1
|
Khanna NN, Maindarkar MA, Viswanathan V, Puvvula A, Paul S, Bhagawati M, Ahluwalia P, Ruzsa Z, Sharma A, Kolluri R, Krishnan PR, Singh IM, Laird JR, Fatemi M, Alizad A, Dhanjil SK, Saba L, Balestrieri A, Faa G, Paraskevas KI, Misra DP, Agarwal V, Sharma A, Teji JS, Al-Maini M, Nicolaides A, Rathore V, Naidu S, Liblik K, Johri AM, Turk M, Sobel DW, Miner M, Viskovic K, Tsoulfas G, Protogerou AD, Mavrogeni S, Kitas GD, Fouda MM, Kalra MK, Suri JS. Cardiovascular/Stroke Risk Stratification in Diabetic Foot Infection Patients Using Deep Learning-Based Artificial Intelligence: An Investigative Study. J Clin Med 2022; 11:6844. [PMID: 36431321 PMCID: PMC9693632 DOI: 10.3390/jcm11226844] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies. Deep neural networks (DNN) are potent machines for learning that generalize nonlinear situations. The objective of this article is to propose a novel investigation of deep learning (DL) solutions for predicting CVD/stroke risk in DFI patients. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) search strategy was used for the selection of 207 studies. We hypothesize that a DFI is responsible for increased morbidity and mortality due to the worsening of atherosclerotic disease and affecting coronary artery disease (CAD). Since surrogate biomarkers for CAD, such as carotid artery disease, can be used for monitoring CVD, we can thus use a DL-based model, namely, Long Short-Term Memory (LSTM) and Recurrent Neural Networks (RNN) for CVD/stroke risk prediction in DFI patients, which combines covariates such as office and laboratory-based biomarkers, carotid ultrasound image phenotype (CUSIP) lesions, along with the DFI severity. We confirmed the viability of CVD/stroke risk stratification in the DFI patients. Strong designs were found in the research of the DL architectures for CVD/stroke risk stratification. Finally, we analyzed the AI bias and proposed strategies for the early diagnosis of CVD/stroke in DFI patients. Since DFI patients have an aggressive atherosclerotic disease, leading to prominent CVD/stroke risk, we, therefore, conclude that the DL paradigm is very effective for predicting the risk of CVD/stroke in DFI patients.
Collapse
Affiliation(s)
- Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi 110001, India
| | - Mahesh A. Maindarkar
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | | | - Anudeep Puvvula
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
- Annu’s Hospitals for Skin and Diabetes, Nellore 524101, India
| | - Sudip Paul
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Mrinalini Bhagawati
- Department of Biomedical Engineering, North Eastern Hill University, Shillong 793022, India
| | - Puneet Ahluwalia
- Max Institute of Cancer Care, Max Super Specialty Hospital, New Delhi 110017, India
| | - Zoltan Ruzsa
- Invasive Cardiology Division, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22904, USA
| | - Raghu Kolluri
- Ohio Health Heart and Vascular, Columbus, OH 43214, USA
| | | | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA 94574, USA
| | - Mostafa Fatemi
- Department of Physiology & Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Surinder K. Dhanjil
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138 Cagliari, Italy
| | - Antonella Balestrieri
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Gavino Faa
- Department of Pathology, Azienda Ospedaliero Universitaria, 09124 Cagliari, Italy
| | | | | | - Vikas Agarwal
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Aman Sharma
- Department of Immunology, SGPGIMS, Lucknow 226014, India
| | - Jagjit S. Teji
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
| | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON L4Z 4C4, Canada
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre, University of Nicosia Medical School, Egkomi 2408, Cyprus
| | | | - Subbaram Naidu
- Electrical Engineering Department, University of Minnesota, Duluth, MN 55812, USA
| | - Kiera Liblik
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Monika Turk
- The Hanse-Wissenschaftskolleg Institute for Advanced Study, 27753 Delmenhorst, Germany
| | - David W. Sobel
- Rheumatology Unit, National Kapodistrian University of Athens, 15772 Athens, Greece
| | - Martin Miner
- Men’s Health Centre, Miriam Hospital Providence, Providence, RI 02906, USA
| | - Klaudija Viskovic
- Department of Radiology and Ultrasound, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - George Tsoulfas
- Department of Surgery, Aristoteleion University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios D. Protogerou
- Cardiovascular Prevention and Research Unit, Department of Pathophysiology, National & Kapodistrian University of Athens, 15772 Athens, Greece
| | - Sophie Mavrogeni
- Cardiology Clinic, Onassis Cardiac Surgery Centre, 17674 Athens, Greece
| | - George D. Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, Dudley DY1 2HQ, UK
- Arthritis Research UK Epidemiology Unit, Manchester University, Manchester M13 9PL, UK
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID 83209, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA 95661, USA
| |
Collapse
|
2
|
Serdan TDA, Masi LN, Pereira JNB, Rodrigues LE, Alecrim AL, Scervino MVM, Diniz VLS, Dos Santos AAC, Filho CPBS, Alba-Loureiro TC, Marzuca-Nassr GN, Bazotte RB, Gorjão R, Pithon-Curi TC, Curi R, Hirabara SM. Impaired brown adipose tissue is differentially modulated in insulin-resistant obese wistar and type 2 diabetic Goto-Kakizaki rats. Biomed Pharmacother 2021; 142:112019. [PMID: 34403962 DOI: 10.1016/j.biopha.2021.112019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/13/2022] Open
Abstract
Brown adipose tissue (BAT) is a potential target to treat obesity and diabetes, dissipating energy as heat. Type 2 diabetes (T2D) has been associated with obesogenic diets; however, T2D was also reported in lean individuals to be associated with genetic factors. We aimed to investigate the differences between obese and lean models of insulin resistance (IR) and elucidate the mechanism associated with BAT metabolism and dysfunction in different IR animal models: a genetic model (lean GK rats) and obese models (diet-induced obese Wistar rats) at 8 weeks of age fed a high-carbohydrate (HC), high-fat (HF) diet, or high-fat and high-sugar (HFHS) diet for 8 weeks. At 15 weeks of age, BAT glucose uptake was evaluated by 18F-FDG PET under basal (saline administration) or stimulated condition (CL316,243, a selective β3-AR agonist). After CL316, 243 administrations, GK animals showed decreased glucose uptake compared to HC animals. At 16 weeks of age, the animals were euthanized, and the interscapular BAT was dissected for analysis. Histological analyses showed lower cell density in GK rats and higher adipocyte area compared to all groups, followed by HFHS and HF compared to HC. HFHS showed a decreased batokine FGF21 protein level compared to all groups. However, GK animals showed increased expression of genes involved in fatty acid oxidation (CPT1 and CPT2), BAT metabolism (Sirt1 and Pgc1-α), and obesogenic genes (leptin and PAI-1) but decreased gene expression of glucose transporter 1 (GLUT-1) compared to other groups. Our data suggest impaired BAT function in obese Wistar and GK rats, with evidence of a whitening process in these animals.
Collapse
Affiliation(s)
| | - Laureane Nunes Masi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | - Luiz Eduardo Rodrigues
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Amanda Lins Alecrim
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | | | | | | | | | | | | | | | - Renata Gorjão
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Rui Curi
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| |
Collapse
|
3
|
Andrews D, Godson C. Lipoxins and synthetic lipoxin mimetics: Therapeutic potential in renal diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158940. [PMID: 33839296 DOI: 10.1016/j.bbalip.2021.158940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
Inflammation and its timely resolution are critical to ensuring effective host defence and appropriate tissue repair after injury. Unresolved inflammation typifies many renal pathologies. The key drivers of the inflammatory response are well defined and targeted by conventional anti-inflammatory therapeutics. However, these are associated with undesirable side effects including immune suppression. More recently, there is growing appreciation that specialized lipid mediators [SPMs] including lipoxins promote the resolution of inflammation and endogenous repair mechanisms without compromising host defence. We discuss the pro-resolving bioactions of lipoxins and recent work that aims to harness their therapeutic potential in the context of kidney disease.
