1
|
Lewek J, Sosnowska B, Starostecka E, Konopka A, Gach A, Rutkowska L, Adach W, Mierczak K, Bielecka-Dąbrowa A, Banach M. Clinical reality and challenges with familial hypercholesterolemia patients' management. 2024 results from the Regional Center for Rare Diseases (RCRD) Registry in Poland. Int J Cardiol 2025; 419:132667. [PMID: 39442759 DOI: 10.1016/j.ijcard.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite advancements in early diagnosis and effective medications in last decade, most heterozygous familial hypercholesterolemia (heFH) patients still fail to achieve their low-density lipoprotein cholesterol (LDL-C) goals and remain at residual cardiovascular disease risk. We present recent data from the regional FH registry in Poland, highlighting the challenges and real-life clinical management of FH patients. METHODS The registry is held at the Regional Centre for Rare Diseases, founded in 2016, at the 2nd largest, supraregional hospital in Poland, where >80 different rare diseases in patients from all over Poland are diagnosed and treated, including phenotypically or genetically diagnosed FH patients. Our analysis focused on both children and adult FH patients, excluding those treated with inclisiran due to a small sample size (n = 5). RESULTS We studied 173 consecutive heFH patients, median age for adult population was 40 years (range: 27-57), of whom 56.14 % were women. Among the population, 82.1 % were adults (n = 142), and 31 were children (17.92 %; median age 9 (8-13), females 58.16 %). Children exhibited lower total cholesterol and triglyceride levels compared to adults, with no significant differences in LDL-C and high-density lipoprotein cholesterol (HDL-C) levels. Molecular diagnosis in the whole population revealed that 76.6 % had an LDL receptor (LDLR) mutation, while 23.4 % had an apolipoprotein B (APOB) mutation. Risk assessment categorized patients into high (70.7 %), very high (22.1 %), and extremely high (7.1 %) risk groups. Triple therapy achieved treatment goals in 61.76 % of adults and 70.97 % of children. At baseline, 36.62 % of adult patients were not using statins. High-intensity statin therapy combined with ezetimibe was initiated for the remaining patients. Only 3.33 % of patients avoided statins due to complete intolerance. Ezetimibe was used in 57.27 % of patients (mostly in combination therapy), and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors were prescribed for 28.17 % FH patients. In adults receiving statin and ezetimibe therapy, median achieved LDL-C was 141 mg/dl (107-184). For triple therapy, median achieved LDL-C was 52.5 mg/dL (32-86.5). Overall median achieved LDL-C in the study population was 99.5 mg/dl (57.5-145.4). PCSK9 inhibitors reduced LDL-C by 165.6 mg/dl. Combination therapy did not significantly alter baseline lipoprotein(a) (Lp(a)) levels (p = 0.134), and PCSK9 inhibitors led to a mean Lp(a) reduction of 18.66 mg/dl (45 % reduction; p = 0.013). Multivariable regression analysis identified key factors for achieving LDL-C targets in FH patients: DLCN total score, DLCN category, ezetimibe use, and PCSK9 inhibitors. CONCLUSIONS In Poland, FH patients are often diagnosed too late (usually over 40 years of age), and many still do not reach their LDL-C goals. Combination LLT double or triple therapy significantly increases the likelihood of achieving LDL-C targets - even up to fivefold. Therefore, unrestricted access to PCSK9 inhibitors for all FH patients is crucial, without the current limitations imposed by drug reimbursement programs like B101.
Collapse
Affiliation(s)
- Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Bożena Sosnowska
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Ewa Starostecka
- Regional Rare Disease Centre, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Agnieszka Konopka
- Regional Rare Disease Centre, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Lena Rutkowska
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Weronika Adach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Karina Mierczak
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Agata Bielecka-Dąbrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
2
|
Gianos E, Duell PB, Toth PP, Moriarty PM, Thompson GR, Brinton EA, Hudgins LC, Nametka M, Byrne KH, Raghuveer G, Nedungadi P, Sperling LS. Lipoprotein Apheresis: Utility, Outcomes, and Implementation in Clinical Practice: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2024; 44:e304-e321. [PMID: 39370995 DOI: 10.1161/atv.0000000000000177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite the availability of multiple classes of lipoprotein-lowering medications, some high-risk patients have persistent hypercholesterolemia and may require nonpharmacologic therapy. Lipoprotein apheresis (LA) is a valuable but underused adjunctive therapeutic option for low-density lipoprotein cholesterol and lipoprotein(a) lowering, particularly in children and adults with familial hypercholesterolemia. In addition to lipid lowering, LA reduces serum levels of proinflammatory and prothrombotic factors, reduces blood viscosity, increases microvascular myocardial perfusion, and may provide beneficial effects on endothelial function. Multiple observational studies demonstrate strong evidence for improved cardiovascular outcomes with LA; however, use in the United States is limited to a fraction of its Food and Drug Administration-approved indications. In addition, there are limited data regarding LA benefit for refractory focal segmental glomerulosclerosis. In this scientific statement, we review the history of LA, mechanisms of action, cardiovascular and renal outcomes data, indications, and options for treatment.
Collapse
|
3
|
Deconinck OG, Sharman JE, Bishop W, Lees CF, Dare L, Hardikar A, Fenton C, Pointon T, Watts GF, Black JA. Familial Hypercholesterolemia and Cardiovascular Outcomes Amongst Younger Patients Undergoing Coronary Bypass Surgery. Heart Lung Circ 2024:S1443-9506(24)01773-6. [PMID: 39613585 DOI: 10.1016/j.hlc.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an under-recognised but common genetic condition resulting in elevated levels of low-density lipoprotein cholesterol (LDL-C) and a high risk of premature coronary disease. The prevalence of FH among younger patients undergoing coronary bypass surgery is unknown, as is their post-surgical prognosis. METHOD This was a retrospective analysis of younger patients (aged <60 years) undergoing coronary bypass surgery at an Australian tertiary hospital between 2008 and 2022. A Dutch Lipid Clinical Network Score was calculated to determine the presence of underlying FH for each patient. Outcomes were FH prevalence, pre-surgical attainment of guideline-based secondary prevention LDL-C targets and post-surgical major adverse cardiovascular events. RESULTS Overall, 590 eligible patients (mean age 53.7 years, 85.6% male) were followed over a median of 7.9 years (interquartile range 4.7-12.1). Eighty (80; 13.6%) patients were categorised as 'FH', 249 (42.2%) 'possible FH' and 261 (44.2%) 'non-FH'. Compared to the non-FH group, patients with FH were less likely to achieve target LDL-C <1.8 mmol/L (15 [18.8%] vs 119 [45.6%]; p<0.001) and had higher rates of adverse cardiovascular events in the years following surgery (adjusted odds ratio 2.52; 95% confidence interval 1.0-6.4; p<0.001). CONCLUSIONS FH is highly prevalent among younger patients undergoing coronary bypass surgery. These patients are less likely to achieve adequate LDL reduction and are at higher risk of further adverse events. Detection and appropriate treatment of FH prior to bypass surgery should be a clinical priority.
Collapse
Affiliation(s)
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia
| | | | | | - Luke Dare
- Royal Hobart Hospital, Hobart, Tas, Australia
| | - Ashutosh Hardikar
- Royal Hobart Hospital, Hobart, Tas, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia
| | | | | | | | - James A Black
- Royal Hobart Hospital, Hobart, Tas, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tas, Australia.
| |
Collapse
|
4
|
Yokote K, Ako J, Kitagawa K, Osada N, Sheng F, Sonoda M, Teramoto T. Safety and Effectiveness of Low-Density Lipoprotein Cholesterol-Lowering Therapy With Evolocumab for Familial Hypercholesterolemia/Hypercholesterolemia in Japan: A Real-World, Postmarketing, Single-Arm Study. J Am Heart Assoc 2024; 13:e035809. [PMID: 39470058 DOI: 10.1161/jaha.124.035809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Evolocumab is the first monoclonal antibody against proprotein convertase subtilisin/kexin type 9 approved in Japan for familial hypercholesterolemia (FH) and hypercholesterolemia; however, data on its safety and effectiveness in the real-world setting in Japan are limited. METHODS AND RESULTS This real-world, postmarketing, single-arm study assessed the safety and effectiveness of low-density lipoprotein cholesterol lowering with evolocumab in patients with homozygous/heterozygous familial hypercholesterolemia and hypercholesterolemia with high risk in Japan (668 sites). The primary safety end point was the incidence (percentage) and number of patients with adverse drug reactions and serious adverse events during the 104-week follow-up. Primary effectiveness end points included the percentage change in low-density lipoprotein cholesterol levels from baseline to week 12, assessed using 2-sided paired t tests. The safety and effectiveness sets comprised 3724 (homozygous FH, n=108; heterozygous FH, n=2009; hypercholesterolemia with high risk, n=1607) and 2797 (homozygous FH, n=91; heterozygous FH, n=1615; hypercholesterolemia with high risk, n=1091) patients, respectively. Overall, mean age and disease duration were 63.2 and 12.3 years, respectively. Serious adverse drug reactions and serious adverse events were experienced by 0.5% and 10.3% of patients; the incidence rates of myocardial infarction and stroke were 0.7% and 0.3%, respectively. A significant mean±SD percentage change in low-density lipoprotein cholesterol levels was observed at week 12 among patients with homozygous FH (-45.7%±28.2; P<0.001), heterozygous FH (-55.9%±28.8; P<0.001), and hypercholesterolemia with high risk (-63.3%±23.7; P<0.001). CONCLUSIONS Evolocumab was well tolerated, and real-world patients with familial hypercholesterolemia and hypercholesterolemia with high risk in Japan had sustained low-density lipoprotein cholesterol reduction. REGISTRATION URL: https://www.clinicaltrials.gov; Unique Identifier: NCT02808403.
Collapse
Affiliation(s)
- Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology Chiba University Graduate School of Medicine Chiba Japan
| | - Junya Ako
- Department of Cardiovascular Medicine Kitasato University School of Medicine Sagamihara Japan
| | - Kazuo Kitagawa
- Department of Neurology Tokyo Women's Medical University School of Medicine Tokyo Japan
| | | | | | | | - Tamio Teramoto
- Teikyo Academic Research Center Teikyo University Tokyo Japan
| |
Collapse
|
5
|
Athar M. Potentials of artificial intelligence in familial hypercholesterolemia: Advances in screening, diagnosis, and risk stratification for early intervention and treatment. Int J Cardiol 2024; 412:132315. [PMID: 38972488 DOI: 10.1016/j.ijcard.2024.132315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024]
Abstract
Familial hypercholesterolemia (FH) poses a global health challenge due to high incidence rates and underdiagnosis, leading to increased risks of early-onset atherosclerosis and cardiovascular diseases. Early detection and treatment of FH is critical in reducing the risk of cardiovascular events and improving the long-term outcomes and quality of life for affected individuals and their families. Traditional therapeutic approaches revolve around lipid-lowering interventions, yet challenges persist, particularly in accurate and timely diagnosis. The current diagnostic landscape heavily relies on genetic testing of specific LDL-C metabolism genes, often limited to specialized centers. This constraint has led to the adoption of alternative clinical scores for FH diagnosis. However, the rapid advancements in artificial intelligence (AI) and machine learning (ML) present promising solutions to these diagnostic challenges. This review explores the intricacies of FH, highlighting the challenges that are encountered in the diagnosis and management of the disorder. The revolutionary potential of ML, particularly in large-scale population screening, is highlighted. Applications of ML in FH screening, diagnosis, and risk stratification are discussed, showcasing its ability to outperform traditional criteria. However, challenges and ethical considerations, including algorithmic stability, data quality, privacy, and consent issues, are crucial areas that require attention. The review concludes by emphasizing the significant promise of AI and ML in FH management while underscoring the need for ethical and practical vigilance to ensure responsible and effective integration into healthcare practices.
