1
|
Erickson MA, Mahankali AP. Interactions of Serum Amyloid A Proteins with the Blood-Brain Barrier: Implications for Central Nervous System Disease. Int J Mol Sci 2024; 25:6607. [PMID: 38928312 PMCID: PMC11204325 DOI: 10.3390/ijms25126607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Serum amyloid A (SAA) proteins are highly conserved lipoproteins that are notoriously involved in the acute phase response and systemic amyloidosis, but their biological functions are incompletely understood. Recent work has shown that SAA proteins can enter the brain by crossing the intact blood-brain barrier (BBB), and that they can impair BBB functions. Once in the central nervous system (CNS), SAA proteins can have both protective and harmful effects, which have important implications for CNS disease. In this review of the thematic series on SAA, we discuss the existing literature that relates SAA to neuroinflammation and CNS disease, and the possible roles of the BBB in these relations.
Collapse
Affiliation(s)
- Michelle A. Erickson
- Geriatric Research Education and Clinical Center, VA Puget Sound Healthcare System, Seattle, WA 98108, USA
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| | - Anvitha P. Mahankali
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA;
| |
Collapse
|
2
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
3
|
Effects of Ozone on Sickness and Depressive-like Behavioral and Biochemical Phenotypes and Their Regulation by Serum Amyloid A in Mice. Int J Mol Sci 2023; 24:ijms24021612. [PMID: 36675130 PMCID: PMC9860713 DOI: 10.3390/ijms24021612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Ozone (O3) is an air pollutant that primarily damages the lungs, but growing evidence supports the idea that O3 also harms the brain; acute exposure to O3 has been linked to central nervous system (CNS) symptoms such as depressed mood and sickness behaviors. However, the mechanisms by which O3 inhalation causes neurobehavioral changes are limited. One hypothesis is that factors in the circulation bridge communication between the lungs and brain following O3 exposure. In this study, our goals were to characterize neurobehavioral endpoints of O3 exposure as they relate to markers of systemic and pulmonary inflammation, with a particular focus on serum amyloid A (SAA) and kynurenine as candidate mediators of O3 behavioral effects. We evaluated O3-induced dose-, time- and sex-dependent changes in pulmonary inflammation, circulating SAA and kynurenine and its metabolic enzymes, and sickness and depressive-like behaviors in Balb/c and CD-1 mice. We found that 3 parts per million (ppm) O3, but not 2 or 1 ppm O3, increased circulating SAA and lung inflammation, which were resolved by 48 h and was worse in females. We also found that indoleamine 2,3-dioxygenase (Ido1) mRNA expression was increased in the brain and spleen 24 h after 3 ppm O3 and that kynurenine was increased in blood. Sickness and depressive-like behaviors were observed at all O3 doses (1-3 ppm), suggesting that behavioral responses to O3 can occur independently of increased SAA or neutrophils in the lungs. Using SAA knockout mice, we found that SAA did not contribute to O3-induced pulmonary damage or inflammation, systemic increases in kynurenine post-O3, or depressive-like behavior but did contribute to weight loss. Together, these findings indicate that acute O3 exposure induces transient symptoms of sickness and depressive-like behaviors that may occur in the presence or absence of overt pulmonary neutrophilia and systemic increases of SAA. SAA does not appear to contribute to pulmonary inflammation induced by O3, although it may contribute to other aspects of sickness behavior, as reflected by a modest effect on weight loss.
Collapse
|
4
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. Acute-serum amyloid A and A-SAA-derived peptides as formyl peptide receptor (FPR) 2 ligands. Front Endocrinol (Lausanne) 2023; 14:1119227. [PMID: 36817589 PMCID: PMC9935590 DOI: 10.3389/fendo.2023.1119227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Originally, it was thought that a single serum amyloid A (SAA) protein was involved in amyloid A amyloidosis, but in fact, SAA represents a four-membered family wherein SAA1 and SAA2 are acute phase proteins (A-SAA). SAA is highly conserved throughout evolution within a wide range of animal species suggestive of an important biological function. In fact, A-SAA has been linked to a number of divergent biological activities wherein a number of these functions are mediated via the G protein-coupled receptor (GPCR), formyl peptide receptor (FPR) 2. For instance, through the activation of FPR2, A-SAA has been described to regulate leukocyte activation, atherosclerosis, pathogen recognition, bone formation and cell survival. Moreover, A-SAA is subject to post-translational modification, primarily through proteolytic processing, generating a range of A-SAA-derived peptides. Although very little is known regarding the biological effect of A-SAA-derived peptides, they have been shown to promote neutrophil and monocyte migration through FPR2 activation via synergy with other GPCR ligands namely, the chemokines CXCL8 and CCL3, respectively. Within this review, we provide a detailed analysis of the FPR2-mediated functions of A-SAA. Moreover, we discuss the potential role of A-SAA-derived peptides as allosteric modulators of FPR2.
Collapse
|
5
|
Dahlgren C, Lind S, Mårtensson J, Björkman L, Wu Y, Sundqvist M, Forsman H. G
protein coupled pattern recognition receptors expressed in neutrophils
: Recognition, activation/modulation, signaling and receptor regulated functions. Immunol Rev 2022; 314:69-92. [PMID: 36285739 DOI: 10.1111/imr.13151] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neutrophils, the most abundant white blood cell in human blood, express receptors that recognize damage/microbial associated pattern molecules of importance for cell recruitment to sites of inflammation. Many of these receptors belong to the family of G protein coupled receptors (GPCRs). These receptor-proteins span the plasma membrane in expressing cells seven times and the down-stream signaling rely in most cases on an activation of heterotrimeric G proteins. The GPCRs expressed in neutrophils recognize a number of structurally diverse ligands (activating agonists, allosteric modulators, and inhibiting antagonists) and share significant sequence homologies. Studies of receptor structure and function have during the last 40 years generated important information on GPCR biology in general; this knowledge aids in the overall understanding of general pharmacological principles, governing regulation of neutrophil function and inflammatory processes, including novel leukocyte receptor activities related to ligand recognition, biased/functional selective signaling, allosteric modulation, desensitization, and reactivation mechanisms as well as communication (receptor transactivation/cross-talk) between GPCRs. This review summarizes the recent discoveries and pharmacological hallmarks with focus on some of the neutrophil expressed pattern recognition GPCRs. In addition, unmet challenges, including recognition by the receptors of diverse ligands and how biased signaling mediate different biological effects are described/discussed.
Collapse
Affiliation(s)
- Claes Dahlgren
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Simon Lind
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Jonas Mårtensson
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Lena Björkman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Yanling Wu
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research University of Göteborg. Göteborg Sweden
| |
Collapse
|
6
|
Liu Y, Liu J, Liu A, Yin H, Burd I, Lei J. Maternal siRNA silencing of placental SAA2 mitigates preterm birth following intrauterine inflammation. Front Immunol 2022; 13:902096. [PMID: 36211368 PMCID: PMC9539923 DOI: 10.3389/fimmu.2022.902096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
The placental inflammatory processes induced maternally result in preterm birth (PTB). Serum amyloid A (SAA) is a well-known biomarker of inflammation. The objective of this study was to investigate whether murine placental SAA isoforms (SAA1–4) participate in the mechanism of spontaneous PTB and whether maternal regulation of SAA production may serve as a therapeutic approach. During the gestation, all isoforms of SAA were detectable except SAA2. The mouse model of intrauterine inflammation was established using LPS infusion to the uterus. Following intrauterine inflammation, placental SAA2 increased significantly. Inhibition of Saa2, using siSaa2, markedly decreased PTB. The increased placental expression of pro-inflammatory cytokines Il1β, Il6, and Tnfα were downregulated by siSaa2 treatment. Maternal inhibition of Saa2 did not change the expression of Saa1–4 in the fetal brain. Explant inflammatory culture of placentas with siSaa2 showed similar results to our in vivo experiments. This study demonstrates the highly expressed placental SAA2 as a novel therapeutic target, and maternal administration of siRNA as a promising approach to alleviate PTB.
