1
|
Alzarka B, Charnaya O, Gunay-Aygun M. Diseases of the primary cilia: a clinical characteristics review. Pediatr Nephrol 2024:10.1007/s00467-024-06528-w. [PMID: 39340573 DOI: 10.1007/s00467-024-06528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Ciliopathies encompass a broad spectrum of diseases stemming from dysfunction of the primary (non-motile) cilia, present on almost all cells in the human body. These disorders include autosomal dominant and recessive polycystic kidney diseases, nephronophthisis, and multisystem ciliopathies such as Joubert, Meckel, Bardet-Biedl, Alström, oral-facial-digital syndromes, and skeletal ciliopathies. The majority of these ciliopathies are associated with fibrocystic kidney disease resulting in progressive kidney dysfunction. In addition, many ciliopathies are associated with extra-renal manifestations including congenital hepatic fibrosis, retinal dystrophy, obesity, and brain and skeletal anomalies. The diagnoses may be challenging due to their overlapping clinical features and molecular heterogeneity. To date, over 190 genes encoding proteins that localize to the primary cilia have been identified as disease-causing. This review will discuss the clinical features of the most frequently encountered disorders of primary cilia.
Collapse
Affiliation(s)
- Bakri Alzarka
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Olga Charnaya
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meral Gunay-Aygun
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA.
| |
Collapse
|
2
|
Wang L, Guo Q, Acharya S, Zheng X, Huynh V, Whitmore B, Yimit A, Malhotra M, Chatterji S, Rosin N, Labit E, Chipak C, Gorzo K, Haidey J, Elliott DA, Ram T, Zhang Q, Kuipers H, Gordon G, Biernaskie J, Guo J. Primary cilia signaling in astrocytes mediates development and regional-specific functional specification. Nat Neurosci 2024; 27:1708-1720. [PMID: 39103557 DOI: 10.1038/s41593-024-01726-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Astrocyte diversity is greatly influenced by local environmental modulation. Here we report that the majority of astrocytes across the mouse brain possess a singular primary cilium localized to the cell soma. Comparative single-cell transcriptomics reveals that primary cilia mediate canonical SHH signaling to modulate astrocyte subtype-specific core features in synaptic regulation, intracellular transport, energy and metabolism. Independent of canonical SHH signaling, primary cilia are important regulators of astrocyte morphology and intracellular signaling balance. Dendritic spine analysis and transcriptomics reveal that perturbation of astrocytic cilia leads to disruption of neuronal development and global intercellular connectomes in the brain. Mice with primary ciliary-deficient astrocytes show behavioral deficits in sensorimotor function, sociability, learning and memory. Our results uncover a critical role for primary cilia in transmitting local cues that drive the region-specific diversification of astrocytes within the developing brain.
Collapse
Affiliation(s)
- Lizheng Wang
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Qianqian Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sandesh Acharya
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiao Zheng
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vanessa Huynh
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brandon Whitmore
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Askar Yimit
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mehr Malhotra
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Siddharth Chatterji
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Elodie Labit
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colten Chipak
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kelsea Gorzo
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jordan Haidey
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - David A Elliott
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tina Ram
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Hedwich Kuipers
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
| | - Grant Gordon
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Surgery, University of Calgary, Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jiami Guo
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Alberta, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
- Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
3
|
Conduit SE, Pearce W, Bhamra A, Bilanges B, Bozal-Basterra L, Foukas LC, Cobbaut M, Castillo SD, Danesh MA, Adil M, Carracedo A, Graupera M, McDonald NQ, Parker PJ, Cutillas PR, Surinova S, Vanhaesebroeck B. A class I PI3K signalling network regulates primary cilia disassembly in normal physiology and disease. Nat Commun 2024; 15:7181. [PMID: 39168978 PMCID: PMC11339396 DOI: 10.1038/s41467-024-51354-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Primary cilia are antenna-like organelles which sense extracellular cues and act as signalling hubs. Cilia dysfunction causes a heterogeneous group of disorders known as ciliopathy syndromes affecting most organs. Cilia disassembly, the process by which cells lose their cilium, is poorly understood but frequently observed in disease and upon cell transformation. Here, we uncover a role for the PI3Kα signalling enzyme in cilia disassembly. Genetic PI3Kα-hyperactivation, as observed in PIK3CA-related overgrowth spectrum (PROS) and cancer, induced a ciliopathy-like phenotype during mouse development. Mechanistically, PI3Kα and PI3Kβ produce the PIP3 lipid at the cilia transition zone upon disassembly stimulation. PI3Kα activation initiates cilia disassembly through a kinase signalling axis via the PDK1/PKCι kinases, the CEP170 centrosomal protein and the KIF2A microtubule-depolymerising kinesin. Our data suggest diseases caused by PI3Kα-activation may be considered 'Disorders with Ciliary Contributions', a recently-defined subset of ciliopathies in which some, but not all, of the clinical manifestations result from cilia dysfunction.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Wayne Pearce
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Amandeep Bhamra
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Benoit Bilanges
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Laura Bozal-Basterra
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
| | - Lazaros C Foukas
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Mathias Cobbaut
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sandra D Castillo
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Mohammad Amin Danesh
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Mahreen Adil
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160, Derio, Spain
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Translational Prostate Cancer Research Laboratory, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080, Bilbao, Spain
| | - Mariona Graupera
- Centro de Investigación Biomédica En Red de Cáncer (CIBERONC), 28029, Madrid, Spain
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, Barcelona, Spain
| | - Neil Q McDonald
- Signalling and Structural Biology laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Peter J Parker
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King's College London, Guy's Campus, London, UK
| | - Pedro R Cutillas
- Centre for Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Silvia Surinova
- Proteomics Research Translational Technology Platform, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bart Vanhaesebroeck
- Cell Signalling, UCL Cancer Institute, University College London, 72 Huntley Street, London, WC1E 6BT, UK.
| |
Collapse
|
4
|
Kristensen TN, Schönherz AA, Rohde PD, Sørensen JG, Loeschcke V. Selection for stress tolerance and longevity in Drosophila melanogaster have strong impacts on microbiome profiles. Sci Rep 2024; 14:17789. [PMID: 39090347 PMCID: PMC11294339 DOI: 10.1038/s41598-024-68753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
There is experimental evidence that microbiomes have a strong influence on a range of host traits. Understanding the basis and importance of symbiosis between host and associated microorganisms is a rapidly developing research field, and we still lack a mechanistic understanding of ecological and genetic pressures affecting host-microbiome associations. Here Drosophila melanogaster lines from a large-scale artificial selection experiment were used to investigate whether the microbiota differ in lines selected for different stress resistance traits and longevity. Following multiple generations of artificial selection all selection regimes and corresponding controls had their microbiomes assessed. The microbiome was interrogated based on 16S rRNA sequencing. We found that the microbiome of flies from the different selection regimes differed markedly from that of the unselected control regime, and microbial diversity was consistently higher in selected relative to control regimes. Several common Drosophila bacterial species showed differentially abundance in the different selection regimes despite flies being exposed to similar environmental conditions for two generations prior to assessment. Our findings provide strong evidence for symbiosis between host and microbiomes but we cannot reveal whether the interactions are adaptive, nor whether they are caused by genetic or ecological factors.
Collapse
Affiliation(s)
- Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg, Denmark.
| | - Anna A Schönherz
- Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | | |
Collapse
|
5
|
Dodd DO, Mechaussier S, Yeyati PL, McPhie F, Anderson JR, Khoo CJ, Shoemark A, Gupta DK, Attard T, Zariwala MA, Legendre M, Bracht D, Wallmeier J, Gui M, Fassad MR, Parry DA, Tennant PA, Meynert A, Wheway G, Fares-Taie L, Black HA, Mitri-Frangieh R, Faucon C, Kaplan J, Patel M, McKie L, Megaw R, Gatsogiannis C, Mohamed MA, Aitken S, Gautier P, Reinholt FR, Hirst RA, O’Callaghan C, Heimdal K, Bottier M, Escudier E, Crowley S, Descartes M, Jabs EW, Kenia P, Amiel J, Bacci GM, Calogero C, Palazzo V, Tiberi L, Blümlein U, Rogers A, Wambach JA, Wegner DJ, Fulton AB, Kenna M, Rosenfeld M, Holm IA, Quigley A, Hall EA, Murphy LC, Cassidy DM, von Kriegsheim A, Papon JF, Pasquier L, Murris MS, Chalmers JD, Hogg C, Macleod KA, Urquhart DS, Unger S, Aitman TJ, Amselem S, Leigh MW, Knowles MR, Omran H, Mitchison HM, Brown A, Marsh JA, Welburn JPI, Ti SC, Horani A, Rozet JM, Perrault I, Mill P. Ciliopathy patient variants reveal organelle-specific functions for TUBB4B in axonemal microtubules. Science 2024; 384:eadf5489. [PMID: 38662826 PMCID: PMC7616230 DOI: 10.1126/science.adf5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/20/2024] [Indexed: 05/03/2024]
Abstract
Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.