Collapse
Affiliation(s)
- Mohammad Athar
- Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
6
|
Tarugi P, Bertolini S, Calandra S, Arca M, Angelico F, Casula M, Cefalù AB, D'Erasmo L, Fortunato G, Perrone-Filardi P, Rubba P, Suppressa P, Averna M, Catapano AL. Consensus document on diagnosis and management of familial hypercholesterolemia from the Italian Society for the Study of Atherosclerosis (SISA). Nutr Metab Cardiovasc Dis 2024; 34:1819-1836. [PMID: 38871496 DOI: 10.1016/j.numecd.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 05/03/2024] [Indexed: 06/15/2024]
Abstract
AIMS Familial Hypercholesterolemia (FH) is a genetic disorder of lipoprotein metabolism that causes an increased risk of premature atherosclerotic cardiovascular disease (ASCVD). Although early diagnosis and treatment of FH can significantly improve the cardiovascular prognosis, this disorder is underdiagnosed and undertreated. For these reasons the Italian Society for the Study of Atherosclerosis (SISA) assembled a Consensus Panel with the task to provide guidelines for FH diagnosis and treatment. DATA SYNTHESIS Our guidelines include: i) an overview of the genetic complexity of FH and the role of candidate genes involved in LDL metabolism; ii) the prevalence of FH in the population; iii) the clinical criteria adopted for the diagnosis of FH; iv) the screening for ASCVD and the role of cardiovascular imaging techniques; v) the role of molecular diagnosis in establishing the genetic bases of the disorder; vi) the current therapeutic options in both heterozygous and homozygous FH. Treatment strategies and targets are currently based on low-density lipoprotein cholesterol (LDL-C) levels, as the prognosis of FH largely depends on the magnitude of LDL-C reduction achieved by lipid-lowering therapies. Statins with or without ezetimibe are the mainstay of treatment. Addition of novel medications like PCSK9 inhibitors, ANGPTL3 inhibitors or lomitapide in homozygous FH results in a further reduction of LDL-C levels. LDL apheresis is indicated in FH patients with inadequate response to cholesterol-lowering therapies. CONCLUSION FH is a common, treatable genetic disorder and, although our understanding of this disease has improved, many challenges still remain with regard to its identification and management.
Collapse
Affiliation(s)
- Patrizia Tarugi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | | | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | | | - Manuela Casula
- Department of Pharmacological and Biomolecular Sciences (DisFeB), Epidemiology and Preventive Pharmacology Service (SEFAP), University of Milan, Milan, Italy; IRCCS Multimedica, Sesto San Giovanni (Milan), Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine (DTPM), Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuliana Fortunato
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples Federico II and CEINGE Biotecnologie avanzate "Franco Salvatore", Naples, Italy
| | | | - Paolo Rubba
- Department of Internal Medicine and Surgery, Federico II University, Naples, Italy
| | - Patrizia Suppressa
- Department of Internal Medicine and Rare Diseases Centre "C. Frugoni", University of Bari A. Moro, Bari, Italy
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy; Biophysical Institute CNR, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milano, Italy; IRCCS Multimedica, Milano, Italy
| |
Collapse
|
7
|
Hubacek JA, Adamkova V, Lanska V, Stanek V, Mrazkova J, Gebauerova M, Kettner J, Kautzner J, Pitha J. APOL1 polymorphisms are not influencing acute coronary syndrome risk in Czech males. Mol Genet Genomic Med 2024; 12:e2449. [PMID: 39171649 PMCID: PMC11339648 DOI: 10.1002/mgg3.2449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The highest mortality and morbidity worldwide is associated with atherosclerotic cardiovascular disease (ASCVD), which has in background both environmental and genetic risk factors. Apolipoprotein L1 (APOL1) variability influences the risk of ASCVD in Africans, but little is known about the APOL1 and ASCVD in other ethnic groups. METHODS To investigate the role of APOL1 and ASCVD, we have genotyped four (rs13056427, rs136147, rs10854688 and rs9610473) APOL1 polymorphisms in a group of 1541 male patients with acute coronary syndrome (ACS) and 1338 male controls. RESULTS Individual APOL1 polymorphisms were not associated with traditional CVD risk factors such as smoking, hypertension or diabetes prevalence, with BMI values or plasma lipid levels. Neither individual polymorphisms nor haplotypes were associated with an increased risk of ACS nor did they predict total or cardiovascular mortality over the 10.2 ± 3.9 years of follow-up. CONCLUSIONS We conclude that APOL1 genetic variability has no major effect on risk of ACS in Caucasians.
Collapse
Affiliation(s)
- Jaroslav A. Hubacek
- Experimental Medicine CentreInstitute for Clinical and Experimental MedicinePragueCzech Republic
- 3rd Department of Internal Medicine, 1st Faculty of MedicineCharles UniversityPragueCzech Republic
| | - Vera Adamkova
- Preventive Cardiology CentreInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Vera Lanska
- Department of InformaticsInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Vladimir Stanek
- Cardiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jolana Mrazkova
- Experimental Medicine CentreInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Marie Gebauerova
- Cardiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jiri Kettner
- Cardiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Josef Kautzner
- Cardiology DepartmentInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jan Pitha
- Experimental Medicine CentreInstitute for Clinical and Experimental MedicinePragueCzech Republic
| |
Collapse
|
8
|
Wang W, Qiao J, Su Z, Wei H, Wu J, Liu Y, Lin R, Michael N. Serum metabolites and hypercholesterolemia: insights from a two-sample Mendelian randomization study. Front Cardiovasc Med 2024; 11:1410006. [PMID: 39171325 PMCID: PMC11337230 DOI: 10.3389/fcvm.2024.1410006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024] Open
Abstract
Background Hypercholesterolemia, a critical contributor to cardiovascular disease, is not fully understood in terms of its relationship with serum metabolites and their role in disease pathogenesis. Methods This study leveraged GWAS data to explore the relationship between serum metabolites and hypercholesterolemia, pinpointing significant metabolites via Mendelian Randomization (MR) and KEGG pathway enrichment analysis. Data on metabolites were sourced from a European population, with analysis focusing on individuals diagnosed with hypercholesterolemia. Results Out of 486 metabolites analyzed, ten showed significant associations with hypercholesterolemia, categorized into those enhancing risk and those with protective effects. Specifically, 2-methoxyacetaminophen sulfate and 1-oleoylglycerol (1-monoolein) were identified as risk-enhancing, with odds ratios (OR) of 1.545 (95% CI: 1.230-1.939; P_FDR = 3E-04) and 1.462 (95% CI: 1.036-2.063; P_FDR = 0.037), respectively. On the protective side, 3-(cystein-S-yl)acetaminophen, hydroquinone sulfate, and 2-hydroxyacetaminophen sulfate demonstrated ORs of 0.793 (95% CI: 0.735-0.856; P_FDR = 6.18E-09), 0.641 (95% CI: 0.423-0.971; P_FDR = 0.042), and 0.607 (95% CI: 0.541-0.681; P_FDR = 5.39E-17), respectively. In addition, KEGG pathway enrichment analysis further revealed eight critical pathways, comprising "biosynthesis of valine, leucine, and isoleucine", "phenylalanine metabolism", and "pyruvate metabolism", emphasizing their significant role in the pathogenesis of hypercholesterolemia. Conclusion This study underscores the potential causal links between particular serum metabolites and hypercholesterolemia, offering innovative viewpoints on the metabolic basis of the disease. The identified metabolites and pathways offer promising targets for therapeutic intervention and warrant further investigation.
Collapse
Affiliation(s)
- Weitao Wang
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Jingwen Qiao
- Graduate Department of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhaoyin Su
- The First Clinical College of Medicine, Lanzhou University, Lanzhou, China
| | - Hui Wei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jincan Wu
- The Second Affiliated Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yatao Liu
- Department of Anesthesia, First Hospital of Lanzhou University, Lanzhou, China
| | - Rubing Lin
- Department of Orthopedics, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Nerich Michael
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Zhu Y, Cai SS, Ma J, Cheng L, Wei C, Aggarwal A, Toh WH, Shin C, Shen R, Kong J, Mao SA, Lao YH, Leong KW, Mao HQ. Optimization of lipid nanoparticles for gene editing of the liver via intraduodenal delivery. Biomaterials 2024; 308:122559. [PMID: 38583366 PMCID: PMC11099935 DOI: 10.1016/j.biomaterials.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.
Collapse
Affiliation(s)
- Yining Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Shuting Sarah Cai
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jingyao Ma
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leonardo Cheng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Christine Wei
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Ataes Aggarwal
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wu Han Toh
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Charles Shin
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ruochen Shen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA
| | - Jiayuan Kong
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shuming Alan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA; Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA.
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Pellón-Elexpuru I, Van Dijk R, Van der Valk I, Martínez-Pampliega A, Molleda A, Cormenzana S. Divorce and physical health: A three-level meta-analysis. Soc Sci Med 2024; 352:117005. [PMID: 38824838 DOI: 10.1016/j.socscimed.2024.117005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Divorce is often considered a major and stressful life transition. Given that divorcees are overrepresented in primary care and there is a association between individuals' physical health and psychological adjustment, potential post-divorce health problems are of concern. Yet, empirical evidence is lacking on the magnitude of the overall physical health risk after divorce, on possible differences across specific pathologies, and on factors that may increase or reduce this risk. The current meta-analysis addresses these issues. We identified 94 studies including u = 248 relevant effect sizes, based on N = 1,384,507 participants. Generally, compared to married individuals, divorcees showed significantly worse self-reported health (OR = 1.20, [1.08-1.33]), experienced more physical symptoms (OR = 1.34, [1.17-1.53]), and had a higher risk for diabetes (OR = 1.18 [1.05-1.33]), joint pathologies (OR = 1.24, [1.14-1.34]), cardiovascular (OR = 1.24, [1.09-1.41]) and cerebrovascular conditions (OR = 1.31, [1.14-1.51]), and sexually transmitted diseases (OR = 2.48, [1.32-4.64]). However, they had no increased risk of hypertension, hypercholesterolemia, cancer and cancer development, disabilities or limitations, or cognitive pathologies. Nor did divorcees significantly differ from married individuals when aggregating all pathologies to measure overall physical health problems (OR = 1.14, [0.85 to 1.54]). Yet, moderation analyses revealed that being female, unemployed, childless, or having a lower education constitutes a higher risk for overall physical health problems after divorce. The same applied to having a heavy alcohol consumption, lack of exercise, and being overweight. Our meta-analysis shows that divorcees are at heightened risk of certain pathologies, with sexually transmitted diseases as a particular post-divorce hazard. These findings call for more awareness among counsellors and physicians on divorcees' health conditions and the characteristics that make divorcees even more vulnerable to health problems.
Collapse
Affiliation(s)
| | - Rianne Van Dijk
- Youth&Family Department, Utrecht University, Utrecht, the Netherlands
| | - Inge Van der Valk
- Youth&Family Department, Utrecht University, Utrecht, the Netherlands
| | | | - Asier Molleda
- Deusto FamilyPsych, Deusto University, Bilbao, Spain
| | | |
Collapse
|
11
|
Pawlos A, Khoury E, Gaudet D. Emerging therapies for refractory hypercholesterolemia: a narrative review. Future Cardiol 2024; 20:317-334. [PMID: 38985520 PMCID: PMC11318688 DOI: 10.1080/14796678.2024.2367860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Refractory hypercholesterolemia (RH) is characterized by the failure of patients to achieve therapeutic targets for low-density lipoprotein-cholesterol (LDL-C) despite receiving maximal tolerable doses of standard lipid-lowering treatments. It predominantly impacts individuals with familial hypercholesterolemia (FH), thereby elevating the risk of cardiovascular complications. The prevalence of RH is now recognized to be substantially greater than previously thought. This review provides a comprehensive insight into current and emerging therapies for RH patients, including groundbreaking genetic-based therapeutic approaches. The review places emphasis on the dependency of therapies on low-density lipoprotein receptors (LDLRs) and highlights the critical role of considering LDLR activity in RH patients for individualization of the treatment.
Collapse
Affiliation(s)
- Agnieszka Pawlos
- Department of Internal Diseases & Clinical Pharmacology, Laboratory of Tissue Immunopharmacology, Medical University of Lodz, Kniaziewicza 1/5, 91-347, Lodz, Poland
| | - Etienne Khoury
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21 Clinical Research Center, Chicoutimi, QC, Canada
| |
Collapse
|
12
|
Zhang Y, de Ferranti SD, Moran AE. Genetic testing for familial hypercholesterolemia. Curr Opin Lipidol 2024; 35:93-100. [PMID: 38299384 PMCID: PMC10932851 DOI: 10.1097/mol.0000000000000925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
PURPOSE OF REVIEW Despite familial hypercholesterolemia (FH) being the most common genetic cause of cardiovascular disease (CVD), genetic testing is rarely utilized in the US. This review summarizes what is known about the clinical utility of genetic testing and its role in the diagnosis and screening of FH. RECENT FINDINGS The presence of an FH-causative variant is associated with a substantially higher risk of CVD, even when low-density lipoprotein cholesterol (LDL-C) levels are only modestly elevated. Genetic testing can facilitate the identification of FH cases who may be missed by clinical diagnostic criteria, improve risk stratification beyond LDL-C and family history, guide treatment decisions, and improve treatment initiation and adherence. Genetic testing can be incorporated into FH screening and diagnosis algorithms, including cascade, targeted, and universal screening. Integrating genetic testing into cascade screening can enhance the effectiveness of the process. Several models of universal FH screening with coordinated genetic and lipid testing are feasible and effective. SUMMARY More systematic integration of genetic testing into FH diagnosis and screening can significantly reduce the burden of this condition through early detection and treatment. Further pragmatic implementation studies are needed to determine how to more effectively and affordably integrate genetic testing into clinical lipid screening programs.
