (for damage) and 24 h (for repair). In the comet test, it was shown that the scaffolds did not induce damage to the % DNA tail and neither for tail length. After the end of 48 h (for acute micronucleus) and 72 h (for chronic micronucleus), bone marrow was collected from each rat to perform the micronucleus test. All of the produced scaffolds did not present genotoxic effects, providing strong evidence for the biological application of PBAT/PPy/nHAp scaffolds.
Collapse
Affiliation(s)
- Conceição de Maria Vaz Elias
- Biomedical Engineering graduate program, Scientific and Technological Institute, Brasil University, São Paulo, SP 08230-030, Brazil.
| | | | - Laryssa Roque da Silva
- Laboratory of Experimental Surgery and Mutagenicity, State University of Piauí, Teresina, PI 64001-280, Brazil.
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | | | - Anderson Oliveira Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, UFPI-Federal University of Piauí, Teresina, PI 64049-550, Brazil.
| |
Collapse
|
45
|
Dusinska M, Mariussen E, Rundén-Pran E, Hudecova AM, Elje E, Kazimirova A, El Yamani N, Dommershausen N, Tharmann J, Fieblinger D, Herzberg F, Luch A, Haase A. In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials. Methods Mol Biol 2019; 1894:83-122. [PMID: 30547457 DOI: 10.1007/978-1-4939-8916-4_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations. Typically various in vitro assays are performed in the first tier. It is not very likely that NMs may induce as yet unknown types of genotoxic damage beyond what is already known for chemicals. Thus, principles of genotoxicity testing as established for chemicals should be applicable to NMs as well. However, established test guidelines (i.e., OECD TG) may require adaptations for NM testing, as currently under discussion at the OECD. This chapter gives an overview of genotoxicity testing of NMs in vitro based on experiences from various research projects. We recommend a combination of a mammalian gene mutation assay (at either Tk or HPRT locus), the in vitro comet assay, and the cytokinesis-block micronucleus assay, which are discussed in detail here. In addition we also include the Cell Transformation Assay (CTA) as a promising novel test for predicting NM-induced cell transformation in vitro.
Collapse
Affiliation(s)
- Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway.
| | - Espen Mariussen
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Alexandra Misci Hudecova
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Elisabeth Elje
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Alena Kazimirova
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research (NILU), Kjeller, Norway
| | - Nils Dommershausen
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Julian Tharmann
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Dagmar Fieblinger
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Frank Herzberg
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| |
Collapse
|
46
|
Lamon L, Asturiol D, Richarz A, Joossens E, Graepel R, Aschberger K, Worth A. Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Part Fibre Toxicol 2018; 15:37. [PMID: 30249272 PMCID: PMC6154922 DOI: 10.1186/s12989-018-0273-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/28/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An increasing number of manufactured nanomaterials (NMs) are being used in industrial products and need to be registered under the REACH legislation. The hazard characterisation of all these forms is not only technically challenging but resource and time demanding. The use of non-testing strategies like read-across is deemed essential to assure the assessment of all NMs in due time and at lower cost. The fact that read-across is based on the structural similarity of substances represents an additional difficulty for NMs as in general their structure is not unequivocally defined. In such a scenario, the identification of physicochemical properties affecting the hazard potential of NMs is crucial to define a grouping hypothesis and predict the toxicological hazards of similar NMs. In order to promote the read-across of NMs, ECHA has recently published "Recommendations for nanomaterials applicable to the guidance on QSARs and Grouping", but no practical examples were provided in the document. Due to the lack of publicly available data and the inherent difficulties of reading-across NMs, only a few examples of read-across of NMs can be found in the literature. This manuscript presents the first case study of the practical process of grouping and read-across of NMs following the workflow proposed by ECHA. METHODS The workflow proposed by ECHA was used and slightly modified to present the read-across case study. The Read-Across Assessment Framework (RAAF) was used to evaluate the uncertainties of a read-across within NMs. Chemoinformatic techniques were used to support the grouping hypothesis and identify key physicochemical properties. RESULTS A dataset of 6 nanoforms of TiO2 with more than 100 physicochemical properties each was collected. In vitro comet assay result was selected as the endpoint to read-across due to data availability. A correlation between the presence of coating or large amounts of impurities and negative comet assay results was observed. CONCLUSION The workflow proposed by ECHA to read-across NMs was applied successfully. Chemoinformatic techniques were shown to provide key evidence for the assessment of the grouping hypothesis and the definition of similar NMs. The RAAF was found to be applicable to NMs.