Collapse
Affiliation(s)
- Daniel O Dodd
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Sabrina Mechaussier
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Patricia L Yeyati
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Fraser McPhie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Jacob R Anderson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Chen Jing Khoo
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
- Royal Brompton Hospital, LondonSW3 6NP, UK
| | - Deepesh K Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Thomas Attard
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Maimoona A Zariwala
- Department of Pathology and Laboratory Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Marie Legendre
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Diana Bracht
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Julia Wallmeier
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Mahmoud R Fassad
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria21561, Egypt
| | - David A Parry
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Peter A Tennant
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Alison Meynert
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, UK
| | - Lucas Fares-Taie
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Holly A Black
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- South East of Scotland Genetics Service, Western General Hospital, EdinburghEH4 2XU, UK
| | - Rana Mitri-Frangieh
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
- Biomechanics and Respiratory Apparatus, IMRB, U955 INSERM – Université Paris Est Créteil, CNRS ERL 7000, Créteil 94000, France
| | - Catherine Faucon
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Josseline Kaplan
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Mitali Patel
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, University College London, LondonW1W 7FF, UK
| | - Lisa McKie
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Roly Megaw
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
- Princess Alexandra Eye Pavilion, EdinburghEH3 9HA, UK
| | - Christos Gatsogiannis
- Center for Soft Nanoscience and Institute of Medical Physics and Biophysics, Münster 48149, Germany
| | - Mai A Mohamed
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
- Biochemistry Division, Chemistry Department, Faculty of Science, Zagazig University, Ash Sharqiyah44519, Egypt
| | - Stuart Aitken
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Philippe Gautier
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Finn R Reinholt
- Core Facility for Electron Microscopy, Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo0372, Norway
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Respiratory Sciences, University of Leicester, LeicesterLE1 9HN, UK
| | - Chris O’Callaghan
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Ketil Heimdal
- Department of Medical Genetics, Oslo University Hospital, Oslo0407, Norway
| | - Mathieu Bottier
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Estelle Escudier
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
- Department of Anatomy, Cytology and Pathology, Hôpital Intercommuncal de Créteil, Créteil, France
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases, Oslo University Hospital, Oslo0407, Norway
| | - Maria Descartes
- Department of Genetics, University of Alabama at Birmingham, Birmingham, 35294-0024, USA
| | - Ethylin W Jabs
- Icahn School of Medicine at Mount Sinai, New York10029-6504, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester55905, USA
| | - Priti Kenia
- Department of Paediatric Respiratory Medicine, Birmingham Women’s and Children’s Hospital NHS Foundation Trust, BirminghamB15 2TG, UK
| | - Jeanne Amiel
- Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), Paris75015, France
- Laboratory of Embryology and Genetics of Human Malformations, INSERM UMR 1163, Institut Imagine, Université de Paris, Paris75015, France
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Claudia Calogero
- Pediatric Ophthalmology Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Viviana Palazzo
- Pediatric Pulmonary Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Meyer Children's Hospital IRCCS, Florence50139, Italy
| | | | | | - Jennifer A Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Daniel J Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
| | - Anne B Fulton
- Department of Ophthalmology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Kenna
- Department of Otolaryngology, Boston Children’s Hospital; Boston02115, USA
| | - Margaret Rosenfeld
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children’s Research Institute, Seattle 98015, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics and the Manton Center for Orphan Diseases Research, Boston Children’s Hospital, Boston02115, USA
- Department of Pediatrics, Harvard Medical School, Boston 02115, USA
| | - Alan Quigley
- Department of Paediatric Radiology, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
| | - Emma A Hall
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Diane M Cassidy
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | - Alex von Kriegsheim
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Scottish Genomes Partnership
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | | | | | - Jean-François Papon
- ENT Department, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris-Saclay University, Le Kremlin-Bicêtre94270, France
| | - Laurent Pasquier
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
| | - Marlène S Murris
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, DundeeDD1 9SY, UK
| | | | | | - Don S Urquhart
- Medical Genetics Department, CHU Pontchaillou, Rennes 35033, France
- Department of Pulmonology, Transplantation, and Cystic Fibrosis Centre, Larrey Hospital, Toulouse31400, France
| | - Stefan Unger
- Department of Paediatric Respiratory and Sleep Medicine, Royal Hospital for Children and Young People, Edinburgh EH16 4TJ, UK
- Department of Child Life and Health, University of Edinburgh, EdinburghEH16 4TJ, UK
| | - Timothy J Aitman
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Serge Amselem
- Molecular Genetics Laboratory, Sorbonne Université, Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Armand Trousseau, Paris75012, France
- Sorbonne Université, INSERM, Childhood Genetic Disorders, Paris75012, France
| | - Margaret W Leigh
- Department of Pediatrics, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill27599-7248, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children’s Hospital Münster, Münster 48149, Germany
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, UCL Institute of Child Health, University College London, LondonWC1N 1EH, UK
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston 02215, USA
| | - Joseph A Marsh
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, UK
| | - Shih-Chieh Ti
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis 63130, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis 63110, USA
| | - Jean-Michel Rozet
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Isabelle Perrault
- Laboratory of Genetics in Ophthalmology, INSERM UMR_1163, Institute of Genetic Diseases, Institut Imagine, Université de Paris, Paris75015, France
| | - Pleasantine Mill
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XU, UK
| |
Collapse
|
6
|
Faviez C, Vincent M, Garcelon N, Boyer O, Knebelmann B, Heidet L, Saunier S, Chen X, Burgun A. Performance and clinical utility of a new supervised machine-learning pipeline in detecting rare ciliopathy patients based on deep phenotyping from electronic health records and semantic similarity. Orphanet J Rare Dis 2024; 19:55. [PMID: 38336713 PMCID: PMC10858490 DOI: 10.1186/s13023-024-03063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Rare diseases affect approximately 400 million people worldwide. Many of them suffer from delayed diagnosis. Among them, NPHP1-related renal ciliopathies need to be diagnosed as early as possible as potential treatments have been recently investigated with promising results. Our objective was to develop a supervised machine learning pipeline for the detection of NPHP1 ciliopathy patients from a large number of nephrology patients using electronic health records (EHRs). METHODS AND RESULTS We designed a pipeline combining a phenotyping module re-using unstructured EHR data, a semantic similarity module to address the phenotype dependence, a feature selection step to deal with high dimensionality, an undersampling step to address the class imbalance, and a classification step with multiple train-test split for the small number of rare cases. The pipeline was applied to thirty NPHP1 patients and 7231 controls and achieved good performances (sensitivity 86% with specificity 90%). A qualitative review of the EHRs of 40 misclassified controls showed that 25% had phenotypes belonging to the ciliopathy spectrum, which demonstrates the ability of our system to detect patients with similar conditions. CONCLUSIONS Our pipeline reached very encouraging performance scores for pre-diagnosing ciliopathy patients. The identified patients could then undergo genetic testing. The same data-driven approach can be adapted to other rare diseases facing underdiagnosis challenges.
Collapse
Affiliation(s)
- Carole Faviez
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR 1138, 75006, Paris, France.
- Inria, 75012, Paris, France.
| | - Marc Vincent
- Université Paris Cité, Imagine Institute, Data Science Platform, INSERM UMR 1163, 75015, Paris, France
| | - Nicolas Garcelon
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR 1138, 75006, Paris, France
- Inria, 75012, Paris, France
- Université Paris Cité, Imagine Institute, Data Science Platform, INSERM UMR 1163, 75015, Paris, France
| | - Olivia Boyer
- Department of Pediatric Nephrology, APHP-Centre, Reference Center for Inherited Renal Diseases (MARHEA), Imagine Institute, Hôpital Necker-Enfants Malades, Université Paris Cité, 75015, Paris, France
- Laboratory of Renal Hereditary Diseases, INSERM UMR 1163, Imagine Institute, Université Paris Cité, 75015, Paris, France
| | - Bertrand Knebelmann
- Nephrology and Transplantation Department, MARHEA, Hôpital Necker-Enfants Malades, AP-HP, Université Paris Cité, 75015, Paris, France
| | - Laurence Heidet
- Department of Pediatric Nephrology, APHP-Centre, Reference Center for Inherited Renal Diseases (MARHEA), Imagine Institute, Hôpital Necker-Enfants Malades, Université Paris Cité, 75015, Paris, France
| | - Sophie Saunier
- Laboratory of Renal Hereditary Diseases, INSERM UMR 1163, Imagine Institute, Université Paris Cité, 75015, Paris, France
| | - Xiaoyi Chen
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR 1138, 75006, Paris, France
- Inria, 75012, Paris, France
- Université Paris Cité, Imagine Institute, Data Science Platform, INSERM UMR 1163, 75015, Paris, France
| | - Anita Burgun
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, INSERM UMR 1138, 75006, Paris, France
- Inria, 75012, Paris, France
- Département d'informatique Médicale, Hôpital Necker-Enfants Malades, AP-HP, 75015, Paris, France
| |
Collapse
|
7
|
Saito M, Otsu W, Miyadera K, Nishimura Y. Recent advances in the understanding of cilia mechanisms and their applications as therapeutic targets. Front Mol Biosci 2023; 10:1232188. [PMID: 37780208 PMCID: PMC10538646 DOI: 10.3389/fmolb.2023.1232188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
The primary cilium is a single immotile microtubule-based organelle that protrudes into the extracellular space. Malformations and dysfunctions of the cilia have been associated with various forms of syndromic and non-syndromic diseases, termed ciliopathies. The primary cilium is therefore gaining attention due to its potential as a therapeutic target. In this review, we examine ciliary receptors, ciliogenesis, and ciliary trafficking as possible therapeutic targets. We first discuss the mechanisms of selective distribution, signal transduction, and physiological roles of ciliary receptors. Next, pathways that regulate ciliogenesis, specifically the Aurora A kinase, mammalian target of rapamycin, and ubiquitin-proteasome pathways are examined as therapeutic targets to regulate ciliogenesis. Then, in the photoreceptors, the mechanism of ciliary trafficking which takes place at the transition zone involving the ciliary membrane proteins is reviewed. Finally, some of the current therapeutic advancements highlighting the role of large animal models of photoreceptor ciliopathy are discussed.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Physiology and Pathology, School of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Mie University Research Center for Cilia and Diseases, Tsu, Mie, Japan
| |
Collapse
|
8
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
9
|
Cevik S, Peng X, Beyer T, Pir MS, Yenisert F, Woerz F, Hoffmann F, Altunkaynak B, Pir B, Boldt K, Karaman A, Cakiroglu M, Oner SS, Cao Y, Ueffing M, Kaplan OI. WDR31 displays functional redundancy with GTPase-activating proteins (GAPs) ELMOD and RP2 in regulating IFT complex and recruiting the BBSome to cilium. Life Sci Alliance 2023; 6:e202201844. [PMID: 37208194 PMCID: PMC10200814 DOI: 10.26508/lsa.202201844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
The correct intraflagellar transport (IFT) assembly at the ciliary base and the IFT turnaround at the ciliary tip are key for the IFT to perform its function, but we still have poor understanding about how these processes are regulated. Here, we identify WDR31 as a new ciliary protein, and analysis from zebrafish and Caenorhabditis elegans reveals the role of WDR31 in regulating the cilia morphology. We find that loss of WDR-31 together with RP-2 and ELMD-1 (the sole ortholog ELMOD1-3) results in ciliary accumulations of IFT Complex B components and KIF17 kinesin, with fewer IFT/BBSome particles traveling along cilia in both anterograde and retrograde directions, suggesting that the IFT/BBSome entry into the cilia and exit from the cilia are impacted. Furthermore, anterograde IFT in the middle segment travels at increased speed in wdr-31;rpi-2;elmd-1 Remarkably, a non-ciliary protein leaks into the cilia of wdr-31;rpi-2;elmd-1, possibly because of IFT defects. This work reveals WDR31-RP-2-ELMD-1 as IFT and BBSome trafficking regulators.