Collapse
Affiliation(s)
- Yang Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jin Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Anguo Liu
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hillary Yin
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Irina Burd, ; Jun Lei,
| | - Jun Lei
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Irina Burd, ; Jun Lei,
| |
Collapse
|
7
|
Shan LL, Wang YL, Qiao TC, Bian YF, Huo YJ, Guo C, Liu QY, Yang ZD, Li ZZ, Liu MY, Han Y. Association of Serum Interleukin-8 and Serum Amyloid A With Anxiety Symptoms in Patients With Cerebral Small Vessel Disease. Front Neurol 2022; 13:938655. [PMID: 35923828 PMCID: PMC9341200 DOI: 10.3389/fneur.2022.938655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Cerebral small vessel disease (CSVD) is a clinical syndrome caused by pathological changes in small vessels. Anxiety is a common symptom of CSVD. Previous studies have reported the association between inflammatory factors and anxiety in other diseases, but this association in patients with CSVD remains uncovered. Our study aimed to investigate whether serum inflammatory factors correlated with anxiety in patients with CSVD. Methods A total of 245 CSVD patients confirmed using brain magnetic resonance imaging (MRI) were recruited from December 2019 to December 2021. Hamilton Anxiety Rating Scale (HAMA) was used to assess the anxiety symptoms of CSVD patients. Patients with HAMA scores ≥7 were considered to have anxiety symptoms. The serum levels of interleukin-1β (IL-1β), IL-2R, IL-6, IL-8, IL-10, tumor necrosis factor-α (TNF-α), serum amyloid A (SAA), C-reactive protein (CRP), high-sensitivity C-reactive protein (hs-CRP) and erythrocyte sedimentation rate (ESR) were detected. We compared levels of inflammatory factors between the anxiety and non-anxiety groups. Logistic regression analyses examined the correlation between inflammatory factors and anxiety symptoms. We further performed a gender subgroup analysis to investigate whether this association differed by gender. Results In the fully adjusted multivariate logistic regression analysis model, we found that lower levels of IL-8 were linked to a higher risk of anxiety symptoms. Moreover, higher levels of SAA were linked to a lower risk of anxiety symptoms. Our study identified sex-specific effects, and the correlation between IL-8 and anxiety symptoms remained significant among males, while the correlation between SAA and anxiety symptoms remained significant among females. Conclusions In this study, we found a suggestive association between IL-8, SAA, and anxiety symptoms in CSVD participants. Furthermore, IL-8 and SAA may have a sex-specific relationship with anxiety symptoms.
Collapse
Affiliation(s)
- Li-Li Shan
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Lin Wang
- Georgetown Preparatory School, North Bethesda, MD, United States
| | - Tian-Ci Qiao
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Feng Bian
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Jing Huo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Guo
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian-Yun Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Dong Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ze-Zhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Yuan Liu
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Ming-Yuan Liu
| | - Yan Han
- Department of Neurology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yan Han ; orcid.org/0000-0002-7654-0906
| |
Collapse
|
8
|
Serum Amyloid A is not obligatory for high-fat, high-sucrose, cholesterol-fed diet-induced obesity and its metabolic and inflammatory complications. PLoS One 2022; 17:e0266688. [PMID: 35436297 PMCID: PMC9015120 DOI: 10.1371/journal.pone.0266688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Several studies in the past have reported positive correlations between circulating Serum amyloid A (SAA) levels and obesity. However, based on limited number of studies involving appropriate mouse models, the role of SAA in the development of obesity and obesity-related metabolic consequences has not been established. Accordingly, herein, we have examined the role of SAA in the development of obesity and its associated metabolic complications in vivo using mice deficient for all three inducible forms of SAA: SAA1.1, SAA2.1 and SAA3 (TKO). Male and female mice were rendered obese by feeding a high fat, high sucrose diet with added cholesterol (HFHSC) and control mice were fed rodent chow diet. Here, we show that the deletion of SAA does not affect diet-induced obesity, hepatic lipid metabolism or adipose tissue inflammation. However, there was a modest effect on glucose metabolism. The results of this study confirm previous findings that SAA levels are elevated in adipose tissues as well as in the circulation in diet-induced obese mice. However, the three acute phase SAAs do not play a causative role in the development of obesity or obesity-associated adipose tissue inflammation and dyslipidemia.
Collapse
|
9
|
Ciregia F, Nys G, Cobraiville G, Badot V, Di Romana S, Sidiras P, Sokolova T, Durez P, Fillet M, Malaise MG, de Seny D. A Cross-Sectional and Longitudinal Study to Define Alarmins and A-SAA Variants as Companion Markers in Early Rheumatoid Arthritis. Front Immunol 2021; 12:638814. [PMID: 34489924 PMCID: PMC8418532 DOI: 10.3389/fimmu.2021.638814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Nowadays, in the study of rheumatoid arthritis (RA), more and more interest is directed towards an earlier effective therapeutic intervention and the determination of companion markers for predicting response to therapy with the goal to prevent progressive joint damage, deformities, and functional disability. With the present work, we aimed at quantifying in a cohort of early RA (ERA) patients naïve to DMARD therapy, proteins whose increase was previously found associated with RA: serum amyloid A (A-SAA) and alarmins. Five A-SAA variants (SAA1α, SAA1β, SAA1γ, SAA2α, and SAA2β) but also S100A8 and S100A9 proteins were simultaneously quantified in plasma applying a method based on single targeted bottom-up proteomics LC-MS/MS. First, we compared their expression between ERA (n = 100) and healthy subjects (n = 100), then we focused on their trend by monitoring ERA patients naïve to DMARD treatment, 1 year after starting therapy. Only SAA1α and SAA2α levels were increased in ERA patients, and SAA2α appears to mostly mediate the pathological role of A-SAA. Levels of these variants, together with SAA1β, only decreased under biologic DMARD treatment but not under methotrexate monotherapy. This study highlights the importance to better understand the modulation of expression of these variants in ERA in order to subsequently better characterize their biological function. On the other hand, alarmin expression increased in ERA compared to controls but remained elevated after 12 months of methotrexate or biologic treatment. The work overcomes the concept of considering these proteins as biomarkers for diagnosis, demonstrating that SAA1α, SAA1β, and SAA2α variants but also S100A8 and S100A9 do not respond to all early treatment in ERA and should be rather considered as companion markers useful to improve the follow-up of treatment response and remission state. Moreover, it suggests that earlier use of biologics in addition to methotrexate may be worth considering.
Collapse
Affiliation(s)
- Federica Ciregia
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Gwenaël Nys
- Laboratory for the Analysis of Medicines, Centre Interdisciplinaire De Recherche Sur Le Médicament (CIRM), Department of Pharmacy, University of Liège, Liège, Belgium
| | - Gaël Cobraiville
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Valérie Badot
- Department of Rheumatology, Centre Hospitalier Universitaire (CHU) Brugmann, Bruxelles, Belgium
| | - Silvana Di Romana
- Department of Rheumatology, Centre Hospitalier Universitaire (CHU) Saint–Pierre, Bruxelles, Belgium
| | - Paschalis Sidiras
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Tatiana Sokolova
- Department of Rheumatology, Cliniques Universitaires Saint–Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Bruxelles, Belgium
| | - Patrick Durez
- Department of Rheumatology, Cliniques Universitaires Saint–Luc, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Bruxelles, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Centre Interdisciplinaire De Recherche Sur Le Médicament (CIRM), Department of Pharmacy, University of Liège, Liège, Belgium
| | - Michel G. Malaise
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| | - Dominique de Seny
- Laboratory of Rheumatology, University of Liège, Centre Hospitalier Universitaire (CHU) de Liège, Liège, Belgium
| |
Collapse
|
10
|
Gaiser AK, Bauer S, Ruez S, Holzmann K, Fändrich M, Syrovets T, Simmet T. Serum Amyloid A1 Induces Classically Activated Macrophages: A Role for Enhanced Fibril Formation. Front Immunol 2021; 12:691155. [PMID: 34276683 PMCID: PMC8278318 DOI: 10.3389/fimmu.2021.691155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
AA amyloidosis belongs to the group of amyloid diseases which can follow chronic inflammatory conditions of various origin. The disease is characterized by the deposition of insoluble amyloid fibrils formed by serum amyloid A1 (SAA1) leading eventually to organ failure. Macrophages are intimately involved in the fibrillogenesis as well as in the clearance of amyloid fibrils. In vivo, macrophages may occur as classically (M1) or alternatively activated (M2) macrophages. We investigate here how SAA1 might affect the macrophage phenotype and function. Gene microarray analysis revealed upregulation of 64 M1-associated genes by SAA1. M1-like polarization was further confirmed by the expression of the M1-marker MARCO, activation of the NF-κB transcription factor, and secretion of the M1-cytokines TNF-α, IL-6, and MCP-1. Additionally, we demonstrate here that M1-polarized macrophages exhibit enhanced fibrillogenic activity towards SAA1. Based on our data, we propose reconsideration of the currently used cellular amyloidosis models towards an in vitro model employing M1-polarized macrophages. Furthermore, the data suggest macrophage repolarization as potential intervention strategy in AA amyloidosis.