Collapse
Affiliation(s)
- Yiyi Zhang
- Division of General Medicine, Columbia University, New York, NY
| | - Sarah D. de Ferranti
- Department of Cardiology, Boston Children’s Hospital, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Andrew E. Moran
- Division of General Medicine, Columbia University, New York, NY
| |
Collapse
|
13
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
14
|
Woerner J, Sriram V, Nam Y, Verma A, Kim D. Uncovering genetic associations in the human diseasome using an endophenotype-augmented disease network. Bioinformatics 2024; 40:btae126. [PMID: 38527901 PMCID: PMC10963079 DOI: 10.1093/bioinformatics/btae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/17/2024] [Indexed: 03/27/2024] Open
Abstract
MOTIVATION Many diseases, particularly cardiometabolic disorders, exhibit complex multimorbidities with one another. An intuitive way to model the connections between phenotypes is with a disease-disease network (DDN), where nodes represent diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), between pairs of diseases. To gain further genetic understanding of molecular contributors to disease associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which includes connections between diseases derived from genetic correlations with intermediate endophenotypes. We hypothesize that a ssDDN+ can provide complementary information to the disease connections in a ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. RESULTS Using PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic correlations between diseases and quantitative traits. Our augmented network uncovers genetic associations across different disease categories, connects relevant cardiometabolic diseases, and highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical measurements under consideration, HDL-C connects the greatest number of diseases and is strongly associated with both type 2 diabetes and heart failure. Triglycerides, another blood lipid with known genetic causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. This work demonstrates how association with clinical biomarkers can better explain the shared genetics between cardiometabolic disorders. Our study can facilitate future network-based investigations of cross-phenotype associations involving pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in multimorbidities. AVAILABILITY AND IMPLEMENTATION The generated ssDDN+ can be explored at https://hdpm.biomedinfolab.com/ddn/biomarkerDDN.
Collapse
Affiliation(s)
- Jakob Woerner
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Vivek Sriram
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
15
|
Zhang Z, Yang R, Zhu J, Yang X, Luo H, Wang H, Luo X. Failure of lipid control by PCSK9 inhibitors in compound heterozygous familial hypercholesterolemia complicated with premature myocardial infarction: A case report. Clin Case Rep 2024; 12:e8498. [PMID: 38487640 PMCID: PMC10939999 DOI: 10.1002/ccr3.8498] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 03/17/2024] Open
Abstract
Key Clinical Message A certain level of low-density lipoprotein receptor activity is crucial for the efficacy of PCSK9i. Therapeutic strategies for familial hypercholesterolemia patients should consider drug efficacy, and genetic testing will be helpful. Abstract Familial hypercholesterolemia (FH) is a serious autosomal dominant disorder. Managing blood lipids in FH patients poses greater challenges for clinicians. Drug therapy may not always yield satisfactory results, particularly in individuals with low-density lipoprotein receptor (LDLR) negative mutations. Herein, we report a young female harboring an LDLR frameshift mutation. This patient developed xanthomas at 7 months old and underwent several years of treatment involving four classes of lipid-lowering drugs, including PCSK9i. However, the response to drug therapy was limited in this patient and eventually culminated in premature myocardial infarction. The efficacy of PCSK9i depends on the activity of LDLR. The inefficacy of PCSK9i may arise from the extensive mutations which leading to loss of LDLR activity. Therapy plans for these patients should take into account the efficacy of drug therapy. Early genetic testing is crucial for clinicians to make informed decisions regarding therapy options.
Collapse
Affiliation(s)
- Ziyue Zhang
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
- 96608 Hospital of PLAHan ZhongShanxiP. R. China
| | - Rongpei Yang
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
| | - Jun Zhu
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
| | - XiaoLi Yang
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
| | - Hao Luo
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
| | - Hongyong Wang
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
| | - Xiaoli Luo
- Department of Cardiology, Daping HospitalThe Third Military Medical University (Army Medical University)ChongqingP. R. China
| |
Collapse
|
16
|
Capra ME, Biasucci G, Banderali G, Vania A, Pederiva C. Diet and Lipid-Lowering Nutraceuticals in Pediatric Patients with Familial Hypercholesterolemia. CHILDREN (BASEL, SWITZERLAND) 2024; 11:250. [PMID: 38397362 PMCID: PMC10887291 DOI: 10.3390/children11020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Familial hypercholesterolemia is a genetically determined disease characterized by elevated plasma total and LDL cholesterol levels from the very first years of life, leading to early atherosclerosis. Nutritional intervention is the first-line treatment, complemented with nutraceuticals and drug therapy when necessary. Nutraceuticals with a lipid-lowering effect have been extensively studied in the past few decades, and have been recently included in international guidelines as a complement to nutritional and pharmacological treatment in subjects with dyslipidemia. In this review, we explore current nutritional interventions for dyslipidemia in childhood, with a specific focus on the main nutraceuticals studied for treating severe dyslipidemia in pediatric patients. Additionally, we briefly describe their primary mechanisms of action and highlight the advantages and risks associated with the use of lipid-lowering nutraceuticals in childhood.
Collapse
Affiliation(s)
- Maria Elena Capra
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.E.C.); (G.B.)
- Department of Translational Medical and Surgical Sciences, University of Parma, 43126 Parma, Italy
| | - Giacomo Biasucci
- Centre for Pediatric Dyslipidemias, Pediatrics and Neonatology Unit, University of Parma, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy; (M.E.C.); (G.B.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Banderali
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (G.B.); (C.P.)
| | - Andrea Vania
- Independent Researcher, Member of SINUPE (Italian Society of Pediatric Nutrition) Directory Board, 00162 Rome, Italy
| | - Cristina Pederiva
- Clinical Service for Dyslipidemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (G.B.); (C.P.)
| |
Collapse
|
17
|
Wiegman A, Greber-Platzer S, Ali S, Reijman MD, Brinton EA, Charng MJ, Srinivasan S, Baker-Smith C, Baum S, Brothers JA, Hartz J, Moriarty PM, Mendell J, Bihorel S, Banerjee P, George RT, Hirshberg B, Pordy R. Evinacumab for Pediatric Patients With Homozygous Familial Hypercholesterolemia. Circulation 2024; 149:343-353. [PMID: 37860863 PMCID: PMC10814999 DOI: 10.1161/circulationaha.123.065529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Homozygous familial hypercholesterolemia (HoFH) is a rare genetic disorder characterized by severely elevated low-density lipoprotein cholesterol (LDL-C) levels due to profoundly defective LDL receptor (LDLR) function. Given that severely elevated LDL-C starts in utero, atherosclerosis often presents during childhood or adolescence, creating a largely unmet need for aggressive LDLR-independent lipid-lowering therapies in young patients with HoFH. Here we present the first evaluation of the efficacy and safety of evinacumab, a novel LDLR-independent lipid-lowering therapy, in pediatric patients with HoFH from parts A and B of a 3-part study. METHODS The phase 3, part B, open-label study treated 14 patients 5 to 11 years of age with genetically proven HoFH (true homozygotes and compound heterozygotes) with LDL-C >130 mg/dL, despite optimized lipid-lowering therapy (including LDLR-independent apheresis and lomitapide), with intravenous evinacumab 15 mg/kg every 4 weeks. RESULTS Evinacumab treatment rapidly and durably (through week 24) decreased LDL-C with profound reduction in the first week, with a mean (SE) LDL-C reduction of -48.3% (10.4%) from baseline to week 24. ApoB (mean [SE], -41.3% [9.0%]), non-high-density lipoprotein cholesterol (-48.9% [9.8%]), and total cholesterol (-49.1% [8.1%]) were similarly decreased. Treatment-emergent adverse events were reported in 10 (71.4%) patients; however, only 2 (14.3%) reported events that were considered to be treatment-related (nausea and abdominal pain). One serious treatment-emergent adverse event of tonsillitis occurred (n=1), but this was not considered treatment-related. CONCLUSIONS Evinacumab constitutes a new treatment for pediatric patients with HoFH and inadequately controlled LDL-C despite optimized lipid-lowering therapy, lowering LDL-C levels by nearly half in these extremely high-risk and difficult-to-treat individuals. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT04233918.
Collapse
Affiliation(s)
- Albert Wiegman
- Department of Paediatrics, Amsterdam University Medical Centers, Location University of Amsterdam, The Netherlands (A.W., M.D.R.)
| | - Susanne Greber-Platzer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Austria (S.G.-P.)
| | - Shazia Ali
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| | - M. Doortje Reijman
- Department of Paediatrics, Amsterdam University Medical Centers, Location University of Amsterdam, The Netherlands (A.W., M.D.R.)
| | | | - Min-Ji Charng
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan (M.-J.C.)
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, Children’s Hospital at Westmead, Sydney, Australia (S.S.)
| | - Carissa Baker-Smith
- Pediatric Preventive Cardiology Program, Nemours Cardiac Center, Nemours Children’s Hospital, Wilmington, DE (C.B.-S.)
| | - Seth Baum
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| | - Julie A. Brothers
- Division of Cardiology, Children’s Hospital of Philadelphia, PA (J.A.B.)
| | - Jacob Hartz
- Department of Cardiology, Boston Children’s Hospital, MA (J.H.)
| | - Patrick M. Moriarty
- Department of Medicine, University of Kansas Medical Center, Kansas City (P.M.M.)
| | - Jeanne Mendell
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| | | | - Poulabi Banerjee
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| | - Richard T. George
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| | - Boaz Hirshberg
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| | - Robert Pordy
- Regeneron Pharmaceuticals, Inc, Tarrytown, NY (S.A., J.M., S.B., P.B., R.T.G., B.H., R.P.)
| |
Collapse
|
18
|
Hubacek JA, Adamkova V, Lanska V, Staněk V, Mrázková J, Gebauerová M, Kettner J, Kautzner J, Pitha J. Cholesterol associated genetic risk score and acute coronary syndrome in Czech males. Mol Biol Rep 2024; 51:164. [PMID: 38252350 PMCID: PMC10803395 DOI: 10.1007/s11033-023-09128-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Despite a general decline in mean levels across populations, LDL-cholesterol levels remain a major risk factor for acute coronary syndrome (ACS). The APOB, LDL-R, CILP, and SORT-1 genes have been shown to contain variants that have significant effects on plasma cholesterol levels. METHODS AND RESULTS We examined polymorphisms within these genes in 1191 controls and 929 patients with ACS. Only rs646776 within SORT-1 was significantly associated with a risk of ACS (P < 0.05, AA vs. + G comparison; OR 1.21; 95% CI 1.01-1.45). With regard to genetic risk score (GRS), the presence of at least 7 alleles associated with elevated cholesterol levels was connected with increased risk (P < 0.01) of ACS (OR 1.26; 95% CI 1.06-1.52). Neither total mortality nor CVD mortality in ACS subjects (follow up-9.84 ± 3.82 years) was associated with the SNPs analysed or cholesterol-associated GRS. CONCLUSIONS We conclude that, based on only a few potent SNPs known to affect plasma cholesterol, GRS has the potential to predict ACS risk, but not ACS associated mortality.
Collapse
Affiliation(s)
- Jaroslav A Hubacek
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, IKEM-CEM-LMG, Videnska 1958/9, 140 21, Prague 4, Czech Republic.
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Vera Adamkova
- Preventive Cardiology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vera Lanska
- Information Technology Division, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimir Staněk
- Cardiac Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jolana Mrázková
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, IKEM-CEM-LMG, Videnska 1958/9, 140 21, Prague 4, Czech Republic
| | - Marie Gebauerová
- Cardiac Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jiri Kettner
- Cardiac Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Josef Kautzner
- Cardiac Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Pitha
- Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, IKEM-CEM-LMG, Videnska 1958/9, 140 21, Prague 4, Czech Republic
| |
Collapse
|
19
|
Wang M, Hong L, Cai L, Zhang Z, Jiang N, Chen Y, Ying Q, Kong L, Wei Z, Xu Y, Jin L. Novel LDLR variants affecting low density lipoprotein metabolism identified in familial hypercholesterolemia. Mol Biol Rep 2024; 51:153. [PMID: 38236436 DOI: 10.1007/s11033-023-09169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant disease of lipid metabolism mainly caused by mutations in the low-density lipoprotein receptor (LDLR) gene. Genetic detection of patients with FH help with precise diagnosis and treatment, thus reducing the risk of coronary heart disease (CHD) and other related diseases. The study aimed to identify the causative gene mutations in a Chinese FH family and reveal the pathogenicity and the mechanism of these mutations. METHODS AND RESULTS Whole exome sequencing was performed in a patient with severe lipid metabolism dysfunction seeking fertility guidance from a Chinese FH family. Two LDLR variants c.1875 C > G (p.N625K; novel variant) and c.1448G > A (p.W483*) were identified in the family. Wildtype and mutant LDLR constructs were established by the site-direct mutagenesis technique. Functional studies were carried out by cell transfection to evaluate the impact of detected variants on LDLR activity. The two variants were proven to affect LDL uptake and binding, resulting in cholesterol clearance reduction to different degrees. According to The American College of Medical Genetics and Genomics (ACMG) Standards and Guidelines, the W483* variant was classified as "Pathogenic", while the N625K variant as "VUS". CONCLUSIONS Our results provide novel experimental evidence of functional alteration by LDLR variants identified in our study and expand the mutational spectrum of LDLR mutation induced FH.