Collapse
Affiliation(s)
- L Lamon
- European Commission, Joint Research Centre, Ispra, Varese, Italy
| | - D Asturiol
- European Commission, Joint Research Centre, Ispra, Varese, Italy.
| | - A Richarz
- European Commission, Joint Research Centre, Ispra, Varese, Italy
| | - E Joossens
- European Commission, Joint Research Centre, Ispra, Varese, Italy
| | - R Graepel
- European Commission, Joint Research Centre, Ispra, Varese, Italy
| | - K Aschberger
- European Commission, Joint Research Centre, Ispra, Varese, Italy
| | - A Worth
- European Commission, Joint Research Centre, Ispra, Varese, Italy
| |
Collapse
|
47
|
Bal S, Yadav A, Verma N, Aggarwal NK, Gupta R. Protective role of eugenol on arsenic induced oxidative DNA damage and modulatory effect of GSTO2 polymorphism. J Food Biochem 2018. [DOI: 10.1111/jfbc.12565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Surbhi Bal
- Department of Biotechnology; Kurukshetra University; Kurukshetra Haryana India
| | - Anita Yadav
- Department of Biotechnology; Kurukshetra University; Kurukshetra Haryana India
| | - Neha Verma
- Department of Biotechnology; Kurukshetra University; Kurukshetra Haryana India
| | - Neeraj K. Aggarwal
- Department of Microbiology; Kurukshetra University; Kurukshetra Haryana India
| | - Ranjan Gupta
- Department of Biochemistry; Kurukshetra University; Kurukshetra Haryana India
| |
Collapse
|
48
|
Charles S, Jomini S, Fessard V, Bigorgne-Vizade E, Rousselle C, Michel C. Assessment of the in vitro genotoxicity of TiO2 nanoparticles in a regulatory context. Nanotoxicology 2018; 12:357-374. [DOI: 10.1080/17435390.2018.1451567] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sandrine Charles
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Valérie Fessard
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Laboratoire de Fougères, Unité Toxicologie des Contaminants, Javené, France
| | - Emilie Bigorgne-Vizade
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Christophe Rousselle
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| | - Cécile Michel
- ANSES, Agence Nationale de Sécurité Sanitaire de l’alimentation, de l’environnement et du Travail, Direction de l’Evaluation des Risques, Unité Evaluation des Substances Chimiques, Maisons-Alfort, France
| |
Collapse
|
49
|
George JM, Magogotya M, Vetten MA, Buys AV, Gulumian M. From the Cover: An Investigation of the Genotoxicity and Interference of Gold Nanoparticles in Commonly Used In Vitro Mutagenicity and Genotoxicity Assays. Toxicol Sci 2018; 156:149-166. [PMID: 28108664 DOI: 10.1093/toxsci/kfw247] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The suitability of 4 in vitro assays, commonly used for mutagenicity and genotoxicity assessment, was investigated in relation to treatment with 14 nm citrate-stabilized gold nanoparticles (AuNPs). Specifically, the Ames test was conducted without metabolic activation, where no mutagenic effects were observed. High resolution transmission electron microscopy and Cytoviva dark-field image analysis showed that AuNPs did not enter the bacterial cells, thus confirming the unreliability of the Ames test for nanoparticle mutagenicity studies. In addition, the Chinese hamster ovary (CHO) cell line was used for Comet, Chromosome aberration and Micronucleus assays. CHO cells were treated with AuNPs for 20 h at 37 °C. Cytotoxicity was not detected by cell impedance studies even though AuNP uptake was confirmed using Cytoviva image analysis. The DNA damage was statistically significant in treated cells when assessed by the Comet assay. However, minimal and nonstatistically significant chromosomal DNA damage was observed using the chromosome aberration and micronucleus assays. In this study, we showed that false positive results obtained with Comet assay may have been due to the possibility of direct contact between the residual, intracellular AuNPs and DNA during the assay procedure. Therefore, the chromosome aberration and micronucleus assays are better suited to assess the genotoxic effects of nanoparticles due to low probability of such direct contact occurring. Genotoxic effect of 14 and 20 nm citrate-stabilized, as well as, 14 nm PCOOH AuNPs were also investigated using chromosome aberration and micronucleus assays. Based on our acceptance criteria for a positive genotoxic response, none of the AuNPs were found to be genotoxic in either of these assays.
Collapse
Affiliation(s)
- Jiya M George
- Toxicology and Biochemistry Department, National Institute for Occupational Health, Johannesburg 2000, Gauteng, South Africa
| | - Millicent Magogotya
- Toxicology and Biochemistry Department, National Institute for Occupational Health, Johannesburg 2000, Gauteng, South Africa.,Department of Biotechnology and Food Technology, Tshwane University of Technology, Nelson Mandela Drive, Private Bag X680, Pretoria 0001, South Africa
| | - Melissa A Vetten
- Toxicology and Biochemistry Department, National Institute for Occupational Health, Johannesburg 2000, Gauteng, South Africa.,Haematology and Molecular Medicine, School of Pathology, Medical School, University of the Witwatersrand, Parktown, Johannesburg 2001, Gauteng, South Africa
| | - Antoinette V Buys
- Laboratory for Microscopy and Micro-analysis, University of Pretoria, Hatfield Campus, Pretoria 0002, South Africa
| | - Mary Gulumian
- Toxicology and Biochemistry Department, National Institute for Occupational Health, Johannesburg 2000, Gauteng, South Africa.,Haematology and Molecular Medicine, School of Pathology, Medical School, University of the Witwatersrand, Parktown, Johannesburg 2001, Gauteng, South Africa
| |
Collapse
|
50
|
Dandah O, Najafzadeh M, Isreb M, Linforth R, Tait C, Baumgartner A, Anderson D. Aspirin and ibuprofen, in bulk and nanoforms: Effects on DNA damage in peripheral lymphocytes from breast cancer patients and healthy individuals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:41-46. [DOI: 10.1016/j.mrgentox.2017.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022]
|