1
|
Niri P, Saha A, Polopalli S, Kumar M, Das S, Chattopadhyay P. Role of biomarkers and molecular signaling pathways in acute lung injury. Fundam Clin Pharmacol 2024; 38:640-657. [PMID: 38279523 DOI: 10.1111/fcp.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS). OBJECTIVES Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI. METHODS The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination. RESULTS This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs). CONCLUSION However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
Collapse
Affiliation(s)
- Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, 786004, India
| | - Sanghita Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
- Department of Chemical Technology, University of Calcutta, Kolkata, 700009, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, 784 001, India
| |
Collapse
|
2
|
Garcia-Vidal E, Calba I, Riveira-Muñoz E, García E, Clotet B, Serra-Mitjà P, Cabrera C, Ballana E, Badia R. Nucleotide-Binding Oligomerization Domain 1 (NOD1) Agonists Prevent SARS-CoV-2 Infection in Human Lung Epithelial Cells through Harnessing the Innate Immune Response. Int J Mol Sci 2024; 25:5318. [PMID: 38791357 PMCID: PMC11121681 DOI: 10.3390/ijms25105318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The lung is prone to infections from respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). A challenge in combating these infections is the difficulty in targeting antiviral activity directly at the lung mucosal tract. Boosting the capability of the respiratory mucosa to trigger a potent immune response at the onset of infection could serve as a potential strategy for managing respiratory infections. This study focused on screening immunomodulators to enhance innate immune response in lung epithelial and immune cell models. Through testing various subfamilies and pathways of pattern recognition receptors (PRRs), the nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family was found to selectively activate innate immunity in lung epithelial cells. Activation of NOD1 and dual NOD1/2 by the agonists TriDAP and M-TriDAP, respectively, increased the number of IL-8+ cells by engaging the NF-κB and interferon response pathways. Lung epithelial cells showed a stronger response to NOD1 and dual NOD1/2 agonists compared to control. Interestingly, a less-pronounced response to NOD1 agonists was noted in PBMCs, indicating a tissue-specific effect of NOD1 in lung epithelial cells without inducing widespread systemic activation. The specificity of the NOD agonist pathway was confirmed through gene silencing of NOD1 (siRNA) and selective NOD1 and dual NOD1/2 inhibitors in lung epithelial cells. Ultimately, activation induced by NOD1 and dual NOD1/2 agonists created an antiviral environment that hindered SARS-CoV-2 replication in vitro in lung epithelial cells.
Collapse
Affiliation(s)
| | - Ignasi Calba
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | | | | | - Bonaventura Clotet
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- University of Vic—Central University of Catalonia (UVic-UCC), 08500 Vic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Pere Serra-Mitjà
- Pulmonology and Allergy Unit, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, 08041 Barcelona, Barcelona, Spain;
| | - Cecilia Cabrera
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| | - Ester Ballana
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, CIBERINFEC, 28029 Madrid, Spain
| | - Roger Badia
- IrsiCaixa, 08916 Badalona, Barcelona, Spain (E.G.)
- Health Research Institute Germans Trias i Pujol (IGTP), Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Barcelona, Spain
| |
Collapse
|
3
|
KavianFar A, Taherkhani H, Ahmadi A, Salimi M, Lanjanian H, Masoudi-Nejad A. Restoring the epigenetic landscape of lung microbiome: potential therapeutic approach for chronic respiratory diseases. BMC Pulm Med 2024; 24:2. [PMID: 38166878 PMCID: PMC10759706 DOI: 10.1186/s12890-023-02789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and bronchiectasis, present significant threats to global health. Recent studies have revealed the crucial role of the lung microbiome in the development of these diseases. Pathogens have evolved complex strategies to evade the immune response, with the manipulation of host cellular epigenetic mechanisms playing a pivotal role. There is existing evidence regarding the effects of Pseudomonas on epigenetic modifications and their association with pulmonary diseases. Therefore, this study aims to directly assess the connection between Pseudomonas abundance and chronic respiratory diseases. We hope that our findings will shed light on the molecular mechanisms behind lung pathogen infections. METHODS We analyzed data from 366 participants, including individuals with COPD, acute exacerbations of COPD (AECOPD), bronchiectasis, and healthy individuals. Previous studies have given limited attention to the impact of Pseudomonas on these groups and their comparison with healthy individuals. Two independent datasets from different ethnic backgrounds were used for external validation. Each dataset separately analyzed bacteria at the genus level. RESULTS The study reveals that Pseudomonas, a bacterium, was consistently found in high concentrations in all chronic lung disease datasets but it was present in very low abundance in the healthy datasets. This suggests that Pseudomonas may influence cellular mechanisms through epigenetics, contributing to the development and progression of chronic respiratory diseases. CONCLUSIONS This study emphasizes the importance of understanding the relationship between the lung microbiome, epigenetics, and the onset of chronic pulmonary disease. Enhanced recognition of molecular mechanisms and the impact of the microbiome on cellular functions, along with a better understanding of these concepts, can lead to improved diagnosis and treatment.
Collapse
Affiliation(s)
- Azadeh KavianFar
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Hamidreza Taherkhani
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Tehran, Iran.
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Lanjanian
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Department of Bioinformatics, Kish International Campus, University of Tehran, Kish Island, Iran.
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Adetunji JA, Fasae KD, Awe AI, Paimo OK, Adegoke AM, Akintunde JK, Sekhoacha MP. The protective roles of citrus flavonoids, naringenin, and naringin on endothelial cell dysfunction in diseases. Heliyon 2023; 9:e17166. [PMID: 37484296 PMCID: PMC10361329 DOI: 10.1016/j.heliyon.2023.e17166] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
The endothelial cells (ECs) make up the inner lining of blood vessels, acting as a barrier separating the blood and the tissues in several organs. ECs maintain endothelium integrity by controlling the constriction and relaxation of the vasculature, blood fluidity, adhesion, and migration. These actions of ECs are efficiently coordinated via an intricate signaling network connecting receptors, and a wide range of cellular macromolecules. ECs are naturally quiescent i.e.; they are not stimulated and do not proliferate. Upon infection or disease, ECs become activated, and this alteration is pivotal in the pathogenesis of a spectrum of human neurological, cardiovascular, diabetic, cancerous, and viral diseases. Considering the central position that ECs play in disease pathogenesis, therapeutic options have been targeted at improving ECs integrity, assembly, functioning, and health. The dietary intake of flavonoids present in citrus fruits has been associated with a reduced risk of endothelium dysfunction. Naringenin (NGN) and Naringin (NAR), major flavonoids in grapefruit, tomatoes, and oranges possess anti-inflammatory, antioxidant properties, and cell survival potentials, which improve the health of the vascular endothelium. In this review, we provide a comprehensive summary and present the advances in understanding of the mechanisms through which NGN and NAR modulate the biomarkers of vascular dysfunction and protect the endothelium against unresolved inflammation, oxidative stress, atherosclerosis, and angiogenesis. We also provide perspectives and suggest further studies that will help assess the efficacy of citrus flavonoids in the therapeutics of human vascular diseases.
Collapse
Affiliation(s)
- Joy A. Adetunji
- Nutritional and Industrial Biochemistry Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D. Fasae
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, USA
| | - Ayobami I. Awe
- Department of Biology, The Catholic University of America, Washington DC, USA
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Ayodeji M. Adegoke
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Jacob K. Akintunde
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Mamello P. Sekhoacha
- Department of Pharmacology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa
| |
Collapse
|
5
|
Li Y, Fang Y, Chang HC, Gorczyca M, Liu P, Tseng GC. Adaptively Integrative Association between Multivariate Phenotypes and Transcriptomic Data for Complex Diseases. Genes (Basel) 2023; 14:genes14040798. [PMID: 37107556 PMCID: PMC10138055 DOI: 10.3390/genes14040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Phenotype–gene association studies can uncover disease mechanisms for translational research. Association with multiple phenotypes or clinical variables in complex diseases has the advantage of increasing statistical power and offering a holistic view. Existing multi-variate association methods mostly focus on SNP-based genetic associations. In this paper, we extend and evaluate two adaptive Fisher’s methods, namely AFp and AFz, from the p-value combination perspective for phenotype–mRNA association analysis. The proposed method effectively aggregates heterogeneous phenotype–gene effects, allows association with different data types of phenotypes, and performs the selection of the associated phenotypes. Variability indices of the phenotype–gene effect selection are calculated by bootstrap analysis, and the resulting co-membership matrix identifies gene modules clustered by phenotype–gene effect. Extensive simulations demonstrate the superior performance of AFp compared to existing methods in terms of type I error control, statistical power and biological interpretation. Finally, the method is separately applied to three sets of transcriptomic and clinical datasets from lung disease, breast cancer, and brain aging and generates intriguing biological findings.
Collapse
Affiliation(s)
- Yujia Li
- Eli Lilly and Company, Indianapolis, IN 46225, USA
| | - Yusi Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hung-Ching Chang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Michael Gorczyca
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Peng Liu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Correspondence:
| |
Collapse
|
6
|
NLRX1 knockdown attenuates pro-apoptotic signaling and cell death in pulmonary hyperoxic acute injury. Sci Rep 2023; 13:3441. [PMID: 36859435 PMCID: PMC9975446 DOI: 10.1038/s41598-023-28206-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/13/2023] [Indexed: 03/03/2023] Open
Abstract
Hyperoxia is frequently used for treating acute respiratory failure, but it can cause acute lung injury. Nucleotide-binding domain and leucine-rich-repeat-containing family member X1 (NLRX1) is localized in mitochondria and involved in production of reactive oxygen species, inflammation, and apoptosis, which are the features of hyperoxic acute lung injury (HALI). The contribution of NLRX1 to HALI has not previously been addressed. Thus, to investigate the role of NLRX1 in hyperoxia, we generated a murine model of HALI in wild-type (WT) and NLRX1-/- mice by exposure to > 95% oxygen for 72 h. As a result, NLRX1 expression was elevated in mice exposed to hyperoxia. In acute lung injury, levels of inflammatory cells, protein leakage, cell cytotoxicity, and pro-inflammatory cytokines were diminished in NLRX1-/- mice compared to WT mice. In a survival test, NLRX1-/- mice showed reduced mortality under hyperoxic conditions, and apoptotic cell death and caspase expression and activity were also lower in NLRX1-/- mice. Furthermore, levels of the MAPK signaling proteins ERK 1/2, JNK, and p38 were decreased in NLRX1-deficient mice than in WT mice exposed to hyperoxia. The study shows that a genetic deficit in NLRX1 can suppress hyperoxia-induced apoptosis, suggesting that NLRX1 acts as a pivotal regulator of HALI.