Collapse
Affiliation(s)
- Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Xiaoyu Peng
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tina Beyer
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Mustafa S Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Ferhan Yenisert
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Franziska Woerz
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Felix Hoffmann
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Betul Altunkaynak
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Betul Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Karsten Boldt
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Asli Karaman
- Science and Advanced Technology Application and Research Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - Miray Cakiroglu
- Science and Advanced Technology Application and Research Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - S Sadik Oner
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Science and Advanced Technology Application and Research Center, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Marius Ueffing
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
10
|
Sieben CJ, Harris PC. Experimental Models of Polycystic Kidney Disease: Applications and Therapeutic Testing. KIDNEY360 2023; 4:1155-1173. [PMID: 37418622 PMCID: PMC10476690 DOI: 10.34067/kid.0000000000000209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Polycystic kidney diseases (PKDs) are genetic disorders characterized by the formation and expansion of numerous fluid-filled renal cysts, damaging normal parenchyma and often leading to kidney failure. Although PKDs comprise a broad range of different diseases, with substantial genetic and phenotypic heterogeneity, an association with primary cilia represents a common theme. Great strides have been made in the identification of causative genes, furthering our understanding of the genetic complexity and disease mechanisms, but only one therapy so far has shown success in clinical trials and advanced to US Food and Drug Administration approval. A key step in understanding disease pathogenesis and testing potential therapeutics is developing orthologous experimental models that accurately recapitulate the human phenotype. This has been particularly important for PKDs because cellular models have been of limited value; however, the advent of organoid usage has expanded capabilities in this area but does not negate the need for whole-organism models where renal function can be assessed. Animal model generation is further complicated in the most common disease type, autosomal dominant PKD, by homozygous lethality and a very limited cystic phenotype in heterozygotes while for autosomal recessive PKD, mouse models have a delayed and modest kidney disease, in contrast to humans. However, for autosomal dominant PKD, the use of conditional/inducible and dosage models have resulted in some of the best disease models in nephrology. These have been used to help understand pathogenesis, to facilitate genetic interaction studies, and to perform preclinical testing. Whereas for autosomal recessive PKD, using alternative species and digenic models has partially overcome these deficiencies. Here, we review the experimental models that are currently available and most valuable for therapeutic testing in PKD, their applications, success in preclinical trials, advantages and limitations, and where further improvements are needed.
Collapse
Affiliation(s)
- Cynthia J Sieben
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
11
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Ning K, Bhuckory MB, Lo CH, Sendayen BE, Kowal TJ, Chen M, Bansal R, Chang KC, Vollrath D, Berbari NF, Mahajan VB, Hu Y, Sun Y. Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium. Sci Rep 2023; 13:8205. [PMID: 37211572 PMCID: PMC10200793 DOI: 10.1038/s41598-023-35099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ming Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
13
|
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia. Front Mol Biosci 2023; 10:1173030. [PMID: 37251083 PMCID: PMC10210153 DOI: 10.3389/fmolb.2023.1173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Serving as the cell's key interface in communicating with the outside world, primary cilia have emerged as an area of multidisciplinary research interest over the last 2 decades. Although the term "ciliopathy" was first used to describe abnormal cilia caused by gene mutations, recent studies focus on abnormalities of cilia that are found in diseases without clear genetic antecedents, such as obesity, diabetes, cancer, and cardiovascular disease. Preeclampsia, a hypertensive disease of pregnancy, is intensely studied as a model for cardiovascular disease partially due to many shared pathophysiologic elements, but also because changes that develop over decades in cardiovascular disease arise in days with preeclampsia yet resolve rapidly after delivery, thus providing a time-lapse view of the development of cardiovascular pathology. As with genetic primary ciliopathies, preeclampsia affects multiple organ systems. While aspirin delays the onset of preeclampsia, there is no cure other than delivery. The primary etiology of preeclampsia is unknown; however, recent reviews emphasize the fundamental role of abnormal placentation. During normal embryonic development, trophoblastic cells, which arise from the outer layer of the 4-day-old blastocyst, invade the maternal endometrium and establish extensive placental vascular connections between mother and fetus. In primary cilia of trophoblasts, Hedgehog and Wnt/catenin signaling operate upstream of vascular endothelial growth factor to advance placental angiogenesis in a process that is promoted by accessible membrane cholesterol. In preeclampsia, impaired proangiogenic signaling combined with an increase in apoptotic signaling results in shallow invasion and inadequate placental function. Recent studies show primary cilia in preeclampsia to be fewer in number and shortened with functional signaling abnormalities. Presented here is a model that integrates preeclampsia lipidomics and physiology with the molecular mechanisms of liquid-liquid phase separation in model membrane studies and the known changes in human dietary lipids over the last century to explain how changes in dietary lipids might reduce accessible membrane cholesterol and give rise to shortened cilia and defects in angiogenic signaling, which underlie placental dysfunction of preeclampsia. This model offers a possible mechanism for non-genetic dysfunction in cilia and proposes a proof-of-concept study to treat preeclampsia with dietary lipids.
Collapse
|
14
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
15
|
Mytlis A, Levy K, Elkouby YM. The many faces of the bouquet centrosome MTOC in meiosis and germ cell development. Curr Opin Cell Biol 2023; 81:102158. [PMID: 36913831 DOI: 10.1016/j.ceb.2023.102158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/28/2022] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Meiotic chromosomal pairing is facilitated by a conserved cytoskeletal organization. Telomeres associate with perinuclear microtubules via Sun/KASH complexes on the nuclear envelope (NE) and dynein. Telomere sliding on perinuclear microtubules contributes to chromosome homology searches and is essential for meiosis. Telomeres ultimately cluster on the NE, facing the centrosome, in a configuration called the chromosomal bouquet. Here, we discuss novel components and functions of the bouquet microtubule organizing center (MTOC) in meiosis, but also broadly in gamete development. The cellular mechanics of chromosome movements and the bouquet MTOC dynamics are striking. The newly identified zygotene cilium mechanically anchors the bouquet centrosome and completes the bouquet MTOC machinery in zebrafish and mice. We hypothesize that various centrosome anchoring strategies evolved in different species. Evidence suggests that the bouquet MTOC machinery is a cellular organizer, linking meiotic mechanisms with gamete development and morphogenesis. We highlight this cytoskeletal organization as a new platform for creating a holistic understanding of early gametogenesis, with direct implications to fertility and reproduction.
Collapse
Affiliation(s)
- Avishag Mytlis
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Karine Levy
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel
| | - Yaniv M Elkouby
- Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem, 9112102, Israel; Institute for Medical Research - Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel.
| |
Collapse
|
16
|
Khatri D, Putoux A, Cologne A, Kaltenbach S, Besson A, Bertiaux E, Guguin J, Fendler A, Dupont MA, Benoit-Pilven C, Qebibo L, Ahmed-Elie S, Audebert-Bellanger S, Blanc P, Rambaud T, Castelle M, Cornen G, Grotto S, Guët A, Guibaud L, Michot C, Odent S, Ruaud L, Sacaze E, Hamel V, Bordonné R, Leutenegger AL, Edery P, Burglen L, Attié-Bitach T, Mazoyer S, Delous M. Deficiency of the minor spliceosome component U4atac snRNA secondarily results in ciliary defects in human and zebrafish. Proc Natl Acad Sci U S A 2023; 120:e2102569120. [PMID: 36802443 PMCID: PMC9992838 DOI: 10.1073/pnas.2102569120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 12/12/2022] [Indexed: 02/23/2023] Open
Abstract
In the human genome, about 750 genes contain one intron excised by the minor spliceosome. This spliceosome comprises its own set of snRNAs, among which U4atac. Its noncoding gene, RNU4ATAC, has been found mutated in Taybi-Linder (TALS/microcephalic osteodysplastic primordial dwarfism type 1), Roifman (RFMN), and Lowry-Wood (LWS) syndromes. These rare developmental disorders, whose physiopathological mechanisms remain unsolved, associate ante- and post-natal growth retardation, microcephaly, skeletal dysplasia, intellectual disability, retinal dystrophy, and immunodeficiency. Here, we report bi-allelic RNU4ATAC mutations in five patients presenting with traits suggestive of the Joubert syndrome (JBTS), a well-characterized ciliopathy. These patients also present with traits typical of TALS/RFMN/LWS, thus widening the clinical spectrum of RNU4ATAC-associated disorders and indicating ciliary dysfunction as a mechanism downstream of minor splicing defects. Intriguingly, all five patients carry the n.16G>A mutation, in the Stem II domain, either at the homozygous or compound heterozygous state. A gene ontology term enrichment analysis on minor intron-containing genes reveals that the cilium assembly process is over-represented, with no less than 86 cilium-related genes containing at least one minor intron, among which there are 23 ciliopathy-related genes. The link between RNU4ATAC mutations and ciliopathy traits is supported by alterations of primary cilium function in TALS and JBTS-like patient fibroblasts, as well as by u4atac zebrafish model, which exhibits ciliopathy-related phenotypes and ciliary defects. These phenotypes could be rescued by WT but not by pathogenic variants-carrying human U4atac. Altogether, our data indicate that alteration of cilium biogenesis is part of the physiopathological mechanisms of TALS/RFMN/LWS, secondarily to defects of minor intron splicing.