Collapse
Affiliation(s)
- Darrell Andrews
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Aryaie A, Tinsley G, Lee J, Watkins BA, Moore L, Alhaj-Saleh A, Shankar K, Wood SR, Wang R, Shen CL. Actions of annatto-extracted tocotrienol supplementation on obese postmenopausal women: study protocol for a double-blinded, placebo-controlled, randomised trial. BMJ Open 2020; 10:e034338. [PMID: 32152169 PMCID: PMC7064069 DOI: 10.1136/bmjopen-2019-034338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Obesity is a major health concern in postmenopausal women, and chronic low-grade inflammation contributes to the development of obesity. Cellular studies and high-fat-diet-induced obese mouse model mimicking obesity show the antiobesity effect of annatto-extracted tocotrienols (TT) with antioxidant capability. We aim to assess the safety and efficacy of TT consumption for lipid-related parameters in obese postmenopausal women. METHODS AND ANALYSIS Eligible obese postmenopausal women will be randomly assigned to placebo group (430 mg olive oil) and TT group (DeltaGold Tocotrienol 70%) for 24 weeks. In the present study, the primary outcome is total/regional fat mass and visceral adipose tissue. The secondary outcomes include lipid profile in serum, mRNA expression of fatty acid synthase and carnitine palmitoyltransferase 1A in fat tissue, oxylipins and endocannabinoids in plasma and adipose tissue, abundance and composition of intestinal microbiome in faeces, high-sensitivity C-reactive protein (hs-CRP) in serum and leptin in serum. Every participant will be evaluated at 0 (prior to starting intervention) and 24 weeks of intervention, except for serum lipid profile and hs-CRP at 0, 12 and 24 weeks. 'Intent-to-treat' principle is employed for data analysis. Hierarchical linear modelling is used to estimate the effects of dietary TT supplementation while properly accounting for dependency of data and identified covariates. To our knowledge, this is the first randomised, placebo-controlled, double-blinded study to determine dietary TT supplementation on an obese population. If successful, this study will guide the future efficacy TT interventions and TT can be implemented as an alternative for obese population in antiobesity management. ETHICS AND DISSEMINATION This study has been approved by the Bioethics Committee of the Texas Tech University Health Sciences Center, Lubbock. An informed consent form will be signed by a participant before enrolling in the study. The results from this trial will be actively disseminated through academic conference presentation and peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT03705845.
Collapse
Affiliation(s)
- Amir Aryaie
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Grant Tinsley
- Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Jaehoon Lee
- Educational Psychology and Leadership, Texas Tech University, Lubbock, Texas, USA
| | - Bruce A Watkins
- Nutrition, University of California Davis, Davis, California, USA
| | - Lane Moore
- Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, USA
| | - Adel Alhaj-Saleh
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kartik Shankar
- Pediatrics, University of Colorado Denver School of Medicine, Aurora, Colorado, USA
| | - Sarah R Wood
- Clinical Research Institutes, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
5
|
Madi NM, Ibrahim RR, Alghazaly GM, Marea KE, El-Saka MH. The prospective curative role of lipoxin A 4 in induced gastric ulcer in rats: Possible involvement of mitochondrial dynamics signaling pathway. IUBMB Life 2020; 72:1379-1392. [PMID: 32107872 DOI: 10.1002/iub.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022]
Abstract
This study purposed to examine the prospective curative role of lipoxin A4 (LXA4 ) in induced gastric ulcer in rats and explore the possible involvement of mitochondrial dynamics signaling pathway. Forty-eight male Wistar rats were divided into four groups: control, indomethacin (IND), IND + omeprazole (IND + Omez), and IND+ LXA4 groups. At the end of the experiment, the gastric pH, gastric fluid volume, total gastric acidity, ulcer index, and curative index were estimated. The gene expression of mitochondrial related protein 1 and mitofusin 2 were determined. In addition, some mitochondrial parameters include mitochondrial transmembrane potential, complex-I activity and reactive oxygen species were measured. Also, some gastric biochemical parameters, histopathological, and immunohistochemical analyses of the gastric mucosa were determined. We found that IND induced gastric ulcer, as manifested by the biochemical, histopathological, and immunohistochemical analyses. Both Omez and LXA4 treatment for 15 days alleviated the IND-induced gastric ulcer as explored by ameliorating the biochemical, histopathological, and immunohistochemical findings. We concluded that LXA4 mitigated the IND-induced gastric ulcer via improving the mitochondrial dynamic imbalance and mitochondrial dysfunction, in addition to its anti-apoptotic, anti-inflammatory, and antioxidant properties.
Collapse
Affiliation(s)
- Nermin M Madi
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rowida R Ibrahim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghada M Alghazaly
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Karima E Marea
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mervat H El-Saka
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Fu T, Mohan M, Brennan EP, Woodman OL, Godson C, Kantharidis P, Ritchie RH, Qin CX. Therapeutic Potential of Lipoxin A 4 in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacol Transl Sci 2020; 3:43-55. [PMID: 32259087 DOI: 10.1021/acsptsci.9b00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Several studies have shown that failure to resolve inflammation may contribute to the progression of many chronic inflammatory disorders. It has been suggested targeting the resolution of inflammation might be a novel therapeutic approach for chronic inflammatory diseases, including inflammatory bowel disease, diabetic complications, and cardiometabolic disease. Lipoxins [LXs] are a class of endogenously generated mediators that promote the resolution of inflammation. Biological actions of LXs include inhibition of neutrophil infiltration, promotion of macrophage polarization, increase of macrophage efferocytosis, and restoration of tissue homeostasis. Recently, several studies have demonstrated that LXs and synthetic analogues protect tissues from acute and chronic inflammation. The mechanism includes down-regulation of pro-inflammatory cytokines and chemokines (e.g., interleukin-1β and tumor necrosis factor-α), inhibition of the activation of the master pro-inflammatory pathway (e.g., nuclear factor κ-light-chain-enhancer of activated B cells pathway) and increased release of the pro-resolving cytokines (e.g., interleukin-10). Three generations of LXs analogues are well described in the literature, and more recently a fourth generation has been generated that appears to show enhanced potency. In this review, we will briefly discuss the potential therapeutic opportunity provided by lipoxin A4 as a novel approach to treat chronic inflammatory disorders, focusing on cardiometabolic disease and the current drug development in this area.
Collapse
Affiliation(s)
- Ting Fu
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H Ritchie
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Pakiet A, Jakubiak A, Czumaj A, Sledzinski T, Mika A. The effect of western diet on mice brain lipid composition. Nutr Metab (Lond) 2019; 16:81. [PMID: 31788013 PMCID: PMC6880556 DOI: 10.1186/s12986-019-0401-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Background The appropriate fatty acids composition of brain lipids is critical for functioning of this organ. The alterations of brain fatty acids composition may lead to neurological and neurodegenerative diseases. Methods The aim of this work was to evaluate the effect of western diet containing high fat content on fatty acid composition of brain lipids. In this study we used mice fed high fat diet (HFD) for 19 weeks. Brain lipids were separated by SPE extraction and fatty acid composition in chow, mice serum, brain and other tissues was analyzed by GC-MS method. Results The body weight and adipose tissue weigh of mice after HFD increased significantly. The concentrations of most of fatty acids in serum of mice after HFD increased, due to their higher delivery from food. Unexpectedly the serum eicosapentaenoic acid (EPA) concentration was lower in mice after HFD than in controls. Also the brain, and other tissue EPA content was lower. Among studied groups of brain lipids EPA was significantly decreased in phospholipids and sphingolipids. Conclusions Considering important role of brain EPA including maintaining of appropriate composition of cell membrane lipids and anti-inflammatory properties we conclude that decrease of brain EPA after western diet may result in impaired brain function.