Collapse
Affiliation(s)
- Ann-Kathrin Gaiser
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Shanna Bauer
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stephanie Ruez
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | | | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
11
|
Abouelasrar Salama S, Gouwy M, Van Damme J, Struyf S. The turning away of serum amyloid A biological activities and receptor usage. Immunology 2021; 163:115-127. [PMID: 33315264 PMCID: PMC8114209 DOI: 10.1111/imm.13295] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 12/04/2020] [Indexed: 12/21/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein (APP) to which multiple immunological functions have been attributed. Regardless, the true biological role of SAA remains poorly understood. SAA is remarkably conserved in mammalian evolution, thereby suggesting an important biological function. Since its discovery in the 1970s, the majority of researchers have investigated SAA using recombinant forms made available through bacterial expression. Nevertheless, recent studies indicate that these recombinant forms of SAA are unreliable. Indeed, commercial SAA variants have been shown to be contaminated with bacterial products including lipopolysaccharides and lipoproteins. As such, biological activities and receptor usage (TLR2, TLR4) revealed through the use of commercial SAA variants may not reflect the inherent nature of this APP. Within this review, we discuss the biological effects of SAA that have been demonstrated through more solid experimental approaches. SAA takes part in the innate immune response via the recruitment of leucocytes and executes, through pathogen recognition, antimicrobial activity. Knockout animal models implicate SAA in a range of functions, such as regulation of T-cell-mediated responses and monopoiesis. Moreover, through its structural motifs, not only does SAA function as an extracellular matrix protein, but it also binds extracellular matrix proteins. Finally, we here also provide an overview of definite SAA receptor-mediated functions and highlight those that are yet to be validated. The role of FPR2 in SAA-mediated leucocyte recruitment has been confirmed; nevertheless, SAA has been linked to a range of other receptors including CD36, SR-BI/II, RAGE and P2RX7.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Serum amyloid A (SAA) is a highly sensitive acute phase reactant that has been linked to a number of chronic inflammatory diseases. During a systemic inflammatory response, liver-derived SAA is primarily found on high-density lipoprotein (HDL). The purpose of this review is to discuss recent literature addressing the pathophysiological functions of SAA and the significance of its association with HDL. RECENT FINDINGS Studies in gene-targeted mice establish that SAA contributes to atherosclerosis and some metastatic cancers. Accumulating evidence indicates that the lipidation state of SAA profoundly affects its bioactivities, with lipid-poor, but not HDL-associated, SAA capable of inducing inflammatory responses in vitro and in vivo. Factors that modulate the equilibrium between lipid-free and HDL-associated SAA have been identified. HDL may serve to limit SAA's bioactivities in vivo. Understanding the factors leading to the release of systemic SAA from HDL may provide insights into chronic disease mechanisms.
Collapse
Affiliation(s)
- Nancy R Webb
- Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, and Barnstable Brown Diabetes Center, University of Kentucky, 553 Wethington Building, 900 South Limestone, Lexington, KY, 40536-0200, USA.
| |
Collapse
|
14
|
Alizadehgharib S, Östberg AK, Dahlstrand Rudin A, Dahlgren U, Christenson K. Immunological response of human leucocytes after exposure to lipopolysaccharides from Porphyromonas gingivalis. Clin Exp Dent Res 2020; 7:531-538. [PMID: 33377284 PMCID: PMC8404501 DOI: 10.1002/cre2.388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 12/12/2020] [Indexed: 12/14/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative bacterium and an important etiologic agent of periodontitis. P. gingivalis releases outer membrane vesicles containing lipopolysaccharides (LPS), which can penetrate periodontal tissues. Once in the periodontal tissues and in contact with immune cells, it may participate in the destructive innate host response associated with the disease. The exact mechanism of P. gingivalis LPS in the disease process is not clear, but it is known to affect a variety of immune responses. OBJECTIVES To investigate how LPS from P. gingivalis affect neutrophil extracellular trap (NET) formation, cell death and production of cytokines from human neutrophils and peripheral mononuclear blood mononuclear cells (PBMCs). MATERIALS AND METHODS Isolated neutrophils and PBMCs were cultured with LPS from P. gingivalis or Escherichia coli (E. coli) (control). The NET formation was measured using Sytox green stain. Cell death of neutrophils and PBMCs was analyzed using flow cytometry or Sytox green stain. Cytokine production was measured using enzyme-linked immunosorbent assay (ELISA) kit or Bio-Plex assay. RESULTS Exposure to LPS from P. gingivalis and E. coli caused significantly lower cell death in neutrophils. NETs were formed after exposure to the two different LPS. In PBMCs, exposure to P. gingivalis and E. coli LPS caused increased levels of IL-1β and IL-6 compared to unstimulated controls. Increased cell death in PBMCs after exposure to LPS from E. coli in comparison to LPS from P. gingivalis and unstimulated controls was also observed. CONCLUSIONS LPS from P. gingivalis has the ability to affect both human neutrophils and PBMCs with regard to cytokine production, cell death and production of NETs. LPS from P. gingivalis could be involved in the pathogenesis of periodontitis, and our results may contribute information regarding possible markers for diagnosis and targets for treatment of periodontal disease.
Collapse
Affiliation(s)
- Sara Alizadehgharib
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Anna-Karin Östberg
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Ulf Dahlgren
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, University of Gothenburg, The Sahlgrenska Academy, Institute of Odontology, Gothenburg, Sweden
| |
Collapse
|
15
|
White MR, Hsieh IN, De Luna X, Hartshorn KL. Effects of serum amyloid protein A on influenza A virus replication and viral interactions with neutrophils. J Leukoc Biol 2020; 110:155-166. [PMID: 33205458 PMCID: PMC7753654 DOI: 10.1002/jlb.4ab0220-116rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/22/2023] Open
Abstract
Innate immunity is vital for the early control of influenza A virus (IAV) infection. Serum amyloid A (SAA1) is an acute phase reactant produced in the liver and lung that rises dramatically during IAV infection. The potential role of SAA1 in host defense against IAV is unknown. SAA1 has been reported to directly activate neutrophils and to recruit them to the lung during infectious and inflammatory processes. Neutrophils are the most abundant cell recruited to the lung in the early phase of IAV infection. There are different forms and preparations of SAA1 that have found to have different effects on phagocyte responses, through various receptors. In this paper, we test the direct effects of various preparations of serum derived or recombinant SAA on IAV and how it modulates the interactions of IAV with neutrophils. All SAA preparations bound to IAV in vitro but caused minimal hemagglutination inhibition or viral aggregation. The human serum‐derived SAA1 or the complex of SAA1 with HDL did have IAV neutralizing activity in vitro, whereas the recombinant SAA1 preparations did not. We found that different SAA preparations also had markedly different effects on neutrophil functions, with E. coli‐derived SAA1 triggering some responses in neutrophils on its own or in presence of IAV whereas mammalian cell‐derived SAA1 did not. This discrepancy could be explained by the reported contamination of the former preparation with bacterial components. Of interest, however, serum SAA alone, serum SAA complexed with HDL, or HDL alone potentiated some neutrophil responses to IAV. Our results suggest that SAA may play some role in host response to IAV, but further work needs to be done to clarify the role of different variants of SAA alone or complexed with HDL.
Collapse
Affiliation(s)
- Mitchell R White
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - I-Ni Hsieh
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Xavier De Luna
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
17
|
Biological Characterization of Commercial Recombinantly Expressed Immunomodulating Proteins Contaminated with Bacterial Products in the Year 2020: The SAA3 Case. Mediators Inflamm 2020; 2020:6087109. [PMID: 32694927 PMCID: PMC7362292 DOI: 10.1155/2020/6087109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023] Open
Abstract
The serum amyloid A (SAA) gene family is highly conserved and encodes acute phase proteins that are upregulated in response to inflammatory triggers. Over the years, a considerable amount of literature has been published attributing a wide range of biological effects to SAAs such as leukocyte recruitment, cytokine and chemokine expression and induction of matrix metalloproteinases. Furthermore, SAAs have also been linked to protumorigenic, proatherogenic and anti-inflammatory effects. Here, we investigated the biological effects conveyed by murine SAA3 (mu rSAA3) recombinantly expressed in Escherichia coli. We observed the upregulation of a number of chemokines including CCL2, CCL3, CXCL1, CXCL2, CXCL6 or CXCL8 following stimulation of monocytic, fibroblastoid and peritoneal cells with mu rSAA3. Furthermore, this SAA variant displayed potent in vivo recruitment of neutrophils through the activation of TLR4. However, a major problem associated with proteins derived from recombinant expression in bacteria is potential contamination with various bacterial products, such as lipopolysaccharide, lipoproteins and formylated peptides. This is of particular relevance in the case of SAA as there currently exists a discrepancy in biological activity between SAA derived from recombinant expression and that of an endogenous source, i.e. inflammatory plasma. Therefore, we subjected commercial recombinant mu rSAA3 to purification to homogeneity via reversed-phase high-performance liquid chromatography (RP-HPLC) and re-assessed its biological potential. RP-HPLC-purified mu rSAA3 did not induce chemokines and lacked in vivo neutrophil chemotactic activity, but retained the capacity to synergize with CXCL8 in the activation of neutrophils. In conclusion, experimental results obtained when using proteins recombinantly expressed in bacteria should always be interpreted with care.
Collapse
|
18
|
Serum amyloid A is a soluble pattern recognition receptor that drives type 2 immunity. Nat Immunol 2020; 21:756-765. [PMID: 32572240 DOI: 10.1038/s41590-020-0698-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
The molecular basis for the propensity of a small number of environmental proteins to provoke allergic responses is largely unknown. Herein, we report that mite group 13 allergens of the fatty acid-binding protein (FABP) family are sensed by an evolutionarily conserved acute-phase protein, serum amyloid A1 (SAA1), that promotes pulmonary type 2 immunity. Mechanistically, SAA1 interacted directly with allergenic mite FABPs (Der p 13 and Blo t 13). The interaction between mite FABPs and SAA1 activated the SAA1-binding receptor, formyl peptide receptor 2 (FPR2), which drove the epithelial release of the type-2-promoting cytokine interleukin (IL)-33 in a SAA1-dependent manner. Importantly, the SAA1-FPR2-IL-33 axis was upregulated in nasal epithelial cells from patients with chronic rhinosinusitis. These findings identify an unrecognized role for SAA1 as a soluble pattern recognition receptor for conserved FABPs found in common mite allergens that initiate type 2 immunity at mucosal surfaces.