Collapse
Affiliation(s)
- Deepak Khatri
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69500Bron, France
| | - Audric Cologne
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Institut national de recherche en sciences et technologies du numérique Erable, Laboratoire de Biométrie et Biologie Evolutive, UMR5558 CNRS, Université Claude Bernard Lyon 1, 69622Villeurbanne, France
| | - Sophie Kaltenbach
- Department of Histology Embryology and Cytogenetics, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, University of Paris, 75015Paris, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Eloïse Bertiaux
- Department of Cell Biology, Sciences III, University of Geneva, 1211-Geneva, Switzerland
| | - Justine Guguin
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Adèle Fendler
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Marie A. Dupont
- Laboratory of hereditary kidney diseases, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Clara Benoit-Pilven
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Institut national de recherche en sciences et technologies du numérique Erable, Laboratoire de Biométrie et Biologie Evolutive, UMR5558 CNRS, Université Claude Bernard Lyon 1, 69622Villeurbanne, France
| | - Leila Qebibo
- Département de Génétique, Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Trousseau Hospital, 75012Paris, France
| | - Samira Ahmed-Elie
- Département de Génétique, Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Trousseau Hospital, 75012Paris, France
| | - Séverine Audebert-Bellanger
- Department of Genetics, Clinical Genetics Unit, Centre de Compétence Anomalies du Développement et Syndromes Polymalformatifs, Centre Hospitalier Universitaire Morvan, 29200Brest, France
| | | | | | - Martin Castelle
- Hematology-Immunology Unit, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, 75015Paris, France
| | - Gaëlle Cornen
- Pediatric service, Centre Hospitalier Morlaix, 29600Morlaix, France
| | - Sarah Grotto
- Clinical Genetics Unit, Maternité Port-Royal, Assistance Publique - Hôpitaux de Paris, Cochin Broca Hôtel-Dieu Hospitals75014Paris, France
| | - Agnès Guët
- Neonatal and Pediatric Units, Louis-Mourier Hospital, 92700Colombes, France
| | - Laurent Guibaud
- Pediatric and Fetal Imaging, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69500Bron, France
| | - Caroline Michot
- Clinical Genetics Department, Centre de Référence Maladies Rares–Maladies Osseuses Constitutionnelles, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, 75015Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Sylvie Odent
- Service de Génétique Clinique, Centre Hospitalier Universitaire Rennes, Centre de référence Anomalies du développement et syndromes malformatifs, Univ Rennes, CNRS, INSERM, Institut de Génétique et Développement de Rennes UMR 6290/ Equipe de Recherche Labellisée 1305, 35000Rennes, France
| | - Lyse Ruaud
- NeuroDiderot, UMR1141, University of Paris, 75019Paris, France
- Departement of Genetics, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, 75019Paris, France
| | - Elise Sacaze
- Pediatric Service, Centre Hospitalier Régional Universitaire Brest, 29200Brest, France
| | - Virginie Hamel
- Department of Cell Biology, Sciences III, University of Geneva, 1211-Geneva, Switzerland
| | - Rémy Bordonné
- Institute of Molecular Genetics of Montpellier, UMR5535 CNRS, University of Montpellier, 34000Montpellier, France
| | | | - Patrick Edery
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69500Bron, France
| | - Lydie Burglen
- Département de Génétique, Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Assistance Publique - Hôpitaux de Paris, Sorbonne University, Trousseau Hospital, 75012Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Tania Attié-Bitach
- Department of Histology Embryology and Cytogenetics, Assistance Publique - Hôpitaux de Paris, Necker-Enfants Malades Hospital, University of Paris, 75015Paris, France
- Developmental Brain Disorders Laboratory, Imagine Institute, U1163 INSERM, University of Paris, 75015Paris, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292,Genetics of Neurodevelopment Team, 69500Bron, France
| |
Collapse
|
17
|
Nagirnaja L, Lopes AM, Charng WL, Miller B, Stakaitis R, Golubickaite I, Stendahl A, Luan T, Friedrich C, Mahyari E, Fadial E, Kasak L, Vigh-Conrad K, Oud MS, Xavier MJ, Cheers SR, James ER, Guo J, Jenkins TG, Riera-Escamilla A, Barros A, Carvalho F, Fernandes S, Gonçalves J, Gurnett CA, Jørgensen N, Jezek D, Jungheim ES, Kliesch S, McLachlan RI, Omurtag KR, Pilatz A, Sandlow JI, Smith J, Eisenberg ML, Hotaling JM, Jarvi KA, Punab M, Rajpert-De Meyts E, Carrell DT, Krausz C, Laan M, O'Bryan MK, Schlegel PN, Tüttelmann F, Veltman JA, Almstrup K, Aston KI, Conrad DF. Diverse monogenic subforms of human spermatogenic failure. Nat Commun 2022; 13:7953. [PMID: 36572685 PMCID: PMC9792524 DOI: 10.1038/s41467-022-35661-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility and typically incurable. Defining the genetic basis of NOA has proven challenging, and the most advanced classification of NOA subforms is not based on genetics, but simple description of testis histology. In this study, we exome-sequenced over 1000 clinically diagnosed NOA cases and identified a plausible recessive Mendelian cause in 20%. We find further support for 21 genes in a 2-stage burden test with 2072 cases and 11,587 fertile controls. The disrupted genes are primarily on the autosomes, enriched for undescribed human "knockouts", and, for the most part, have yet to be linked to a Mendelian trait. Integration with single-cell RNA sequencing data shows that azoospermia genes can be grouped into molecular subforms with synchronized expression patterns, and analogs of these subforms exist in mice. This analysis framework identifies groups of genes with known roles in spermatogenesis but also reveals unrecognized subforms, such as a set of genes expressed across mitotic divisions of differentiating spermatogonia. Our findings highlight NOA as an understudied Mendelian disorder and provide a conceptual structure for organizing the complex genetics of male infertility, which may provide a rational basis for disease classification.
Collapse
Affiliation(s)
- Liina Nagirnaja
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Alexandra M Lopes
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Wu-Lin Charng
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Brian Miller
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Rytis Stakaitis
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Golubickaite
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alexandra Stendahl
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Tianpengcheng Luan
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Corinna Friedrich
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Eisa Mahyari
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Eloise Fadial
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Laura Kasak
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katinka Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Manon S Oud
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Miguel J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Samuel R Cheers
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Emma R James
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jingtao Guo
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Timothy G Jenkins
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Catalonia, Spain
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Catalonia, 08025, Spain
| | - Alberto Barros
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Filipa Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Susana Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Serviço de Genética, Departamento de Patologia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - João Gonçalves
- Departamento de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Lisbon, Portugal
| | | | - Niels Jørgensen
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Davor Jezek
- Department of Histology and Embryology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Emily S Jungheim
- Department of Obstetrics and Gynecology at Northwestern University, Division of Reproductive Endocrinology, Chicago, IL, USA
| | - Sabine Kliesch
- Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Robert I McLachlan
- Hudson Institute of Medical Research and the Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Kenan R Omurtag
- Department of Obstetrics and Gynecology at Washington University, Division of Reproductive Endocrinology, St. Louis, MO, USA
| | - Adrian Pilatz
- Clinic for Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Jay I Sandlow
- Department of Urology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James Smith
- Department of Urology, University California San Francisco, San Francisco, CA, USA
| | - Michael L Eisenberg
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA
| | - James M Hotaling
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Keith A Jarvi
- Division of Urology, Department of Surgery, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Margus Punab
- Andrology Center, Tartu University Hospital, Tartu, Estonia
- Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Douglas T Carrell
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Csilla Krausz
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Moira K O'Bryan
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Peter N Schlegel
- Department of Urology, Weill Cornell Medicine, New York, NY, USA
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Münster, Germany
| | - Joris A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - Kristian Almstrup
- Department of Growth and Reproduction, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kenneth I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| |
Collapse
|
18
|
Chen C, Hu J, Ling K. The Role of Primary Cilia-Associated Phosphoinositide Signaling in Development. J Dev Biol 2022; 10:51. [PMID: 36547473 PMCID: PMC9785882 DOI: 10.3390/jdb10040051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Primary cilia are microtube-based organelles that extend from the cell surface and function as biochemical and mechanical extracellular signal sensors. Primary cilia coordinate a series of signaling pathways during development. Cilia dysfunction leads to a pleiotropic group of developmental disorders, termed ciliopathy. Phosphoinositides (PIs), a group of signaling phospholipids, play a crucial role in development and tissue homeostasis by regulating membrane trafficking, cytoskeleton reorganization, and organelle identity. Accumulating evidence implicates the involvement of PI species in ciliary defects and ciliopathies. The abundance and localization of PIs in the cell are tightly regulated by the opposing actions of kinases and phosphatases, some of which are recently discovered in the context of primary cilia. Here, we review several cilium-associated PI kinases and phosphatases, including their localization along cilia, function in regulating the ciliary biology under normal conditions, as well as the connection of their disease-associated mutations with ciliopathies.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Best S, Yu J, Lord J, Roche M, Watson CM, Bevers RPJ, Stuckey A, Madhusudhan S, Jewell R, Sisodiya SM, Lin S, Turner S, Robinson H, Leslie JS, Baple E, Toomes C, Inglehearn C, Wheway G, Johnson CA. Uncovering the burden of hidden ciliopathies in the 100 000 Genomes Project: a reverse phenotyping approach. J Med Genet 2022; 59:1151-1164. [PMID: 35764379 PMCID: PMC9691823 DOI: 10.1136/jmedgenet-2022-108476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/07/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND The 100 000 Genomes Project (100K) recruited National Health Service patients with eligible rare diseases and cancer between 2016 and 2018. PanelApp virtual gene panels were applied to whole genome sequencing data according to Human Phenotyping Ontology (HPO) terms entered by recruiting clinicians to guide focused analysis. METHODS We developed a reverse phenotyping strategy to identify 100K participants with pathogenic variants in nine prioritised disease genes (BBS1, BBS10, ALMS1, OFD1, DYNC2H1, WDR34, NPHP1, TMEM67, CEP290), representative of the full phenotypic spectrum of multisystemic primary ciliopathies. We mapped genotype data 'backwards' onto available clinical data to assess potential matches against phenotypes. Participants with novel molecular diagnoses and key clinical features compatible with the identified disease gene were reported to recruiting clinicians. RESULTS We identified 62 reportable molecular diagnoses with variants in these nine ciliopathy genes. Forty-four have been reported by 100K, 5 were previously unreported and 13 are new diagnoses. We identified 11 participants with unreportable, novel molecular diagnoses, who lacked key clinical features to justify reporting to recruiting clinicians. Two participants had likely pathogenic structural variants and one a deep intronic predicted splice variant. These variants would not be prioritised for review by standard 100K diagnostic pipelines. CONCLUSION Reverse phenotyping improves the rate of successful molecular diagnosis for unsolved 100K participants with primary ciliopathies. Previous analyses likely missed these diagnoses because incomplete HPO term entry led to incorrect gene panel choice, meaning that pathogenic variants were not prioritised. Better phenotyping data are therefore essential for accurate variant interpretation and improved patient benefit.
Collapse
Affiliation(s)
- Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Jing Yu
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jenny Lord
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Matthew Roche
- Windsor House Group Practice, Mid Yorkshire Hospitals NHS Trust, Leeds, UK
| | - Christopher Mark Watson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- North East and Yorkshire Genomic Laboratory Hub, Central Lab, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Roel P J Bevers
- Genomics England, Queen Mary University of London, London, UK
| | - Alex Stuckey
- Genomics England, Queen Mary University of London, London, UK
| | | | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sanjay M Sisodiya
- University College London (UCL) Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont, UK
| | - Siying Lin
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Stephen Turner
- Department of Ophthalmology, Torbay and South Devon NHS Foundation Trust, Torquay, UK
| | - Hannah Robinson
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Emma Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Chris Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Gabrielle Wheway
- University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Faculty of Medicine, Human Development and Health, University of Southampton, Southampton, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
20
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
21
|
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM. Genome sequencing reveals underdiagnosis of primary ciliary dyskinesia in bronchiectasis. Eur Respir J 2022; 60:13993003.00176-2022. [PMID: 35728977 DOI: 10.1183/13993003.00176-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.