Collapse
Affiliation(s)
- Alicja Pakiet
- 1Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Agnieszka Jakubiak
- 2Tri-City Academic Laboratory Animal Centre - Research & Services Centre, Medical University of Gdansk, Gdansk, Poland
| | - Aleksandra Czumaj
- 3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Tomasz Sledzinski
- 3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Adriana Mika
- 1Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.,3Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| |
Collapse
|
8
|
Yaribeygi H, Atkin SL, Simental-Mendía LE, Barreto GE, Sahebkar A. Anti-inflammatory effects of resolvins in diabetic nephropathy: Mechanistic pathways. J Cell Physiol 2019; 234:14873-14882. [PMID: 30746696 DOI: 10.1002/jcp.28315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
The incidence of diabetes mellitus is growing rapidly. The exact pathophysiology of diabetes is unclear, but there is increasing evidence of the role of the inflammatory response in both developing diabetes as well as its complications. Resolvins are naturally occurring polyunsaturated fatty acids that are found in fish oil and sea food that have been shown to possess anti-inflammatory actions in several tissues including the kidneys. The pathways by which resolvins exert this anti-inflammatory effect are unclear. In this review we discuss the evidence showing that resolvins can suppress inflammatory responses via at least five molecular mechanisms through inhibition of the nucleotide-binding oligomerization domain protein 3 inflammasome, inhibition of nuclear factor κB molecular pathways, improvement of oxidative stress, modulation of nitric oxide synthesis/release and prevention of local and systemic leukocytosis. Complete understanding of these molecular pathways is important as this may lead to the development of new effective therapeutic strategies for diabetes and diabetic nephropathy.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Bai Y, Wang J, He Z, Yang M, Li L, Jiang H. Mesenchymal Stem Cells Reverse Diabetic Nephropathy Disease via Lipoxin A4 by Targeting Transforming Growth Factor β (TGF-β)/smad Pathway and Pro-Inflammatory Cytokines. Med Sci Monit 2019; 25:3069-3076. [PMID: 31023998 PMCID: PMC6500104 DOI: 10.12659/msm.914860] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Mesenchymal stem cells (MSCs) treatment has been proved to be effective in DN models by protecting renal function and preventing fibrosis. However, the underlying mechanism is unclear. Previous research indicated diabetes and associated complications may be attributed to failed resolution of inflammation, which is deliberately regulated by pro-resolving lipids, including lipoxins (LXs), resolvins (Rv) D and E series, protectins, and maresins. In this study, we monitored pro-resolving mediators in a DN model to explore the mechanism of MSCs treatment. MATERIAL AND METHODS The DN model was induced by STZ injection in SD rats. UPLC-MS/MS was performed to determine pro-resolving lipids in kidney tissue and serum of DN model before and after MSCs treatment, as well as in supernatants of HBZY-1-MSCs co-culture. RESULTS LXA4 was highly accumulated in renal tissue of DN rats with MSCs treatment; ex vivo, LXA4 was significantly increased in the supernatants of HBZY-1 cells co-cultured with MSCs in a high-glucose (HG) medium. Western blot analysis indicated that ALX/FPR2, the receptor of LXA4, was markedly expressed in renal tissue of the DN-MSC group and HBZY-1 after incubating with MSCs in HG. Intraperitoneal injection of LXA4 inhibited renal fibrosis by targeting TGF-ß/Smad signaling and downregulated serum TNF-alpha, IL-6, IL-8, and IFN-γ in DN rats. Notably, all the protective effects induced by MSCs or LXA4 were abolished by ALX/FRP2 blocking. CONCLUSIONS Our results demonstrate that MSCs intervention prevented DN procession via the LXA4-ALX/FPR2 axis, which inhibited glomerulosclerosis and pro-inflammatory cytokines, eventually contributing to kidney homeostasis.
Collapse
Affiliation(s)
- Yihua Bai
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Jiaping Wang
- Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Zhenkun He
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Min Yang
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Luohua Li
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| | - Hongying Jiang
- Department of Nephrology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland)
| |
Collapse
|
10
|
de Gaetano M, Butler E, Gahan K, Zanetti A, Marai M, Chen J, Cacace A, Hams E, Maingot C, McLoughlin A, Brennan E, Leroy X, Loscher CE, Fallon P, Perretti M, Godson C, Guiry PJ. Asymmetric synthesis and biological evaluation of imidazole- and oxazole-containing synthetic lipoxin A4 mimetics (sLXms). Eur J Med Chem 2019; 162:80-108. [DOI: 10.1016/j.ejmech.2018.10.049] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
11
|
Serhan CN, Chiang N, Dalli J. New pro-resolving n-3 mediators bridge resolution of infectious inflammation to tissue regeneration. Mol Aspects Med 2018; 64:1-17. [PMID: 28802833 PMCID: PMC5832503 DOI: 10.1016/j.mam.2017.08.002] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 12/16/2022]
Abstract
While protective, the acute inflammatory response when uncontrolled can lead to further tissue damage and chronic inflammation that is now widely recognized to play important roles in many commonly occurring diseases, such as cardiovascular disease, neurodegenerative diseases, metabolic syndrome, and many other diseases of significant public health concern. The ideal response to initial challenges of the host is complete resolution of the acute inflammatory response, which is now recognized to be a biosynthetically active process governed by specialized pro-resolving mediators (SPM). These chemically distinct families include lipoxins, resolvins, protectins and maresins that are biosynthesized from essential fatty acids. The biosynthesis and complete stereochemical assignments of the major SPM are established, and new profiling procedures have recently been introduced to document the activation of these pathways in vivo with isolated cells and in human tissues. The active resolution phase leads to tissue regeneration, where we've recently identified new molecules that communicate during resolution of inflammation to activate tissue regeneration in model organisms. This review presents an update on the documentation of the roles of SPMs and the biosynthesis and structural elucidation of novel mediators that stimulate tissue regeneration, coined conjugates in tissue regeneration. The identification and actions of the three families, maresin conjugates in tissue regeneration (MCTR), protectin conjugates in tissue regeneration (PCTR), and resolvin conjugates in tissue regeneration (RCTR), are reviewed here. The identification, structural elucidation and the pathways and biosynthesis of these new mediators in tissue regeneration demonstrate the host capacity to protect from collateral tissue damage, stimulate clearance of bacteria and debris, and promote tissue regeneration via endogenous pathways and molecules in the resolution metabolome.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
12
|
Brennan EP, Mohan M, McClelland A, de Gaetano M, Tikellis C, Marai M, Crean D, Dai A, Beuscart O, Derouiche S, Gray SP, Pickering R, Tan SM, Godson-Treacy M, Sheehan S, Dowdall JF, Barry M, Belton O, Ali-Shah ST, Guiry PJ, Jandeleit-Dahm K, Cooper ME, Godson C, Kantharidis P. Lipoxins Protect Against Inflammation in Diabetes-Associated Atherosclerosis. Diabetes 2018; 67:2657-2667. [PMID: 30213823 DOI: 10.2337/db17-1317] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 08/30/2018] [Indexed: 11/13/2022]
Abstract
Increasing evidence points to the fact that defects in the resolution of inflammatory pathways predisposes individuals to the development of chronic inflammatory diseases, including diabetic complications such as accelerated atherosclerosis. The resolution of inflammation is dynamically regulated by the production of endogenous modulators of inflammation, including lipoxin A4 (LXA4). Here, we explored the therapeutic potential of LXA4 and a synthetic LX analog (Benzo-LXA4) to modulate diabetic complications in the streptozotocin-induced diabetic ApoE-/- mouse and in human carotid plaque tissue ex vivo. The development of diabetes-induced aortic plaques and inflammatory responses of aortic tissue, including the expression of vcam-1, mcp-1, il-6, and il-1β, was significantly attenuated by both LXA4 and Benzo-LXA4 in diabetic ApoE-/- mice. Importantly, in mice with established atherosclerosis, treatment with LXs for a 6-week period, initiated 10 weeks after diabetes onset, led to a significant reduction in aortic arch plaque development (19.22 ± 2.01% [diabetic]; 12.67 ± 1.68% [diabetic + LXA4]; 13.19 ± 1.97% [diabetic + Benzo-LXA4]). Secretome profiling of human carotid plaque explants treated with LXs indicated changes to proinflammatory cytokine release, including tumor necrosis factor-α and interleukin-1β. LXs also inhibited platelet-derived growth factor-stimulated vascular smooth muscle cell proliferation and transmigration and endothelial cell inflammation. These data suggest that LXs may have therapeutic potential in the context of diabetes-associated vascular complications.