Collapse
|
19
|
Abouelasrar Salama S, De Bondt M, De Buck M, Berghmans N, Proost P, Oliveira VLS, Amaral FA, Gouwy M, Van Damme J, Struyf S. Serum Amyloid A1 (SAA1) Revisited: Restricted Leukocyte-Activating Properties of Homogeneous SAA1. Front Immunol 2020; 11:843. [PMID: 32477346 PMCID: PMC7240019 DOI: 10.3389/fimmu.2020.00843] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Infection, sterile injury, and chronic inflammation trigger the acute phase response in order to re-establish homeostasis. This response includes production of positive acute phase proteins in the liver, such as members of the serum amyloid A (SAA) family. In humans the major acute phase SAAs comprise a group of closely related variants of SAA1 and SAA2. SAA1 was proven to be chemotactic for several leukocyte subtypes through activation of the G protein-coupled receptor FPRL1/FPR2. Several other biological activities of SAA1, such as cytokine induction, reported to be mediated via TLRs, have been debated recently. Especially commercial SAA1, recombinantly produced in Escherichia coli, was found to be contaminated with bacterial products confounding biological assays performed with this rSAA1. We purified rSAA1 by RP-HPLC to homogeneity, removing contaminants such as lipopolysaccharides, lipoproteins and formylated peptides, and re-assessed several biological activities attributed to SAA1 (chemotaxis, cytokine induction, MMP-9 release, ROS generation, and macrophage differentiation). The homogeneous rSAA1 (hrSAA1) lacked most cell-activating properties, but its leukocyte-recruiting capacity in vivo and it’s in vitro synergy with other leukocyte attractants remained preserved. Furthermore, hrSAA1 maintained the ability to promote monocyte survival. This indicates that pure hrSAA1 retains its potential to activate FPR2, whereas TLR-mediated effects seem to be related to traces of bacterial TLR ligands in the E. coli-produced human rSAA1.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mirre De Bondt
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Nele Berghmans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Vivian Louise Soares Oliveira
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.,Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flavio A Amaral
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Spiga O, Cicaloni V, Fiorini C, Trezza A, Visibelli A, Millucci L, Bernardini G, Bernini A, Marzocchi B, Braconi D, Prischi F, Santucci A. Machine learning application for development of a data-driven predictive model able to investigate quality of life scores in a rare disease. Orphanet J Rare Dis 2020; 15:46. [PMID: 32050984 PMCID: PMC7017449 DOI: 10.1186/s13023-020-1305-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/14/2020] [Indexed: 01/11/2023] Open
Abstract
Background Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the homogentisate 1,2-dioxygenase (HGD) gene. One of the main obstacles in studying AKU, and other ultra-rare diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Quality of Life scores (QoL) are a reliable way to monitor patients’ clinical condition and health status. QoL scores allow to monitor the evolution of diseases and assess the suitability of treatments by taking into account patients’ symptoms, general health status and care satisfaction. However, more comprehensive tools to study a complex and multi-systemic disease like AKU are needed. In this study, a Machine Learning (ML) approach was implemented with the aim to perform a prediction of QoL scores based on clinical data deposited in the ApreciseKUre, an AKU- dedicated database. Method Data derived from 129 AKU patients have been firstly examined through a preliminary statistical analysis (Pearson correlation coefficient) to measure the linear correlation between 11 QoL scores. The variable importance in QoL scores prediction of 110 ApreciseKUre biomarkers has been then calculated using XGBoost, with K-nearest neighbours algorithm (k-NN) approach. Due to the limited number of data available, this model has been validated using surrogate data analysis. Results We identified a direct correlation of 6 (age, Serum Amyloid A, Chitotriosidase, Advanced Oxidation Protein Products, S-thiolated proteins and Body Mass Index) out of 110 biomarkers with the QoL health status, in particular with the KOOS (Knee injury and Osteoarthritis Outcome Score) symptoms (Relative Absolute Error (RAE) 0.25). The error distribution of surrogate-model (RAE 0.38) was unequivocally higher than the true-model one (RAE of 0.25), confirming the consistency of our dataset. Our data showed that inflammation, oxidative stress, amyloidosis and lifestyle of patients correlates with the QoL scores for physical status, while no correlation between the biomarkers and patients’ mental health was present (RAE 1.1). Conclusions This proof of principle study for rare diseases confirms the importance of database, allowing data management and analysis, which can be used to predict more effective treatments.
Collapse
Affiliation(s)
- Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy.
| | - Vittoria Cicaloni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy.,Toscana Life Sciences Foundation, Siena, Italy
| | | | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy
| | - Anna Visibelli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy.,Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
| | - Lia Millucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy
| | - Giulia Bernardini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy
| | - Barbara Marzocchi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy.,UOC Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy
| | - Daniela Braconi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy
| | - Filippo Prischi
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A., 53100, Siena, Italy
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Acute phase serum amyloid A (SAA) is persistently elevated in chronic inflammatory conditions, and elevated levels predict cardiovascular risk in humans. More recently, murine studies have demonstrated that over-expression of SAA increases and deficiency/suppression of SAA attenuates atherosclerosis. Thus, beyond being a biomarker, SAA appears to play a causal role in atherogenesis. The purpose of this review is to summarize the data supporting SAA as a key player in atherosclerosis development. RECENT FINDINGS A number of pro-inflammatory and pro-atherogenic activities have been ascribed to SAA. However, the literature is conflicted, as recombinant SAA, and/or lipid-free SAA, used in many of the earlier studies, do not reflect the activity of native human or murine SAA, which exists largely lipid-associated. Recent literatures demonstrate that SAA activates the NLRP3 inflammasome, alters vascular function, affects HDL function, and increases thrombosis. Importantly, SAA activity appears to be regulated by its lipid association, and HDL may serve to sequester and limit SAA activity. SUMMARY SAA has many pro-inflammatory and pro-atherogenic activities, is clearly demonstrated to affect atherosclerosis development, and may be a candidate target for clinical trials in cardiovascular diseases.
Collapse
Affiliation(s)
- Preetha Shridas
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
| | - Lisa R Tannock
- Department of Internal Medicine
- Saha Cardiovascular Research Center
- Barnstable Brown Diabetes Center and University of Kentucky
- Veterans Affairs Lexington, Lexington, Kentucky, USA
| |
Collapse
|
22
|
Murdoch CC, Espenschied ST, Matty MA, Mueller O, Tobin DM, Rawls JF. Intestinal Serum amyloid A suppresses systemic neutrophil activation and bactericidal activity in response to microbiota colonization. PLoS Pathog 2019; 15:e1007381. [PMID: 30845179 PMCID: PMC6405052 DOI: 10.1371/journal.ppat.1007381] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022] Open
Abstract
The intestinal microbiota influences the development and function of myeloid lineages such as neutrophils, but the underlying molecular mechanisms are unresolved. Using gnotobiotic zebrafish, we identified the immune effector Serum amyloid A (Saa) as one of the most highly induced transcripts in digestive tissues following microbiota colonization. Saa is a conserved secreted protein produced in the intestine and liver with described effects on neutrophils in vitro, however its in vivo functions remain poorly defined. We engineered saa mutant zebrafish to test requirements for Saa on innate immunity in vivo. Zebrafish mutant for saa displayed impaired neutrophil responses to wounding but augmented clearance of pathogenic bacteria. At baseline, saa mutants exhibited moderate neutrophilia and altered neutrophil tissue distribution. Molecular and functional analyses of isolated neutrophils revealed that Saa suppresses expression of pro-inflammatory markers and bactericidal activity. Saa's effects on neutrophils depended on microbiota colonization, suggesting this protein mediates the microbiota's effects on host innate immunity. To test tissue-specific roles of Saa on neutrophil function, we over-expressed saa in the intestine or liver and found that sufficient to partially complement neutrophil phenotypes observed in saa mutants. These results indicate Saa produced by the intestine in response to microbiota serves as a systemic signal to neutrophils to restrict aberrant activation, decreasing inflammatory tone and bacterial killing potential while simultaneously enhancing their ability to migrate to wounds.
Collapse
Affiliation(s)
- Caitlin C. Murdoch
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Scott T. Espenschied
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Molly A. Matty
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Olaf Mueller
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
23
|
Ather JL, Dienz O, Boyson JE, Anathy V, Amiel E, Poynter ME. Serum Amyloid A3 is required for normal lung development and survival following influenza infection. Sci Rep 2018; 8:16571. [PMID: 30410021 PMCID: PMC6224415 DOI: 10.1038/s41598-018-34901-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023] Open
Abstract
Serum amyloid A (SAA) proteins are a family of acute phase apolipoproteins implicated to directly modulate innate and adaptive immune responses. However, new studies comparing endogenous SAAs and recombinant forms of these proteins have questioned the function of SAA in inflammation and immunity. We generated SAA3 knockout mice to evaluate the contribution of SAA3 to lung development and immune-mediated lung disease. While SAA3 deficiency does not affect the generation of house dust mite-induced allergic asthma, mice lacking SAA3 develop adult-onset obesity, intrinsic airway hyperresponsiveness, increased inflammatory and fibrotic gene expression in the lung, and elevated levels of lung citrullinated proteins. Polyclonally stimulated CD4+ T cells from SAA3-/- mice exhibit impaired glycolytic activity, decreased TH2 and TH1 cytokine secretion, and elevated IL-17A production compared to wild type cells. Polyclonally stimulated CD8+ T cells from SAA3-/- mice also exhibit impaired glycolytic activity as well as a diminished capacity to produce IL-2 and IFNγ. Finally, SAA3-/- mice demonstrate increased mortality in response to H1N1 influenza infection, along with higher copy number of viral RNAs in the lung, a lack of CD8+ T cell IFNγ secretion, and decreased flu-specific antibodies. Our findings indicate that endogenous SAA3 regulates lung development and homeostasis, and is required for protection against H1N1 influenza infection.