Collapse
Affiliation(s)
- Miao Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ling Hong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Luyi Cai
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ziyi Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ningdong Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yijing Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qian Ying
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Lingpeng Kong
- Department of Computer Science, The University of Hong Kong, Hong Kong, China
| | - Zhiyun Wei
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Yao Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Liping Jin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Department of Assisted Reproduction, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
20
|
Awan Z, Batran A, Al-Allaf FA, Alharbi RS, Hegazy GA, Jamalalail B, Almansouri M, Bima AI, Almukadi H, Kutbi HI, Altayar AE, Banaganapalli B, Shaik NA. Identification and functional characterization of two rare LDLR stop gain variants (p.C231* and p.R744*) in Saudi familial hypercholesterolemia patients. Panminerva Med 2023; 65:479-490. [PMID: 35274909 DOI: 10.23736/s0031-0808.22.04612-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a globally underdiagnosed inherited metabolic disorder. Owing to limited published data from Arab world, this study was conducted with the aim of identifying the genetic and molecular basis of FH in highly consanguineous Saudi population. METHODS We performed clinical screening, biochemical profiling, whole exome sequencing and variant segregation analysis of two Saudi FH families. Additionally, 500 normolipic individuals were screened to ensure the absence of FH variant in general Saudi population. Functional characterization of FH variants on secondary structure characteristics of RNA and protein molecules was performed using different bioinformatics modelling approaches. RESULTS WES analysis identified two independent rare LDLR gene stop gain variants (p.C231* and p.R744*) consistent to the clinical presentation of FH patients from two different families. RNAfold analysis has shown that both variants were predicted to disturb the free energy dynamics of LDLR mRNA molecule and destabilize its folding pattern and function. PSIPRED based structural modelling analysis has suggested that both variants bring drastic changes disturbing the secondary structural elements of LDLR molecule. The p.C231* and p.R744* variants are responsible for partial or no protein product, thus they are class 1 variants causing loss of function (LoF) LDLR variants. CONCLUSIONS This study highlights the effectiveness of the WES, sanger sequencing, and computational analysis in expanding FH variant spectrum in culturally distinct populations like Saudi Arabia. Genetic testing of FH patients is very essential in better clinical diagnosis, screening, treatment, and management and prevention of cardiovascular disease burden in the society.
Collapse
Affiliation(s)
- Zuhier Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alhanuf Batran
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raneem S Alharbi
- Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia
| | - Gehan A Hegazy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam Jamalalail
- Department of Genetics, Al Borg Medical Laboratories, Jeddah, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majid Almansouri
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulhadi I Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifa Almukadi
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaiziz University, Jeddah, Saudi Arabia
| | - Hussam I Kutbi
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed E Altayar
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia -
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
21
|
Yip MK, Kwan EYW, Leung JYY, Lau EYF, Poon WT. Genetic Spectrum and Cascade Screening of Familial Hypercholesterolemia in Routine Clinical Setting in Hong Kong. Genes (Basel) 2023; 14:2071. [PMID: 38003014 PMCID: PMC10671696 DOI: 10.3390/genes14112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a prevalent but often underdiagnosed monogenic disorder affecting lipoprotein metabolism, and genetic testing for FH has not been widely conducted in Asia in the past. In this cross-sectional study of 31 probands (19 adults and 12 children) and an addition of 15 individuals (12 adults and 3 children), who underwent genetic testing and cascade screening for FH, respectively, during the period between February 2015 and July 2023, we identified a total of 25 distinct LDLR variants in 71.0% unrelated probands. Among the adult proband cohort, a higher proportion of genetically confirmed cases exhibited a positive family history of premature cardiovascular disease. Treatment intensity required to achieve an approximate 50% reduction in pretreatment low-density lipoprotein cholesterol (LDL-C) exhibited potentially better diagnostic performance compared to pretreatment LDL-C levels, Dutch Lipid Clinic Network Diagnostic Criteria (DLCNC) score, and modified DLCNC score. Adult individuals identified through cascade screening demonstrated less severe phenotypes, and fewer of them met previously proposed local criteria for FH genetic testing compared to the probands, indicating that cascade screening played a crucial role in the early detection of new cases that might otherwise have gone undiagnosed. These findings underscore the significance of genetic testing and cascade screening in the accurate identification and management of FH cases.
Collapse
Affiliation(s)
- Man-Kwan Yip
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Elaine Yin-Wah Kwan
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China;
| | - Jenny Yin-Yan Leung
- Department of Medicine and Geriatrics, Ruttonjee Hospital, Wan Chai, Hong Kong, China;
| | - Emmy Yuen-Fun Lau
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| | - Wing-Tat Poon
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong, China
| |
Collapse
|
22
|
Dlouha D, Blaha M, Huckova P, Lanska V, Hubacek JA, Blaha V. Long-Term LDL-Apheresis Treatment and Dynamics of Circulating miRNAs in Patients with Severe Familial Hypercholesterolemia. Genes (Basel) 2023; 14:1571. [PMID: 37628623 PMCID: PMC10454435 DOI: 10.3390/genes14081571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Lipoprotein apheresis (LA) is a therapeutic option for patients with severe hypercholesterolemia who have persistently elevated LDL-C levels despite attempts at drug therapy. MicroRNAs (miRNAs), important posttranscriptional gene regulators, are involved in the pathogenesis of atherosclerosis. Our study aimed to monitor the dynamics of twenty preselected circulating miRNAs in patients under long-term apheresis treatment. Plasma samples from 12 FH patients (men = 50%, age = 55.3 ± 12.2 years; mean LA overall treatment time = 13.1 ± 7.8 years) were collected before each apheresis therapy every sixth month over the course of four years of treatment. Eight complete follow-up (FU) samples were measured in each patient. Dynamic changes in the relative quantity of 6 miRNAs (miR-92a, miR-21, miR-126, miR-122, miR-26a, and miR-185; all p < 0.04) during FU were identified. Overall apheresis treatment time influenced circulating miR-146a levels (p < 0.04). In LDLR mutation homozygotes (N = 5), compared to heterozygotes (N = 7), we found higher plasma levels of miR-181, miR-126, miR-155, and miR-92a (all p < 0.03). Treatment with PCSK9 inhibitors (N = 6) affected the plasma levels of 7 miRNAs (miR-126, miR-122, miR-26a, miR-155, miR-125a, miR-92a, and miR-27a; all p < 0.04). Long-term monitoring has shown that LA in patients with severe familial hypercholesterolemia influences plasma circulating miRNAs involved in endothelial dysfunction, cholesterol homeostasis, inflammation, and plaque development. The longer the treatment using LA, the better the miRNA milieu depicting the potential cardiovascular risk.
Collapse
Affiliation(s)
- Dana Dlouha
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
| | - Milan Blaha
- 4th Department of Internal Medicine—Hematology, University Hospital Hradec Králové, 50005 Hradec Králové, Czech Republic;
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic;
| | - Pavlina Huckova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
| | - Vera Lanska
- Statistical Unit, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic;
| | - Jaroslav Alois Hubacek
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, 14021 Prague, Czech Republic; (P.H.); (J.A.H.)
- 1st Faculty of Medicine, Charles University, 12108 Prague, Czech Republic
| | - Vladimir Blaha
- Faculty of Medicine in Hradec Králové, Charles University, 50003 Hradec Králové, Czech Republic;
- 3rd Department of Internal Medicine—Metabolism and Gerontology, University Hospital Hradec Králové, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
23
|
Kalyta K, Stelmaszczyk W, Szczęśniak D, Kotuła L, Dobosz P, Mroczek M. The Spectrum of the Heterozygous Effect in Biallelic Mendelian Diseases-The Symptomatic Heterozygote Issue. Genes (Basel) 2023; 14:1562. [PMID: 37628614 PMCID: PMC10454578 DOI: 10.3390/genes14081562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Heterozygous carriers of pathogenic/likely pathogenic variants in autosomal recessive disorders seem to be asymptomatic. However, in recent years, an increasing number of case reports have suggested that mild and unspecific symptoms can occur in some heterozygotes, as symptomatic heterozygotes have been identified across different disease types, including neurological, neuromuscular, hematological, and pulmonary diseases. The symptoms are usually milder in heterozygotes than in biallelic variants and occur "later in life". The status of symptomatic heterozygotes as separate entities is often disputed, and alternative diagnoses are considered. Indeed, often only a thin line exists between dual, dominant, and recessive modes of inheritance and symptomatic heterozygosity. Interestingly, recent population studies have found global disease effects in heterozygous carriers of some genetic variants. What makes the few heterozygotes symptomatic, while the majority show no symptoms? The molecular basis of this phenomenon is still unknown. Possible explanations include undiscovered deep-splicing variants, genetic and environmental modifiers, digenic/oligogenic inheritance, skewed methylation patterns, and mutational burden. Symptomatic heterozygotes are rarely reported in the literature, mainly because most did not undergo the complete diagnostic procedure, so alternative diagnoses could not be conclusively excluded. However, despite the increasing accessibility to high-throughput technologies, there still seems to be a small group of patients with mild symptoms and just one variant of autosomes in biallelic diseases. Here, we present some examples, the current state of knowledge, and possible explanations for this phenomenon, and thus argue against the existing dominant/recessive classification.
Collapse
Affiliation(s)
- Kateryna Kalyta
- School of Life Sciences, FHNW—University of Applied Sciences, 4132 Muttenz, Switzerland;
| | - Weronika Stelmaszczyk
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK;
| | - Dominika Szczęśniak
- Institute of Psychiatry and Neurology in Warsaw, Genetics Department, 02-957 Warsaw, Poland;
| | - Lidia Kotuła
- Department of Genetics, Medical University, 20-080 Lublin, Poland;
| | - Paula Dobosz
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland;
| | - Magdalena Mroczek
- University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| |
Collapse
|
24
|
Li M, Ma L, Chen Y, Li J, Wang Y, You W, Yuan H, Tang X, Ouyang H, Pang D. Large-Scale CRISPR Screen of LDLR Pathogenic Variants. RESEARCH (WASHINGTON, D.C.) 2023; 6:0203. [PMID: 37496633 PMCID: PMC10368174 DOI: 10.34133/research.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 07/04/2023] [Indexed: 07/28/2023]
Abstract
Familial hypercholesterolemia (FH) is a frequently occurring genetic disorder that is linked to early-onset cardiovascular disease. If left untreated, patients with this condition can develop severe cardiovascular complications. Unfortunately, many patients remain undiagnosed, and even when diagnosed, the treatment is often not optimal. Although mutations in the LDLR gene are the primary cause of FH, predicting whether novel variants are pathogenic is not a straightforward task. Understanding the functionality of LDLR variants is crucial in uncovering the genetic basis of FH. Our study utilized CRISPR/Cas9 cytosine base editors in pooled screens to establish a novel approach for functionally assessing tens of thousands of LDLR variants on a large scale. A total of more than 100 single guide RNAs (sgRNAs) targeting LDLR pathogenic mutations were successfully screened with relatively high accuracy. Out of these, 5 sgRNAs were further subjected to functional verification studies, including 1 in the promoter, 1 in the antisense RNA, 1 in the exon, and 2 in the intron. Except for the variant caused by the sgRNA located at intron 16, the functionalities of the other LDLR variants were all downregulated. The high similarity of LDLR intron sequences may lead to some false positives. Overall, these results confirm the reliability of the large-scale screening strategy for functional analysis of LDLR variants, and the screened candidate pathogenic mutations could be used as an auxiliary means of clinical gene detection to prevent FH-induced heart disease.
Collapse
Affiliation(s)
- Mengjing Li
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- The Institute of Translational Medicine,
Tianjin Union Medical Center of Nankai University, Tianjin 300071, China
| | - Lerong Ma
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Yiwu Chen
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
| | - Yanbing Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
| | - Wenni You
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
| | - Hongming Yuan
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center,
College of Animal Sciences, Jilin University, Changchun, Jilin Province 130062, China
- Chongqing Research Institute,
Jilin University, Chongqing 401123, China
- Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| |
Collapse
|
25
|
Suárez NM, Jebari-Benslaiman S, Jiménez-Monzón R, Benito-Vicente A, Brito-Casillas Y, Garcés L, González-Lleo AM, Tugores A, Boronat M, Martin C, Wägner AM, Sánchez-Hernández RM. Age, Origin and Functional Study of the Prevalent LDLR Mutation Causing Familial Hypercholesterolaemia in Gran Canaria. Int J Mol Sci 2023; 24:11319. [PMID: 37511081 PMCID: PMC10379432 DOI: 10.3390/ijms241411319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The p.(Tyr400_Phe402del) mutation in the LDL receptor (LDLR) gene is the most frequent cause of familial hypercholesterolaemia (FH) in Gran Canaria. The aim of this study was to determine the age and origin of this prevalent founder mutation and to explore its functional consequences. For this purpose, we obtained the haplotypic information of 14 microsatellite loci surrounding the mutation in one homozygous individual and 11 unrelated heterozygous family trios. Eight different mutation carrier haplotypes were identified, which were estimated to originate from a common ancestral haplotype 387 (110-1572) years ago. This estimation suggests that this mutation happened after the Spanish colonisation of the Canary Islands, which took place during the fifteenth century. Comprehensive functional studies of this mutation showed that the expressed LDL receptor was retained in the endoplasmic reticulum, preventing its migration to the cell surface, thus allowing us to classify this LDLR mutation as a class 2a, defective, pathogenic variant.