Collapse
Affiliation(s)
- Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Muthukumar Mohan
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Aaron McClelland
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Monica de Gaetano
- UCD Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Christos Tikellis
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Mariam Marai
- UCD Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Daniel Crean
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Aozhi Dai
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Ophelie Beuscart
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Sinda Derouiche
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Stephen P Gray
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Raelene Pickering
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Sih Min Tan
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Molly Godson-Treacy
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Stephen Sheehan
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Joseph F Dowdall
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Mary Barry
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Orina Belton
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry and Chemical Biology, University College Dublin, Dublin, Ireland
| | - Karin Jandeleit-Dahm
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Mark E Cooper
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Phillip Kantharidis
- JDRF Danielle Alberti Memorial Centre for Diabetes Complications, Diabetes Division, Baker Heart and Diabetes Institute, Melbourne, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
13
|
Pietrani NT, Ferreira CN, Rodrigues KF, Perucci LO, Carneiro FS, Bosco AA, Oliveira MC, Pereira SS, Teixeira AL, Alvarez-Leite JI, Ferreira AV, Sousa LP, Gomes KB. Proresolving protein Annexin A1: The role in type 2 diabetes mellitus and obesity. Biomed Pharmacother 2018; 103:482-489. [PMID: 29677533 DOI: 10.1016/j.biopha.2018.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/26/2018] [Accepted: 04/03/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Annexin A1 (AnxA1) is a protein involved in inflammation resolution that might be altered in obesity-associated type 2 diabetes mellitus (DM), which is a chronic inflammatory disease. The aim of this study was to evaluate AnxA1 serum levels in individuals with and without DM stratified according to the body mass index (BMI), and the dynamic of AnxA1 expression in adipose tissue from humans with obesity and non-obesity. METHODS Serum samples were obtained from 41 patients with DM (lean, overweight and obese) and 40 controls, and adipose tissue samples were obtained from 16 individuals with obesity (with or without DM), and 15 controls. RESULTS DM patients showed similar AnxA1 serum levels when compared to controls. However, when the individuals were stratified according to BMI, AnxA1 levels were higher in individuals with obesity than lean or overweight, and in overweight compared to lean individuals. Moreover, AnxA1 was correlated positively with IL-6 levels. AnxA1 levels were also positively correlated with BMI, waist circumference and waist-to-hip ratio. Furthermore, higher levels of cleaved AnxA1 were observed in adipose tissue from individuals with obesity, independently of DM status. CONCLUSIONS Enhanced levels of AnxA1 in serum of individuals with obesity suggest an attempt to counter-regulate the systemic inflammation process in this disease. However, the higher levels of cleaved AnxA1 in the adipose tissue of individuals with obesity could compromise its anti-inflammatory and proresolving actions, locally. Considering our data, AnxA1 cleavage in the adipose tissue, despite increased serum levels of this protein, and consequently the failure in inflammation resolution, suggests an important pathophysiological mechanism involved in inflammatory status observed in obesity.
Collapse
Affiliation(s)
- Nathalia T Pietrani
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cláudia N Ferreira
- Colégio Técnico - COLTEC- Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Kathryna F Rodrigues
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza O Perucci
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda S Carneiro
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adriana A Bosco
- Santa Casa de Belo Horizonte, Belo Horizonte, Minas Gerais, Brazil
| | - Marina C Oliveira
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Solange S Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio L Teixeira
- Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jacqueline I Alvarez-Leite
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adaliene V Ferreira
- Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina B Gomes
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Chiang N, Serhan CN. Structural elucidation and physiologic functions of specialized pro-resolving mediators and their receptors. Mol Aspects Med 2017; 58:114-129. [PMID: 28336292 PMCID: PMC5623601 DOI: 10.1016/j.mam.2017.03.005] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
The acute inflammatory response is host-protective to contain foreign invaders. Many of today's pharmacopeia that block pro-inflammatory chemical mediators can cause serious unwanted side effects such as immune suppression. Uncontrolled inflammation is now considered a pathophysiologic basis associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity and asthma, as well as the classic inflammatory diseases, e.g. arthritis, periodontal diseases. The inflammatory response is designated to be a self-limited process that produces a superfamily of chemical mediators that stimulate resolution of inflammatory responses. Specialized proresolving mediators (SPM) uncovered in recent years are endogenous mediators that include omega-3-derived families resolvins, protectins and maresins, as well as arachidonic acid-derived (n-6) lipoxins that stimulate and promote resolution of inflammation, clearance of microbes, reduce pain and promote tissue regeneration via novel mechanisms. Here, we review recent evidence from human and preclinical animal studies, together with the structural and functional elucidation of SPM indicating the SPM as physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. These results suggest that it is time to develop immunoresolvents as agonists for testing resolution pharmacology in nutrition and health as well as in human diseases and during surgery.
Collapse
Affiliation(s)
- Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
15
|
Goicoechea M, Sanchez-Niño MD, Ortiz A, García de Vinuesa S, Quiroga B, Bernis C, Morales E, Fernández-Juarez G, de Sequera P, Verdalles U, Verde E, Luño J. Low dose aspirin increases 15-epi-lipoxin A4 levels in diabetic chronic kidney disease patients. Prostaglandins Leukot Essent Fatty Acids 2017; 125:8-13. [PMID: 28987723 DOI: 10.1016/j.plefa.2017.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Resolution of inflammation is regulated by endogenous lipid mediators, such as lipoxins and their epimers, including 15-epi-lipoxin A4 (15-epi-LXA4). However, there is no information on 15-epi-LXA4 and its in vivo regulation in chronic kidney disease (CKD) patients. STUDY DESIGN Open label randomized clinical trial. SETTING AND PARTICIPANTS 50 participants with chronic kidney disease (CKD) stage 3 and 4 without prior cardiovascular disease (25 in the aspirin group and 25 in the standard group) followed for 46 months. INTERVENTION Aspirin (100mg/day) or standard treatment. AIM To analyze the effect of aspirin on plasma 15-epi-LXA4 levels and inflammatory markers in CKD patients. RESULTS Baseline plasma15-epi-LXA4 levels were lower in diabetic (1.22 ± 0.99ng/ml) than in non-diabetic CKD patients (2.05 ± 1.06ng/ml, p < 0.001) and inversely correlated with glycosylated hemoglobin levels (r = -0.303, p = 0.006). In multivariate analysis, diabetes was associated with lower 15-epi-LXA4 levels, adjusted for age, inflammatory markers and renal function (p = 0.005). In the whole study population, 15-epi-LXA4 levels tended to increase, but not significantly (p = 0.45), after twelve months on aspirin (from mean ± SD 1.84 ± 1.06 to 2.04 ± 0.75ng/ml) and decreased in the standard care group (1.60 ± 1.15 to 1.52 ± 0.68ng/ml, p = 0.04). The aspirin effect on 15-epi-LXA4 levels was more striking in diabetic patients, increasing from 0.94 ± 0.70 to 1.93 ± 0.74ng/ml, p = 0.017. CONCLUSIONS Diabetic patients with CKD have lower circulating 15-epi-LXA4 levels than non-diabetic CKD patients. Low dose aspirin for 12 months increased 15-epi-LXA4 levels in diabetic patients. Given its anti-inflammatory properties, this increase in 15-epi-LXA4 levels may contribute to the beneficial effects of low dose aspirin.