Collapse
Affiliation(s)
- Jennifer L Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Oliver Dienz
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Jonathan E Boyson
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew E Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT, 05405, USA.
| |
Collapse
|
24
|
Burgess EJ, Hoyt LR, Randall MJ, Mank MM, Bivona JJ, Eisenhauer PL, Botten JW, Ballif BA, Lam YW, Wargo MJ, Boyson JE, Ather JL, Poynter ME. Bacterial Lipoproteins Constitute the TLR2-Stimulating Activity of Serum Amyloid A. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2377-2384. [PMID: 30158125 PMCID: PMC6179936 DOI: 10.4049/jimmunol.1800503] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.
Collapse
Affiliation(s)
- Edward J Burgess
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Laura R Hoyt
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew J Randall
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Madeleine M Mank
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Joseph J Bivona
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Philip L Eisenhauer
- Immunobiology Division, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Jason W Botten
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Immunobiology Division, Department of Medicine, University of Vermont, Burlington, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Bryan A Ballif
- Department of Biology, University of Vermont, Burlington, VT 05405; and
| | - Ying-Wai Lam
- Department of Biology, University of Vermont, Burlington, VT 05405; and
| | - Matthew J Wargo
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Jonathan E Boyson
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Department of Surgery, University of Vermont, Burlington, VT 05405
| | - Jennifer L Ather
- Vermont Lung Center, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew E Poynter
- Vermont Lung Center, University of Vermont, Burlington, VT 05405;
- Cellular, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405
- Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| |
Collapse
|
25
|
Cheng N, Liang Y, Du X, Ye RD. Serum amyloid A promotes LPS clearance and suppresses LPS-induced inflammation and tissue injury. EMBO Rep 2018; 19:embr.201745517. [PMID: 30126923 DOI: 10.15252/embr.201745517] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major microbial mediator for tissue injury and sepsis resulting from Gram-negative bacterial infection. LPS is an external factor that induces robust expression of serum amyloid A (SAA), a major constituent of the acute-phase proteins, but the relationship between SAA expression and LPS-induced tissue injury remains unclear. Here, we report that mice with inducible transgenic expression of human SAA1 are partially protected against inflammatory response and lung injury caused by LPS and cecal ligation and puncture (CLP). In comparison, transgenic SAA1 does not attenuate TNFα-induced lung inflammation and injury. The SAA1 expression level correlates inversely with the endotoxin concentrations in serum and lung tissues since SAA1 binds directly to LPS to form a complex that promotes LPS uptake by macrophages. Disruption of the SAA1-LPS interaction with a SAA1-derived peptide partially reduces the protective effect and exacerbates inflammation. These findings demonstrate that acute-phase SAA provides innate feedback protection against LPS-induced inflammation and tissue injury.
Collapse
Affiliation(s)
- Ni Cheng
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Yurong Liang
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Xiaoping Du
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Richard D Ye
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois, Chicago, IL, USA .,State Key Laboratory for Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region, China
| |
Collapse
|
26
|
Cheng N, Liang Y, Du X, Ye RD. Serum amyloid A promotes
LPS
clearance and suppresses
LPS
‐induced inflammation and tissue injury. EMBO Rep 2018. [DOI: 10.15252/embr.201745517 (e45517):14 pp] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Ni Cheng
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
| | - Yurong Liang
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
| | - Xiaoping Du
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
| | - Richard D Ye
- Department of Pharmacology and Center for Lung and Vascular Biology College of Medicine University of Illinois Chicago IL USA
- State Key Laboratory for Quality Research in Chinese Medicine Institute of Chinese Medical Sciences University of Macau Macau Special Administrative Region China
| |
Collapse
|
27
|
Braconi D, Giustarini D, Marzocchi B, Peruzzi L, Margollicci M, Rossi R, Bernardini G, Millucci L, Gallagher JA, Le Quan Sang KH, Imrich R, Rovensky J, Al-Sbou M, Ranganath LR, Santucci A. Inflammatory and oxidative stress biomarkers in alkaptonuria: data from the DevelopAKUre project. Osteoarthritis Cartilage 2018; 26:1078-1086. [PMID: 29852277 DOI: 10.1016/j.joca.2018.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 05/03/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this work was to assess baseline serum levels of established biomarkers related to inflammation and oxidative stress in samples from alkaptonuric subjects enrolled in SONIA1 (n = 40) and SONIA2 (n = 138) clinical trials (DevelopAKUre project). METHODS Baseline serum levels of Serum Amyloid A (SAA), IL-6, IL-1β, TNFα, CRP, cathepsin D (CATD), IL-1ra, and MMP-3 were determined through commercial ELISA assays. Chitotriosidase activity was assessed through a fluorimetric method. Advanced Oxidation Protein Products (AOPP) were determined by spectrophotometry. Thiols, S-thiolated proteins and Protein Thiolation Index (PTI) were determined by spectrophotometry and HPLC. Patients' quality of life was assessed through validated questionnaires. RESULTS We found that SAA serum levels were significantly increased compared to reference threshold in 57.5% and 86% of SONIA1 and SONIA2 samples, respectively. Similarly, chitotriosidase activity was above the reference threshold in half of SONIA2 samples, whereas CRP levels were increased only in a minority of samples. CATD, IL-1β, IL-6, TNFα, MMP-3, AOPP, thiols, S-thiolated protein and PTI showed no statistically significant differences from control population. We provided evidence that alkaptonuric patients presenting with significantly higher SAA, chitotriosidase activity and PTI reported more often a decreased quality of life. This suggests that worsening of symptoms in alkaptonuria (AKU) is paralleled by increased inflammation and oxidative stress, which might play a role in disease progression. CONCLUSIONS Monitoring of SAA may be suggested in AKU to evaluate inflammation. Though further evidence is needed, SAA, chitotriosidase activity and PTI might be proposed as disease activity markers in AKU.
Collapse
Affiliation(s)
- D Braconi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - D Giustarini
- Dipartimento Scienze Mediche, Chirurgiche e Neuroscienze, Università degli Studi di Siena, Siena, Italy.
| | - B Marzocchi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Patologia Clinica, Azienda Ospedaliera Senese, Siena, Italy.
| | - L Peruzzi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy; UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - M Margollicci
- UOC Medicina Molecolare e Genetica, Azienda Ospedaliera Senese, Siena, Italy.
| | - R Rossi
- Dipartimento Scienze della Vita, Università degli Studi di Siena, Siena, Italy.
| | - G Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - L Millucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| | - J A Gallagher
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK.
| | | | - R Imrich
- Center for Molecular Medicine, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - J Rovensky
- National Institute of Rheumatic Diseases, Piešťany, Slovakia.
| | - M Al-Sbou
- Department of Pharmacology, Alkaptonuria Research Office, Faculty of Medicine, Mutah University, Mutah, Karak, Jordan.
| | - L R Ranganath
- Department of Musculoskeletal Biology, University of Liverpool, Liverpool, UK; Department of Clinical Biochemistry and Metabolism, Royal Liverpool University Hospital, Liverpool, UK.
| | - A Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.
| |
Collapse
|
28
|
Ather JL, Poynter ME. Serum amyloid A3 is required for normal weight and immunometabolic function in mice. PLoS One 2018; 13:e0192352. [PMID: 29390039 PMCID: PMC5794179 DOI: 10.1371/journal.pone.0192352] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/22/2018] [Indexed: 02/06/2023] Open
Abstract
Serum amyloid A (SAA) is an apolipoprotein that is robustly upregulated in numerous inflammatory diseases and has been implicated as a candidate pro-inflammatory mediator. However, studies comparing endogenous SAAs and recombinant forms of the acute phase protein have generated conflicting data on the function of SAA in immunity. We generated SAA3 knockout mice to evaluate the contribution of SAA3 to immune-mediated disease, and found that mice lacking SAA3 develop adult-onset obesity and metabolic dysfunction along with defects in innate immune development. Mice that lack SAA3 gain more weight, exhibit increased visceral adipose deposition, and develop hepatic steatosis compared to wild-type littermates. Leukocytes from the adipose tissue of SAA3-/- mice express a pro-inflammatory phenotype, and bone marrow derived dendritic cells from mice lacking SAA3 secrete increased levels of IL-1β, IL-6, IL-23, and TNFα in response to LPS compared to cells from wild-type mice. Finally, BMDC lacking SAA3 demonstrate an impaired endotoxin tolerance response and inhibited responses to retinoic acid. Our findings indicate that endogenous SAA3 modulates metabolic and immune homeostasis.