Collapse
|
7
|
Bi C, Chadwick J, Davies ML, DelMonte AJ, Geng P, Glace AW, Green RA, Gurak JA, Haley MW, He BL, Inankur B, Jamison CR, Joe CL, Kolotuchin S, Lin D, Lou S, Nye J, Ortiz A, Purdum GE, Rosso VW, Shah M, Simmons EM, Stevens JM, Strotman NA, Tan Y, Zhang L. Coupling-Condensation Strategy for the Convergent Synthesis of an Imidazole-Fused 2-Aminoquinoline NLRP3 Agonist. J Org Chem 2023; 88:384-394. [PMID: 36516991 DOI: 10.1021/acs.joc.2c02395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of a convergent route to the NLRP3 (nucleotide-binding domain and leucine-rich repeat-containing protein 3) agonist BMS-986299 is reported. The synthesis relies on a key Miyaura borylation and a tandem Suzuki-Miyaura coupling between an iodoimidazole and an o-aminochloroarene, followed by acid-mediated cyclization to afford the aminoquinoline core. The subsequent Boc cleavage and regioselective acylation afford the target compound. Two routes to the iodoimidazole intermediate are presented, along with the synthesis of the o-aminochloroarene via Negishi coupling. The convergent six-step route leads to an 80% reduction in process mass intensity compared to the linear enabling synthesis.
Collapse
Affiliation(s)
- Cong Bi
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - James Chadwick
- Chemical Process Development, Bristol Myers Squibb, Reeds Lane, Moreton, Wirral CH46 1QW, U.K
| | - Merrill L Davies
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Albert J DelMonte
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Peng Geng
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Andrew W Glace
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Rebecca A Green
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - John A Gurak
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Matthew W Haley
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Brian L He
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Bahar Inankur
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Christopher R Jamison
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Candice L Joe
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sergei Kolotuchin
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Dong Lin
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Sha Lou
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jeffrey Nye
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Adrian Ortiz
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Geoffrey E Purdum
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Victor W Rosso
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Mansi Shah
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M Simmons
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jason M Stevens
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Neil A Strotman
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ling Zhang
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
8
|
Chen G, Chen D, Feng Y, Wu W, Gao J, Chang C, Chen S, Zhen G. Identification of Key Signaling Pathways and Genes in Eosinophilic Asthma and Neutrophilic Asthma by Weighted Gene Co-Expression Network Analysis. Front Mol Biosci 2022; 9:805570. [PMID: 35187081 PMCID: PMC8847715 DOI: 10.3389/fmolb.2022.805570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Asthma is a heterogeneous disease with different subtypes including eosinophilic asthma (EA) and neutrophilic asthma (NA). However, the mechanisms underlying the difference between the two subtypes are not fully understood.Methods: Microarray datasets (GSE45111 and GSE137268) were acquired from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in induced sputum between EA (n = 24) and NA (n = 15) were identified by “Limma” package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and Gene set enrichment analysis (GSEA) were used to explore potential signaling pathways. Weighted gene co-expression network analysis (WGCNA) were performed to identify the key genes that were strongly associated with EA and NA.Results: A total of 282 DEGs were identified in induced sputum of NA patients compared with EA patients. In GO and KEGG pathway analyses, DEGs were enriched in positive regulation of cytokine production, and cytokine-cytokine receptor interaction. The results of GSEA showed that ribosome, Parkinson’s disease, and oxidative phosphorylation were positively correlated with EA while toll-like receptor signaling pathway, primary immunodeficiency, and NOD-like receptor signaling pathway were positively correlated with NA. Using WGCNA analysis, we identified a set of genes significantly associated NA including IRFG, IRF1, STAT1, IFIH1, IFIT3, GBP1, GBP5, IFIT2, CXCL9, and CXCL11.Conclusion: We identified potential signaling pathways and key genes involved in the pathogenesis of the asthma subsets, especially in neutrophilic asthma.
Collapse
Affiliation(s)
- Gongqi Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Dian Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Yuchen Feng
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Wenliang Wu
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Chenli Chang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Shengchong Chen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
| | - Guohua Zhen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of People’s Republic of China, National Clinical Research Center for Respiratory Diseases, Wuhan, China
- *Correspondence: Guohua Zhen,
| |
Collapse
|
9
|
Effah CY, Drokow EK, Agboyibor C, Ding L, He S, Liu S, Akorli SY, Nuamah E, Sun T, Zhou X, Liu H, Xu Z, Feng F, Wu Y, Zhang X. Neutrophil-Dependent Immunity During Pulmonary Infections and Inflammations. Front Immunol 2021; 12:689866. [PMID: 34737734 PMCID: PMC8560714 DOI: 10.3389/fimmu.2021.689866] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023] Open
Abstract
Rapid recruitment of neutrophils to an inflamed site is one of the hallmarks of an effective host defense mechanism. The main pathway through which this happens is by the innate immune response. Neutrophils, which play an important part in innate immune defense, migrate into lungs through the modulation actions of chemokines to execute a variety of pro-inflammatory functions. Despite the importance of chemokines in host immunity, little has been discussed on their roles in host immunity. A holistic understanding of neutrophil recruitment, pattern recognition pathways, the roles of chemokines and the pathophysiological roles of neutrophils in host immunity may allow for new approaches in the treatment of infectious and inflammatory disease of the lung. Herein, this review aims at highlighting some of the developments in lung neutrophil-immunity by focusing on the functions and roles of CXC/CC chemokines and pattern recognition receptors in neutrophil immunity during pulmonary inflammations. The pathophysiological roles of neutrophils in COVID-19 and thromboembolism have also been summarized. We finally summarized various neutrophil biomarkers that can be utilized as prognostic molecules in pulmonary inflammations and discussed various neutrophil-targeted therapies for neutrophil-driven pulmonary inflammatory diseases.
Collapse
Affiliation(s)
| | - Emmanuel Kwateng Drokow
- Department of Radiation Oncology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Clement Agboyibor
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihua Ding
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Sitian He
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shaohua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senyo Yao Akorli
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Emmanuel Nuamah
- College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Tongwen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolei Zhou
- Department of Respiratory, Henan Provincial Chest Hospital, Zhengzhou, China
| | - Hong Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhiwei Xu
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine, People’s Hospital of Zhengzhou University & Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
10
|
Inborn Errors in the LRR Domain of Nod2 and Their Potential Consequences on the Function of the Receptor. Cells 2021; 10:cells10082031. [PMID: 34440800 PMCID: PMC8392326 DOI: 10.3390/cells10082031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
The innate immune system plays a critical role in the early detection of pathogens, primarily by relying on pattern-recognition receptor (PRR) signaling molecules. Nucleotide-binding oligomerization domain 2 (NOD2) is a cytoplasmic receptor that recognizes invading molecules and danger signals inside the cells. Recent studies highlight the importance of NOD2′s function in maintaining the homeostasis of human body microbiota and innate immune responses, including induction of proinflammatory cytokines, regulation of autophagy, modulation of endoplasmic reticulum (ER) stress, etc. In addition, there is extensive cross-talk between NOD2 and the Toll-like receptors that are so important in the induction and tuning of adaptive immunity. Polymorphisms of NOD2′s encoding gene are associated with several pathological conditions, highlighting NOD2′s functional importance. In this study, we summarize NOD2′s role in cellular signaling pathways and take a look at the possible consequences of common NOD2 polymorphisms on the structure and function of this receptor.
Collapse
|
11
|
Zhang H, He F, Li P, Hardwidge PR, Li N, Peng Y. The Role of Innate Immunity in Pulmonary Infections. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6646071. [PMID: 33553427 PMCID: PMC7847335 DOI: 10.1155/2021/6646071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/26/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Innate immunity forms a protective line of defense in the early stages of pulmonary infection. The primary cellular players of the innate immunity against respiratory infections are alveolar macrophages (AMs), dendritic cells (DCs), neutrophils, natural killer (NK) cells, and innate lymphoid cells (ILCs). They recognize conserved structures of microorganisms through membrane-bound and intracellular receptors to initiate appropriate responses. In this review, we focus on the prominent roles of innate immune cells and summarize transmembrane and cytosolic pattern recognition receptor (PRR) signaling recognition mechanisms during pulmonary microbial infections. Understanding the mechanisms of PRR signal recognition during pulmonary pathogen infections will help us to understand pulmonary immunopathology and lay a foundation for the development of effective therapies to treat and/or prevent pulmonary infections.
Collapse
Affiliation(s)
- Huihui Zhang
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Fang He
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Pan Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | | | - Nengzhang Li
- College of Animal Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- College of Animal Medicine, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Wang H, Lin X, Pu X. NOD-like receptors mediate inflammatory lung injury during plateau hypoxia exposure. J Physiol Anthropol 2020; 39:32. [PMID: 33028417 PMCID: PMC7542964 DOI: 10.1186/s40101-020-00242-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/28/2020] [Indexed: 11/18/2022] Open
Abstract
Background The lung is an important target organ for hypoxia treatment, and hypoxia can induce several diseases in the body. Methods We performed transcriptome sequencing for the lungs of rats exposed to plateau hypoxia at 0 day and 28 days. Sequencing libraries were constructed, and enrichment analysis of the differentially expressed genes (DEGs) was implemented using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, experimental validation was executed by quantitative real-time PCR (qRT-PCR) and western blot. Results The results showed that the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) signaling pathway that was involved in immunity may play a crucial function in lung injury caused by plateau hypoxia. And the expressions of NOD1, NOD2, IL-1β, TNF-α, IL-6, and IL-18 were higher at 28 days of exposure to plateau hypoxia than that at 0 day. Similarly, CARD9, MYD88, p38 MAPK, and NF-κB p65, which are related to the NF-κB and MAPK signaling pathways, also demonstrated increased expression at 28 days exposure to plateau hypoxia than at 0 day. Conclusions Our study suggested that the NFκBp65 and p38 MAPK signaling pathways may be activated in the lungs of rats during plateau hypoxia. Upregulated expression of NFκBp65 and p38 MAPK can promote the transcription of downstream inflammatory factors, thereby aggravating the occurrence and development of lung tissue remodeling.