Collapse
Affiliation(s)
- Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claire Hogg
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Jenny Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Mary Carroll
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
| | - Deborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust and NHLI, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- These authors contributed equally to this manuscript
| | - Anthony De Soyza
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
- These authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Walczak-Sztulpa J, Wawrocka A, Sikora W, Pawlak M, Bukowska-Olech E, Kopaczewski B, Urzykowska A, Arts HH, Gotz-Więckowska A, Grenda R, Latos-Bieleńska A, Glazar R. WDR35 variants in a cranioectodermal dysplasia patient with early onset end-stage renal disease and retinal dystrophy. Am J Med Genet A 2022; 188:3071-3077. [PMID: 35875935 DOI: 10.1002/ajmg.a.62903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/31/2023]
Abstract
Cranioectodermal dysplasia (CED) is rare heterogeneous condition. It belongs to a group of disorders defined as ciliopathies and is associated with defective cilia function and structure. To date six genes have been associated with CED. Here we describe a 4-year-old male CED patient whose features include dolichocephaly, multi-suture craniosynostosis, epicanthus, frontal bossing, narrow thorax, limb shortening, and brachydactyly. The patient presented early-onset chronic kidney disease and was transplanted at the age of 2 years and 5 months. At the age of 3.5 years a retinal degeneration was diagnosed. Targeted sequencing by NGS revealed the presence of compound heterozygous variants in the WDR35 gene. The variants are a novel missense change in exon 9 p.(Gly303Arg) and a previously described nonsense variant in exon 18 p.(Leu641*). Our findings suggest that patients with WDR35 defects may be at risk to develop early-onset retinal degeneration. Therefore, CED patients with pathogenic variation in this gene should be assessed at least once by the ophthalmologist before the age of 4 years to detect early signs of retinal degeneration.
Collapse
Affiliation(s)
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Sikora
- Students' Scientific Society of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Pawlak
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Bartłomiej Kopaczewski
- Department of Neurosurgery, Karol Jonscher Clinical Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Urzykowska
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Heleen H Arts
- Department of Pathology and Laboratory Medicine, Dalhousie University, Halifax, Nova Scotia, Canada.,IWK Health Centre, Clinical Genomics Laboratory, Halifax, Nova Scotia, Canada
| | - Anna Gotz-Więckowska
- Department of Ophthalmology, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children's Memorial Health Institute, Warsaw, Poland
| | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Glazar
- Centers for Medical Genetics GENESIS, Poznan, Poland
| |
Collapse
|
23
|
Kille B, Balaji A, Sedlazeck FJ, Nute M, Treangen TJ. Multiple genome alignment in the telomere-to-telomere assembly era. Genome Biol 2022; 23:182. [PMID: 36038949 PMCID: PMC9421119 DOI: 10.1186/s13059-022-02735-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/21/2022] [Indexed: 01/22/2023] Open
Abstract
With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.
Collapse
Affiliation(s)
- Bryce Kille
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Advait Balaji
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Nute
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Todd J Treangen
- Department of Computer Science, Rice University, Houston, TX, USA.
| |
Collapse
|
24
|
Variants of uncertain significance in the era of next-generation sequencing. J Am Assoc Nurse Pract 2022; 34:1018-1021. [PMID: 35731603 DOI: 10.1097/jxx.0000000000000745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Next-generation sequencing (NGS) is now widely used in diagnosing rare diseases. However, it has some limitations, such as variants of uncertain significance (VUS). This can present difficulties even for nurse practitioners involved in clinical genetics. We present three cases from our clinical practice: two targeted panel testing and one exome sequencing. Whole blood samples were collected and sent for NGS analysis. In case 1, a VUS was found in the LITAF gene, which is associated with autosomal dominant Charcot-Marie-Tooth disease type 1C. In case 2, a VUS was reported in the MEFV gene, which is associated with autosomal recessive and autosomal dominant familial Mediterranean fever. In these cases, the reported VUS corresponded to the clinical diagnosis. In case 3, two variants in the heterozygous state were found in the ATP7B gene, which is associated with Wilson disease, and the disorder was later clinically recognized. According to the published guidelines, VUSs should not be discussed as a cause for an observed genetic condition. Nevertheless, if the reported variant is in a gene associated with the clinically diagnosed disorder, and there is a strong genotype-phenotype correlation, it could be suggestive of the etiological role of this variant.
Collapse
|
25
|
Walczak-Sztulpa J, Wawrocka A, Doornbos C, van Beek R, Sowińska-Seidler A, Jamsheer A, Bukowska-Olech E, Latos-Bieleńska A, Grenda R, Bongers EMHF, Schmidts M, Obersztyn E, Krawczyński MR, Oud MM. Identical IFT140 Variants Cause Variable Skeletal Ciliopathy Phenotypes—Challenges for the Accurate Diagnosis. Front Genet 2022; 13:931822. [PMID: 35873489 PMCID: PMC9300986 DOI: 10.3389/fgene.2022.931822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27–30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patient-derived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with “IFT140-related ciliopathy with MZSDS-like features” and patient 2 with “IFT140-related ciliopathy with CED-like features”. This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients.
Collapse
Affiliation(s)
| | - Anna Wawrocka
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Cenna Doornbos
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald van Beek
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics, Poznan, Poland
| | | | - Anna Latos-Bieleńska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Grenda
- Department of Nephrology, Kidney Transplantation and Hypertension, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, Freiburg University, Freiburg, Germany
| | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Maciej R. Krawczyński
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics, Poznan, Poland
| | - Machteld M. Oud
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- *Correspondence: Machteld M. Oud,
| |
Collapse
|
26
|
Seidel F, Laser KT, Klingel K, Dartsch J, Theisen S, Pickardt T, Holtgrewe M, Gärtner A, Berger F, Beule D, Milting H, Schubert S, Klaassen S, Kühnisch J. Pathogenic Variants in Cardiomyopathy Disorder Genes Underlie Pediatric Myocarditis—Further Impact of Heterozygous Immune Disorder Gene Variants? J Cardiovasc Dev Dis 2022; 9:jcdd9070216. [PMID: 35877578 PMCID: PMC9321514 DOI: 10.3390/jcdd9070216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Myocarditis is an inflammatory disease of the heart. Pediatric myocarditis with the dilated cardiomyopathy (DCM) phenotype may be caused by likely pathogenic or pathogenic genetic variants [(L)P] in cardiomyopathy (CMP) genes. Systematic analysis of immune disorder gene defects has not been performed so far. We analyzed 12 patients with biopsy-proven myocarditis and the DCM phenotype together with their parents using whole-exome sequencing (WES). The WES data were filtered for rare pathogenic variants in CMP (n = 89) and immune disorder genes (n = 631). Twelve children with a median age of 2.9 (1.0–6.8) years had a mean left ventricular ejection fraction of 28% (22–32%) and myocarditis was confirmed by endomyocardial biopsy. Patients with primary immunodeficiency were excluded from the study. Four patients underwent implantation of a ventricular assist device and subsequent heart transplantation. Genetic analysis of the 12 families revealed an (L)P variant in the CMP gene in 8/12 index patients explaining DCM. Screening of recessive immune disorder genes identified a heterozygous (L)P variant in 3/12 index patients. This study supports the genetic impact of CMP genes for pediatric myocarditis with the DCM phenotype. Piloting the idea that additional immune-related genetic defects promote myocarditis suggests that the presence of heterozygous variants in these genes needs further investigation. Altered cilium function might play an additional role in inducing inflammation in the context of CMP.
Collapse
Affiliation(s)
- Franziska Seidel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Kai Thorsten Laser
- Center for Congenital Heart Disease/Pediatric Cardiology, Heart-and Diabetescenter NRW, University Clinic of Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (K.T.L.); (S.S.)
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, 72016 Tübingen, Germany;
| | - Josephine Dartsch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Simon Theisen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Thomas Pickardt
- National Register for Congenital Heart Defects, 13353 Berlin, Germany;
| | - Manuel Holtgrewe
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10117 Berlin, Germany;
- Core Facility Bioinformatik, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart-and Diabetescenter NRW, University Hospital of the Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (A.G.); (H.M.)
| | - Felix Berger
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Dieter Beule
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Core Unit Bioinformatics, Berlin Institute of Health (BIH), 10117 Berlin, Germany;
| | - Hendrik Milting
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development & Clinic for Thoracic and Cardiovascular Surgery, Heart-and Diabetescenter NRW, University Hospital of the Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (A.G.); (H.M.)
| | - Stephan Schubert
- Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Center Berlin, 13353 Berlin, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Center for Congenital Heart Disease/Pediatric Cardiology, Heart-and Diabetescenter NRW, University Clinic of Ruhr University Bochum, 32545 Bad Oeynhausen, Germany; (K.T.L.); (S.S.)
| | - Sabine Klaassen
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- Correspondence: (S.K.); (J.K.); Tel.: +49-30-9406-3319 (S.K. & J.K.); Fax: +49-30-9406-3358 (S.K. & J.K.)
| | - Jirko Kühnisch
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (F.S.); (J.D.); (S.T.); (D.B.)
- Experimental and Clinical Research Center, A Cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: (S.K.); (J.K.); Tel.: +49-30-9406-3319 (S.K. & J.K.); Fax: +49-30-9406-3358 (S.K. & J.K.)
| |
Collapse
|
27
|
Lange KI, Best S, Tsiropoulou S, Berry I, Johnson CA, Blacque OE. Interpreting ciliopathy-associated missense variants of uncertain significance (VUS) in Caenorhabditis elegans. Hum Mol Genet 2022; 31:1574-1587. [PMID: 34964473 PMCID: PMC9122650 DOI: 10.1093/hmg/ddab344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Better methods are required to interpret the pathogenicity of disease-associated variants of uncertain significance (VUS), which cannot be actioned clinically. In this study, we explore the use of an animal model (Caenorhabditis elegans) for in vivo interpretation of missense VUS alleles of TMEM67, a cilia gene associated with ciliopathies. CRISPR/Cas9 gene editing was used to generate homozygous knock-in C. elegans worm strains carrying TMEM67 patient variants engineered into the orthologous gene (mks-3). Quantitative phenotypic assays of sensory cilia structure and function (neuronal dye filling, roaming and chemotaxis assays) measured how the variants impacted mks-3 gene function. Effects of the variants on mks-3 function were further investigated by looking at MKS-3::GFP localization and cilia ultrastructure. The quantitative assays in C. elegans accurately distinguished between known benign (Asp359Glu, Thr360Ala) and known pathogenic (Glu361Ter, Gln376Pro) variants. Analysis of eight missense VUS generated evidence that three are benign (Cys173Arg, Thr176Ile and Gly979Arg) and five are pathogenic (Cys170Tyr, His782Arg, Gly786Glu, His790Arg and Ser961Tyr). Results from worms were validated by a genetic complementation assay in a human TMEM67 knock-out hTERT-RPE1 cell line that tests a TMEM67 signalling function. We conclude that efficient genome editing and quantitative functional assays in C. elegans make it a tractable in vivo animal model for rapid, cost-effective interpretation of ciliopathy-associated missense VUS alleles.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sunayna Best
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ian Berry
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol BS10 5NB, UK
| | - Colin A Johnson
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, West Yorkshire, UK
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
28
|
Chen W, Wang S, Tithi SS, Ellison DW, Schaid DJ, Wu G. A rare variant analysis framework using public genotype summary counts to prioritize disease-predisposition genes. Nat Commun 2022; 13:2592. [PMID: 35545612 PMCID: PMC9095601 DOI: 10.1038/s41467-022-30248-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/21/2022] [Indexed: 11/11/2022] Open
Abstract
Sequencing cases without matched healthy controls hinders prioritization of germline disease-predisposition genes. To circumvent this problem, genotype summary counts from public data sets can serve as controls. However, systematic inflation and false positives can arise if confounding factors are not controlled. We propose a framework, consistent summary counts based rare variant burden test (CoCoRV), to address these challenges. CoCoRV implements consistent variant quality control and filtering, ethnicity-stratified rare variant association test, accurate estimation of inflation factors, powerful FDR control, and detection of rare variant pairs in high linkage disequilibrium. When we applied CoCoRV to pediatric cancer cohorts, the top genes identified were cancer-predisposition genes. We also applied CoCoRV to identify disease-predisposition genes in adult brain tumors and amyotrophic lateral sclerosis. Given that potential confounding factors were well controlled after applying the framework, CoCoRV provides a cost-effective solution to prioritizing disease-risk genes enriched with rare pathogenic variants.