Collapse
Affiliation(s)
- Jennifer L. Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT, United States of America
| | - Matthew E. Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT, United States of America
| |
Collapse
|
29
|
Zhou H, Chen M, Zhang G, Ye RD. Suppression of Lipopolysaccharide-Induced Inflammatory Response by Fragments from Serum Amyloid A. THE JOURNAL OF IMMUNOLOGY 2017; 199:1105-1112. [PMID: 28674180 DOI: 10.4049/jimmunol.1700470] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/06/2017] [Indexed: 11/19/2022]
Abstract
Serum amyloid A (SAA) is known as an acute-phase protein and a biomarker for inflammatory diseases. Published studies have shown that SAA possesses proinflammatory cytokine-like activity and is chemotactic for phagocytes, but the structural basis for these activities remains unidentified. In this article, we report that truncated SAA1 proteins lacking N- and C-terminal sequences exhibit reduced proinflammatory activity and strongly suppress LPS-induced expression of IL-1β, IL-6, and TNF-α in macrophages. A truncated SAA1 containing aa 11-58 was examined further and found to facilitate p38 MAPK phosphorylation while reducing LPS-stimulated phosphorylation of ERK and JNK. In LPS-challenged mice, aa 11-58 reduced the severity of acute lung injury, with significantly less neutrophil infiltration in the lungs and attenuated pulmonary expression of IL-1β, IL-6, and TNF-α. Coadministration of aa 11-58 markedly improved mouse survival in response to a lethal dose of LPS. A potent induction of IL-10 was observed in a TLR2-dependent, but TLR4-independent, manner in macrophages stimulated with aa 11-58. However, the aa 11-58 fragment of SAA1 was unable to induce chemotaxis or calcium flux through formyl peptide receptor 2. These results indicate that the N- and C-terminal sequences contain structural determinants for the proinflammatory and chemotactic activities of SAA1, and their removal switches SAA1 to an anti-inflammatory role. Given that proteolytic processing of SAA is associated with the pathological changes in several diseases, including secondary amyloidosis, our findings may shed light on the structure-function relationship of SAA1 with respect to its role in inflammation.
Collapse
Affiliation(s)
- Huibin Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Mingjie Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Gufang Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; and .,Institute of Chinese Medical Sciences, University of Macau, Macau Special Administrative Region 999078, China
| |
Collapse
|
30
|
Baranova IN, Souza ACP, Bocharov AV, Vishnyakova TG, Hu X, Vaisman BL, Amar MJ, Chen Z, Remaley AT, Patterson AP, Yuen PST, Star RA, Eggerman TL. Human SR-BII mediates SAA uptake and contributes to SAA pro-inflammatory signaling in vitro and in vivo. PLoS One 2017; 12:e0175824. [PMID: 28423002 PMCID: PMC5396919 DOI: 10.1371/journal.pone.0175824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/01/2017] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with cytokine-like and chemotactic properties, that is markedly up-regulated during various inflammatory conditions. Several receptors, including FPRL-1, TLR2, TLR4, RAGE, class B scavenger receptors, SR-BI and CD36, have been identified as SAA receptors. This study provides new evidence that SR-BII, splice variant of SR-BI, could function as an SAA receptor mediating its uptake and pro-inflammatory signaling. The uptake of Alexa Fluor488 SAA was markedly (~3 fold) increased in hSR-BII-expressing HeLa cells when compared with mock-transfected cells. The levels of SAA-induced interleukin-8 secretion by hSR-BII-expressing HEK293 cells were also significantly (~3-3.5 fold) higher than those detected in control cells. Moderately enhanced levels of phosphorylation of all three mitogen-activated protein kinases, ERK1/2, and p38 and JNK, were observed in hSR-BII-expressing cells following SAA stimulation when compared with control wild type cells. Transgenic mice with pLiv-11-directed liver/kidney overexpression of hSR-BI or hSR-BII were used to assess the in vivo role of each receptor in SAA-induced pro-inflammatory response in these organs. Six hours after intraperitoneal SAA injection both groups of transgenic mice demonstrated markedly higher (~2-5-fold) expression levels of inflammatory mediators in the liver and kidney compared to wild type mice. Histological examinations of hepatic and renal tissue from SAA-treated mice revealed moderate level of damage in the liver of both transgenic but not in the wild type mice. Activities of plasma transaminases, biomarkers of liver injury, were also moderately higher in hSR-B transgenic mice when compared to wild type mice. Our findings identify hSR-BII as a functional SAA receptor that mediates SAA uptake and contributes to its pro-inflammatory signaling via the MAPKs-mediated signaling pathways.
Collapse
Affiliation(s)
- Irina N. Baranova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ana C. P. Souza
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander V. Bocharov
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tatyana G. Vishnyakova
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Boris L. Vaisman
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo J. Amar
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhigang Chen
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Amy P. Patterson
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas L. Eggerman
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
- Division of Diabetes, Endocrinology and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
31
|
He HQ, Ye RD. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017; 22:E455. [PMID: 28335409 PMCID: PMC6155412 DOI: 10.3390/molecules22030455] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
The formyl peptide receptors (FPRs) are G protein-coupled receptors that transduce chemotactic signals in phagocytes and mediate host-defense as well as inflammatory responses including cell adhesion, directed migration, granule release and superoxide production. In recent years, the cellular distribution and biological functions of FPRs have expanded to include additional roles in homeostasis of organ functions and modulation of inflammation. In a prototype, FPRs recognize peptides containing N-formylated methionine such as those produced in bacteria and mitochondria, thereby serving as pattern recognition receptors. The repertoire of FPR ligands, however, has expanded rapidly to include not only N-formyl peptides from microbes but also non-formyl peptides of microbial and host origins, synthetic small molecules and an eicosanoid. How these chemically diverse ligands are recognized by the three human FPRs (FPR1, FPR2 and FPR3) and their murine equivalents is largely unclear. In the absence of crystal structures for the FPRs, site-directed mutagenesis, computer-aided ligand docking and structural simulation have led to the identification of amino acids within FPR1 and FPR2 that interact with several formyl peptides. This review article summarizes the progress made in the understanding of FPR ligand diversity as well as ligand recognition mechanisms used by these receptors.
Collapse
Affiliation(s)
- Hui-Qiong He
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| | - Richard D Ye
- Institute of Chinese Medical Sciences, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
32
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Opdenakker G, Struyf S, Van Damme J. Structure and Expression of Different Serum Amyloid A (SAA) Variants and their Concentration-Dependent Functions During Host Insults. Curr Med Chem 2017; 23:1725-55. [PMID: 27087246 PMCID: PMC5405626 DOI: 10.2174/0929867323666160418114600] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 12/23/2022]
Abstract
Serum amyloid A (SAA) is, like C-reactive protein (CRP), an acute phase protein and can be used as a diagnostic, prognostic or therapy follow-up marker for many diseases. Increases in serum levels of SAA are triggered by physical insults to the host, including infection, trauma, inflammatory reactions and cancer. The order of magnitude of increase in SAA levels varies considerably, from a 10- to 100-fold during limited inflammatory events to a 1000-fold increase during severe bacterial infections and acute exacerbations of chronic inflammatory diseases. This broad response range is reflected by SAA gene duplications resulting in a cluster encoding several SAA variants and by multiple biological functions of SAA. SAA variants are single-domain proteins with simple structures and few post-translational modifications. SAA1 and SAA2 are inducible by inflammatory cytokines, whereas SAA4 is constitutively produced. We review here the regulated expression of SAA in normal and transformed cells and compare its serum levels in various disease states. At low concentrations (10-100 ng/ml), early in an inflammatory response, SAA induces chemokines or matrix degrading enzymes via Toll-like receptors and functions as an activator and chemoattractant through a G protein-coupled receptor. When an infectious or inflammatory stimulus persists, the liver continues to produce more SAA (> 1000 ng/ml) to become an antimicrobial agent by functioning as a direct opsonin of bacteria or by interference with virus infection of host cells. Thus, SAA regulates innate and adaptive immunity and this information may help to design better drugs to treat specific diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jo Van Damme
- University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
33
|
Dahlgren C, Gabl M, Holdfeldt A, Winther M, Forsman H. Basic characteristics of the neutrophil receptors that recognize formylated peptides, a danger-associated molecular pattern generated by bacteria and mitochondria. Biochem Pharmacol 2016; 114:22-39. [DOI: 10.1016/j.bcp.2016.04.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
|
34
|
Jang WY, Jeong J, Kim S, Kang MC, Sung YH, Choi M, Park SJ, Kim MO, Kim SH, Ryoo ZY. Serum amyloid A1 levels and amyloid deposition following a high-fat diet challenge in transgenic mice overexpressing hepatic serum amyloid A1. Appl Physiol Nutr Metab 2016; 41:640-648. [PMID: 27218680 DOI: 10.1139/apnm-2015-0369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Serum amyloid A (SAA) is an acute-phase response protein in the liver, and SAA1 is the major precursor protein involved in amyloid A amyloidosis. This amyloidosis has been reported as a complication in chronic inflammatory conditions such as arthritis, lupus, and Crohn's disease. Obesity is also associated with chronic, low-grade inflammation and sustained, elevated levels of SAA1. However, the contribution of elevated circulating SAA1 to metabolic disturbances and their complications is unclear. Furthermore, in several recent studies of transgenic (TG) mice overexpressing SAA1 that were fed a high-fat diet (HFD) for a relatively short period, no relationship was found between SAA1 up-regulation and metabolic disturbances. Therefore, we generated TG mice overexpressing SAA1 in the liver, challenged these mice with an HFD, and investigated the influence of elevated SAA1 levels. Sustained, elevated levels of SAA1 were correlated with metabolic parameters and local cytokine expression in the liver following 16 weeks on the HFD. Moreover, prolonged consumption (52 weeks) of the HFD was associated with impaired glucose tolerance and elevated SAA1 levels and resulted in systemic SAA1-derived amyloid deposition in the kidney, liver, and spleen of TG mice. Thus, we concluded that elevated SAA1 levels under long-term HFD exposure result in extensive SAA1-derived amyloid deposits, which may contribute to the complications associated with HFD-induced obesity and metabolic disorders.