Collapse
Affiliation(s)
- Haiyan Wang
- College of Medicine, Qinghai University, Xining, 810001, Qinghai Province, China
| | - Xue Lin
- College of Medicine, Qinghai University, Xining, 810001, Qinghai Province, China
| | - Xiaoyan Pu
- College of Medicine, Qinghai University, Xining, 810001, Qinghai Province, China. .,Qinghai Normal University, Xining, 810007, Qinghai Province, China.
| |
Collapse
|
13
|
Gopallawa I, Lee RJ. Targeting the phosphoinositide-3-kinase/protein kinase B pathway in airway innate immunity. World J Biol Chem 2020; 11:30-51. [PMID: 33024516 PMCID: PMC7520643 DOI: 10.4331/wjbc.v11.i2.30] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
The airway innate immune system maintains the first line of defense against respiratory infections. The airway epithelium and associated immune cells protect the respiratory system from inhaled foreign organisms. These cells sense pathogens via activation of receptors like toll-like receptors and taste family 2 receptors (T2Rs) and respond by producing antimicrobials, inflammatory cytokines, and chemokines. Coordinated regulation of fluid secretion and ciliary beating facilitates clearance of pathogens via mucociliary transport. Airway cells also secrete antimicrobial peptides and radicals to directly kill microorganisms and inactivate viruses. The phosphoinositide-3-kinase/protein kinase B (Akt) kinase pathway regulates multiple cellular targets that modulate cell survival and proliferation. Akt also regulates proteins involved in innate immune pathways. Akt phosphorylates endothelial nitric oxide synthase (eNOS) enzymes expressed in airway epithelial cells. Activation of eNOS can have anti-inflammatory, anti-bacterial, and anti-viral roles. Moreover, Akt can increase the activity of the transcription factor nuclear factor erythroid 2 related factor-2 that protects cells from oxidative stress and may limit inflammation. In this review, we summarize the recent findings of non-cancerous functions of Akt signaling in airway innate host defense mechanisms, including an overview of several known downstream targets of Akt involved in innate immunity.
Collapse
Affiliation(s)
- Indiwari Gopallawa
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Robert J Lee
- Department of Otorhinolaryngology and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| |
Collapse
|
14
|
Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol 2020; 11:1722. [PMID: 32849610 PMCID: PMC7417316 DOI: 10.3389/fimmu.2020.01722] [Citation(s) in RCA: 334] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is a primary organ for gas exchange in mammals that represents the largest epithelial surface in direct contact with the external environment. It also serves as a crucial immune organ, which harbors both innate and adaptive immune cells to induce a potent immune response. Due to its direct contact with the outer environment, the lung serves as a primary target organ for many airborne pathogens, toxicants (aerosols), and allergens causing pneumonia, acute respiratory distress syndrome (ARDS), and acute lung injury or inflammation (ALI). The current review describes the immunological mechanisms responsible for bacterial pneumonia and sepsis-induced ALI. It highlights the immunological differences for the severity of bacterial sepsis-induced ALI as compared to the pneumonia-associated ALI. The immune-based differences between the Gram-positive and Gram-negative bacteria-induced pneumonia show different mechanisms to induce ALI. The role of pulmonary epithelial cells (PECs), alveolar macrophages (AMs), innate lymphoid cells (ILCs), and different pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs) and inflammasome proteins) in neutrophil infiltration and ALI induction have been described during pneumonia and sepsis-induced ALI. Also, the resolution of inflammation is frequently observed during ALI associated with pneumonia, whereas sepsis-associated ALI lacks it. Hence, the review mainly describes the different immune mechanisms responsible for pneumonia and sepsis-induced ALI. The differences in immune response depending on the causal pathogen (Gram-positive or Gram-negative bacteria) associated pneumonia or sepsis-induced ALI should be taken in mind specific immune-based therapeutics.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Faculty of Medicine, School of Clinical Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Paci P, Fiscon G, Conte F, Licursi V, Morrow J, Hersh C, Cho M, Castaldi P, Glass K, Silverman EK, Farina L. Integrated transcriptomic correlation network analysis identifies COPD molecular determinants. Sci Rep 2020; 10:3361. [PMID: 32099002 PMCID: PMC7042269 DOI: 10.1038/s41598-020-60228-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/23/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex and heterogeneous syndrome. Network-based analysis implemented by SWIM software can be exploited to identify key molecular switches - called "switch genes" - for the disease. Genes contributing to common biological processes or defining given cell types are usually co-regulated and co-expressed, forming expression network modules. Consistently, we found that the COPD correlation network built by SWIM consists of three well-characterized modules: one populated by switch genes, all up-regulated in COPD cases and related to the regulation of immune response, inflammatory response, and hypoxia (like TIMP1, HIF1A, SYK, LY96, BLNK and PRDX4); one populated by well-recognized immune signature genes, all up-regulated in COPD cases; one where the GWAS genes AGER and CAVIN1 are the most representative module genes, both down-regulated in COPD cases. Interestingly, 70% of AGER negative interactors are switch genes including PRDX4, whose activation strongly correlates with the activation of known COPD GWAS interactors SERPINE2, CD79A, and POUF2AF1. These results suggest that SWIM analysis can identify key network modules related to complex diseases like COPD.
Collapse
Affiliation(s)
- Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy.
| | - Giulia Fiscon
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Federica Conte
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Jarrett Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Craig Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Ozretić P, da Silva Filho MI, Catalano C, Sokolović I, Vukić-Dugac A, Šutić M, Kurtović M, Bubanović G, Popović-Grle S, Skrinjarić-Cincar S, Vugrek O, Jukić I, Rumora L, Bosnar M, Samaržija M, Bals R, Jakopović M, Försti A, Knežević J. Association of NLRP1 Coding Polymorphism with Lung Function and Serum IL-1β Concentration in Patients Diagnosed with Chronic Obstructive Pulmonary Disease (COPD). Genes (Basel) 2019; 10:genes10100783. [PMID: 31601004 PMCID: PMC6826440 DOI: 10.3390/genes10100783] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/05/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic disease characterized by a progressive decline in lung function due to airflow limitation, mainly related to IL-1β-induced inflammation. We have hypothesized that single nucleotide polymorphisms (SNPs) in NLRP genes, coding for key regulators of IL-1β, are associated with pathogenesis and clinical phenotypes of COPD. We recruited 704 COPD individuals and 1238 healthy controls for this study. Twenty non-synonymous SNPs in 10 different NLRP genes were genotyped. Genetic associations were estimated using logistic regression, adjusting for age, gender, and smoking history. The impact of genotypes on patients' overall survival was analyzed with the Kaplan-Meier method with the log-rank test. Serum IL-1β concentration was determined by high sensitivity assay and expression analysis was done by RT-PCR. Decreased lung function, measured by a forced expiratory volume in 1 s (FEV1% predicted), was significantly associated with the minor allele genotypes (AT + TT) of NLRP1 rs12150220 (p = 0.0002). The same rs12150220 genotypes exhibited a higher level of serum IL-1β compared to the AA genotype (p = 0.027) in COPD patients. NLRP8 rs306481 minor allele genotypes (AG + AA) were more common in the Global Initiative for Chronic Obstructive Lung Disease (GOLD) definition of group A (p = 0.0083). Polymorphisms in NLRP1 (rs12150220; OR = 0.55, p = 0.03) and NLRP4 (rs12462372; OR = 0.36, p = 0.03) were only nominally associated with COPD risk. In conclusion, coding polymorphisms in NLRP1 rs12150220 show an association with COPD disease severity, indicating that the fine-tuning of the NLRP1 inflammasome could be important in maintaining lung tissue integrity and treating the chronic inflammation of airways.
Collapse
Affiliation(s)
- Petar Ozretić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | | | - Calogerina Catalano
- Division of Molecular Genetic Epidemiology, DKFZ, 69 120 Heidelberg, Germany.
| | - Irena Sokolović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Andrea Vukić-Dugac
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Maja Šutić
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Matea Kurtović
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Gordana Bubanović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Sanja Popović-Grle
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Sanda Skrinjarić-Cincar
- Josip Juraj Strossmayer University of Osijek, School of Medicine, 31 000 Osijek, Croatia.
- Department of Pulmology, Universitiy Hospital Center Osijek, 31 000 Osijek, Croatia.
| | - Oliver Vugrek
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| | - Irena Jukić
- Croatian Institute of Transfusion Medicine, 10 000 Zagreb, Croatia.
| | - Lada Rumora
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000 Zagreb, Croatia.
| | - Martina Bosnar
- Fidelta d.o.o., Prilaz baruna Filipovića 29, 10 000 Zagreb, Croatia.
| | - Miroslav Samaržija
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Intensive Care Medicine, Saarland University, 66 424 Homburg, Germany.
| | - Marko Jakopović
- Department for Respiratory Diseases Jordanovac, University of Zagreb School of Medicine, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia.
| | - Asta Försti
- Division of Molecular Genetic Epidemiology, DKFZ, 69 120 Heidelberg, Germany.
| | - Jelena Knežević
- Ruđer Bošković Institute, Division of Molecular Medicine, 10 000 Zagreb, Croatia.
| |
Collapse
|
17
|
Dabrowski AN, Conrad C, Behrendt U, Shrivastav A, Baal N, Wienhold SM, Hackstein H, N'Guessan PD, Aly S, Reppe K, Suttorp N, Zahlten J. Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection. Front Microbiol 2019; 10:199. [PMID: 30837960 PMCID: PMC6389715 DOI: 10.3389/fmicb.2019.00199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/24/2019] [Indexed: 12/22/2022] Open
Abstract
Peptidoglycan (PGN) recognition proteins (PGLYRPs) are a highly conserved group of host defense proteins in insects and mammals that sense bacterial cell wall PGN and act bactericidally or cleave PGN by amidase function. Streptococcus (S.) pneumoniae is one of the top five killers worldwide and causes, e.g., pneumonia, endocarditis, meningitis and sepsis. S. pneumoniae accounts for approximately 1.5–2 million deaths every year. The risk of antibiotic resistance and a general poor prognosis in young children and elderly people have led to the need for new treatment approaches. To the best of our knowledge, there is no report on the relevance of PGLYRP2 in lung infections. Therefore, we infected mice deficient for PGLYRP2 transnasally with S. pneumoniae and examined the innate immune response in comparison to WT animals. As expected, PGLYRP2-KO animals had to be sacrificed earlier than their WT counterparts, and this was due to higher bacteremia. The higher bacterial load in the PGLYRP2-KO mice was accomplished with lower amounts of proinflammatory cytokines in the lungs. This led to an abolished recruitment of neutrophils into the lungs, the spread of bacteria and the subsequent aggravated course of the disease and early mortality of the PGLYRP2-KO mice. These data suggest a substantial role of PGLYRP2 in the early defense against S. pneumoniae infection, and PGLYRP2 might also affect other infections in the lungs.