Collapse
Affiliation(s)
- Marian Goicoechea
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain.
| | - Maria Dolores Sanchez-Niño
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD UAM), Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Alberto Ortiz
- Instituto de Investigación Sanitaria, Fundación Jiménez Díaz (IIS-FJD UAM), Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Soledad García de Vinuesa
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | | | | | - Enrique Morales
- Hospital Universitario Doce de Octubre, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Gema Fernández-Juarez
- Hospital Universitario Fundación Alcorcón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | | | - Ursula Verdalles
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - Eduardo Verde
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| | - José Luño
- Servicio de Nefrología, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Spanish Kidney Research Network (REDINREN), Madrid, Spain
| |
Collapse
|
16
|
MiR-30a targets IL-1α and regulates islet functions as an inflammation buffer and response factor. Sci Rep 2017; 7:5270. [PMID: 28706254 PMCID: PMC5509704 DOI: 10.1038/s41598-017-05560-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/30/2017] [Indexed: 12/24/2022] Open
Abstract
Diabetes is an inflammatory disease. Inflammation plays an important role in islet functions. However, the exact mechanisms by which inflammation affects islet functions remain unclear. In this study, we investigated the regulatory effects of miR-30a on inflammation and islet functions. The results indicate that miR-30a serves as an inflammation-resolving buffer factor by targeting interleukin 1a (IL-1α) in immune cells and in islet cells, which might play an important role in inflammation homeostasis. miR-30a ameliorates islet functions in an inflammatory micro-environment by targeting the IL-1α/nuclear factor kappa B (NFKB) p65 subunit (p65)/p62 (SQSTM1)/insulin axis, which can be developed into a novel antidiabetic approach. miR-30a serves as a promising inflammation-response biomarker in inflammatory diseases and is possibly activated by the toll-like receptor 4 (TLR4)/IL-1α/NFKB pathways. However, the exact molecular mechanisms by which miR-30a regulates inflammation and islet functions as well as the potential applications in transitional medicine require further elucidation.
Collapse
|
17
|
Zahradka P, Neumann S, Aukema HM, Taylor CG. Adipocyte lipid storage and adipokine production are modulated by lipoxygenase-derived oxylipins generated from 18-carbon fatty acids. Int J Biochem Cell Biol 2017; 88:23-30. [PMID: 28465089 DOI: 10.1016/j.biocel.2017.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/31/2017] [Accepted: 04/24/2017] [Indexed: 01/27/2023]
Abstract
Generation of oxylipins (oxygenated metabolites of fatty acids) by lipoxygenases may be responsible for the beneficial effects of 20- and 22-carbon n-3 fatty acids on adipose tissue dysfunction in obesity, but the potential actions of oxylipins derived from 18-carbon fatty acids, which are generally at higher levels in the diet, are unknown. We therefore compared the effects of select lipoxygenase-derived oxylipins produced from α-linolenic acid (ALA, C18:3 n-3), linoleic acid (LA, C18:2 n-6), and arachidonic acid (AA, C20:4 n-6) on key adipocyte functions that are altered in obesity. Individual oxylipins were added to the culture medium of differentiating 3T3-L1 preadipocytes for 6days. Lipid accumulation was subsequently determined by Oil Red O staining, while Western blotting was used to measure levels of proteins associated with lipid metabolism and characteristics of adipocyte functionality. Addition of all oxylipins at 30nM was sufficient to significantly decrease triglyceride accumulation in lipid droplets, and higher levels completely blocked lipid production. Our results establish that lipoxygenase-derived oxylipins produced from 18-carbon PUFA differentially affect multiple adipocyte processes associated with lipid storage and adipokine production. However, these effects are not due to the oxylipins blocking adipocyte maturation and thus globally suppressing all adipocyte characteristics. Furthermore, these oxylipin species decrease the lipid content of adipocytes regardless from which precursor fatty acid or lipoxygenase they were derived. Consequently, adipocyte characteristics can be altered through the ability of oxylipins to selectively modulate levels of proteins involved in both lipid metabolism and adipokine production.
Collapse
Affiliation(s)
- Peter Zahradka
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada.
| | - Shannon Neumann
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Harold M Aukema
- Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| | - Carla G Taylor
- Department of Physiology and Pathophysiology, University of Manitoba, Canada; Department of Human Nutritional Sciences, University of Manitoba, Canada; Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Albrechtsen Research Centre, Winnipeg, Canada
| |
Collapse
|
18
|
Serhan CN. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms. FASEB J 2017; 31:1273-1288. [PMID: 28087575 PMCID: PMC5349794 DOI: 10.1096/fj.201601222r] [Citation(s) in RCA: 419] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Practitioners of ancient societies from the time of Hippocrates and earlier recognized and treated the signs of inflammation, heat, redness, swelling, and pain with agents that block or inhibit proinflammatory chemical mediators. More selective drugs are available today, but this therapeutic concept has not changed. Because the acute inflammatory response is host protective to contain foreign invaders, much of today's pharmacopeia can cause serious unwanted side effects, such as immune suppression. Uncontrolled inflammation is now considered pathophysiologic and is associated with many widely occurring diseases such as cardiovascular disease, neurodegenerative diseases, diabetes, obesity, and asthma, as well as classic inflammatory diseases (e.g., arthritis and periodontal diseases). The inflammatory response, when self-limited, produces a superfamily of chemical mediators that stimulate resolution of the response. Specialized proresolving mediators (SPMs), identified in recent years, are endogenous mediators that include the n-3-derived families resolvins, protectins, and maresins, as well as arachidonic acid-derived (n-6) lipoxins, which promote resolution of inflammation, clearance of microbes, reduction of pain, and promotion of tissue regeneration via novel mechanisms. Aspirin and statins have a positive impact on these resolution pathways, producing epimeric forms of specific SPMs, whereas other drugs can disrupt timely resolution. In this article, evidence from recent human and preclinical animal studies is reviewed, indicating that SPMs are physiologic mediators and pharmacologic agonists that stimulate resolution of inflammation and infection. The findings suggest that it is time to challenge current treatment practices-namely, using inhibitors and antagonists alone-and to develop immunoresolvents as agonists to test resolution pharmacology and their role in catabasis for their therapeutic potential.-Serhan, C. N. Treating inflammation and infection in the 21st century: new hints from decoding resolution mediators and mechanisms.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Maresin 1 Mitigates High Glucose-Induced Mouse Glomerular Mesangial Cell Injury by Inhibiting Inflammation and Fibrosis. Mediators Inflamm 2017; 2017:2438247. [PMID: 28182085 PMCID: PMC5274668 DOI: 10.1155/2017/2438247] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022] Open
Abstract
Background. Inflammation and fibrosis are the important pathophysiologic processes in diabetic nephropathy (DN). Maresin 1 is a potential anti-inflammatory lipid mediator, which has displayed powerful proresolving activities. Aim. We determine whether maresin 1 has protective effect on mouse glomerular mesangial cells (GMCs) induced by high glucose. Methods. We cultured GMCs stimulated by high glucose and categorized as follows: normal glucose group (5.6 mmol/L), high glucose group (30 mmol/L), mannitol group, maresin 1 intervention group (1, 10, and 100 nmol/L), maresin 1 and normal glucose group, and the N-acetylcysteine (NAC) intervention group (10 μmol/L NAC). After 24 h, the expression of ROS, NLRP3, caspase-1, procaspase-1, IL-1β, and pro-IL-1β was detected by western-blot, RT-PCR, and immunofluorescence. After 48 h, the expression of TGF-β1 and FN was detected by RT-PCR and ELISA. Results. Compared with normal glucose group, the expression of ROS, NLRP3, caspase-1, IL-1β, TGF-β1, and FN increased in high glucose group (P < 0.05), but it decreased after the treatment of maresin 1 in different concentrations. On the contrary, the expression of procaspase-1 and pro-IL-1β protein was restrained by high glucose and enhanced by maresin 1 in a dose-dependent manner (P < 0.05). Conclusion. Maresin 1 can inhibit NLRP3 inflammasome, TGF-β1, and FN in GMCs; it may have protective effect on DN by mitigating the inflammation and early fibrosis.