Collapse
Affiliation(s)
- Woo Young Jang
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Jain Jeong
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Seonggon Kim
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
- b Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Dong-gu, Daegu, 701-310 Republic of Korea
| | - Min-Cheol Kang
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Yong Hun Sung
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Minjee Choi
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Si Jun Park
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Myoung Ok Kim
- c Department of Animal Science, Kyungpook National University, 386 Gajangdong, Sangju, 742-711, Republic of Korea
| | - Sung Hyun Kim
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Zae Young Ryoo
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| |
Collapse
|
35
|
Piccione G, Bazzano M, Bruschetta D, Giannetto C, Arfuso F, Giudice E. Omega-3 Fatty Acid Food Enrichment Influences Some Serum Acute Phase Proteins Concentration and White Blood Cell Count in Athlete Horses. J Equine Vet Sci 2016. [DOI: 10.1016/j.jevs.2015.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Kim MH, de Beer MC, Wroblewski JM, Charnigo RJ, Ji A, Webb NR, de Beer FC, van der Westhuyzen DR. Impact of individual acute phase serum amyloid A isoforms on HDL metabolism in mice. J Lipid Res 2016; 57:969-79. [PMID: 27018443 DOI: 10.1194/jlr.m062174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
The acute phase (AP) reactant serum amyloid A (SAA), an HDL apolipoprotein, exhibits pro-inflammatory activities, but its physiological function(s) are poorly understood. Functional differences between SAA1.1 and SAA2.1, the two major SAA isoforms, are unclear. Mice deficient in either isoform were used to investigate plasma isoform effects on HDL structure, composition, and apolipoprotein catabolism. Lack of either isoform did not affect the size of HDL, normally enlarged in the AP, and did not significantly change HDL composition. Plasma clearance rates of HDL apolipoproteins were determined using native HDL particles. The fractional clearance rates (FCRs) of apoA-I, apoA-II, and SAA were distinct, indicating that HDL is not cleared as intact particles. The FCRs of SAA1.1 and SAA2.1 in AP mice were similar, suggesting that the selective deposition of SAA1.1 in amyloid plaques is not associated with a difference in the rates of plasma clearance of the isoforms. Although the clearance rate of SAA was reduced in the absence of the HDL receptor, scavenger receptor class B type I (SR-BI), it remained significantly faster compared with that of apoA-I and apoA-II, indicating a relatively minor role of SR-BI in SAA's rapid clearance. These studies enhance our understanding of SAA metabolism and SAA's effects on AP-HDL composition and catabolism.
Collapse
Affiliation(s)
- Myung-Hee Kim
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536
| | - Maria C de Beer
- Physiology, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Joanne M Wroblewski
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Richard J Charnigo
- Departments of Statistics and Biostatistics, University of Kentucky, Lexington, KY 40506
| | - Ailing Ji
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Nancy R Webb
- Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536 Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, KY 40536
| | - Frederick C de Beer
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536
| | - Deneys R van der Westhuyzen
- Departments of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536 Saha Cardiovascular Research Center, University of Kentucky Medical Center, Lexington, KY 40536 Molecular and Cellular Biochemistry, University of Kentucky Medical Center, Lexington, KY 40536
| |
Collapse
|
37
|
Sun L, Ye RD. Serum amyloid A1: Structure, function and gene polymorphism. Gene 2016; 583:48-57. [PMID: 26945629 DOI: 10.1016/j.gene.2016.02.044] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Inducible expression of serum amyloid A (SAA) is a hallmark of the acute-phase response, which is a conserved reaction of vertebrates to environmental challenges such as tissue injury, infection and surgery. Human SAA1 is encoded by one of the four SAA genes and is the best-characterized SAA protein. Initially known as a major precursor of amyloid A (AA), SAA1 has been found to play an important role in lipid metabolism and contributes to bacterial clearance, the regulation of inflammation and tumor pathogenesis. SAA1 has five polymorphic coding alleles (SAA1.1-SAA1.5) that encode distinct proteins with minor amino acid substitutions. Single nucleotide polymorphism (SNP) has been identified in both the coding and non-coding regions of human SAA1. Despite high levels of sequence homology among these variants, SAA1 polymorphisms have been reported as risk factors of cardiovascular diseases and several types of cancer. A recently solved crystal structure of SAA1.1 reveals a hexameric bundle with each of the SAA1 subunits assuming a 4-helix structure stabilized by the C-terminal tail. Analysis of the native SAA1.1 structure has led to the identification of a competing site for high-density lipoprotein (HDL) and heparin, thus providing the structural basis for a role of heparin and heparan sulfate in the conversion of SAA1 to AA. In this brief review, we compares human SAA1 with other forms of human and mouse SAAs, and discuss how structural and genetic studies of SAA1 have advanced our understanding of the physiological functions of the SAA proteins.
Collapse
Affiliation(s)
- Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, SAR, China.
| |
Collapse
|
38
|
De Buck M, Gouwy M, Wang JM, Van Snick J, Proost P, Struyf S, Van Damme J. The cytokine-serum amyloid A-chemokine network. Cytokine Growth Factor Rev 2015; 30:55-69. [PMID: 26794452 DOI: 10.1016/j.cytogfr.2015.12.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Levels of serum amyloid A (SAA), a major acute phase protein in humans, are increased up to 1000-fold upon infection, trauma, cancer or other inflammatory events. However, the exact role of SAA in host defense is yet not fully understood. Several pro- and anti-inflammatory properties have been ascribed to SAA. Here, the regulated production of SAA by cytokines and glucocorticoids is discussed first. Secondly, the cytokine and chemokine inducing capacity of SAA and its receptor usage are reviewed. Thirdly, the direct (via FPR2) and indirect (via TLR2) chemotactic effects of SAA and its synergy with chemokines are unraveled. Altogether, a complex cytokine-SAA-chemokine network is established, in which SAA plays a key role in regulating the inflammatory response.
Collapse
Affiliation(s)
- Mieke De Buck
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Mieke Gouwy
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| | - Jacques Van Snick
- Ludwig Cancer Research, Brussels Branch, Brussels, Belgium; e Duve Institute, Université Catholique de Louvain, Brussels, Belgium.
| | - Paul Proost
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Sofie Struyf
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Jo Van Damme
- KU Leuven, University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Immunology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| |
Collapse
|
39
|
De Buck M, Berghmans N, Pörtner N, Vanbrabant L, Cockx M, Struyf S, Opdenakker G, Proost P, Van Damme J, Gouwy M. Serum amyloid A1α induces paracrine IL-8/CXCL8 via TLR2 and directly synergizes with this chemokine via CXCR2 and formyl peptide receptor 2 to recruit neutrophils. J Leukoc Biol 2015; 98:1049-60. [PMID: 26297794 DOI: 10.1189/jlb.3a0315-085r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/23/2015] [Indexed: 11/24/2022] Open
Abstract
Cell migration depends on the ability of leukocytes to sense an external gradient of chemotactic proteins produced during inflammation. These proteins include chemokines, complement factors, and some acute phase proteins, such as serum amyloid A. Serum amyloid A chemoattracts neutrophils, monocytes, and T lymphocytes via its G protein-coupled receptor formyl peptide receptor 2. We demonstrate that serum amyloid A1α more potently chemoattracts neutrophils in vivo than in vitro. In contrast to CD14(+) monocytes, no rapid (within 2 h) induction of interleukin-8/CXC chemokine ligand 8 or macrophage-inflammatory protein-1α/CC chemokine ligand 3 was observed in purified human neutrophils after stimulation of the cells with serum amyloid A1α or lipopolysaccharide. Moreover, interleukin-8/CXC chemokine ligand 8 induction in monocytes by serum amyloid A1α was mediated by toll-like receptor 2 and was inhibited by association of serum amyloid A1α with high density lipoprotein. This indicates that the potent chemotactic response of neutrophils toward intraperitoneally injected serum amyloid A1α is indirectly enhanced by rapid induction of chemokines in peritoneal cells, synergizing in a paracrine manner with serum amyloid A1α. We observed direct synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α, but not lipopolysaccharide, in chemotaxis and shape change assays with neutrophils. Furthermore, the selective CXC chemokine receptor 2 and formyl peptide receptor 2 antagonists, SB225002 and WRW4, respectively, blocked the synergy between IL-8/CXC chemokine ligand 8 and serum amyloid A1α in neutrophil chemotaxis in vitro, indicating that for synergy their corresponding G protein-coupled receptors are required. Additionally, SB225002 significantly inhibited serum amyloid A1α-mediated peritoneal neutrophil influx. Taken together, endogenous (e.g., IL-1β) and exogenous (e.g., lipopolysaccharide) inflammatory mediators induce primary chemoattractants such as serum amyloid A that synergize in an autocrine (monocyte) or a paracrine (neutrophil) fashion with secondary chemokines induced in stromal cells.