Collapse
Affiliation(s)
- Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Shuoguo Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
- 150 Second Street, Cambridge, MA, USA
| | - Saima Sultana Tithi
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel J Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
29
|
Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P, Coorens T, Prigmore E, Short P, Gallone G, McRae J, Carmichael J, Barnicoat A, Firth H, O'Brien P, Rahbari R, Hurles M. Genetic and chemotherapeutic influences on germline hypermutation. Nature 2022; 605:503-508. [PMID: 35545669 PMCID: PMC9117138 DOI: 10.1038/s41586-022-04712-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/31/2022] [Indexed: 01/06/2023]
Abstract
Mutations in the germline generates all evolutionary genetic variation and is a cause of genetic disease. Parental age is the primary determinant of the number of new germline mutations in an individual's genome1,2. Here we analysed the genome-wide sequences of 21,879 families with rare genetic diseases and identified 12 individuals with a hypermutated genome with between two and seven times more de novo single-nucleotide variants than expected. In most families (9 out of 12), the excess mutations came from the father. Two families had genetic drivers of germline hypermutation, with fathers carrying damaging genetic variation in DNA-repair genes. For five of the families, paternal exposure to chemotherapeutic agents before conception was probably a key driver of hypermutation. Our results suggest that the germline is well protected from mutagenic effects, hypermutation is rare, the number of excess mutations is relatively modest and most individuals with a hypermutated genome will not have a genetic disease.
Collapse
Affiliation(s)
- Joanna Kaplanis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Benjamin Ide
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashesh Sanghvi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew Neville
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Petr Danecek
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Tim Coorens
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Patrick Short
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jeremy McRae
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Jenny Carmichael
- East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK
| | - Angela Barnicoat
- North East Thames Regional Genetics Service, Great Ormond Street Hospital, London, UK
| | - Helen Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, Cambridge, UK
| | - Patrick O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Raheleh Rahbari
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Matthew Hurles
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
30
|
Primary cilia and their effects on immune cell functions and metabolism: a model. Trends Immunol 2022; 43:366-378. [DOI: 10.1016/j.it.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022]
|
31
|
Best S, Inglehearn CF, Watson CM, Toomes C, Wheway G, Johnson CA. Unlocking the potential of the UK 100,000 Genomes Project-lessons learned from analysis of the "Congenital Malformations caused by Ciliopathies" cohort. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:5-8. [PMID: 35289502 PMCID: PMC9315030 DOI: 10.1002/ajmg.c.31965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Sunayna Best
- Division of Molecular MedicineLeeds Institute of Medical Research at St. James's, University of Leeds, St. James's University HospitalLeedsUK,Yorkshire Regional Genetics ServiceLeedsUK
| | - Chris F. Inglehearn
- Division of Molecular MedicineLeeds Institute of Medical Research at St. James's, University of Leeds, St. James's University HospitalLeedsUK
| | - Christopher M. Watson
- North East and Yorkshire Genomic Laboratory Hub, Central LabSt. James's University HospitalLeedsUK
| | - Carmel Toomes
- Division of Molecular MedicineLeeds Institute of Medical Research at St. James's, University of Leeds, St. James's University HospitalLeedsUK
| | - Gabrielle Wheway
- University Hospital Southampton NHS Foundation TrustSouthamptonUK,Faculty of Medicine, Human Development and HealthUniversity of SouthamptonSouthamptonUK
| | - Colin A. Johnson
- Division of Molecular MedicineLeeds Institute of Medical Research at St. James's, University of Leeds, St. James's University HospitalLeedsUK
| |
Collapse
|
32
|
Pollara L, Sottile V, Valente EM. Patient-derived cellular models of primary ciliopathies. J Med Genet 2022; 59:517-527. [DOI: 10.1136/jmedgenet-2021-108315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
Primary ciliopathies are rare inherited disorders caused by structural or functional defects in the primary cilium, a subcellular organelle present on the surface of most cells. Primary ciliopathies show considerable clinical and genetic heterogeneity, with disruption of over 100 genes causing the variable involvement of several organs, including the central nervous system, kidneys, retina, skeleton and liver. Pathogenic variants in one and the same gene may associate with a wide range of ciliopathy phenotypes, supporting the hypothesis that the individual genetic background, with potential additional variants in other ciliary genes, may contribute to a mutational load eventually determining the phenotypic manifestations of each patient. Functional studies in animal models have uncovered some of the pathophysiological mechanisms linking ciliary gene mutations to the observed phenotypes; yet, the lack of reliable human cell models has previously limited preclinical research and the development of new therapeutic strategies for primary ciliopathies. Recent technical advances in the generation of patient-derived two-dimensional (2D) and three-dimensional (3D) cellular models give a new spur to this research, allowing the study of pathomechanisms while maintaining the complexity of the genetic background of each patient, and enabling the development of innovative treatments to target specific pathways. This review provides an overview of available models for primary ciliopathies, from existing in vivo models to more recent patient-derived 2D and 3D in vitro models. We highlight the advantages of each model in understanding the functional basis of primary ciliopathies and facilitating novel regenerative medicine, gene therapy and drug testing strategies for these disorders.
Collapse
|
33
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
34
|
Fetal ciliopathies: a retrospective observational single-center study. Arch Gynecol Obstet 2021; 306:71-83. [PMID: 34596737 PMCID: PMC9300526 DOI: 10.1007/s00404-021-06265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/15/2021] [Indexed: 12/04/2022]
Abstract
Purpose Report on the diagnosis of prenatally suspected multisystem ciliopathies in a single center between 2002 and 2020. Methods Retrospective observational single-center study including pregnancies with prenatal ultrasound features of multisystem ciliopathies, such as hyperechogenic kidneys together with polydactyly and/or other skeletal and extraskeletal findings. Cases were compared according to their prenatal findings and outcomes. Results 36 cases of multisystem ciliopathies were diagnosed. Meckel-Gruber syndrome (MKS) was the most common ciliopathy (n = 19/36, 52.8%), followed by disorders that belong to the group of short-rib thoracic dysplasia (SRTD, n = 10/36, 27.8%) McKusick–Kaufmann syndrome (MKKS, n = 4/36, 11.1%), Bardet–Biedl syndrome (BBS, n = 2/36, 5.5%) and Joubert syndrome (n = 1/36, 2.8%). All cases showed abnormalities of the kidneys, most often hyperechogenic parenchyma (n = 26/36, 72.2%), cystic dysplasia (n = 24/36, 66.7%), and/or bilateral kidney enlargement (n = 22/36, 61.1%). Oligohydramnios was mainly present in fetuses with MKS. Polydactyly (n = 18/36), abnormalities of the CNS (n = 25/36), and heart defects (n = 10/36) were associated in 50%, 69.4%, and 27.8%, respectively. Conclusion Prenatal detection of renal abnormalities associated with skeletal or brain abnormalities should raise the suspicion for multisystem ciliopathies. Prenatal ultrasound can help to differentiate between different diseases and pave the way for subsequent targeted genetic testing.
Collapse
|
35
|
Wheway G, Thomas NS, Carroll M, Coles J, Doherty R, Goggin P, Green B, Harris A, Hunt D, Jackson CL, Lord J, Mennella V, Thompson J, Walker WT, Lucas JS. Whole genome sequencing in the diagnosis of primary ciliary dyskinesia. BMC Med Genomics 2021; 14:234. [PMID: 34556108 PMCID: PMC8461892 DOI: 10.1186/s12920-021-01084-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND It is estimated that 1-13% of cases of bronchiectasis in adults globally are attributable to primary ciliary dyskinesia (PCD) but many adult patients with bronchiectasis have not been investigated for PCD. PCD is a disorder caused by mutations in genes required for motile cilium structure or function, resulting in impaired mucociliary clearance. Symptoms appear in infancy but diagnosis is often late or missed, often due to the lack of a "gold standard" diagnostic tool and non-specific symptoms. Mutations in > 50 genes account for around 70% of cases, with additional genes, and non-coding, synonymous, missense changes or structural variants (SVs) in known genes presumed to account for the missing heritability. METHODS UK patients with no identified genetic confirmation for the cause of their PCD or bronchiectasis were eligible for whole genome sequencing (WGS) in the Genomics England Ltd 100,000 Genomes Project. 21 PCD probands and 52 non-cystic fibrosis (CF) bronchiectasis probands were recruited in Wessex Genome Medicine Centre (GMC). We carried out analysis of single nucleotide variants (SNVs) and SVs in all families recruited in Wessex GMC. RESULTS 16/21 probands in the PCD cohort received confirmed (n = 9), probable (n = 4) or possible (n = 3) diagnosis from WGS, although 13/16 of these could have been picked up by current standard of care gene panel testing. In the other cases, SVs were identified which were missed by panel testing. We identified variants in novel PCD candidate genes (IFT140 and PLK4) in 2 probands in the PCD cohort. 3/52 probands in the non-CF bronchiectasis cohort received a confirmed (n = 2) or possible (n = 1) diagnosis of PCD. We identified variants in novel PCD candidate genes (CFAP53 and CEP164) in 2 further probands in the non-CF bronchiectasis cohort. CONCLUSIONS Genetic testing is an important component of diagnosing PCD, especially in cases of atypical disease history. WGS is effective in cases where prior gene panel testing has found no variants or only heterozygous variants. In these cases it may detect SVs and is a powerful tool for novel gene discovery.