Collapse
Affiliation(s)
- Alexander N Dabrowski
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Conrad
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Behrendt
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anshu Shrivastav
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nelli Baal
- Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sandra M Wienhold
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Holger Hackstein
- Immunology and Transfusion Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Philippe D N'Guessan
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sahar Aly
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katrin Reppe
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Division of Pulmonary Inflammation, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Janine Zahlten
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
Poudel B, Gurung P. Allergic asthma: RIPK2 takes the lead. J Leukoc Biol 2018; 104:441-443. [PMID: 30106490 DOI: 10.1002/jlb.3ce0718-293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Barun Poudel
- Inflammation Program, Infectious Diseases Division, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, Infectious Diseases Division, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.,Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA.,Human Toxicology Graduate Program, University of Iowa, Iowa City, Iowa, USA.,Center for Immunology and Immune-Based Diseases, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
19
|
Dambuza IM, Drake T, Chapuis A, Zhou X, Correia J, Taylor-Smith L, LeGrave N, Rasmussen T, Fisher MC, Bicanic T, Harrison TS, Jaspars M, May RC, Brown GD, Yuecel R, MacCallum DM, Ballou ER. The Cryptococcus neoformans Titan cell is an inducible and regulated morphotype underlying pathogenesis. PLoS Pathog 2018; 14:e1006978. [PMID: 29775474 PMCID: PMC5959070 DOI: 10.1371/journal.ppat.1006978] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
Abstract
Fungal cells change shape in response to environmental stimuli, and these morphogenic transitions drive pathogenesis and niche adaptation. For example, dimorphic fungi switch between yeast and hyphae in response to changing temperature. The basidiomycete Cryptococcus neoformans undergoes an unusual morphogenetic transition in the host lung from haploid yeast to large, highly polyploid cells termed Titan cells. Titan cells influence fungal interaction with host cells, including through increased drug resistance, altered cell size, and altered Pathogen Associated Molecular Pattern exposure. Despite the important role these cells play in pathogenesis, understanding the environmental stimuli that drive the morphological transition, and the molecular mechanisms underlying their unique biology, has been hampered by the lack of a reproducible in vitro induction system. Here we demonstrate reproducible in vitro Titan cell induction in response to environmental stimuli consistent with the host lung. In vitro Titan cells exhibit all the properties of in vivo generated Titan cells, the current gold standard, including altered capsule, cell wall, size, high mother cell ploidy, and aneuploid progeny. We identify the bacterial peptidoglycan subunit Muramyl Dipeptide as a serum compound associated with shift in cell size and ploidy, and demonstrate the capacity of bronchial lavage fluid and bacterial co-culture to induce Titanisation. Additionally, we demonstrate the capacity of our assay to identify established (cAMP/PKA) and previously undescribed (USV101) regulators of Titanisation in vitro. Finally, we investigate the Titanisation capacity of clinical isolates and their impact on disease outcome. Together, these findings provide new insight into the environmental stimuli and molecular mechanisms underlying the yeast-to-Titan transition and establish an essential in vitro model for the future characterization of this important morphotype.
Collapse
Affiliation(s)
- Ivy M. Dambuza
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Thomas Drake
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Ambre Chapuis
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Xin Zhou
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Joao Correia
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Leanne Taylor-Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Nathalie LeGrave
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
- Francis Crick Institute, London, United Kingdom
| | - Tim Rasmussen
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
- Institut für Biochemie, Universität Würzburg, Wurzburg, Germany
| | - Matthew C. Fisher
- Dpt. Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Thomas S. Harrison
- Institute of Infection and Immunity, St George’s University of London, London, United Kingdom
| | - Marcel Jaspars
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen, United Kingdom
| | - Robin C. May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Raif Yuecel
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Donna M. MacCallum
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
| | - Elizabeth R. Ballou
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| |
Collapse
|
20
|
Ruiz-Moreno JS, Hamann L, Jin L, Sander LE, Puzianowska-Kuznicka M, Cambier J, Witzenrath M, Schumann RR, Suttorp N, Opitz B. The cGAS/STING Pathway Detects Streptococcus pneumoniae but Appears Dispensable for Antipneumococcal Defense in Mice and Humans. Infect Immun 2018; 86:e00849-17. [PMID: 29263110 PMCID: PMC5820968 DOI: 10.1128/iai.00849-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 12/21/2022] Open
Abstract
Streptococcus pneumoniae is a frequent colonizer of the upper respiratory tract and a leading cause of bacterial pneumonia. The innate immune system senses pneumococcal cell wall components, toxin, and nucleic acids, which leads to production of inflammatory mediators to initiate and control antibacterial defense. Here, we show that the cGAS (cyclic GMP-AMP [cGAMP] synthase)-STING pathway mediates detection of pneumococcal DNA in mouse macrophages to primarily stimulate type I interferon (IFN) responses. Cells of human individuals carrying HAQ TMEM173, which encodes a common hypomorphic variant of STING, were largely or partly defective in inducing type I IFNs and proinflammatory cytokines upon infection. Subsequent analyses, however, revealed that STING was dispensable for restricting S. pneumoniae during acute pneumonia in mice. Moreover, explorative analyses did not find differences in the allele frequency of HAQ TMEM173 in nonvaccinated pneumococcal pneumonia patients and healthy controls or an association of HAQ TMEM173 carriage with disease severity. Together, our results indicate that the cGAS/STING pathway senses S. pneumoniae but plays no major role in antipneumococcal immunity in mice and humans.
Collapse
Affiliation(s)
- Juan Sebastian Ruiz-Moreno
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lutz Hamann
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lei Jin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida, USA
| | - Leif E Sander
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw, Poland
| | - John Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Martin Witzenrath
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
- CAPNETZ Stiftung, Hannover, Germany
| | - Ralf R Schumann
- Institute of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
- CAPNETZ Stiftung, Hannover, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Lung Research (DZL), Germany
| |
Collapse
|
21
|
Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol 2018; 11:21-34. [PMID: 28812547 PMCID: PMC5738267 DOI: 10.1038/mi.2017.71] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Lung epithelial cells are increasingly recognized to be active effectors of microbial defense, contributing to both innate and adaptive immune function in the lower respiratory tract. As immune sentinels, lung epithelial cells detect diverse pathogens through an ample repertoire of membrane-bound, endosomal, and cytosolic pattern-recognition receptors (PRRs). The highly plastic epithelial barrier responds to detected threats via modulation of paracellular flux, intercellular communications, mucin production, and periciliary fluid composition. Epithelial PRR stimulation also induces production of cytokines that recruit and sculpt leukocyte-mediated responses, and promotes epithelial generation of antimicrobial effector molecules that are directly microbicidal. The epithelium can alternately enhance tolerance to pathogens, preventing tissue damage through PRR-induced inhibitory signals, opsonization of pathogen-associated molecular patterns, and attenuation of injurious leukocyte responses. The inducibility of these protective responses has prompted attempts to therapeutically harness epithelial defense mechanisms to protect against pneumonias. Recent reports describe successful strategies for manipulation of epithelial defenses to protect against a wide range of respiratory pathogens. The lung epithelium is capable of both significant antimicrobial responses that reduce pathogen burdens and tolerance mechanisms that attenuate immunopathology. This manuscript reviews inducible lung epithelial defense mechanisms that offer opportunities for therapeutic manipulation to protect vulnerable populations against pneumonia.
Collapse
Affiliation(s)
- Miguel M. Leiva-Juárez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
22
|
Dikshit N, Kale SD, Khameneh HJ, Balamuralidhar V, Tang CY, Kumar P, Lim TP, Tan TT, Kwa AL, Mortellaro A, Sukumaran B. NLRP3 inflammasome pathway has a critical role in the host immunity against clinically relevant Acinetobacter baumannii pulmonary infection. Mucosal Immunol 2018; 11:257-272. [PMID: 28612844 DOI: 10.1038/mi.2017.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/15/2017] [Indexed: 02/04/2023]
Abstract
The opportunistic Gram-negative bacterium Acinetobacter baumannii (AB) is a leading cause of life-threatening nosocomial pneumonia. Outbreaks of multidrug resistant (MDR)-AB belonging to international clones (ICs) I and II with limited treatment options are major global health threats. However, the pathogenesis mechanisms of various AB clonal groups are understudied. Although inflammation-associated interleukin-1β (IL-1β) levels and IL-1 receptor antagonist polymorphisms were previously implicated in MDR-AB-related pneumonia in patients, whether inflammasomes has any role in the host defense and/or pathogenesis of clinically relevant A. baumannii infection is unknown. Using a sublethal mouse pneumonia model, we demonstrate that an extensively drug-resistant clinical isolate (ICII) of A. baumannii exhibits reduced/delayed early pulmonary neutrophil recruitment, higher lung persistence, and, most importantly, elicits enhanced IL-1β/IL-18 production and lung damage through NLRP3 inflammasome, in comparison with A. baumannii-type strain. A. baumannii infection-induced IL-1β/IL-18 production is entirely dependent on NLRP3-ASC-caspase-1/caspase-11 pathway. Using Nlrp3-/- mice infection models, we further show that while NLRP3 inflammasome pathway contributes to host defense against A. baumannii clinical isolate, it is dispensable for protection against A. baumannii-type strain. Our study reveals a novel differential role for NLRP3 inflammasome pathway in the immunity against clinically relevant A. baumannii infections, and highlights inflammasome pathway as a potential immunomodulatory target.