Collapse
|
20
|
Wu YS, Chen SN. Extracted Triterpenes from Antrodia cinnamomea Reduce the Inflammation to Promote the Wound Healing via the STZ Inducing Hyperglycemia-Diabetes Mice Model. Front Pharmacol 2016; 7:154. [PMID: 27378920 PMCID: PMC4904009 DOI: 10.3389/fphar.2016.00154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/27/2016] [Indexed: 01/03/2023] Open
Abstract
This research evaluated the effects of triterpenes on the regulation of STZ-induced hyperglycaemic diabetes through an anti-inflammatory response. Diabetic mice were orally administered various concentrations of triterpenes on a daily basis. Weight gain, volume of drinking water, and liver and spleen weight were recorded and evaluated. These evaluations presented a positive regulation to the abnormal metabolism appearance compared to the diabetic mice. In the diabetic mice, the detection of adiponectin production or elevated levels of inflammatory factors such as CCL1 and TPO expression were found to reduce hyperglycaemia and thereby induce an inflammatory response. Moreover, to the best of our knowledge, hyperglycaemia impairs the tissue healing associated with an increased and prolonged inflammatory response. An investigation of the anti-inflammatory response in wound healing as affected by the triterpenes verified the promotion of wound recovery.
Collapse
Affiliation(s)
- Yu-Sheng Wu
- College of Life Science, National Taiwan University Taipei, Taiwan
| | - Shiu-Nan Chen
- College of Life Science, National Taiwan University Taipei, Taiwan
| |
Collapse
|
21
|
Domingueti CP, Dusse LMS, Carvalho MDG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 2016; 30:738-45. [PMID: 26781070 DOI: 10.1016/j.jdiacomp.2015.12.018] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. AIM This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. RESULTS Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. CONCLUSION It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients.
Collapse
MESH Headings
- Animals
- Biomarkers/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetic Angiopathies/complications
- Diabetic Angiopathies/immunology
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Models, Biological
- Oxidative Stress
- Thrombophilia/complications
- Thrombophilia/immunology
- Thrombophilia/metabolism
- Thrombophilia/physiopathology
- Vasculitis/complications
- Vasculitis/immunology
- Vasculitis/metabolism
- Vasculitis/physiopathology
Collapse
Affiliation(s)
- Caroline Pereira Domingueti
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de São João Del-Rei, Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
| | - Luci Maria Sant'Ana Dusse
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia Pires de Sousa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
22
|
Impact of anti-inflammatory nutrients on obesity-associated metabolic-inflammation from childhood through to adulthood. Proc Nutr Soc 2016; 75:115-24. [DOI: 10.1017/s0029665116000070] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and CVD share a number of pathological features, one of which is metabolic-inflammation. Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue, driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of inflammation, an active process wherein the immune system counteracts pro-inflammatory states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have focused on attenuating this pro-inflammatory environment. Furthermore, with inherent variability among individuals, establishing at-risk populations who respond favourably to nutritional intervention strategies is important. This review will focus on chronic low-grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflammatory nutrients have as a potential therapy. Finally, in the context of personalised nutrition, the approaches used in defining individuals who respond favourably to nutritional interventions will be highlighted. With increasing prevalence of obesity in younger people, age-dependent biological processes, preventative strategies and therapeutic options are important to help protect against development of obesity-associated co-morbidities.
Collapse
|
23
|
|
24
|
Sima C, Van Dyke TE. Therapeutic Targets for Management of Periodontitis and Diabetes. Curr Pharm Des 2016; 22:2216-37. [PMID: 26881443 PMCID: PMC4854768 DOI: 10.2174/1381612822666160216150338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
Abstract
The increasing incidence of diabetes mellitus (DM) and chronic periodontitis (CP) worldwide imposes a rethinking of individualized therapy for patients with both conditions. Central to bidirectional links between DM and CP is deregulated systemic inflammation and dysfunctional immune responses to altered-self and non-self. Control of blood glucose levels and metabolic imbalances associated with hyperglycemia in DM, and disruption of pathogenic subgingival biofilms in CP are currently the main therapeutic approaches for these conditions. Mounting evidence suggests the need to integrate immune modulatory therapeutics in treatment regimens that address the unresolved inflammation associated with DM and CP. The current review discusses the pathogenesis of DM and CP with emphasis on deregulated inflammation, current therapeutic approaches and the novel pro-resolution lipid mediators derived from Ω-3 polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Corneliu Sima
- Corneliu Sima, 245 First Street, Room 5145, Cambridge, MA, 02142, USA.
| | | |
Collapse
|
25
|
Romano M, Cianci E, Simiele F, Recchiuti A. Lipoxins and aspirin-triggered lipoxins in resolution of inflammation. Eur J Pharmacol 2015; 760:49-63. [DOI: 10.1016/j.ejphar.2015.03.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/08/2023]
|
26
|
Börgeson E, Johnson AMF, Lee YS, Till A, Syed GH, Ali-Shah ST, Guiry PJ, Dalli J, Colas RA, Serhan CN, Sharma K, Godson C. Lipoxin A4 Attenuates Obesity-Induced Adipose Inflammation and Associated Liver and Kidney Disease. Cell Metab 2015; 22:125-37. [PMID: 26052006 PMCID: PMC4584026 DOI: 10.1016/j.cmet.2015.05.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/22/2015] [Accepted: 04/24/2015] [Indexed: 02/07/2023]
Abstract
The role of inflammation in obesity-related pathologies is well established. We investigated the therapeutic potential of LipoxinA4 (LXA4:5(S),6(R),15(S)-trihydroxy-7E,9E,11Z,13E,-eicosatetraenoic acid) and a synthetic 15(R)-Benzo-LXA4-analog as interventions in a 3-month high-fat diet (HFD; 60% fat)-induced obesity model. Obesity caused distinct pathologies, including impaired glucose tolerance, adipose inflammation, fatty liver, and chronic kidney disease (CKD). Lipoxins (LXs) attenuated obesity-induced CKD, reducing glomerular expansion, mesangial matrix, and urinary H2O2. Furthermore, LXA4 reduced liver weight, serum alanine-aminotransferase, and hepatic triglycerides. LXA4 decreased obesity-induced adipose inflammation, attenuating TNF-α and CD11c(+) M1-macrophages (MΦs), while restoring CD206(+) M2-MΦs and increasing Annexin-A1. LXs did not affect renal or hepatic MΦs, suggesting protection occurred via attenuation of adipose inflammation. LXs restored adipose expression of autophagy markers LC3-II and p62. LX-mediated protection was demonstrable in adiponectin(-/-) mice, suggesting that the mechanism was adiponectin independent. In conclusion, LXs protect against obesity-induced systemic disease, and these data support a novel therapeutic paradigm for treating obesity and associated pathologies.