Collapse
Affiliation(s)
- Gabrielle Wheway
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.
- Institute for Life Sciences, University of Southampton, Southampton, UK.
| | - N Simon Thomas
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury NSF Foundation Trust, Salisbury District Hospital, Salisbury, UK
| | - Mary Carroll
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Janice Coles
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Regan Doherty
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biomedical Imaging Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patricia Goggin
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Biomedical Imaging Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Ben Green
- Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, UK
| | - Amanda Harris
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - David Hunt
- Wessex Clinical Genetics Service, University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - Claire L Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jenny Lord
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Vito Mennella
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - James Thompson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Woolf T Walker
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Primary Ciliary Dyskinesia Centre, NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
36
|
Bardet-Biedl Syndrome-Multiple Kaleidoscope Images: Insight into Mechanisms of Genotype-Phenotype Correlations. Genes (Basel) 2021; 12:genes12091353. [PMID: 34573333 PMCID: PMC8465569 DOI: 10.3390/genes12091353] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 01/04/2023] Open
Abstract
Bardet-Biedl Syndrome is a rare non-motile primary ciliopathy with multisystem involvement and autosomal recessive inheritance. The clinical picture is extremely polymorphic. The main clinical features are retinal cone-rod dystrophy, central obesity, postaxial polydactyly, cognitive impairment, hypogonadism and genitourinary abnormalities, and kidney disease. It is caused by various types of mutations, mainly in genes encoding BBSome proteins, chaperonins, and IFT complex. Variable expressivity and pleiotropy are correlated with the existence of multiple genes and variants modifiers. This review is focused on the phenomena of heterogeneity (locus, allelic, mutational, and clinical) in Bardet-Biedl Syndrome, its mechanisms, and importance in early diagnosis and proper management.
Collapse
|
37
|
Antony D, Brunner HG, Schmidts M. Ciliary Dyneins and Dynein Related Ciliopathies. Cells 2021; 10:cells10081885. [PMID: 34440654 PMCID: PMC8391580 DOI: 10.3390/cells10081885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel developments in the field.
Collapse
Affiliation(s)
- Dinu Antony
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany;
- Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands;
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands
- Correspondence: ; Tel.: +49-761-44391; Fax: +49-761-44710
| |
Collapse
|
38
|
Speight P, Rozycki M, Venugopal S, Szászi K, Kofler M, Kapus A. Myocardin-related transcription factor and serum response factor regulate cilium turnover by both transcriptional and local mechanisms. iScience 2021; 24:102739. [PMID: 34278253 PMCID: PMC8261663 DOI: 10.1016/j.isci.2021.102739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/02/2020] [Accepted: 06/15/2021] [Indexed: 12/31/2022] Open
Abstract
Turnover of the primary cilium (PC) is critical for proliferation and tissue homeostasis. Each key component of the PC resorption machinery, the HEF1/Aurora kinase A (AurA)/HDAC6 pathway harbors cis-elements potentially targeted by the transcriptional co-activator myocardin-related transcription factor (MRTF) and/or its partner serum response factor (SRF). Thus we investigated if MRTF and/or SRF regulate PC turnover. Here we show that (1) both MRTF and SRF are indispensable for serum-induced PC resorption, and (2) they act via both transcriptional and local mechanisms. Intriguingly, MRTF and SRF are present in the basal body and/or the PC, and serum facilitates ciliary MRTF recruitment. MRTF promotes the stability and ciliary accumulation of AurA and facilitates SRF phosphorylation. Ciliary SRF interacts with AurA and HDAC6. MRTF also inhibits ciliogenesis. It interacts with and is required for the correct localization of the ciliogenesis modulator CEP290. Thus, MRTF and SRF are critical regulators of PC assembly and/or disassembly, acting both as transcription factors and as PC constituents.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Matthew Rozycki
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Shruthi Venugopal
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, University of Toronto, Room 621, 209 Victoria Street, Toronto, ON M5B 1T8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5B 1T8, Canada
| |
Collapse
|
39
|
New In Vitro Cellular Model for Molecular Studies of Retinitis Pigmentosa. Int J Mol Sci 2021; 22:ijms22126440. [PMID: 34208617 PMCID: PMC8235468 DOI: 10.3390/ijms22126440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited form of retinal degeneration characterized by primary rod photoreceptor cell death followed by cone loss. Mutations in several genes linked to the disease cause increased levels of cyclic guanosine monophosphate (cGMP) and calcium ion influxes. The purpose of this project was to develop a new in vitro photoreceptor degeneration model for molecular studies of RP. 661W cells were genetically modified to stably express the neural retina leucine zipper (NRL) transcription factor. One clone (661W-A11) was selected based on the expression of Nrl target genes. 661W-A11 showed a significant increase in expression of rod-specific genes but not of cone-specific genes, compared with 661W cells. Zaprinast was used to inhibit phosphodiesterase 6 (PDE6) activity to mimic photoreceptor degeneration in vitro. The activation of cell death pathways resulting from PDE6 inhibition was confirmed by detection of decreased viability and increased intracellular cGMP and calcium, as well as activation of protein kinase G (PKG) and calpains. In this new in vitro system, we validated the effects of previously published neuroprotective drugs. The 661W-A11 cells may serve as a new model for molecular studies of RP and for high-throughput drug screening.
Collapse
|
40
|
Molecular genetics of renal ciliopathies. Biochem Soc Trans 2021; 49:1205-1220. [PMID: 33960378 DOI: 10.1042/bst20200791] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Renal ciliopathies are a heterogenous group of inherited disorders leading to an array of phenotypes that include cystic kidney disease and renal interstitial fibrosis leading to progressive chronic kidney disease and end-stage kidney disease. The renal tubules are lined with epithelial cells that possess primary cilia that project into the lumen and act as sensory and signalling organelles. Mutations in genes encoding ciliary proteins involved in the structure and function of primary cilia cause ciliopathy syndromes and affect many organ systems including the kidney. Recognised disease phenotypes associated with primary ciliopathies that have a strong renal component include autosomal dominant and recessive polycystic kidney disease and their various mimics, including atypical polycystic kidney disease and nephronophthisis. The molecular investigation of inherited renal ciliopathies often allows a precise diagnosis to be reached where renal histology and other investigations have been unhelpful and can help in determining kidney prognosis. With increasing molecular insights, it is now apparent that renal ciliopathies form a continuum of clinical phenotypes with disease entities that have been classically described as dominant or recessive at both extremes of the spectrum. Gene-dosage effects, hypomorphic alleles, modifier genes and digenic inheritance further contribute to the genetic complexity of these disorders. This review will focus on recent molecular genetic advances in the renal ciliopathy field with a focus on cystic kidney disease phenotypes and the genotypes that lead to them. We discuss recent novel insights into underlying disease mechanisms of renal ciliopathies that might be amenable to therapeutic intervention.
Collapse
|
41
|
Castleman JS, Wall E, Allen S, Williams D, Doyle S, Kilby MD. The prenatal exome - a door to prenatal diagnostics? Expert Rev Mol Diagn 2021; 21:465-474. [PMID: 33877000 DOI: 10.1080/14737159.2021.1920398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Prenatal exome sequencing (ES) allows parents the opportunity to obtain arapid molecular diagnosis of monogenic etiology when their fetus is found to have structural anomalies detected on prenatal ultrasound. Such information can improve antenatal and neonatal counseling, decision-making and management, and expand reproductive options in subsequent pregnancies.Areas covered: This review appraises the evidence, from acomprehensive search of bibliographic databases, for the introduction of ES into the fetal medicine care pathway when investigating congenital malformations. The perspectives of clinical geneticists, clinical scientists, fetal medicine specialists, and patients are explored in relation to the novel investigation and the benefits and challenges of its use in ongoing pregnancies with particular reference to UK medical practice.Expert opinion: ES provides agenetic diagnosis for more than 1 in 10 fetuses with structural differences on ultrasound and normal conventional tests (karyotype or chromosomal microarray) in carefully selected cases. The diagnostic rate increases for certain phenotypes and can range between 6% and 80% where conventional cytogenetics have not detected adiagnosis. Expert oversight is required to ensure that patients receive high-quality, evidence-based care and accurate counseling, supported by amultidisciplinary team familiar with the test and its implications.
Collapse
Affiliation(s)
- James S Castleman
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Elizabeth Wall
- Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Stephanie Allen
- West Midlands Regional Genetics Laboratory, Birmingham Women's and Children's NHS Foundation Trust, Mindelsohn Way, Edgbaston. Birmingham, UK
| | - Denise Williams
- Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Samantha Doyle
- Clinical Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Mark D Kilby
- West Midlands Fetal Medicine Centre, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.,Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Veldman BCF, Kuper WFE, Lilien M, Schuurs-Hoeijmakers JHM, Marcelis C, Phan M, Hettinga Y, Talsma HE, van Hasselt PM, Haijes HA. Beyond nephronophthisis: Retinal dystrophy in the absence of kidney dysfunction in childhood expands the clinical spectrum of CEP83 deficiency. Am J Med Genet A 2021; 185:2204-2210. [PMID: 33938610 PMCID: PMC8252653 DOI: 10.1002/ajmg.a.62225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The CEP83 protein is an essential part in the first steps of ciliogenesis, causing a ciliopathy if deficient. As a core component of the distal appendages of the centriole, CEP83 is located in almost all cell types and is involved in the primary cilium assembly. Previously reported CEP83 deficient patients all presented with nephronophthisis and kidney dysfunction. Despite retinal degeneration being a common feature in ciliopathies, only one patient also had retinitis. Here, we present two unrelated patients, who both presented with retinitis pigmentosa, without nephronophthisis or any form of kidney dysfunction. Both patients harbor bi‐allelic variants in CEP83. This report expands the current clinical spectrum of CEP83 deficiency. For timely diagnosis of CEP83 deficiency, we advocate that CEP83 should be included in gene panels for inherited retinal diseases.