Collapse
Affiliation(s)
- Nicolás M Suárez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Shifa Jebari-Benslaiman
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Roberto Jiménez-Monzón
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Asier Benito-Vicente
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Yeray Brito-Casillas
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Laida Garcés
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Ana M González-Lleo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| | - Antonio Tugores
- Unidad de Investigación, CHUIMI, 35016 Las Palmas de Gran Canaria, Spain
| | - Mauro Boronat
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| | - César Martin
- Departamento de Bioquímica y Biología Molecular, Instituto Biofisika (UPV/EHU, CSIC), Universidad del País Vasco UPV/EHU, Bilbao, 48940 Leioa, Spain
| | - Ana M Wägner
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| | - Rosa M Sánchez-Hernández
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
- Sección de Endocrinología y Nutrición, Complejo Hospitalario Universitario Insular Materno-Infantil de Gran Canaria (CHUIMI), 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
26
|
Athar M, Toonsi M, Abduljaleel Z, Bouazzaoui A, Bogari NM, Dannoun A, Al-Allaf FA. Novel LDLR Variant in Familial Hypercholesterolemia: NGS-Based Identification, In Silico Characterization, and Pharmacogenetic Insights. Life (Basel) 2023; 13:1542. [PMID: 37511917 PMCID: PMC10381584 DOI: 10.3390/life13071542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/25/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Familial Hypercholesterolemia (FH) is a hereditary condition that causes a rise in blood cholesterol throughout a person's life. FH can result in myocardial infarction and even sudden death if not treated. FH is thought to be caused mainly by variants in the gene for the low-density lipoprotein receptor (LDLR). This study aimed to investigate the genetic variants in FH patients, verify their pathogenicity, and comprehend the relationships between genotype and phenotype. Also, review studies assessed the relationship between the LDLR null variants and the reaction to lipid-lowering therapy. METHODS The study utilised high-throughput next-generation sequencing for genetic screening of FH-associated genes and capillary sequencing for cascade screening. Furthermore, bioinformatic analysis was employed to describe the pathogenic effects of the revealed novel variant on the structural features of the corresponding RNA molecule. RESULTS We studied the clinical signs of hypercholesterolemia in a Saudi family with three generations of FH. We discovered a novel frameshift variant (c.666_670dup, p.(Asp224Alafs*43) in the LDLR and a known single nucleotide variant (c.9835A > G, p.(Ser3279Gly) in the APOB gene. It is thought that the LDLR variant causes a protein to be prematurely truncated, likely through nonsense-mediated protein decay. The LDLR variant is strongly predicted to be pathogenic in accordance with ACMG guidelines and co-segregated with the FH clinical characteristics of the family. This LDLR variant exhibited severe clinical FH phenotypes and was restricted to the LDLR protein's ligand-binding domain. According to computational functional characterization, this LDLR variant was predicted to change the free energy dynamics of the RNA molecule, thereby affecting its stability. This frameshift variant is thought to eliminate important functional domains in LDLR that are required for receptor recycling and LDL particle binding. We provide insight into how FH patients with a null variant in the LDLR gene respond to lipid-lowering therapy. CONCLUSIONS The findings expand the range of FH variants and assist coronary artery disease preventive efforts by improving diagnosis, understanding the genotype-phenotype relationship, prognosis, and personalised therapy for patients with FH.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mawaddah Toonsi
- Department of Pediatrics, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Neda M Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Anas Dannoun
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
27
|
Constantin AT, Streata I, Covăcescu MS, Riza AL, Roșca I, Delia C, Tudor LM, Dorobanțu Ș, Dragoș A, Ristea D, Ioana M, Gherghina I. Genetic Testing for Familial Hypercholesterolemia in a Pediatric Group: A Romanian Showcase. Diagnostics (Basel) 2023; 13:1988. [PMID: 37370883 DOI: 10.3390/diagnostics13121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/29/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a genetic disease marked by high levels of LDL-cholesterol. This condition has long-term clinical implications, such as cardiovascular events, that are evident during adult life. Here, we report on a single-center cross-sectional showcase study of genetic testing for FH in a Romanian pediatric group. Genetic testing for FH was performed on 20 Romanian pediatric patients, 10 boys and 10 girls, admitted with LDL-cholesterol levels over 130 mg/mL to the National Institute for Mother and Child Health "Alesssandrescu-Rusescu" in 2020. Genetic testing was performed using the Illumina TruSight Cardio panel. We identified pathogenic/likely pathogenic variants that could explain the phenotype in 5/20 cases. The involved genes were LDLR and APOB. Clinical signs that suggest the diagnosis of FH are scarce for the pediatric patient, although it can be diagnosed early during childhood by lipid panel screening. Prevention could prove lifesaving for some of these patients.
Collapse
Affiliation(s)
- Andreea Teodora Constantin
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Ioana Streata
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mirela Silvia Covăcescu
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Anca Lelia Riza
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioana Roșca
- Faculty of Midwifery and Nursery, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
- Neonatology Department, Clinical Hospital of Obstetrics and Gynecology "Prof. Dr. P.Sârbu", 060251 Bucharest, Romania
| | - Corina Delia
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Lucia Maria Tudor
- Pediatrics Department, National Institute for Mother and Child Health "Alessandrescu-Rusescu", 020395 Bucharest, Romania
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| | - Ștefania Dorobanțu
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Adina Dragoș
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Diana Ristea
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Mihai Ioana
- Genetics Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
- Regional Center for Medical Genetics Dolj, 200642 Craiova, Romania
| | - Ioan Gherghina
- Pediatrics Department, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020021 Bucharest, Romania
| |
Collapse
|
28
|
Woerner J, Sriram V, Nam Y, Verma A, Kim D. Uncovering genetic associations in the human diseasome using an endophenotype-augmented disease network. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.11.23289852. [PMID: 37293013 PMCID: PMC10246076 DOI: 10.1101/2023.05.11.23289852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many diseases exhibit complex multimorbidities with one another. An intuitive way to model the connections between phenotypes is with a disease-disease network (DDN), where nodes represent diseases and edges represent associations, such as shared single-nucleotide polymorphisms (SNPs), between pairs of diseases. To gain further genetic understanding of molecular contributors to disease associations, we propose a novel version of the shared-SNP DDN (ssDDN), denoted as ssDDN+, which includes connections between diseases derived from genetic correlations with endophenotypes. We hypothesize that a ssDDN+ can provide complementary information to the disease connections in a ssDDN, yielding insight into the role of clinical laboratory measurements in disease interactions. Using PheWAS summary statistics from the UK Biobank, we constructed a ssDDN+ revealing hundreds of genetic correlations between disease phenotypes and quantitative traits. Our augmented network uncovers genetic associations across different disease categories, connects relevant cardiometabolic diseases, and highlights specific biomarkers that are associated with cross-phenotype associations. Out of the 31 clinical measurements under consideration, HDL-C connects the greatest number of diseases and is strongly associated with both type 2 diabetes and diabetic retinopathy. Triglycerides, another blood lipid with known genetics causes in non-mendelian diseases, also adds a substantial number of edges to the ssDDN. Our study can facilitate future network-based investigations of cross-phenotype associations involving pleiotropy and genetic heterogeneity, potentially uncovering sources of missing heritability in multimorbidities.
Collapse
Affiliation(s)
- Jakob Woerner
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vivek Sriram
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Choi D, Malick WA, Koenig W, Rader DJ, Rosenson RS. Familial Hypercholesterolemia: Challenges for a High-Risk Population: JACC Focus Seminar 1/3. J Am Coll Cardiol 2023; 81:1621-1632. [PMID: 37076217 DOI: 10.1016/j.jacc.2023.02.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 04/21/2023]
Abstract
The availability of statins, ezetimibe, and PCSK9 inhibitors has significantly improved the prognosis of familial hypercholesterolemia (FH). However, a great number of individuals with FH do not achieve guideline-recommended low-density lipoprotein (LDL) cholesterol levels despite maximal lipid-lowering therapy. Novel therapies that lower LDL independent of LDL receptor activity can help mitigate atherosclerotic cardiovascular disease risk in most homozygous FH and many heterozygous FH patients. However, access to novel therapies remains limited for heterozygous FH patients with persistent elevation of LDL cholesterol despite treatment with multiple classes of cholesterol-lowering therapies. Conduction of cardiovascular outcomes clinical trials in patients with FH can be challenging because of difficulty in recruitment and long periods of follow-up. In the future, the use of validated surrogate measures of atherosclerosis may allow for clinical trials with fewer study participants and shorter duration, thereby expediting access to novel treatments for patients with FH.
Collapse
Affiliation(s)
- Daein Choi
- Department of Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Waqas A Malick
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Daniel J Rader
- Departments of Medicine and Genetics and the Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert S Rosenson
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA. https://twitter.com/DrRSRosenson
| |
Collapse
|
30
|
Tricou EP, Morgan KM, Betts M, Sturm AC. Genetic Testing for Familial Hypercholesterolemia in Clinical Practice. Curr Atheroscler Rep 2023; 25:197-208. [PMID: 37060538 DOI: 10.1007/s11883-023-01094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW Genetic testing has proven utility in identifying and diagnosing individuals with FH. Here we outline the current landscape of genetic testing for FH, recommendations for testing practices and the efforts underway to improve access, availability, and uptake. RECENT FINDINGS Alternatives to the traditional genetic testing and counseling paradigm for FH are being explored including expanding screening programs, testing in primary care and/or cardiology clinics, leveraging electronic communication tools like chatbots, and implementing direct contact approaches to facilitate genetic testing of both probands and at-risk relatives. There is no consensus on if, when, and how genetic testing or accompanying genetic counseling should be provided for FH, though traditional genetic counseling and/or testing in specialty lipid clinics is often recommended in expert statements and professional guidelines. More evidence is needed to determine whether alternative approaches to the implementation of genetic testing for FH may be more effective.
Collapse
Affiliation(s)
| | - Kelly M Morgan
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Megan Betts
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
- Precision Medicine Center-Medical Group, WellSpan, York, PA, USA
| | | |
Collapse
|
31
|
Stanciulescu LA, Scafa-Udriste A, Dorobantu M. Exploring the Association between Low-Density Lipoprotein Subfractions and Major Adverse Cardiovascular Outcomes—A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076669. [PMID: 37047642 PMCID: PMC10095470 DOI: 10.3390/ijms24076669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Cardiovascular disease (CVD) impacts hundreds of millions of people each year and is the main cause of death worldwide, with atherosclerosis being its most frequent form of manifestation. Low-density lipoproteins (LDL) have already been established as a significant cardiovascular risk factor, but more recent studies have shown that small, dense LDLs are the ones more frequently associated with a higher overall risk for developing atherosclerotic cardiovascular disease. Ever since atherogenic phenotypes were defined for the first time, LDL subfractions have been continuously analyzed in order to identify those with a higher atherogenic profile that could further become not only high-accuracy, effective prognostic biomarkers, but also treatment targets for novel lipid-lowering molecules. This review sets out to comprehensively evaluate the association between various LDL-subfractions and the risk of further developing major adverse cardiovascular events, by assessing both genetical and clinical features and focusing on their physiopathological characteristics, chemical composition, and global ability to predict long-term cardiovascular risk within the general population. Further research is required in order to establish the most beneficial range of LDL-C levels for both primary and secondary prevention, as well as to implement LDL subfraction testing as a routine protocol, separately from the general assessment of the other traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Laura Adina Stanciulescu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital Bucharest, 014461 Bucharest, Romania
| | - Alexandru Scafa-Udriste
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Emergency Clinical Hospital Bucharest, 014461 Bucharest, Romania
| | - Maria Dorobantu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
32
|
Barbosa TKA, Hirata RDC, Ferreira GM, Borges JB, Oliveira VFD, Gorjão R, Marçal ERDS, Gonçalves RM, Faludi AA, Freitas RCCD, Dagli-Hernandez C, Bortolin RH, Bastos GM, Pithon-Curi TC, Nader HB, Hirata MH. LDLR missense variants disturb structural conformation and LDLR activity in T-lymphocytes of Familial hypercholesterolemia patients. Gene X 2023; 853:147084. [PMID: 36464169 DOI: 10.1016/j.gene.2022.147084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Familial hypercholesterolemia (FH) is caused by deleterious mutations in the LDLR that increase markedly low-density lipoprotein (LDL) cholesterol and cause premature atherosclerotic cardiovascular disease. Functional effects of pathogenic LDLR variants identified in Brazilian FH patients were assessed using in vitro and in silico studies. Variants in LDLR and other FH-related genes were detected by exon-target gene sequencing. T-lymphocytes were isolated from 26 FH patients, and 3 healthy controls and LDLR expression and activity were assessed by flow cytometry and confocal microscopy. The impact of LDLR missense variants on protein structure was assessed by molecular modeling analysis. Ten pathogenic or likely pathogenic LDLR variants (six missense, two stop-gain, one frameshift, and one in splicing region) and six non-pathogenic variants were identified. Carriers of pathogenic and non-pathogenic variants had lower LDL binding and uptake in activated T-lymphocytes compared to controls (p < 0.05), but these variants did not influence LDLR expression on cell surface. Reduced LDL binding and uptake was also observed in carriers of LDLR null and defective variants. Modeling analysis showed that p.(Ala431Thr), p.(Gly549Asp) and p.(Gly592Glu) disturb intramolecular interactions of LDLR, and p.(Gly373Asp) and p.(Ile488Thr) reduce the stability of the LDLR protein. Docking and molecular interactions analyses showed that p.(Cys184Tyr) and p.(Gly373Asp) alter interaction of LDLR with Apolipoprotein B (ApoB). In conclusion, LDLR null and defective variants reduce LDL binding capacity and uptake in activated T-lymphocytes of FH patients and LDLR missense variants affect LDLR conformational stability and dissociation of the LDLR-ApoB complex, having a potential role in FH pathogenesis.