Collapse
Affiliation(s)
- N Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - S D Kale
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - H J Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - V Balamuralidhar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - C Y Tang
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - P Kumar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - T P Lim
- Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore
| | - T T Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - A L Kwa
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - A Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - B Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
23
|
Naujoks J, Lippmann J, Suttorp N, Opitz B. Innate sensing and cell-autonomous resistance pathways in Legionella pneumophila infection. Int J Med Microbiol 2017; 308:161-167. [PMID: 29097162 DOI: 10.1016/j.ijmm.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular bacterium which can cause a severe pneumonia called Legionnaires' disease after inhalation of contaminated water droplets and replication in alveolar macrophages. The innate immune system is generally able to sense and -in most cases- control L. pneumophila infection. Comorbidities and genetic risk factors, however, can compromise the immune system and high infection doses might overwhelm its capacity, thereby enabling L. pneumophila to grow and disseminate inside the lung. The innate immune system mediates sensing of L. pneumophila by employing e.g. NOD-like receptors (NLRs), Toll-like receptors (TLRs), as well as the cGAS/STING pathway to stimulate death of infected macrophages as well as production of proinflammatory cytokines and interferons (IFNs). Control of pulmonary L. pneumophila infection is largely mediated by inflammasome-, TNFα- and IFN-dependent macrophage-intrinsic resistance mechanisms. This article summarizes the current knowledge of innate immune responses to L. pneumophila infection in general, and of macrophage-intrinsic defense mechanisms in particular.
Collapse
Affiliation(s)
- Jan Naujoks
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Juliane Lippmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Norbert Suttorp
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Bastian Opitz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Augustenburger Platz 1, 13353 Berlin, Germany; German Center for Lung Research (DZL), Germany.
| |
Collapse
|
24
|
Icduygu FM, Erdogan MO, Ulasli SS, Yildiz HG, Celik ZS, Unlu M, Solak M. Is There an Association Between NOD2 Gene Polymorphisms and Chronic Obstructive Pulmonary Disease Progression? INT J HUM GENET 2017. [DOI: 10.1080/09723757.2017.1351118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Fadime Mutlu Icduygu
- Department of Medical Genetics, Faculty of Medicine, Giresun University, Giresun, 28100, Turkey
| | - Mujgan Ozdemir Erdogan
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Sevinc Sarinc Ulasli
- Department of Pulmonary Diseases, Faculty of Medicine, Hacettepe University, Ankara, 06100, Turkey
| | - Handan Gonenli Yildiz
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Zeynep Sonmez Celik
- Department of Pulmonary Diseases, Eskisehir State Hospital, Eskisehir, 26060 Turkey
| | - Mehmet Unlu
- Department of Pulmonary Diseases, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| | - Mustafa Solak
- Department of Medical Genetics, Faculty of Medicine, Afyon Kocatepe University, Afyon, 03200, Turkey
| |
Collapse
|
25
|
Rabes A, Suttorp N, Opitz B. Inflammasomes in Pneumococcal Infection: Innate Immune Sensing and Bacterial Evasion Strategies. Curr Top Microbiol Immunol 2017; 397:215-27. [PMID: 27460812 DOI: 10.1007/978-3-319-41171-2_11] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Streptococcus pneumoniae frequently colonizes the upper respiratory tract of healthy individuals, but also commonly causes severe invasive infections such as community-acquired pneumonia and meningitis. One of the key virulence factors of pneumococci is the pore-forming toxin pneumolysin which stimulates cell death and is involved in the evasion of some defense mechanisms. The immune system, however, employs different inflammasomes to sense pneumolysin-induced pore formation, cellular membrane damage, and/or subsequent leakage of bacterial nucleic acid into the host cell cytosol. Canonical inflammasomes are cytosolic multiprotein complexes consisting of a receptor molecule such as NLRP3 or AIM2, the adapter ASC, and caspase-1. NLRP3 and AIM2 inflammasomes mediate cell death and production of important IL-1 family cytokines to recruit leukocytes and defend against S. pneumoniae. Here, we review recent evidence that highlights inflammasomes as critical sensors of S. pneumoniae-induced cellular perturbations, summarize their role in pneumococcal infections, and discuss potential evasion strategies of some emerging pneumococcal strains.
Collapse
Affiliation(s)
- Anne Rabes
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
26
|
Peteranderl C, Herold S. The Impact of the Interferon/TNF-Related Apoptosis-Inducing Ligand Signaling Axis on Disease Progression in Respiratory Viral Infection and Beyond. Front Immunol 2017; 8:313. [PMID: 28382038 PMCID: PMC5360710 DOI: 10.3389/fimmu.2017.00313] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/06/2017] [Indexed: 12/29/2022] Open
Abstract
Interferons (IFNs) are well described to be rapidly induced upon pathogen-associated pattern recognition. After binding to their respective IFN receptors and activation of the cellular JAK/signal transducer and activator of transcription signaling cascade, they stimulate the transcription of a plethora of IFN-stimulated genes (ISGs) in infected as well as bystander cells such as the non-infected epithelium and cells of the immune system. ISGs may directly act on the invading pathogen or can either positively or negatively regulate the innate and adaptive immune response. However, IFNs and ISGs do not only play a key role in the limitation of pathogen spread but have also been recently found to provoke an unbalanced, overshooting inflammatory response causing tissue injury and hampering repair processes. A prominent regulator of disease outcome, especially in-but not limited to-respiratory viral infection, is the IFN-dependent mediator TRAIL (TNF-related apoptosis-inducing ligand) produced by several cell types including immune cells such as macrophages or T cells. First described as an apoptosis-inducing agent in transformed cells, it is now also well established to rapidly evoke cellular stress pathways in epithelial cells, finally leading to caspase-dependent or -independent cell death. Hereby, pathogen spread is limited; however in some cases, also the surrounding tissue is severely harmed, thus augmenting disease severity. Interestingly, the lack of a strictly controlled and well balanced IFN/TRAIL signaling response has not only been implicated in viral infection but might furthermore be an important determinant of disease progression in bacterial superinfections and in chronic respiratory illness. Conclusively, the IFN/TRAIL signaling axis is subjected to a complex modulation and might be exploited for the evaluation of new therapeutic concepts aiming at attenuation of tissue injury.
Collapse
Affiliation(s)
- Christin Peteranderl
- Department of Internal Medicine II, German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine II, German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany
| |
Collapse
|
27
|
Han S, Jerome JA, Gregory AD, Mallampalli RK. Cigarette smoke destabilizes NLRP3 protein by promoting its ubiquitination. Respir Res 2017; 18:2. [PMID: 28056996 PMCID: PMC5217194 DOI: 10.1186/s12931-016-0485-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/08/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cigarette smoke suppresses innate immunity, making smokers more susceptible to infection. The NLRP3 inflammasome is a multi-protein complex that releases interleukin (IL) -1β and IL -18. These cytokines are critical for a timely host response to pathogens. Whether cigarette smoke affects NLRP3 protein levels, and its ability to form an inflammasome, is not known. METHODS AND RESULTS Using the human monocyte THP1 cell line and C57BL/6 mice, we show that cigarette smoke decreases NLRP3 levels in cells by increasing ubiquitin-mediated proteasomal processing. Half-life of NLRP3 is shortened with the exposure to cigarette smoke extract. Cigarette smoke extract reduces cellular NLRP3 protein abundance in the presence of lipopolysaccharide, a known inducer of NLRP3 protein, thereby decreasing the formation of NLRP3 inflammasomes. The release of IL-1β and IL-18 by inflammasome activation is also decreased with the exposure to cigarette smoke extract both in THP1 cells and primary human peripheral blood macrophages. CONCLUSIONS Cigarette smoke extract decreased NLRP3 protein abundance via increased ubiquitin-mediated proteasomal processing. The release of IL-1β and IL-18 is also decreased with cigarette smoke extract. Our findings may provide mechanistic insights on immunosuppression in smokers and unique opportunities to develop a strategy to modulate immune function.
Collapse
Affiliation(s)
- SeungHye Han
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacob A Jerome
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa D Gregory
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, 15213, Pittsburgh, PA, USA
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, 15213, Pittsburgh, PA, USA. .,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol 2017; 47:1-58. [PMID: 27537422 PMCID: PMC5555643 DOI: 10.1080/10408444.2016.1206061] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
In an evaluation of carbon nanotubes (CNTs) for the IARC Monograph 111, the Mechanisms Subgroup was tasked with assessing the strength of evidence on the potential carcinogenicity of CNTs in humans. The mechanistic evidence was considered to be not strong enough to alter the evaluations based on the animal data. In this paper, we provide an extended, in-depth examination of the in vivo and in vitro experimental studies according to current hypotheses on the carcinogenicity of inhaled particles and fibers. We cite additional studies of CNTs that were not available at the time of the IARC meeting in October 2014, and extend our evaluation to include carbon nanofibers (CNFs). Finally, we identify key data gaps and suggest research needs to reduce uncertainty. The focus of this review is on the cancer risk to workers exposed to airborne CNT or CNF during the production and use of these materials. The findings of this review, in general, affirm those of the original evaluation on the inadequate or limited evidence of carcinogenicity for most types of CNTs and CNFs at this time, and possible carcinogenicity of one type of CNT (MWCNT-7). The key evidence gaps to be filled by research include: investigation of possible associations between in vitro and early-stage in vivo events that may be predictive of lung cancer or mesothelioma, and systematic analysis of dose-response relationships across materials, including evaluation of the influence of physico-chemical properties and experimental factors on the observation of nonmalignant and malignant endpoints.