Collapse
Affiliation(s)
- Emma Börgeson
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affair, San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, La Jolla, CA 92093, USA; Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland.
| | - Andrew M F Johnson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andreas Till
- Division of Biological Sciences and San Diego Center for Systems Biology, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Reconstructive Neurobiology, LIFE&BRAIN, University Clinic Bonn, Sigmund-Freud Str. 25, 53127 Bonn, Germany
| | - Gulam Hussain Syed
- Department of Medicine, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92093, USA
| | - Syed Tasadaque Ali-Shah
- Centre for Synthesis and Chemical Biology, UCD Conway Institute, UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J Guiry
- Centre for Synthesis and Chemical Biology, UCD Conway Institute, UCD School of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kumar Sharma
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Affair, San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, La Jolla, CA 92093, USA
| | - Catherine Godson
- Diabetes Complications Research Centre, UCD Conway Institute, School of Medicine, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
27
|
Crean D, Godson C. Specialised lipid mediators and their targets. Semin Immunol 2015; 27:169-76. [DOI: 10.1016/j.smim.2015.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 12/31/2022]
|
28
|
Vázquez-Huerta DI, Alvarez-Rodríguez BA, Topete-Reyes JF, Muñoz-Valle JF, Parra-Michel R, Fuentes-Ramírez F, Salazar-López MA, Valle Y, Reyes-Castillo Z, Cruz-González A, Brennan-Bourdon LM, Torres-Carrillo N. Tumor necrosis factor alpha -238 G/A and -308 G/A polymorphisms and soluble TNF-α levels in chronic kidney disease: correlation with clinical variables. Int J Clin Exp Med 2014; 7:2111-2119. [PMID: 25232395 PMCID: PMC4161555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/23/2014] [Indexed: 06/03/2023]
Abstract
Chronic kidney disease (CKD) is characterized by accumulation of proinflammatory cytokines, mainly tumor necrosis factor alpha (TNF-α). Single nucleotide polymorphisms (SNPs) of TNFA gene, including -238 G/A and -308 G/A, have been associated with alteration in the soluble TNF-α (sTNF-α) expression. The aim was to investigate the association of -238 y -308 TNFA gene SNPs with sTNF-α levels in CKD patients. We included 150 CKD patients and 192 control subjects (CS). Both SNPs were genotyped with polymerase chain reaction-restriction fragment length polymorphism technique and sTNF-α levels were measured by enzyme-linked immunosorbent assay. The genotypic distribution of -238 and -308 SNPs was not significantly different between CKD patients and CS (p > 0.001). However, the sTNF-α levels were higher in CKD, compared to CS (p < 0.001). Also, sTNF-α correlated with creatinine (r = 0.279, p = 0.004), urea (r = 0.325, p = 0.001), phosphorus (r = 0.479, p = 0.001), glomerular filtration rate (r = -0.236, p = 0.019) and monocyte count (r = 0.276, p = 0.010). In conclusion, elevated sTNF-α levels are associated with CKD. However, the -238 and -308 TNFA gene SNPs were not associated with susceptibility to CKD and sTNF-α levels in a Mexican population.
Collapse
Affiliation(s)
- Diana I Vázquez-Huerta
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - Bertha A Alvarez-Rodríguez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - Jorge F Topete-Reyes
- Servicio de Nefrología, Hospital General Regional No. 46, Instituto Mexicano del Seguro SocialGuadalajara, Jalisco, México
| | - José F Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - Renato Parra-Michel
- Servicio de Nefrología, Hospital General Regional No. 46, Instituto Mexicano del Seguro SocialGuadalajara, Jalisco, México
| | - Francisco Fuentes-Ramírez
- Servicio de Nefrología, Hospital General Regional No. 46, Instituto Mexicano del Seguro SocialGuadalajara, Jalisco, México
| | - María A Salazar-López
- Servicio de Nefrología, Hospital General Regional No. 46, Instituto Mexicano del Seguro SocialGuadalajara, Jalisco, México
| | - Yeminia Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - Zyanya Reyes-Castillo
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - A Cruz-González
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - Lorena M Brennan-Bourdon
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| | - Norma Torres-Carrillo
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud, Universidad de GuadalajaraGuadalajara, Jalisco, México
| |
Collapse
|
29
|
Association of red blood cell n-3 polyunsaturated fatty acids with plasma inflammatory biomarkers among the Quebec Cree population. Eur J Clin Nutr 2014; 68:1042-7. [PMID: 25028086 DOI: 10.1038/ejcn.2014.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 05/13/2014] [Accepted: 05/26/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND/OBJECTIVES We examined the prevalence of elevated plasma high-sensitivity C-reactive protein (hs-CRP) concentrations and associations with red blood cell (RBC) long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA) in the James Bay Cree population from the province of Quebec (Canada). SUBJECTS/METHODS A total of 744 Cree adults (18-91 years) from seven communities of Eastern James Bay were included in these cross-sectional analyses. Associations between RBC LCn-3PUFA and proinflammatory markers (hs-CRP, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α)) were assessed by using multivariate general linear models with adjustment for sex, age and waist circumference. An arbitrary inflammation score was defined based on the sum of the quartiles of hs-CRP, IL-6 and TNF-α concentrations (range=3-12). RESULTS Elevated hs-CRP concentrations (>3 mg/l) were present in 46.9% (95% confidence interval (CI) 43.3-50.5) of the James Bay Cree population. RBC docosapentaenoic acid (DPAn-3; C22:5n-3) was inversely associated with hs-CRP, TNF-α and the inflammation score (all P trend<0.02), whereas eicosapentaenoic acid (C20:5n-3) and docosahexaenoic acid (C22:6n-3) in RBC were not associated with inflammation (all P trend>0.18). Among participants with RBC DPAn-3 levels above the median of the population, odds ratio of having an elevated inflammation score (≥9) was 0.67 (95% CI, 0.48-0.93) compared with participants below the median. CONCLUSIONS RESULTS indicate that low-grade systemic inflammation is highly prevalent and that higher RBC DPAn-3 levels are associated with a lower risk of systemic inflammation in the James Bay Cree population.
Collapse
|
30
|
Luan H, Yang L, Liu L, Liu S, Zhao X, Sui H, Wang J, Wang S. Effects of platycodins on liver complications of type 2 diabetes. Mol Med Rep 2014; 10:1597-603. [PMID: 25017203 DOI: 10.3892/mmr.2014.2363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/23/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the current study was to investigate the therapeutic effects and mechanism of platycodin in liver complications of type 2 diabetes. All rats were randomly divided into two groups: The control group (normal diet) and the model group (a high‑fat and high‑sugar diet). The model group was injected with 2% streptozocin (25 mg/kg body weight) through the tail vein following 4 weeks of dieting. After a total of 8 weeks of dieting, fasting blood glucose (FBG) and liver function were examined. The high‑fat and high‑sugar diet was continued in the successful model rats, which were randomly divided into four groups and treated with the following doses of platycodins: The untreated, and 50, 100 and 200 mg/kg body weight/day groups. Platycodins treatment lasted for 12 weeks. Platycodins treatment at a dose of 200 mg/kg body weight/day reduced the FBG, glutamate pyruvate transaminase (GPT), glutamic oxalacetic transaminase, triglycerides, total cholesterol (TC), low‑density lipoprotein (LDL) and liver index levels compared with the untreated group (P<0.05), while the high‑density lipoprotein levels increased (P<0.05). Furthermore, FBG, GPT, TC and LDL levels were returned to the normal level. This dose also increased the expression of BMP‑9 mRNA and BMP‑9 protein, and reduced the expression of Smad‑4 mRNA and Smad‑4 protein. These findings indicate that platycodins can rectify disorders of blood glucose and lipid metabolism, improve liver index and protect liver function in liver complications of type 2 diabetes. The current study suggests that this therapeutic effect is mediated through the BMP‑9/Smad‑4 pathway.