Collapse
Affiliation(s)
- Thais Kristini Almendros Barbosa
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Elisangela Rodrigues da Silva Marçal
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | | | - André Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA 02115, United States
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil; Department of Teaching and Research, Real e Benemerita Associaçao Portuguesa de Beneficiencia, Sao Paulo 01323-001, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo 01506-000, Brazil
| | - Helena Bonciani Nader
- Department of Biochemistry, School of Medicine, Federal University of Sao Paulo, Sao Paulo 04044-020, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
33
|
Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int J Mol Sci 2023; 24:ijms24043224. [PMID: 36834635 PMCID: PMC9961636 DOI: 10.3390/ijms24043224] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two pathogenic variants, respectively, in the three main genes that are responsible for the autosomal dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5, ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant in a causative gene. The presence of several common variants was also considered a genetic basis of FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability among patients. This review aims to report the updates on the genetic and molecular bases of FH with their implication for molecular diagnosis.
Collapse
|
34
|
A haemochromatosis-causing HFE mutation is associated with SARS-CoV-2 susceptibility in the Czech population. Clin Chim Acta 2023; 538:211-215. [PMID: 36572138 PMCID: PMC9788844 DOI: 10.1016/j.cca.2022.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND Coronavirus disease (COVID-19), which is caused by the SARS-CoV-2 virus, has become a global pandemic. While susceptibility to COVID-19 is subject to several external factors, including hypertension, BMI, and the presence of diabetes, it is also genetically determined to a significant extent. Infectious agents require iron (Fe) for proper functioning. Carriers of mutations resulting in increased iron concentrations are understood to be at increased risk of COVID-19. METHODS We examined HFE genotypes associated with hereditary haemochromatosis (rs1800562 and rs1799945 SNPs) in 617 COVID-19 patients (166 asymptomatic, 246 symptomatic and 205 hospitalised survivors) and 2 559 population-based controls. RESULTS We found a higher frequency of the minor allele (Tyr282) of the rs1800562 polymorphism (P < 0.002) in patients compared to controls (8.5 % vs 5.5 %). Non-carriers of the minor allele were protected against SARS-Cov-2 infection (OR, 95 %CI; 0.59, 0.42-0.82). The frequency of minor allele carriers was almost identical across asymptomatic, symptomatic, and hospitalised survivors. The rs1799945 variant did not affect disease severity and its occurrence was almost identical in patients and controls (P between 0.58 and 0.84). CONCLUSIONS In conclusion, our results indicate that presence of the rs1800562 minor allele, which is associated with hereditary haemochromatosis (thus increased levels of plasma Fe), increases susceptibility to SARS-CoV-2.
Collapse
|
35
|
Zubielienė K, Valterytė G, Jonaitienė N, Žaliaduonytė D, Zabiela V. Familial Hypercholesterolemia and Its Current Diagnostics and Treatment Possibilities: A Literature Analysis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1665. [PMID: 36422206 PMCID: PMC9692978 DOI: 10.3390/medicina58111665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 09/30/2023]
Abstract
Familial hypercholesterolemia (FH) is a common, inherited disorder of cholesterol metabolism. This pathology is usually an autosomal dominant disorder and is caused by inherited mutations in the APOB, LDLR, and PCSK9 genes. Patients can have a homozygous or a heterozygous genotype, which determines the severity of the disease and the onset age of cardiovascular disease (CVD) manifestations. The incidence of heterozygous FH is 1: 200-250, whereas that of homozygous FH is 1: 100.000-160.000. Unfortunately, FH is often diagnosed too late and after the occurrence of a major coronary event. FH may be suspected in patients with elevated blood low-density lipoprotein cholesterol (LDL-C) levels. Moreover, there are other criteria that help to diagnose FH. For instance, the Dutch Lipid Clinical Criteria are a helpful diagnostic tool that is used to diagnose FH. FH often leads to the development of early cardiovascular disease and increases the risk of sudden cardiac death. Therefore, early diagnosis and treatment of this disease is very important. Statins, ezetimibe, bile acid sequestrants, niacin, PCSK9 inhibitors (evolocumab and alirocumab), small-interfering-RNA-based therapeutics (inclisiran), lomitapide, mipomersen, and LDL apheresis are several of the available treatment possibilities that lower LDL-C levels. It is important to say that the timeous lowering of LDL-C levels can reduce the risk of cardiovascular events and mortality in patients with FH. Therefore, it is essential to increase awareness of FH in order to reduce the burden of acute coronary syndrome (ACS).
Collapse
Affiliation(s)
- Kristina Zubielienė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Hospital, LT-45130 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307, Kaunas, Lithuania
| | - Gintarė Valterytė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Neda Jonaitienė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
| | - Diana Žaliaduonytė
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Hospital, LT-45130 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307, Kaunas, Lithuania
| | - Vytautas Zabiela
- Department of Cardiology, Lithuanian University of Health Sciences Kaunas Clinics, LT-50161 Kaunas, Lithuania
- Kaunas Region Society of Cardiology, LT-44307, Kaunas, Lithuania
- Institute of Cardiology Kaunas, Cardiology Research Automation Laboratory, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
36
|
Poznyak AV, Litvinova L, Poggio P, Orekhov AN, Melnichenko AA. Familial Hypercholesterolaemia as a Predisposing Factor for Atherosclerosis. Biomedicines 2022; 10:biomedicines10102639. [PMID: 36289901 PMCID: PMC9599590 DOI: 10.3390/biomedicines10102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Lipid metabolism alterations are an important component of the pathogenesis of atherosclerosis. However, it is now clear that the atherogenesis process involves more than one mechanism, and more than one condition can predispose this condition. Multiple risk factors contribute to the atherosclerosis initiation and define its course. Familial hypercholesterolaemia is a disorder of lipid metabolism that often leads to atherosclerosis development. As is clear from the disease name, the hallmark is the increased levels of low-density lipoprotein cholesterol (LDL-C) in blood. This creates favourable conditions for atherogenesis. In this review, we briefly described the familial hypercholesterolaemia and summarized data on the relationship between familial hypercholesterolaemia and atherosclerosis.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, Moscow 121609, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 6 Gaidara Street, Kaliningrad 236001, Russia
| | - Paolo Poggio
- Unit for Study of Aortic, Valvular and Coronary Pathologies, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138 Milan, Italy
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, Moscow 121609, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
- Correspondence: (A.V.P.); (A.N.O.)
| | - Alexandra A. Melnichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, Moscow 125315, Russia
| |
Collapse
|
37
|
Nayara Góes de Araújo J, Fernandes de Oliveira V, Bassani Borges J, Dagli-Hernandez C, da Silva Rodrigues Marçal E, Caroline Costa de Freitas R, Medeiros Bastos G, Marques Gonçalves R, Arpad Faludi A, Elim Jannes C, da Costa Pereira A, Dominguez Crespo Hirata R, Hiroyuki Hirata M, Ducati Luchessi A, Nogueira Silbiger V. In silico analysis of upstream variants in Brazilian patients with Familial Hypercholesterolemia. Gene X 2022; 849:146908. [PMID: 36167182 DOI: 10.1016/j.gene.2022.146908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/16/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022] Open
Abstract
Familial hypercholesterolemia (FH) is a prevalent autosomal genetic disease associated with increased risk of early cardiovascular events and death due to chronic exposure to very high levels of low-density lipoprotein cholesterol (LDL-c). Pathogenic variants in the coding regions of LDLR, APOB and PCSK9 account for most FH cases, and variants in non-coding regions maybe involved in FH as well. Variants in the upstream region of LDLR, APOB and PCSK9 were screened by targeted next-generation sequencing and their effects were explored using in silico tools. Twenty-five patients without pathogenic variants in FH-related genes were selected. 3 kb upstream regions of LDLR, APOB and PCSK9 were sequenced using the AmpliSeq (Illumina) and Miseq Reagent Nano Kit v2 (Illumina). Sequencing data were analyzed using variant discovery and functional annotation tools. Potentially regulatory variants were selected by integrating data from public databases, published data and context-dependent regulatory prediction score. Thirty-four single nucleotide variants (SNVs) in upstream regions were identified (6 in LDLR, 15 in APOB, and 13 in PCSK9). Five SNVs were prioritized as potentially regulatory variants (rs934197, rs9282606, rs36218923, rs538300761, g.55038486A>G). APOB rs934197 was previously associated with increased rate of transcription, which in silico analysis suggests that could be due to reducing binding affinity of a transcriptional repressor. Our findings highlight the importance of variant screening outside of coding regions of all relevant genes. Further functional studies are necessary to confirm that prioritized variants could impact gene regulation and contribute to the FH phenotype.
Collapse
Affiliation(s)
- Jéssica Nayara Góes de Araújo
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Jéssica Bassani Borges
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute Dante Pazzanese of Cardiology, Sao Paulo, 04012-909, Brazil; Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | | | - André Arpad Faludi
- Medical Clinic Division, Institute Dante Pazzanese of Cardiology, Sao Paulo 04012-909, Brazil
| | - Cinthia Elim Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo 05403-900, Brazil
| | - Alexandre da Costa Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of Sao Paulo 05403-900, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - André Ducati Luchessi
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Vivian Nogueira Silbiger
- Northeast Biotechnology Network (RENORBIO), Graduate Program in Biotechnology, Federal University of Rio Grande do Norte, Natal 59078-900, Brazil; Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil.
| |
Collapse
|
38
|
Blokhina AV, Ershova AI, Meshkov AN, Kiseleva AV, Klimushina MV, Zharikova AA, Sotnikova EA, Ramensky VE, Drapkina OM. Phenotypic vs. genetic cascade screening for familial hypercholesterolemia: A case report. Front Cardiovasc Med 2022; 9:982607. [PMID: 36093134 PMCID: PMC9453448 DOI: 10.3389/fcvm.2022.982607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022] Open
Abstract
One of the most common autosomal dominant disorders is familial hypercholesterolemia (FH), causing premature atherosclerotic cardiovascular diseases and a high risk of death due to lifelong exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels. FH has a proven arsenal of treatments and the opportunity for genetic diagnosis. Despite this, FH remains largely underdiagnosed worldwide. Cascade screening is a cost-effective method for the identification of new patients with FH and the prevention of cardiovascular diseases. It is usually based only on clinical data. We describe a 48-year-old index patient with a very high LDL-C level without controlled guidelines-based medication, premature atherosclerosis, and a rare variant in the low-density lipoprotein receptor (LDLR) gene. Phenotypic cascade screening identified three additional FH relatives, namely the proband's daughter, and two young grandsons. The genetic screening made it possible to rule out FH in the proband's younger grandson. This clinical case demonstrates that genetic cascade screening is the most effective way of identifying new FH cases. We also first described in detail the phenotype of patients with a likely pathogenic variant LDLR-p.K223_D227dup.