Collapse
Affiliation(s)
- Eileen D Kuempel
- a National Institute for Occupational Safety and Health , Cincinnati , OH , USA
| | - Marie-Claude Jaurand
- b Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche , UMR 1162 , Paris , France
- c Labex Immuno-Oncology, Sorbonne Paris Cité, University of Paris Descartes , Paris , France
- d University Institute of Hematology, Sorbonne Paris Cité, University of Paris Diderot , Paris , France
- e University of Paris 13, Sorbonne Paris Cité , Saint-Denis , France
| | - Peter Møller
- f Department of Public Health , University of Copenhagen , Copenhagen , Denmark
| | - Yasuo Morimoto
- g Department of Occupational Pneumology , University of Occupational and Environmental Health , Kitakyushu City , Japan
| | | | - Kent E Pinkerton
- i Center for Health and the Environment, University of California , Davis , California , USA
| | - Linda M Sargent
- j National Institute for Occupational Safety and Health , Morgantown , West Virginia , USA
| | - Roel C H Vermeulen
- k Institute for Risk Assessment Sciences, Utrecht University , Utrecht , The Netherlands
| | - Bice Fubini
- l Department of Chemistry and "G.Scansetti" Interdepartmental Center , Università degli Studi di Torino , Torino , Italy
| | - Agnes B Kane
- m Department of Pathology and Laboratory Medicine , Brown University , Providence , RI , USA
| |
Collapse
|
29
|
PGRP negatively regulates NOD-mediated cytokine production in rainbow trout liver cells. Sci Rep 2016; 6:39344. [PMID: 27991595 PMCID: PMC5171823 DOI: 10.1038/srep39344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/18/2016] [Indexed: 12/26/2022] Open
Abstract
Pattern-recognition receptors (PRRs) initiate innate immunity via pathogen recognition. Recent studies suggest that signalling pathways downstream of different PRRs and their crosstalk effectively control immune responses. However, the cross-regulation among PRRs and its effects have yet to be fully described in fish. Here, we examined the crosstalk between OmPGRP-L1, a long form of PGRP in rainbow trout, and other PRRs during pathogenic infections. OmPGRP-L1 expression was increased in RTH-149 cells by iE-DAP and MDP, which are agonists of NOD1 and NOD2, respectively. The silencing of NOD1 and NOD2 specifically inhibited the upregulation of OmPGRP-L1 expression induced by their cognate ligands. Suppression of RIP2 and NF-κB activation prevented the induction of OmPGRP-L1 expression. An in silico analysis and electrophoretic mobility shift assay revealed that the promoter of OmPGRP-L1 has NF-κB binding sites, suggesting that OmPGRP-L1 is produced through the NOD-RIP2-NF-κB signalling pathway. Loss-of-function and gain-of-function experiments indicated that OmPGRP-L1 downregulates the induction of NOD-mediated pro-inflammatory cytokine expression. Mechanistically, secreted OmPGRP-L1 inhibited the activation of the NOD-induced NF-κB pathway via downregulation of TAK1 and IκBα phosphorylation through A20 expression. Our data demonstrate that OmPGRP-L1 and NODs might play interdependent roles in the inflammatory response to bacterial infections in rainbow trout.
Collapse
|
30
|
NLRP3 protects alveolar barrier integrity by an inflammasome-independent increase of epithelial cell adherence. Sci Rep 2016; 6:30943. [PMID: 27476670 PMCID: PMC4967923 DOI: 10.1038/srep30943] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/11/2016] [Indexed: 12/17/2022] Open
Abstract
Bacterial pneumonia is a major cause of acute lung injury and acute respiratory distress syndrome, characterized by alveolar barrier disruption. NLRP3 is best known for its ability to form inflammasomes and to regulate IL-1β and IL-18 production in myeloid cells. Here we show that NLRP3 protects the integrity of the alveolar barrier in a mouse model of Streptococcus pneumoniae-induced pneumonia, and ex vivo upon treatment of isolated perfused and ventilated lungs with the purified bacterial toxin, pneumolysin. We reveal that the preserving effect of NLRP3 on the lung barrier is independent of inflammasomes, IL-1β and IL-18. NLRP3 improves the integrity of alveolar epithelial cell monolayers by enhancing cellular adherence. Collectively, our study uncovers a novel function of NLRP3 by demonstrating that it protects epithelial barrier function independently of inflammasomes.
Collapse
|
31
|
Nakamura H, Aoshiba K. Pathogenesis of COPD (Persistence of Airway Inflammation): Why Does Airway Inflammation Persist After Cessation of Smoking? CHRONIC OBSTRUCTIVE PULMONARY DISEASE 2016. [PMCID: PMC7123312 DOI: 10.1007/978-981-10-0839-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The structural features of airways in patients with COPD are airway wall inflammation, fibrosis, muscle hypertrophy, and goblet cell metaplasia. These structural cellular changes contribute to mucus hypersecretion and destruction of the alveolar walls and a decline in forced expiratory volume in one second (FEV1). At the cellular level, macrophages, T lymphocytes, and neutrophils, driven by cytokines including interleukin-8 (IL-8), gather on the airways. The main cause of COPD inflammation is cigarette smoke. Smoke causes an increase in the secretion of matrix metalloproteinase (MMPs) and neutrophilic elastase from epithelial cells and neutrophils, which are responsible for mucin production and destruction of the lung. Initially, cigarette smoke influences the expression of pattern recognition receptors (PRRs) including Toll-like receptors (TLRs), the intracellularly located nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), and receptors for advanced glycation end products (RAGE) on lung epithelial cells, endothelial cells, and leukocytes in the lung. These actions bring about the production of cytokines and activation of inflammatory cells, leading to production of MMPs and neutrophilic elastase. The inflammatory changes persist for several months and years after smoking cessation and are sometimes irreversible. Damage-associated molecular patterns (DAMPs) released from dying cells after cigarette smoking increase the number of apoptotic cells, suppress efferocytosis, induce hypoxia and oxidative stress, and prolong the inflammatory changes, even after smoking cessation. Viral and bacterial infections of the respiratory tract then fortify these inflammatory responses. Exacerbations of COPD then worsen the deterioration of COPD.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|
32
|
Oh JY, Ko JH, Ryu JS, Lee HJ, Kim MK, Wee WR. Transcription Profiling of NOD-like Receptors in the Human Cornea with Disease. Ocul Immunol Inflamm 2016; 25:364-369. [PMID: 26902715 DOI: 10.3109/09273948.2015.1130844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the expression of nucleotide-binding oligomerization domain-like receptors (NLRs) in human corneas with disease and corneal cells. METHODS The expression of NOD1, NOD2, NLRP1, and NLRP3 was analyzed using real-time RT-PCR in (1) corneas with active infection, history of herpetic stromal keratitis (HSK), chronic allograft rejection, and limbal stem cell deficiency (LSCD), and (2) human corneal cells after lipopolysaccharide (LPS) stimulation. Healthy corneas and cells without LPS served as controls. RESULTS The mRNA levels of NOD2 and NLRP3 were increased in corneas with infection and HSK. Conversely, the levels of NOD1, NOD2, NLRP1, and NLRP3 transcripts were decreased in corneas with LSCD. In corneas with rejection, the expression of NOD1 and NLRP1 was downregulated. Corneal endothelial cells upregulated the expression of NOD2 and NLRP3 upon LPS. CONCLUSIONS The changes in the NLR expression may reflect different susceptibility to infectious and non-infectious injuries in corneas with various diseases.
Collapse
Affiliation(s)
- Joo Youn Oh
- a Department of Ophthalmology , Seoul National University Hospital , Jongno-gu , Seoul , Korea.,b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Jung Hwa Ko
- b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Jin Suk Ryu
- b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Hyun Ju Lee
- b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Mee Kum Kim
- a Department of Ophthalmology , Seoul National University Hospital , Jongno-gu , Seoul , Korea.,b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| | - Won Ryang Wee
- a Department of Ophthalmology , Seoul National University Hospital , Jongno-gu , Seoul , Korea.,b Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute , National University Hospital , Jongno-gu , Seoul , Korea
| |
Collapse
|
33
|
Margelidon-Cozzolino V, Chbini K, Freymond N, Devouassoux G, Belaaouaj A, Pacheco Y. [COPD: An early disease]. REVUE DE PNEUMOLOGIE CLINIQUE 2016; 72:49-60. [PMID: 26657351 PMCID: PMC7126852 DOI: 10.1016/j.pneumo.2015.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/16/2015] [Indexed: 05/04/2023]
Abstract
This general review deals with the mechanisms which underlie the genetic factors in COPD. Many cellular and biochemical mechanisms occur in bronchial inflammation. We present the experimental models of COPD, insisting on the importance of oxydative stress, and on recent knowledge about the lung microbiome. Starting from this pathophysiology basis, we show how various genetic targets are able to interfere with the disease model. Thanks to these genetic targets, new markers in exhaled breath condensates and new drug targets are rising.
Collapse
Affiliation(s)
- V Margelidon-Cozzolino
- Service de pneumologie A, centre hospitalier de Lyon Sud, hospices civils de Lyon, faculté de médecine, université Claude-Bernard Lyon 1, 69310 Pierre-Bénite, France.
| | - K Chbini
- Service de cardiologie, CHU Mohammed VI, faculté de médecine et de pharmacie, université Cadi Ayyad, Marrakech, Maroc
| | - N Freymond
- Service de pneumologie A, centre hospitalier de Lyon Sud, hospices civils de Lyon, 69310 Pierre-Bénite, France
| | - G Devouassoux
- Service de pneumologie, hôpital de la Croix Rousse, hospices civils de Lyon, faculté de médecine Lyon Sud, université Claude-Bernard Lyon 1, 69005 Lyon, France
| | - A Belaaouaj
- Inserm 1111, faculté de médecine Lyon Sud, chemin du Grand-Revoyet, 69310 Pierre-Bénite, France
| | - Y Pacheco
- Service de pneumologie A, centre hospitalier de Lyon Sud, hospices civils de Lyon, faculté de médecine Lyon Sud, université Claude-Bernard Lyon 1, 69310 Pierre-Bénite, France
| |
Collapse
|
34
|
Freeman LC, Ting JPY. The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem 2015; 136 Suppl 1:29-38. [PMID: 26119245 DOI: 10.1111/jnc.13217] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/16/2022]
Abstract
The inflammasome is a large macromolecular complex that contains multiple copies of a receptor or sensor of pathogen-derived or damage-derived molecular patterns, pro-caspase-1, and an adaptor called ASC (apoptotic speck containing protein with a CARD), which results in caspase-1 maturation. Caspase-1 then mediates the release of pro-inflammatory cytokines such as IL-1β and IL-18. These cytokines play critical roles in mediating immune responses during inflammation and innate immunity. Broader studies of the inflammasome over the years have implicated their roles in the pathogenesis of a variety of inflammatory diseases. Recently, studies have shown that the inflammasome modulates neuroinflammatory cells and the initial stages of neuroinflammation. A secondary cascade of events associated with neuroinflammation (such as oxidative stress) has been shown to activate the inflammasome, making the inflammasome a promising therapeutic target in the modulation of neurodegenerative diseases. This review will focus on the pathogenic role that inflammasomes play in neurologic diseases such as Alzheimer's disease, traumatic brain injury, and multiple sclerosis. We here review the role of the inflammasome in the pathogenesis of traumatic brain injury (TBI). TBI is initiated by physical force exerted to head, resulting in neuronal injury and death. Primary insult is followed by a secondary cascade of events following neuroinflammation such as mitochondrial dysfunction, production of reactive oxygen species, potassium effluxes, and release of circulating DNA. These events can potentially trigger the activation of NLRP3, NLRP1, and AIM2 during TBI but have yet to be confirmed (dashed lines). NLRP3, NLRP1, and AIM2 associate with the adaptor protein ASC, which initiates the cleavage of pro-caspase-1 to the mature form of caspase-1 which cleaves pro-IL-1β and pro-IL-18 into their mature forms of IL-1β and IL-18.