Collapse
Affiliation(s)
- Haiyan Luan
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Limin Yang
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Lei Liu
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Shuang Liu
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Xiaolian Zhao
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hongyu Sui
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Jingtao Wang
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Shuqiu Wang
- Department of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
31
|
Colas RA, Shinohara M, Dalli J, Chiang N, Serhan CN. Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol 2014; 307:C39-54. [PMID: 24696140 PMCID: PMC4080182 DOI: 10.1152/ajpcell.00024.2014] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/26/2014] [Indexed: 12/11/2022]
Abstract
Resolution of acute inflammation is an active process locally controlled by a novel genus of specialized pro-resolving mediators (SPM) that orchestrate key resolution responses. Hence, it is of general interest to identify individual bioactive mediators and profile their biosynthetic pathways with related isomers as well as their relation(s) to classic eicosanoids in mammalian tissues. Lipid mediator (LM)-SPM levels and signature profiles of their biosynthetic pathways were investigated using liquid chromatography-tandem mass spectrometry (LC-MS-MS)-based LM metabololipidomics. LM and SPM were identified using ≥6 diagnostic ions and chromatographic behavior matching with both authentic and synthetic materials. This approach was validated using the composite reference plasma (SRM1950) of 100 healthy individuals. Using targeted LM metabololipidomics, we profiled LM and SPM pathways in human peripheral blood (plasma and serum) and lymphoid organs. In these, we identified endogenous SPM metabolomes, namely, the potent lipoxins (LX), resolvins (Rv), protectins (PD), and maresins (MaR). These included RvD1, RvD2, RvD3, MaR1, and NPD1/PD1, which were identified in amounts within their bioactive ranges. In plasma and serum, principal component analysis (PCA) identified signature profiles of eicosanoids and SPM clusters. Plasma-SPM increased with omega-3 and acetylsalicylic acid intake that correlated with increased phagocytosis of Escherichia coli in whole blood. These findings demonstrate an approach for identification of SPM pathways (e.g., resolvins, protectins, and maresins) in human blood and lymphoid tissues that were in amounts commensurate with their pro-resolving, organ protective, and tissue regeneration functions. LM metabololipidomics coupled with calibration tissues and physiological changes documented herein provide a tool for functional phenotypic profiling.
Collapse
Affiliation(s)
- Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Masakazu Shinohara
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nan Chiang
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Aslan M, Özcan F, Aslan I, Yücel G. LC-MS/MS analysis of plasma polyunsaturated fatty acids in type 2 diabetic patients after insulin analog initiation therapy. Lipids Health Dis 2013; 12:169. [PMID: 24195588 PMCID: PMC4228320 DOI: 10.1186/1476-511x-12-169] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
Background Eicosanoids derived from omega-6 (n6) polyunsaturated fatty acids (PUFAs) have proinflammatory functions whereas eicosanoids derived from omega-3 (n3) PUFAs have anti-inflammatory properties. This study was designed to evaluate the effect of insulin analog initiation therapy on n6 and n3 PUFAs in type 2 diabetic patients during early phase. Methods Sixteen type 2 diabetic patients with glycosylated hemoglobin (HbA1c) levels above 10% despite ongoing combination therapy with sulphonylurea and metformin were selected. Former treatment regimen was continued for the first day followed by substitution of sulphonylurea therapy with different insulin analogs (0.4 U/kg/day) plus metformin. Blood samples were obtained from all patients at 24 and 72 hours. Plasma levels of arachidonic acid (AA, C20:4n6), dihomo-gamma-linolenic acid (DGLA, C20:3n6), eicosapentaenoic acid (EPA, C20:5n3) and docosahexaenoic acid (DHA, C22:6n3) were determined by an optimized multiple reaction monitoring (MRM) method using ultra fast-liquid chromatography (UFLC) coupled with tandem mass spectrometry (MS/MS). Prostaglandin E2 (PGE2) was measured in serum samples by enzyme immunoassay. Results All measured PUFAs were significantly increased after treatment with insulin analogs plus metformin compared to before treatment levels. The mean AA/EPA ratio was significantly lower after treatment with insulin analogs plus metformin. A 22% decrease was observed in PGE2 levels after treatment with insulin analogs plus metformin compared to pretreatment levels (p > 0.05). Conclusion The significant decrease in AA/EPA ratio indicates that insulin analog initiation therapy has anti-inflammatory properties by favoring the increase of n3 fatty acid EPA.
Collapse
Affiliation(s)
- Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey.
| | | | | | | |
Collapse
|
33
|
Wang Y, Wu H, Gao L, Chen S, Gu L, Ding Z, Guo J. Elevated toll-like receptor 3 inhibits pancreatic β-cell proliferation through G1 phase cell cycle arrest. Mol Cell Endocrinol 2013; 377:112-22. [PMID: 23850521 DOI: 10.1016/j.mce.2013.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 12/11/2022]
Abstract
Activation of the innate and acquired immune systems plays an important role in chronic inflammatory diseases and conditions such as obesity, insulin resistance, type 2 diabetes mellitus and atherosclerosis, with additional roles in regulation of cell proliferation and survival. Here, we provide evidence that TLR3 can respond to nutrient signals and induce loss of β-cell mass through induction of G1 cycle arrest. Activation of TLR3 by polyinosinic-polycytidylic acid [poly (I:C)] was shown to trigger the decline of cyclin D1/2 protein levels in pancreatic β-cell lines, which could be reversed by the proteasome inhibitor MG132. P38 was also found to interfere with this degradation which may be associated with G1 cycle arrest. Moreover, inhibitory effects of TLR3 on β-cell growth were supported by gene silencing of TRIF, which could inhibit p38 activity in response to poly (I:C) stimuli. These results support a role for TLR3 in β-cell mass loss in metabolic surplus and raise the possibility that TRIF/p38 signaling may be involved in G1 phase cycle arrest through ubiquitin/proteasome-dependent degradation of cyclin D.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 210029, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Das >UN. Lipoxins, resolvins, protectins, maresins and nitrolipids, and their clinical implications with specific reference to diabetes mellitus and other diseases: part II. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.32] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Börgeson E, Sharma K. Obesity, immunomodulation and chronic kidney disease. Curr Opin Pharmacol 2013; 13:618-24. [PMID: 23751262 DOI: 10.1016/j.coph.2013.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 12/20/2022]
Abstract
Obesity-induced inflammation is associated with numerous pathologies and is an independent risk factor of chronic kidney disease (CKD). The prevalence of CKD is escalating and current therapeutic strategies are seriously lacking in efficacy, and immunomodulation has been suggested as a potential new therapeutic approach. Indeed, specialized pro-resolving mediators (SPMs), such as lipoxins (LXs), resolvins and protectins, have demonstrated protection in adipose inflammation, restoring insulin sensitivity and adiponectin production, while modulating leukocyte infiltration and promoting resolution in visceral adipose tissue. Furthermore, SPMs display direct renoprotective effect. Thus we review current evidence of immunomodulation as a potential strategy to subvert obesity-related CKD.
Collapse
Affiliation(s)
- Emma Börgeson
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, Institute for Metabolomic Medicine, University of California San Diego, La Jolla, CA, United States
| | | |
Collapse
|