Collapse
Affiliation(s)
- Anastasia V. Blokhina
- Laboratory of Clinomics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- *Correspondence: Anastasia V. Blokhina
| | - Alexandra I. Ershova
- Laboratory of Clinomics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Alexey N. Meshkov
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna V. Kiseleva
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Marina V. Klimushina
- Department for the Study of Biochemical Risk Markers of Chronic Noncommunicable Diseases, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anastasia A. Zharikova
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeniia A. Sotnikova
- Laboratory of Molecular Genetics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Vasily E. Ramensky
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Laboratory of Genomic and Medical Bioinformatics, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Oxana M. Drapkina
- Department of Fundamental and Applied Aspects of Obesity, National Medical Research Center for Therapy and Preventive Medicine of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| |
Collapse
|
39
|
Diboun I, Al-Sarraj Y, Toor SM, Mohammed S, Qureshi N, Al Hail MSH, Jayyousi A, Al Suwaidi J, Albagha OME. The Prevalence and Genetic Spectrum of Familial Hypercholesterolemia in Qatar Based on Whole Genome Sequencing of 14,000 Subjects. Front Genet 2022; 13:927504. [PMID: 35910211 PMCID: PMC9337875 DOI: 10.3389/fgene.2022.927504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an inherited disease characterized by reduced efficiency of low-density lipoprotein-cholesterol (LDL-C) removal from the blood and, consequently, an increased risk of life-threatening early cardiovascular complications. In Qatar, the prevalence of FH has not been determined and the disease, as in many countries, is largely underdiagnosed. In this study, we combined whole-genome sequencing data from the Qatar Genome Program with deep phenotype data from Qatar Biobank for 14,056 subjects to determine the genetic spectrum and estimate the prevalence of FH in Qatar. We used the Dutch Lipid Clinic Network (DLCN) as a diagnostic tool and scrutinized 11 FH-related genes for known pathogenic and possibly pathogenic mutations. Results revealed an estimated prevalence of 0.8% (1:125) for definite/probable cases of FH in the Qatari population. We detected 16 known pathogenic/likely pathogenic mutations in LDLR and one in PCSK9; all in a heterozygous state with high penetrance. The most common mutation was rs1064793799 (c.313+3A >C) followed by rs771019366 (p.Asp90Gly); both in LDLR. In addition, we identified 18 highly penetrant possibly pathogenic variants, of which 5 were Qatari-specific, in LDLR, APOB, PCSK9 and APOE, which are predicted to be among the top 1% most deleterious mutations in the human genome but further validations are required to confirm their pathogenicity. We did not detect any homozygous FH or autosomal recessive mutations in our study cohort. This pioneering study provides a reliable estimate of FH prevalence in Qatar based on a significantly large population-based cohort, whilst uncovering the spectrum of genetic variants associated with FH.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Medical and Population Genomics Lab, Sidra Medicine, Doha, Qatar
| | - Yasser Al-Sarraj
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation (QF), Doha, Qatar
| | - Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
| | - Shaban Mohammed
- Department of Pharmacy, Hamad Medical Corporation, Doha, Qatar
| | - Nadeem Qureshi
- Primary Care Stratified Medicine Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | - Amin Jayyousi
- Department of Diabetes, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Jassim Al Suwaidi
- Adult Cardiology, Heart Hospital, Hamad Medical Corporation (HMC), Doha, Qatar
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha, Qatar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Omar M. E. Albagha,
| |
Collapse
|
40
|
Lima IR, Tada MT, Oliveira TG, Jannes CE, Bensenor I, Lotufo PA, Santos RD, Krieger JE, Pereira AC. Polygenic risk score for hypercholesterolemia in a Brazilian familial hypercholesterolemia cohort. ATHEROSCLEROSIS PLUS 2022; 49:47-55. [PMID: 36644206 PMCID: PMC9833269 DOI: 10.1016/j.athplu.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Background and aims Familial hypercholesterolemia (FH) is a genetic disorder characterized by high levels of LDL-C leading to premature cardiovascular disease (CAD). Only about 40% of individuals with a clinical diagnosis of FH have a causative genetic variant identified, and a proportion of genetically negative cases may have a polygenic cause rather than a still unidentified monogenic cause. This work aims to evaluate and validate the role of a polygenic risk score (PRS) associated with hypercholesterolemia in a Brazilian FH cohort and its clinical implications. Methods We analyzed a previously derived PRS of 12 and 6 SNPs (Single Nucleotide Polymorphism) in 684 FH individuals (491 mutation-negative [FH/M-], 193 mutation-positive [FH/M+]) and in 1605 controls. Coronary artery calcium (CAC) score was also evaluated. Results The PRS was independently associated with LDL-C in control individuals (p < 0.001). Within this group, in individuals in the highest quartile of the 12 SNPs PRS, the odds ratio for CAC score >100 was 1.7 (95% CI: 1.01-2.88, p = 0.04) after adjustment for age and sex. Subjects in the FH/M- group had the highest mean score in both 12 and 6 SNPs PRS (38.25 and 27.82, respectively) when compared to the other two groups (p = 2.2 × 10-16). Both scores were also higher in the FH/M+ group (36.48 and 26.26, respectively) when compared to the control group (p < 0.001 for the two scores) but inferior to the FH/M- group. Within FH individuals, the presence of a higher PRS score was not associated with LDL-C levels or with CAD risk. Conclusion A higher PRS is associated with significantly higher levels of LDL-C and it is independently associated with higher CAC in the Brazilian general population. A polygenic cause can explain a fraction of FH/M- individuals but does not appear to be a modulator of the clinical phenotype among FH individuals, regardless of mutation status.
Collapse
Affiliation(s)
- Isabella Ramos Lima
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil,Corresponding author.
| | - Mauricio Teruo Tada
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Theo G.M. Oliveira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Cinthia Elim Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Isabela Bensenor
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Paulo A. Lotufo
- Center for Clinical and Epidemiologic Research, University of São Paulo, São Paulo, Brazil
| | - Raul D. Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Jose E. Krieger
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil,Genetics Department, Harvard Medical School, Boston, MA, USA,Corresponding author. Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
41
|
Berta E, Zsíros N, Bodor M, Balogh I, Lőrincz H, Paragh G, Harangi M. Clinical Aspects of Genetic and Non-Genetic Cardiovascular Risk Factors in Familial Hypercholesterolemia. Genes (Basel) 2022; 13:genes13071158. [PMID: 35885941 PMCID: PMC9321861 DOI: 10.3390/genes13071158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Familial hypercholesterolemia (FH) is the most common monogenic metabolic disorder characterized by considerably elevated low-density lipoprotein cholesterol (LDL-C) levels leading to enhanced atherogenesis, early cardiovascular disease (CVD), and premature death. However, the wide phenotypic heterogeneity in FH makes the cardiovascular risk prediction challenging in clinical practice to determine optimal therapeutic strategy. Beyond the lifetime LDL-C vascular accumulation, other genetic and non-genetic risk factors might exacerbate CVD development. Besides the most frequent variants of three genes (LDL-R, APOB, and PCSK9) in some proband variants of other genes implicated in lipid metabolism and atherogenesis are responsible for FH phenotype. Furthermore, non-genetic factors, including traditional cardiovascular risk factors, metabolic and endocrine disorders might also worsen risk profile. Although some were extensively studied previously, others, such as common endocrine disorders including thyroid disorders or polycystic ovary syndrome are not widely evaluated in FH. In this review, we summarize the most important genetic and non-genetic factors that might affect the risk prediction and therapeutic strategy in FH through the eyes of clinicians focusing on disorders that might not be in the center of FH research. The review highlights the complexity of FH care and the need of an interdisciplinary attitude to find the best therapeutic approach in FH patients.
Collapse
Affiliation(s)
- Eszter Berta
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.); (N.Z.); (H.L.); (G.P.)
| | - Noémi Zsíros
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.); (N.Z.); (H.L.); (G.P.)
| | - Miklós Bodor
- Division of Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Hajnalka Lőrincz
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.); (N.Z.); (H.L.); (G.P.)
| | - György Paragh
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.); (N.Z.); (H.L.); (G.P.)
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (E.B.); (N.Z.); (H.L.); (G.P.)
- Correspondence: ; Tel./Fax: +36-52-442-101
| |
Collapse
|
42
|
Li YZ, Wang YY, Huang L, Zhao YY, Chen LH, Zhang C. Annexin A Protein Family in Atherosclerosis. Clin Chim Acta 2022; 531:406-417. [PMID: 35562096 DOI: 10.1016/j.cca.2022.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 12/25/2022]
Abstract
Atherosclerosis, a silent chronic vascular pathology, is the cause of the majority of cardiovascular ischaemic events. Atherosclerosis is characterized by a series of deleterious changes in cellularity, including endothelial dysfunction, transmigration of circulating inflammatory cells into the arterial wall, pro-inflammatory cytokines production, lipid accumulation in the intima, vascular local inflammatory response, atherosclerosis-related cells apoptosis and autophagy. Proteins of Annexin A (AnxA) family, the well-known Ca2+ phospholipid-binding protein, have many functions in regulating inflammation-related enzymes and cell signaling transduction, thus influencing cell adhesion, migration, differentiation, proliferation and apoptosis. There is now accumulating evidence that some members of the AnxA family, such as AnxA1, AnxA2, AnxA5 and AnxA7, play major roles in the development of atherosclerosis. This article discusses the major roles of AnxA1, AnxA2, AnxA5 and AnxA7, and the multifaceted mechanisms of the main biological process in which they are involved in atherosclerosis. Considering these evidences, it has been proposed that AnxA are drivers- and not merely participator- on the road to atherosclerosis, thus the progression of atherosclerosis may be prevented by targeting the expression or function of the AnxA family proteins.
Collapse
Affiliation(s)
- Yong-Zhen Li
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Liang Huang
- Research Laboratory of Translational Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yu-Yan Zhao
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Lin-Hui Chen
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, People's Republic of China.
| |
Collapse
|
43
|
Genetic Polymorphisms in a Familial Hypercholesterolemia Population from North-Eastern Europe. J Pers Med 2022; 12:jpm12030429. [PMID: 35330428 PMCID: PMC8949493 DOI: 10.3390/jpm12030429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: Familial hypercholesterolemia (FH) is one of the most prevalent inherited metabolic disorders. The purpose of the study was to investigate the role in cardiovascular disease (CVD) of PAI-1, ACE, ApoB-100, MTHFR A1298C, and C677T. (2) Methods: From a group of 1499 patients, we included 52 patients diagnosed with FH phenotype and 17 patients in a control group. (3) Results: Most of the FH patients had multiple comorbidities compared to the control group, such as atherosclerosis (48.1% vs. 17.6%), atherosclerotic cardiovascular disease (ASCVD 32.7% vs. 11.8%), and metabolic syndrome (MetS, 40.4% vs. 11.8%). In total, 66.7% of the FH patients had PAI-1 4G/5G genotype and MetS. Between 4G/5G and 4G/4G, a statistically significant difference was observed (p = 0.013). FH patients with ApoB R3500Q polymorphism were correlated with ASCVD (p = 0.031). Both MTHFR C677T and A1298C polymorphisms had a significant correlation with gender, alcohol consumption, and smoking status. ACE polymorphism was associated with ATS in FH patients, statistically significant differences being observed between heterozygous and homozygous D genotype (p = 0.036) as well as between heterozygous and homozygous I genotype (p = 0.021). (4) Conclusions: A link between these polymorphisms was demonstrated in the FH group for ATS, ASCVD, and MetS.
Collapse
|
44
|
Todorovova V, Altschmiedova T, Vrablik M, Ceska R. Familial Hypercholesterolemia: Real-World Data of 1236 Patients Attending a Czech Lipid Clinic. A Retrospective Analysis of Experience in More than 50 years. Part I: Genetics and Biochemical Parameters. Front Genet 2022; 13:849008. [PMID: 35295947 PMCID: PMC8918685 DOI: 10.3389/fgene.2022.849008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: The cause of familial hypercholesterolemia (FH) is defect in LDL receptor or familial defect of apolipoprotein B-100 (FDB) or, rarely, defect in proprotein convertase subtilisin/kexin type 9. Identification and treatment of patients with FH improves their prognosis. Our data represent retrospective analysis of 50 years of specialised care in our center. Patients and Methods: A group of 1236 FH patients (841 women, 395 men; 993 study subjects and 243 relatives; mean age 44.8 ± 16.7 years) included 154 FDB patients followed at the Lipid Clinic of the General University Hospital in Prague since the mid-1960s to the present. Clinical diagnosis was based on the Dutch Lipid Clinic Network Criteria. Genetic analysis was performed using PCR-RFLP to detect FDB and apolipoprotein E (APOE) polymorphism. Biochemical data were collected and statistically analysed. Results: At baseline, mean LDL-C and total cholesterol (TC) levels of all FH patients combined were 6.49 ± 1.92 mmol/L and 8.95 ± 1.95 mmol/L, respectively. Their LDL-C levels decreased to 3.26 ± 1.57 mmol/L and TC levels to 5.43 ± 1.69 mmol/L during follow-up. In the subgroup of LDL receptor-mediated FH (non-FDB) patients, baseline LDL-C and TC levels of 6.61 ± 1.95 mmol/L and 9.09 ± 1.97 mmol/L declined to 3.21 ± 1.60 mmol/L and 5.39 ± 1.72 mmol/L, respectively, during follow-up. In the FDB subgroup of patients, baseline levels of LDL-C and TC were 5.57 ± 1.46 mmol/L and 7.88 ± 1.58 mmol/L decreasing to 3.45 ± 0.24 mmol/L and 5.58 ± 1.37 mmol/L, respectively, during follow-up. Differences were also found in the effects of various APOE isoforms on lipid lowering. A significant decrease in lipid parameters was observed with the E2E2 isoform whereas a minimal decrease was seen with the E4E4 and E3E3 isoforms. Conclusion: Whereas, overall, non-FDB patients had higher baseline lipid levels, these levels declined more appreciably compared with FDB patients during follow-up. Our retrospective analysis also found different effects of APOE isoforms on the decrease in lipid levels.