Collapse
Affiliation(s)
- Leslie C Freeman
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Genetics, Department of Microbiology and Immunology, Institute of Inflammatory Diseases, Center for Translational Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
35
|
Bikov A, Boots A, Bjerg A, Jacinto T, Olland A, Skoczyński S. 13th ERS Lung Science Conference. The most important take home messages: News from the Underground. Breathe (Sheff) 2015; 11:149-52. [PMID: 26306116 PMCID: PMC4487375 DOI: 10.1183/20734735.04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The 13th ERS Lung Science Conference (LSC) was organised to bring academics together from all over the world to present and discuss the latest developments regarding lung infection and immunity. The conference took place in breathtaking Estoril, Portugal; however, it wasn't the beautiful surroundings that were our main motivation to attend, but instead the scientific merit of the conference and the chance to create new scientific collaborations. The scientific programme [1] was packed with the most up-to-date content in the field of lung infection and immunity and included some of the top researchers within this exciting area. Moreover, the convenient size of the LSC offered the opportunity to renew and intensify friendships and collaborations. In particular, for researchers at the start of their career, this is a great feature and we therefore warmly recommend the LSC to ERS Juniors Members!
Collapse
Affiliation(s)
- Andras Bikov
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Agnes Boots
- Dept of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Anders Bjerg
- Krefting Research Center, Dept of Internal Medicine and Clinical Nutrition, University of Gothenburg, Göteborg, Sweden
| | | | - Anne Olland
- Lung Transplantation Group, Thoracic Surgery Dept, University Hospital Strasbourg, France
| | - Szymon Skoczyński
- Lung Transplantation Group, Thoracic Surgery Dept, University Hospital Strasbourg, France
| |
Collapse
|
36
|
Immune Homeostasis in Epithelial Cells: Evidence and Role of Inflammasome Signaling Reviewed. J Immunol Res 2015; 2015:828264. [PMID: 26355424 PMCID: PMC4556877 DOI: 10.1155/2015/828264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022] Open
Abstract
The epithelium regulates the interaction between the noxious xenogenous, as well as the microbial environment and the immune system, not only by providing a barrier but also by expressing a number of immunoregulatory membrane receptors, and intracellular danger sensors and their downstream effectors. Amongst these are a number of inflammasome sensor subtypes, which have been initially characterized in myeloid cells and described to be activated upon assembly into multiprotein complexes by microbial and environmental triggers. This review compiles a vast amount of literature that supports a pivotal role for inflammasomes in the various epithelial barriers of the human body as essential factors maintaining immune signaling and homeostasis.
Collapse
|
37
|
The role of NOD1/CARD4 and NOD2/CARD15 genetic variations in lung cancer risk. Inflamm Res 2015; 64:775-9. [PMID: 26238283 DOI: 10.1007/s00011-015-0859-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND AIM NOD1/CARD4 and NOD2/CARD15 are members of the Nod-like receptor (NLR) family, and they contain a caspase recruitment domain (CARD). NLRs are located in the cytosol where they bind bacterial and viral ligands and play a key role in the innate and adaptive immune response, apoptosis, autophagy, and reactive oxygen species generation. NLR gene polymorphisms may shift the balance between pro- and anti-inflammatory cytokines and modulate the risk of infection, chronic inflammation, and cancer. NOD1/CARD4 and NOD2/CARD15 gene polymorphisms may also be associated with altered risks for many cancer types. The aim of our study was to evaluate the potential associations between lung cancer and NOD1/CARD4 and NOD2/CARD15 polymorphisms. METHOD The NOD1/CARD4 (rs5743336) and NOD2/CARD15 (rs2066847) SNPs were analyzed by PCR restriction fragment-length polymorphism analysis (PCR-RFLP) in 260 subjects (lung cancer patients: n = 160; healthy controls: n = 100) of Turkish origin. PCR products were digested with AvaI for rs5743336 and ApaI for rs2066847 and then visualized. RESULTS Comparisons of the genotypes between control and lung cancer patients were performed by Chi-square tests. We found a significant difference in the genotypic distribution of the rs5743336 variant of NOD1/CARD4 between lung cancer patients and controls (p = 0.010, χ (2) = 9.220). However, we did not identify any statistically significant difference for the p.Leu1007fsX1008 (rs2066847) genotype of NOD2/CARD15 between groups (p > 0.05). CONCLUSION According to our data, the rs5743336 variant of the NOD1/CARD4 gene may influence the diagnosis and treatment of lung cancer, whereas the rs2066847 variant of the NOD2/CARD15 gene is not associated with lung cancer risk in the Turkish population.
Collapse
|
38
|
Migita K, Tsuji Y, Hisatomi K, Shigeno R, Izumi Y, Iwanaga N, Koga T. Acute exacerbation of rheumatoid interstitial lung disease during the maintenance therapy with certolizumab pegol. Mod Rheumatol 2015; 27:1079-1082. [PMID: 26044288 DOI: 10.3109/14397595.2015.1059008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report a case involving a 68-year-old woman with rheumatoid arthritis (RA) with acute exacerbated interstitial lung disease (ILD) during certolizumab pegol maintenance therapy. She recovered quickly with steroid pulse therapy and was discharged without deterioration of basal pulmonary function. Immunoblot analysis demonstrated the circulating cleaved interleukin-1β at the phase of acute exacerbation of RA-associated ILD (RA-ILD) in this patient. The findings from this case suggested that the Nod-like receptor pyrin domain-containing protein 3 inflammasome is implicated in acute RA-ILD exacerbation.
Collapse
Affiliation(s)
- Kiyoshi Migita
- a Department of Rheumatology and Clinical Research Center , Nagasaki Medical Center , Omura, Nagasaki , Japan
| | - Yoshika Tsuji
- a Department of Rheumatology and Clinical Research Center , Nagasaki Medical Center , Omura, Nagasaki , Japan
| | - Keiko Hisatomi
- b Department of Respiratory Medicine , Nagasaki Medical Center , Omura, Nagasaki , Japan
| | - Riyoko Shigeno
- a Department of Rheumatology and Clinical Research Center , Nagasaki Medical Center , Omura, Nagasaki , Japan
| | - Yasumori Izumi
- a Department of Rheumatology and Clinical Research Center , Nagasaki Medical Center , Omura, Nagasaki , Japan
| | - Nozomi Iwanaga
- a Department of Rheumatology and Clinical Research Center , Nagasaki Medical Center , Omura, Nagasaki , Japan
| | - Tomohiro Koga
- c First Department of Internal Medicine , Nagasaki University School of Medicine , Sakamoto, Nagasaki , Japan
| |
Collapse
|
39
|
Fritz JH, Kufer TA. Editorial: NLR-Protein Functions in Immunity. Front Immunol 2015; 6:306. [PMID: 26124759 PMCID: PMC4464067 DOI: 10.3389/fimmu.2015.00306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jörg H Fritz
- Department of Microbiology and Immunology, Complex Traits Group, McGill University , Montreal, QC , Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim , Stuttgart , Germany
| |
Collapse
|
40
|
Differential expression of inflammasomes in lung cancer cell lines and tissues. Tumour Biol 2015; 36:7501-13. [PMID: 25910707 DOI: 10.1007/s13277-015-3473-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
As pivotal elements involved in inflammation, inflammasomes represent a group of multiprotein complexes triggering the maturation of proinflammatory cytokine interleukin (IL)-1β and IL-18. Although the importance of the inflammasomes in inflammatory diseases is well appreciated, a precise characterization of their expressions in lung cancer remains obscure. This study aimed to determine the expressions of inflammasomes in various lung cancer cell lines and tissues to understand their potential roles in lung cancer. Our findings showed that inflammasome components were markedly upregulated in lung cancer and elicited the maturation of IL-1β and IL-18. In addition, enormous variations in subtypes and levels of inflammasomes were detected in lung cancers depending on their histological type and grading, invasion ability, as well as chemoresistance. Generally, AIM2 inflammasome was overexpressed in nonsmall cell lung cancer (NSCLC), while NLRP3 inflammasome was upregulated in lung adenocarcinoma (ADC) and small cell lung cancer (SCLC). The high-metastatic or cisplatin-sensitive NSCLC cells expressed more inflammasome components and products than their counterpart low-metastatic or cisplatin-resistant NSCLC cells, respectively. In resected lung cancer tissues, high-grade ADC expressed more inflammasome components and products than low-grade ADC. Together, these findings suggest that inflammasomes may be crucial biomarkers for lung cancer as well as potential modulators of the biological behaviors of lung cancer. Further, pharmacotherapeutics targeting inflammasomes might be novel adjuvant therapy strategies for lung cancer.