Collapse
Affiliation(s)
- Bram C F Veldman
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Willemijn F E Kuper
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Milan Phan
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ymkje Hettinga
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Herman E Talsma
- Bartiméus Diagnostic Center for Complex Visual Disorders, Zeist, The Netherlands
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hanneke A Haijes
- Department of Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
43
|
Conduit SE, Davies EM, Fulcher AJ, Oorschot V, Mitchell CA. Superresolution Microscopy Reveals Distinct Phosphoinositide Subdomains Within the Cilia Transition Zone. Front Cell Dev Biol 2021; 9:634649. [PMID: 33996795 PMCID: PMC8120242 DOI: 10.3389/fcell.2021.634649] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/06/2021] [Indexed: 11/30/2022] Open
Abstract
Primary cilia are evolutionary conserved microtubule-based organelles that protrude from the surface of most mammalian cells. Phosphoinositides (PI) are membrane-associated signaling lipids that regulate numerous cellular events via the recruitment of lipid-binding effectors. The temporal and spatial membrane distribution of phosphoinositides is regulated by phosphoinositide kinases and phosphatases. Recently phosphoinositide signaling and turnover has been observed at primary cilia. However, the precise localization of the phosphoinositides to specific ciliary subdomains remains undefined. Here we use superresolution microscopy (2D stimulated emission depletion microscopy) to map phosphoinositide distribution at the cilia transition zone. PI(3,4,5)P3 and PI(4,5)P2 localized to distinct subregions of the transition zone in a ring-shape at the inner transition zone membrane. Interestingly, the PI(3,4,5)P3 subdomain was more distal within the transition zone relative to PtdIns(4,5)P2. The phosphoinositide effector kinase pAKT(S473) localized in close proximity to these phosphoinositides. The inositol polyphosphate 5-phosphatase, INPP5E, degrades transition zone phosphoinositides, however, studies of fixed cells have reported recombinant INPP5E localizes to the ciliary axoneme, distant from its substrates. Notably, here using live cell imaging and optimized fixation/permeabilization protocols INPP5E was found concentrated at the cilia base, in a distribution characteristic of the transition zone in a ring-shaped domain of similar dimensions to the phosphoinositides. Collectively, this superresolution map places the phosphoinositides in situ with the transition zone proteins and reveals that INPP5E also likely localizes to a subdomain of the transition zone membrane, where it is optimally situated to control local phosphoinositide metabolism.
Collapse
Affiliation(s)
- Sarah E Conduit
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Elizabeth M Davies
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, VIC, Australia
| | - Viola Oorschot
- Monash Ramaciotti Centre for Structural Cryo-Electron Microscopy, Monash University, Clayton, VIC, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
44
|
Vegas N, Low K, Mak CCY, Fung JLF, Hing AV, Chung BHY, Doherty D, Amiel J, Gordon CT. Reply: MN1 gene loss-of-function mutation causes cleft palate in a pedigree. Brain 2021; 144:e19. [PMID: 33351141 DOI: 10.1093/brain/awaa432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France
| | - Karen Low
- Department of Clinical Genetics, St Michaels Hospital, University Hospitals Bristol and Weston NHS Trust, Bristol BS2 8EJ, UK
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anne V Hing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Seattle Craniofacial Center, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France
| |
Collapse
|
45
|
Duong Phu M, Bross S, Burkhalter MD, Philipp M. Limitations and opportunities in the pharmacotherapy of ciliopathies. Pharmacol Ther 2021; 225:107841. [PMID: 33771583 DOI: 10.1016/j.pharmthera.2021.107841] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023]
Abstract
Ciliopathies are a family of rather diverse conditions, which have been grouped based on the finding of altered or dysfunctional cilia, potentially motile, small cellular antennae extending from the surface of postmitotic cells. Cilia-related disorders include embryonically arising conditions such as Joubert, Usher or Kartagener syndrome, but also afflictions with a postnatal or even adult onset phenotype, i.e. autosomal dominant polycystic kidney disease. The majority of ciliopathies are syndromic rather than affecting only a single organ due to cilia being found on almost any cell in the human body. Overall ciliopathies are considered rare diseases. Despite that, pharmacological research and the strive to help these patients has led to enormous therapeutic advances in the last decade. In this review we discuss new treatment options for certain ciliopathies, give an outlook on promising future therapeutic strategies, but also highlight the limitations in the development of therapeutic approaches of ciliopathies.
Collapse
Affiliation(s)
- Max Duong Phu
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Stefan Bross
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Section of Pharmacogenomics, Eberhard-Karls-University of Tübingen, 72074 Tübingen, Germany.
| |
Collapse
|
46
|
Xie C, Martens JR. Potential Therapeutic Targets for Olfactory Dysfunction in Ciliopathies Beyond Single-Gene Replacement. Chem Senses 2021; 46:6159785. [PMID: 33690843 DOI: 10.1093/chemse/bjab010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory dysfunction is a common disorder in the general population. There are multiple causes, one of which being ciliopathies, an emerging class of human hereditary genetic disorders characterized by multiple symptoms due to defects in ciliary biogenesis, maintenance, and/or function. Mutations/deletions in a wide spectrum of ciliary genes have been identified to cause ciliopathies. Currently, besides symptomatic therapy, there is no available therapeutic treatment option for olfactory dysfunction caused by ciliopathies. Multiple studies have demonstrated that targeted gene replacement can restore the morphology and function of olfactory cilia in olfactory sensory neurons and further re-establish the odor-guided behaviors in animals. Therefore, targeted gene replacement could be potentially used to treat olfactory dysfunction in ciliopathies. However, due to the potential limitations of single-gene therapy for polygenic mutation-induced diseases, alternative therapeutic targets for broader curative measures need to be developed for olfactory dysfunction, and also for other symptoms in ciliopathies. Here we review the current understanding of ciliogenesis and maintenance of olfactory cilia. Furthermore, we emphasize signaling mechanisms that may be involved in the regulation of olfactory ciliary length and highlight potential alternative therapeutic targets for the treatment of ciliopathy-induced dysfunction in the olfactory system and even in other ciliated organ systems.
Collapse
Affiliation(s)
- Chao Xie
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA.,Center for Smell and Taste, University of Florida College of Medicine, 1149 Newell Drive, Gainesville, FL 32610, USA
| |
Collapse
|
47
|
Mikhailik A, Michurina TV, Dikranian K, Hearn S, Maxakov VI, Siller SS, Takemaru KI, Enikolopov G, Peunova N. nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea. Life Sci Alliance 2021; 4:4/5/e202000981. [PMID: 33653689 PMCID: PMC8008965 DOI: 10.26508/lsa.202000981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.
Collapse
Affiliation(s)
- Anatoly Mikhailik
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tatyana V Michurina
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Krikor Dikranian
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Stephen Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vladimir I Maxakov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Saul S Siller
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Natalia Peunova
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA .,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
48
|
Perotin JM, Polette M, Deslée G, Dormoy V. CiliOPD: a ciliopathy-associated COPD endotype. Respir Res 2021; 22:74. [PMID: 33639936 PMCID: PMC7912836 DOI: 10.1186/s12931-021-01665-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/11/2021] [Indexed: 12/18/2022] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) relies on airway remodelling and inflammation. Alterations of mucociliary clearance are a major hallmark of COPD caused by structural and functional cilia abnormalities. Using transcriptomic databases of whole lung tissues and isolated small airway epithelial cells (SAEC), we comparatively analysed cilia-associated and ciliopathy-associated gene signatures from a set of 495 genes in 7 datasets including 538 non-COPD and 508 COPD patients. This bio-informatics approach unveils yet undescribed cilia and ciliopathy genes associated with COPD including NEK6 and PROM2 that may contribute to the pathology, and suggests a COPD endotype exhibiting ciliopathy features (CiliOPD).
Collapse
Affiliation(s)
- Jeanne-Marie Perotin
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Respiratory Diseases, CHU of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Myriam Polette
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Biopathology, CHU Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Gaëtan Deslée
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.,Department of Respiratory Diseases, CHU of Reims, Hôpital Maison Blanche, 51092, Reims, France
| | - Valérian Dormoy
- University of Reims Champagne-Ardenne, Inserm, P3Cell UMR-S1250, SFR CAP-SANTE, CHU Maison Blanche, 45 rue Cognacq-Jay, 51092, Reims, France.
| |
Collapse
|
49
|
Lange KI, Tsiropoulou S, Kucharska K, Blacque OE. Interpreting the pathogenicity of Joubert syndrome missense variants in Caenorhabditis elegans. Dis Model Mech 2021; 14:dmm.046631. [PMID: 33234550 PMCID: PMC7859701 DOI: 10.1242/dmm.046631] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
Ciliopathies are inherited disorders caused by defects in motile and non-motile (primary) cilia. Ciliopathy syndromes and associated gene variants are often highly pleiotropic and represent exemplars for interrogating genotype-phenotype correlations. Towards understanding disease mechanisms in the context of ciliopathy mutations, we have used a leading model organism for cilia and ciliopathy research, Caenorhabditis elegans, together with gene editing, to characterise two missense variants (P74S and G155S) in mksr-2/B9D2 associated with Joubert syndrome (JBTS). B9D2 functions within the Meckel syndrome (MKS) module at the ciliary base transition zone (TZ) compartment and regulates the molecular composition and sensory/signalling functions of the cilium. Quantitative assays of cilium/TZ structure and function, together with knock-in reporters, confirm that both variant alleles are pathogenic in worms. G155S causes a more severe overall phenotype and disrupts endogenous MKSR-2 organisation at the TZ. Recapitulation of the patient biallelic genotype shows that compound heterozygous worms phenocopy worms homozygous for P74S. The P74S and G155S alleles also reveal evidence of a very close functional association between the B9D2-associated B9 complex and MKS-2/TMEM216. Together, these data establish C. elegans as a model for interpreting JBTS mutations and provide further insight into MKS module organisation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karen I Lange
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Katarzyna Kucharska
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
50
|
Mboowa G, Sserwadda I, Aruhomukama D. Genomics and bioinformatics capacity in Africa: no continent is left behind. Genome 2021; 64:503-513. [PMID: 33433259 DOI: 10.1139/gen-2020-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the poor genomics research capacity in Africa, efforts have been made to empower African scientists to get involved in genomics research, particularly that involving African populations. As part of the Human Heredity and Health in Africa (H3Africa) Consortium, an initiative was set to make genomics research in Africa an African endeavor and was developed through funding from the United States' National Institutes of Health Common Fund and the Wellcome Trust. H3Africa is intended to encourage a contemporary research approach by African investigators and to stimulate the study of genomic and environmental determinants of common diseases. The goal of these endeavors is to improve the health of African populations. To build capacity for bioinformatics and genomics research, organizations such as the African Society for Bioinformatics and Computational Biology have been established. In this article, we discuss the current status of the bioinformatics infrastructure in Africa as well as the training challenges and opportunities.
Collapse
Affiliation(s)
- Gerald Mboowa
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Uganda, P.O. Box 7072, Kampala, Uganda.,Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda.,The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, Infectious Disease Institute, Makerere University, P.O. Box 22418, Kampala, Uganda
| | - Ivan Sserwadda
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Uganda, P.O. Box 7072, Kampala, Uganda
| | - Dickson Aruhomukama
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O. Box 7072, Kampala, Uganda
| |
Collapse
|