Collapse
Affiliation(s)
| | - Tereza Altschmiedova
- Third Department of Medicine—Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | | | | |
Collapse
|
45
|
Langsted A, Nordestgaard BG. Lipoprotein(a) as Part of the Diagnosis of Clinical Familial Hypercholesterolemia. Curr Atheroscler Rep 2022; 24:289-296. [PMID: 35107760 DOI: 10.1007/s11883-022-01002-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Individuals with familial hypercholesterolemia have very high risk of cardiovascular disease due to lifelong elevations in LDL cholesterol. Elevated lipoprotein(a) is a risk factor for cardiovascular diseases such as myocardial infarction and aortic valve stenosis. It has been proposed to include elevated lipoprotein(a) in the diagnosis of clinical familial hypercholesterolemia. RECENT FINDINGS Lipoprotein(a) is co-measured in LDL cholesterol, and up to one-quarter of all diagnoses of clinical familial hypercholesterolemia are due to high levels of lipoprotein(a). Further, individuals with both familial hypercholesterolemia and elevated lipoprotein(a) have an extremely high risk of myocardial infarction. We discuss the background for familial hypercholesterolemia and elevated lipoprotein(a) as risk factors for cardiovascular disease and the consequences of the fact that LDL cholesterol measurements/calculations include the cholesterol present in lipoprotein(a). Finally, we discuss the potential of including lipoprotein(a) as part of the diagnosis of familial hypercholesterolemia and in consequence possible treatments.
Collapse
Affiliation(s)
- Anne Langsted
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark.
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark.
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls vej 1, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Pillai KKB, Shah SAV, Reddy LL, Ashavaid TF, Vishwanathan S. Targeted Exome Sequencing in South Indian patients with Familial Hypercholesterolemia. Clin Chim Acta 2022; 527:47-55. [PMID: 34998859 DOI: 10.1016/j.cca.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder with elevated LDL-C levels which can ultimately lead to premature Coronary Artery Disease (CAD). OBJECTIVES In presence of limited genetic data on FH in India, the present study was aimed to determine the mutation spectrum in Indian FH patients using a targeted exome sequencing. METHODS 54 FH cases (31 index cases + 23 extended family members) were categorized according to Dutch Lipid Clinic Network Criteria (DLCNC). Targeted exome sequencing was performed using 23 gene panel associated with lipid metabolism. RESULTS All subjects showed the presence of family history of CAD, 38(70%) patients had corneal arcus whereas only 06(11%) subjects had xanthomas. As per the DLCNC, definite, probable, possible and unlikely FH were 48%, 30%, 11% and 11% respectively. Mutations were observed in 12 of the 23 gene panel with CETP, APOA5, EPHX2 and SREBP2 genes were identified for the first time in Indian FH patients. All 19 mutations including a novel frame-shift mutation in LDLR gene were reported for the first time in Indian FH patients. These mutations were identified in 28(52%) subjects and interestingly ∼73% of the clinically identified FH patients didn't harbour mutations in FH classical genes (LDLR, ApoB, PCSK9). CONCLUSION This is the first study in the South Indian FH patients to perform targeted exome sequencing. Absence of mutations in the FH classical genes strongly indicates the polygenic nature of FH, further underscoring the importance of targeted exome sequencing for identifying mutations in genetically diverse Indian population.
Collapse
Affiliation(s)
| | | | | | | | - Sunitha Vishwanathan
- Department of Cardiology, Government Medical College, Trivandrum, Kerala, India.
| |
Collapse
|
47
|
Tandirerung FJ. The Clinical Importance of Differentiating Monogenic Familial Hypercholesterolemia from Polygenic Hypercholesterolemia. Curr Cardiol Rep 2022; 24:1669-1677. [PMID: 36083530 PMCID: PMC9729145 DOI: 10.1007/s11886-022-01783-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The current review discusses the importance and significance of differentiating monogenic familial hypercholesterolemia (FH) from polygenic hypercholesterolemia for clinical purpose. RECENT FINDINGS Consistent scientific evidence have demonstrated that, compared to polygenic hypercholesterolemia, monogenic FH patients are at significantly higher risk for premature coronary heart disease (CHD). This is despite both disease entities having a comparable low-density-lipoprotein cholesterol (LDLC) level. Monogenic FH also has poorer therapeutic response compared to its polygenic counterpart. However, there are no current available clinical management guidelines that stratify hypercholesterolemia patients based on genotype. Monogenic FH patients are at higher risk for CHD with poorer therapeutic response. Thus, genotype testing should be performed when available. There is also an urgency to develop genotype-based clinical guideline that stratify patients on genotype and not only based on traditionally known cardiovascular risk factors.
Collapse
Affiliation(s)
- Fistra Janrio Tandirerung
- grid.83440.3b0000000121901201The Institute of Cardiovascular Science, University College London (UCL), Gower Street, London, WC1E 6BT UK
| |
Collapse
|
48
|
Rizos CV, Skoumas I, Rallidis L, Skalidis E, Tziomalos K, Garoufi A, Anagnostis P, Sfikas G, Kotsis V, Doumas M, Kolovou G, Lambadiari V, Dima I, Kiouri E, Zacharis E, Agapakis D, Attilakos A, Antza C, Vlachopoulos C, Liberopoulos EN. LDL cholesterol target achievement in heterozygous familial hypercholesterolemia patients according to 2019 ESC/EAS lipid guidelines: Implications for newer lipid-lowering treatments. Int J Cardiol 2021; 345:119-124. [PMID: 34687802 DOI: 10.1016/j.ijcard.2021.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/09/2021] [Accepted: 10/15/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND The 2019 European guidelines (ESC/EAS) for the treatment of dyslipidaemias recommend more aggressive targets for low-density lipoprotein cholesterol (LDL-C) in patients with familial hypercholesterolemia (FH). Current lipid-lowering treatment is often inadequate to achieve these targets. METHODS Data from the HELLAS-FH registry were analysed to assess achievement of LDL-C targets in adults with FH based on the 2019 ESC/EAS guidelines. In patients who had not achieved LDL-C target, the maximally reduced LDL-C value was calculated after theoretical switch to rosuvastatin/ezetimibe 40/10 mg/day. The percentage of patients who remained candidates for proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) was then calculated. RESULTS Patients (n = 1694, mean age 50.8 ± 14.7 years) had LDL-C levels 242 ± 71 mg/dL (6.3 ± 1.8 mmol/L) at diagnosis. Most treated patients were receiving statins (97.5%) and about half were on additional ezetimibe (47.5%). Based on the 2019 ESC/EAS guidelines the percentage of patients achieving LDL-C goals was only 2.7%. Following theoretical up titration to rosuvastatin/ezetimibe 40/10 mg, LDL-C target achievement rate would increase to 5.9%. In this scenario, most patients (55.9%) would be eligible for PCSK9i treatment. Following theoretical administration of a PCSK9i, LDL-C target achievement rate would rise to 57.6%. However, 42.4% of patients would still be eligible for further LDL-C lowering treatment. CONCLUSIONS Most FH patients do not reach new LDL-C targets even if on maximum intensity statin/ezetimibe treatment. In this case, more than half of FH patients are candidates for PCSK9i therapy and a considerable proportion may still require additional LDL-C lowering.
Collapse
Affiliation(s)
- Christos V Rizos
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | - Ioannis Skoumas
- Cardiology Clinic, Hippokration General Hospital, Athens, Greece
| | - Loukianos Rallidis
- Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Emmanouil Skalidis
- Cardiology Clinic, University General Hospital of Heraklion, Heraklion, Greece
| | - Konstantinos Tziomalos
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Anastasia Garoufi
- Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Β' Pediatrics Clinic, General Children's Hospital "Pan. & Aglaia Kyriakou", Athens, Greece
| | | | - George Sfikas
- Department of Internal Medicine, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Vasileios Kotsis
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital Thessaloniki, Thessaloniki, Greece
| | - Michalis Doumas
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Hippokration General Hospital, Thessaloniki, Greece
| | - Genovefa Kolovou
- Cardiometabolic Center, Lipid Clinic, LA apheresis Unit, Metropolitan Hospital, Athens, Greece
| | - Vaia Lambadiari
- 2nd Propaedeutic Internal Medicine Department and Diabetes Research Unit, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Ioanna Dima
- Cardiology Clinic, Hippokration General Hospital, Athens, Greece
| | - Estela Kiouri
- Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens, Greece
| | - Evangelos Zacharis
- Cardiology Clinic, University General Hospital of Heraklion, Heraklion, Greece
| | - Dimitrios Agapakis
- 1st Propaedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece; Department of Internal Medicine, Goumenissa, Greece
| | - Achilleas Attilakos
- Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, C' Pediatrics Clinic, Attikon University General Hospital, Athens, Greece
| | - Christina Antza
- Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Papageorgiou General Hospital Thessaloniki, Thessaloniki, Greece
| | - Charalambos Vlachopoulos
- 1st Department of Cardiology, Medical School, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | | |
Collapse
|
49
|
Miyazawa K, Ito K. Genetic Analysis for Coronary Artery Disease Toward Diverse Populations. Front Genet 2021; 12:766485. [PMID: 34880905 PMCID: PMC8646044 DOI: 10.3389/fgene.2021.766485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Coronary artery disease is one of the leading causes of death in the world, and as such, it is one of the diseases for which genetic analyses have been actively conducted. In the early days, analyses of families with the aggregation of early-onset myocardial infarction, such as those with familial hypercholesterolemia, was the main focus, but since the practical application of genome-wide association study, the analysis of coronary artery disease as a common disease has progressed, and many disease-susceptibility loci have been identified. In addition, with the advancement of technologies, it has become possible to identify relatively rare genetic variants in a population-based analysis. These advances have not only revealed the detailed disease mechanisms but have also enabled the quantification of individual genetic risk and the development of new therapeutic agents. In this paper, some of those items, which are important to know in the current genetic analyses for coronary artery disease, are discussed.
Collapse
Affiliation(s)
- Kazuo Miyazawa
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
50
|
Sun TH, Shao YHJ, Mao CL, Hung MN, Lo YY, Ko TM, Hsiao TH. A Novel Quality-Control Procedure to Improve the Accuracy of Rare Variant Calling in SNP Arrays. Front Genet 2021; 12:736390. [PMID: 34764980 PMCID: PMC8577504 DOI: 10.3389/fgene.2021.736390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Single-nucleotide polymorphism (SNP) arrays are an ideal technology for genotyping genetic variants in mass screening. However, using SNP arrays to detect rare variants [with a minor allele frequency (MAF) of <1%] is still a challenge because of noise signals and batch effects. An approach that improves the genotyping quality is needed for clinical applications. Methods: We developed a quality-control procedure for rare variants which integrates different algorithms, filters, and experiments to increase the accuracy of variant calling. Using data from the TWB 2.0 custom Axiom array, we adopted an advanced normalization adjustment to prevent false calls caused by splitting the cluster and a rare het adjustment which decreases false calls in rare variants. The concordance of allelic frequencies from array data was compared to those from sequencing datasets of Taiwanese. Finally, genotyping results were used to detect familial hypercholesterolemia (FH), thrombophilia (TH), and maturity-onset diabetes of the young (MODY) to assess the performance in disease screening. All heterozygous calls were verified by Sanger sequencing or qPCR. The positive predictive value (PPV) of each step was estimated to evaluate the performance of our procedure. Results: We analyzed SNP array data from 43,433 individuals, which interrogated 267,247 rare variants. The advanced normalization and rare het adjustment methods adjusted genotyping calling of 168,134 variants (96.49%). We further removed 3916 probesets which were discordant in MAFs between the SNP array and sequencing data. The PPV for detecting pathogenic variants with 0.01%10,000 are available. The results demonstrated our procedure could perform correct genotype calling of rare variants. It provides a solution of pathogenic variant detection through SNP array. The approach brings tremendous promise for implementing precision medicine in medical practice.
Collapse
Affiliation(s)
- Ting-Hsuan Sun
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Hsuan Joni Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Lin Mao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Miao-Neng Hung
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Yun Lo
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Tai-Ming Ko
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Research Center for Biomedical Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|