Collapse
|
41
|
Landes MB, Rajaram MVS, Nguyen H, Schlesinger LS. Role for NOD2 in Mycobacterium tuberculosis-induced iNOS expression and NO production in human macrophages. J Leukoc Biol 2015; 97:1111-9. [PMID: 25801769 DOI: 10.1189/jlb.3a1114-557r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/02/2015] [Indexed: 01/04/2023] Open
Abstract
M.tb, which causes TB, is a host-adapted intracellular pathogen of macrophages. Macrophage intracellular PRRs, such as NOD proteins, regulate proinflammatory cytokine production in response to various pathogenic organisms. We demonstrated previously that NOD2 plays an important role in controlling the inflammatory response and viability of M.tb and Mycobacterium bovis BCG in human macrophages. Various inflammatory mediators, such as cytokines, ROS, and RNS, such as NO, can mediate this control. iNOS (or NOS2) is a key enzyme for NO production and M.tb control during infection of mouse macrophages; however, the role of NO during infection of human macrophages remains unclear, in part, as a result of the low amounts of NO produced in these cells. Here, we tested the hypothesis that activation of NOD2 by its ligands (MDP and GMDP, the latter from M.tb) plays an important role in the expression and activity of iNOS and NO production in human macrophages. We demonstrate that M.tb or M. bovis BCG infection enhances iNOS expression in human macrophages. The M.tb-induced iNOS expression and NO production are dependent on NOD2 expression during M.tb infection. Finally, NF-κB activation is required for NOD2-dependent expression of iNOS in human macrophages. Our data provide evidence for a new molecular pathway that links activation of NOD2, an important intracellular PRR, and iNOS expression and activity during M.tb infection of human macrophages.
Collapse
Affiliation(s)
- Michelle B Landes
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Murugesan V S Rajaram
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Huy Nguyen
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Baral P, Batra S, Zemans RL, Downey GP, Jeyaseelan S. Divergent functions of Toll-like receptors during bacterial lung infections. Am J Respir Crit Care Med 2015; 190:722-32. [PMID: 25033332 DOI: 10.1164/rccm.201406-1101pp] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lower respiratory tract infections caused by bacteria are a major cause of death in humans irrespective of sex, race, or geography. Indeed, accumulated data indicate greater mortality and morbidity due to these infections than cancer, malaria, or HIV infection. Successful recognition of, followed by an appropriate response to, bacterial pathogens in the lungs is crucial for effective pulmonary host defense. Although the early recruitment and activation of neutrophils in the lungs is key in the response against invading microbial pathogens, other sentinels, such as alveolar macrophages, epithelial cells, dendritic cells, and CD4(+) T cells, also contribute to the elimination of the bacterial burden. Pattern recognition receptors, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors, are important for recognizing and responding to microbes during pulmonary infections. However, bacterial pathogens have acquired crafty evasive strategies to circumvent the pattern recognition receptor response and thus establish infection. Increased understanding of the function of TLRs and evasive mechanisms used by pathogens during pulmonary infection will deepen our knowledge of immunopathogenesis and is crucial for developing effective therapeutic and/or prophylactic measures. This review summarizes current knowledge of the multiple roles of TLRs in bacterial lung infections and highlights the mechanisms used by pathogens to modulate or interfere with TLR signaling in the lungs.
Collapse
Affiliation(s)
- Pankaj Baral
- 1 Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | | | | | | | | |
Collapse
|
43
|
Gao R, Ma Z, Hu Y, Chen J, Shetty S, Fu J. Sirt1 restrains lung inflammasome activation in a murine model of sepsis. Am J Physiol Lung Cell Mol Physiol 2015; 308:L847-53. [PMID: 25659903 DOI: 10.1152/ajplung.00274.2014] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/02/2015] [Indexed: 02/07/2023] Open
Abstract
Excessive inflammation is a major cause of organ damage during sepsis. The elderly are highly susceptible to sepsis-induced organ injury. Sirt1 expression is reduced during aging. In the present study, we investigated the role of Sirt1, a histone deacetylase, in controlling inflammatory responses in a murine sepsis model induced by cecal ligation and puncture (CLP). We examined lung inflammatory signaling in inducible Sirt1 knockout (Sirt1(-/-)) mice and wild-type littermates (Sirt1(+/+)) after CLP. Our results demonstrated that Sirt1 deficiency led to severe lung inflammatory injury. To further investigate molecular mechanisms of Sirt1 regulation of lung inflammatory responses in sepsis, we conducted a series of experiments to assess lung inflammasome activation after CLP. We detected increased lung inflammatory signaling including NF-κB, signal transducer and activator of transcription 3, and ERK1/2 activation in Sirt1(-/-) mice after CLP. Furthermore, inflammasome activity was increased in Sirt1(-/-) mice after CLP, as demonstrated by increased IL-1β and caspase-7 cleavage and activation. Aggravated inflammasome activation in Sirt1(-/-) mice was associated with the increased production of lung proinflammatory mediators, including ICAM-1 and high-mobility group box 1, and further disruption of tight junctions and adherens junctions, as demonstrated by dramatic reduction of lung claudin-1 and vascular endothelial-cadherin expression, which was associated with the upregulation of matrix metallopeptidase 9 expression. In summary, our results suggest that Sirt1 suppresses acute lung inflammation during sepsis by controlling inflammasome activation pathway.
Collapse
Affiliation(s)
- Rong Gao
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky; The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhongsen Ma
- The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuxin Hu
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky; The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Jiao Chen
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky
| | - Sreerama Shetty
- Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas
| | - Jian Fu
- Center for Research on Environmental Disease, University of Kentucky, Lexington, Kentucky; Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, Kentucky;
| |
Collapse
|
44
|
Collaborative action of Toll-like and NOD-like receptors as modulators of the inflammatory response to pathogenic bacteria. Mediators Inflamm 2014; 2014:432785. [PMID: 25525300 PMCID: PMC4267164 DOI: 10.1155/2014/432785] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/11/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023] Open
Abstract
Early sensing of pathogenic bacteria by the host immune system is important to develop effective mechanisms to kill the invader. Microbial recognition, activation of signaling pathways, and effector mechanisms are sequential events that must be highly controlled to successfully eliminate the pathogen. Host recognizes pathogens through pattern-recognition receptors (PRRs) that sense pathogen-associated molecular patterns (PAMPs). Some of these PRRs include Toll-like receptors (TLRs), nucleotide-binding oligomerization domain-like receptors (NLRs), retinoic acid-inducible gene-I- (RIG-I-) like receptors (RLRs), and C-type lectin receptors (CLRs). TLRs and NLRs are PRRs that play a key role in recognition of extracellular and intracellular bacteria and control the inflammatory response. The activation of TLRs and NLRs by their respective ligands activates downstream signaling pathways that converge on activation of transcription factors, such as nuclear factor-kappaB (NF-κB), activator protein-1 (AP-1) or interferon regulatory factors (IRFs), leading to expression of inflammatory cytokines and antimicrobial molecules. The goal of this review is to discuss how the TLRs and NRLs signaling pathways collaborate in a cooperative or synergistic manner to counteract the infectious agents. A deep knowledge of the biochemical events initiated by each of these receptors will undoubtedly have a high impact in the design of more effective strategies to control inflammation.
Collapse
|
45
|
Werner JL, Steele C. Innate receptors and cellular defense against pulmonary infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3842-50. [PMID: 25281754 PMCID: PMC4185409 DOI: 10.4049/jimmunol.1400978] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the United States, lung infections consistently rank in the top 10 leading causes of death, accounting for >50,000 deaths annually. Moreover, >140,000 deaths occur annually as a result of chronic lung diseases, some of which may be complicated by an infectious process. The lung is constantly exposed to the environment and is susceptible to infectious complications caused by bacterial, viral, fungal, and parasitic pathogens. Indeed, we are continually faced with the threat of morbidity and mortality associated with annual influenza virus infections, new respiratory viruses (e.g., SARS-CoV), and lung infections caused by antibiotic-resistant "ESKAPE pathogens" (three of which target the lung). This review highlights innate immune receptors and cell types that function to protect against infectious challenges to the respiratory system yet also may be associated with exacerbations in chronic lung diseases.
Collapse
Affiliation(s)
- Jessica L Werner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Chad Steele
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
46
|
Triantafilou K, Triantafilou M. Ion flux in the lung: virus-induced inflammasome activation. Trends Microbiol 2014; 22:580-8. [PMID: 24986075 PMCID: PMC7126464 DOI: 10.1016/j.tim.2014.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 02/06/2023]
Abstract
Innate immunity has a primary role in lung antimicrobial defenses. The inflammasome has evolved for this purpose and is an important surveillance system that, when triggered, fights infection and eliminates pathogens. However, there is growing evidence that the inflammasome also plays a role in the pathogenesis of acute and chronic respiratory disease. Inflammasomes contribute to both the clearance of the pathogen as well as its pathogenesis - depending on the amount of inflammation triggered. How respiratory viruses trigger inflammasome activation remains unclear. Emerging evidence shows that ion flux is responsible for triggering inflammasome activation in the lung, causing lung pathology and disease exacerbations. Viroporins, encoded by all common respiratory viruses, are responsible for the changes in intracellular ion homeostasis that modulate inflammasome activation. This is a novel mechanism by which respiratory viral infection activates inflammasomes, and identifies sensing of disturbances in intracellular ionic concentrations as a novel pathogen-recognition pathway in the lung.
Collapse
Affiliation(s)
- Kathy Triantafilou
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Martha Triantafilou
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
47
|
Abstract
Respiratory infections and diseases are among the leading causes of death worldwide, and effective treatments probably require manipulating the inflammatory response to pathogenic microbes or allergens. Here, we review mechanisms controlling the production and functions of interleukin-17 (IL-17) and IL-22, cytokines that direct several aspects of lung immunity. Innate lymphocytes (γδ T cells, natural killer cells, innate lymphoid cells) are the major source of IL-17 and IL-22 during acute infections, while CD4(+) T-helper 17 (Th17) cells contribute to vaccine-induced immunity. The characterization of dendritic cell (DC) subsets has revealed their central roles in T-cell activation. CD11b(+) DCs stimulated with bacteria or fungi secrete IL-1β and IL-23, potent inducers of IL-17 and IL-22. On the other hand, recognition of viruses by plasmacytoid DCs inhibits IL-1β and IL-23 release, increasing susceptibility to bacterial superinfections. IL-17 and IL-22 primarily act on the lung epithelium, inducing antimicrobial proteins and neutrophil chemoattractants. Recent studies found that stimulation of macrophages and DCs with IL-17 also contributes to antibacterial immunity, while IL-22 promotes epithelial proliferation and repair following injury. Chronic diseases such as asthma and chronic obstructive pulmonary disease have been associated with IL-17 and IL-22 responses directed against innocuous antigens. Future studies will evaluate the therapeutic efficacy of targeting the IL-17/IL-22 pathway in pulmonary inflammation.
Collapse
Affiliation(s)
- Jeremy P. McAleer
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA
| |
Collapse
|