Collapse
Affiliation(s)
- Mieke De Buck
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Nele Berghmans
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Noëmie Pörtner
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Lotte Vanbrabant
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Maaike Cockx
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Sofie Struyf
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Ghislain Opdenakker
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Paul Proost
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Jo Van Damme
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| | - Mieke Gouwy
- *Laboratory of Molecular Immunology and Laboratory of Immunobiology, Rega Institute for Medical Research, Department of Microbiology and Immunology, University of Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Sun L, Zhou H, Zhu Z, Yan Q, Wang L, Liang Q, Ye RD. Ex vivo and in vitro effect of serum amyloid a in the induction of macrophage M2 markers and efferocytosis of apoptotic neutrophils. THE JOURNAL OF IMMUNOLOGY 2015; 194:4891-900. [PMID: 25870242 DOI: 10.4049/jimmunol.1402164] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
Macrophages affect the magnitude and duration of inflammatory response in a functionally heterogeneous manner. The phenotype of macrophages is maintained through a reversible homeostatic mechanism. A number of determinants that modulate macrophage plasticity have been identified, although the precise mechanisms are not fully understood. In this study, we report that stimulation of isolated human blood monocytes and mouse bone marrow-derived macrophages with human serum amyloid A (SAA), a major acute-phase protein, leads to induced expression of macrophage M2 markers, including IL-10, Ym1, Fizz-1, MRC1, IL-1Rn, and CCL17. The same effect was observed with macrophages exposed to SAA in peritoneal cavity. SAA also increases arginase 1 activity and enhances macrophage efferocytosis of apoptotic neutrophils in mouse macrophages. The induction of M2 markers requires MyD88 and the activation of multiple signaling pathways, but it is independent of Stat6. SAA induces IFN regulatory factor (IRF)4 expression and increases its DNA-binding activity. Silencing IRF4 by small interfering RNA abrogates SAA-induced expression of the M2 markers. These results suggest a potential role for SAA to alter macrophage phenotype and modulate macrophage functions through an MyD88-dependent mechanism that involves IRF4-mediated transcription.
Collapse
Affiliation(s)
- Lei Sun
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and
| | - Huibin Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and
| | - Ziyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and
| | - Qian Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and
| | - Lili Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and
| | - Qing Liang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and
| | - Richard D Ye
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; and Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612
| |
Collapse
|
41
|
Webb NR, De Beer MC, Wroblewski JM, Ji A, Bailey W, Shridas P, Charnigo RJ, Noffsinger VP, Witta J, Howatt DA, Balakrishnan A, Rateri DL, Daugherty A, De Beer FC. Deficiency of Endogenous Acute-Phase Serum Amyloid A Protects apoE-/- Mice From Angiotensin II-Induced Abdominal Aortic Aneurysm Formation. Arterioscler Thromb Vasc Biol 2015; 35:1156-65. [PMID: 25745063 DOI: 10.1161/atvbaha.114.304776] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/13/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion. APPROACH AND RESULTS Plasma SAA increased ≈60-fold in apoE(-/-) mice 24 hours after intraperitoneal Ang II injection (100 μg/kg; n=4) and ≈15-fold after chronic 28-day Ang II infusion (1000 ng/kg per minute; n=9). AAA incidence and severity after 28-day Ang II infusion was significantly reduced in apoE(-/-) mice lacking both acute-phase SAA isoforms (SAAKO; n=20) compared with apoE(-/-) mice (SAAWT; n=20) as assessed by in vivo ultrasound and ex vivo morphometric analyses, despite a significant increase in systolic blood pressure in SAAKO mice compared with SAAWT mice after Ang II infusion. Atherosclerotic lesion area of the aortic arch was similar in SAAKO and SAAWT mice after 28-day Ang II infusion. Immunostaining detected SAA in AAA tissues of Ang II-infused SAAWT mice that colocalized with macrophages, elastin breaks, and enhanced matrix metalloproteinase activity. Matrix metalloproteinase-2 activity was significantly lower in aortas of SAAKO mice compared with SAAWT mice after 10-day Ang II infusion. CONCLUSIONS Lack of endogenous acute-phase SAA protects against experimental AAA through a mechanism that may involve reduced matrix metalloproteinase-2 activity.
Collapse
Affiliation(s)
- Nancy R Webb
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.).
| | - Maria C De Beer
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Joanne M Wroblewski
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Ailing Ji
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - William Bailey
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Preetha Shridas
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Richard J Charnigo
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Victoria P Noffsinger
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Jassir Witta
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Deborah A Howatt
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Anju Balakrishnan
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Debra L Rateri
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Alan Daugherty
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| | - Frederick C De Beer
- From the Departments of Pharmacology Division of Nutritional Sciences (N.R.W.), Physiology (M.C.D.B.) and Internal Medicine (J.M.W., A.J., W.B., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Saha Cardiovascular Research Center (N.R.W., M.C.D.B., J.M.W., A.J., P.S., V.P.N., D.A.H., A.B., D.L.R., A.D., F.C.D.B.), and Departments of Statistics and Biostatistics (R.J.C.), University of Kentucky, Lexington; and Foundation Gastroenterology, Nashua, NH (J.W.)
| |
Collapse
|
42
|
Abstract
Liver injury is a complicated pathological process caused by multiple biological and chemical factors. The repair mechanism after liver injury is the focus of liver research, involving numerous signaling pathways, cytokines and transcription factors. Signal transducer and activator of transcription 3 (STAT3) is a cytoplasmic signal transcription factor which belongs to the signal transducers and activators of transcription family and plays a critical role in the process of liver injury repair. STAT3 activation boosts the process of liver repair by promoting hepatocyte proliferation, maintains homeostasis by regulating metabolism of carbohydrates and lipids, and prevents the liver from bacterial infection and acute liver injury induced by toxic chemicals and drugs by increasing the expression of beneficial acute phase proteins. This review focuses on the composition of STAT3 signaling pathway and its role in liver injury repair.
Collapse
|
43
|
Tan SZ, Ooi DSQ, Shen HM, Heng CK. The Atherogenic Effects of Serum Amyloid A are Potentially Mediated via Inflammation and Apoptosis. J Atheroscler Thromb 2014; 21:854-67. [DOI: 10.5551/jat.22665] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
44
|
De Beer MC, Wroblewski JM, Noffsinger VP, Rateri DL, Howatt DA, Balakrishnan A, Ji A, Shridas P, Thompson JC, van der Westhuyzen DR, Tannock LR, Daugherty A, Webb NR, De Beer FC. Deficiency of endogenous acute phase serum amyloid A does not affect atherosclerotic lesions in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2013; 34:255-61. [PMID: 24265416 DOI: 10.1161/atvbaha.113.302247] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.
Collapse
Affiliation(s)
- Maria C De Beer
- From the Graduate Center for Nutritional Science (M.C.D.B., J.M.W., V.P.N., A.J., P.S., J.C.T., D.R.v.d.W., L.R.T., N.R.W., F.C.D.B.), Saha Cardiovascular Research Center (M.C.D.B., J.M.W., V.P.N., D.L.R., D.A.H., A.B., A.J., P.S., J.C.T., D.R.v.d.W., L.R.T., A.D., N.R.W., F.C.D.B.), and the Departments of Physiology (M.C.D.B.) and Internal Medicine (J.M.W., V.P.N., D.L.R., D.A.H., A.B., A.J., P.S., J.C.T., D.R.v.d.W., L.R.T., A.D., N.R.W., F.C.D.B.), University of Kentucky Medical Center, Lexington, KY; and Department of Veterans Affairs Medical Center, Lexington, KY (D.R.v.d.W., L.R.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Ahlin S, Olsson M, Olsson B, Svensson PA, Sjöholm K. No evidence for a role of adipose tissue-derived serum amyloid a in the development of insulin resistance or obesity-related inflammation in hSAA1(+/-) transgenic mice. PLoS One 2013; 8:e72204. [PMID: 23967285 PMCID: PMC3744463 DOI: 10.1371/journal.pone.0072204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/08/2013] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose tissue. For this report, hSAA1+/− transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1 mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-related inflammation.
Collapse
Affiliation(s)
- Sofie Ahlin
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maja Olsson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bob Olsson
- Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Per-Arne Svensson
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Kajsa Sjöholm
- Department of Molecular and Clinical Medicine, Institute of Medicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|