1
|
Watany MM, Elhosary MM. Clinical utility of circulating TWEAK and CD163 as biomarkers of iron-induced cardiac decompensation in transfusion dependent thalassemia major. Cytokine 2024; 173:156443. [PMID: 38000169 DOI: 10.1016/j.cyto.2023.156443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND AIM Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) affects most of the cells involved in cardiac fibrosis like inflammatory cells, cardiomyocytes and fibroblasts. CD163, the receptor of TWEAK on the surface of type 2 macrophages, is shed into plasma upon macrophages activation. This work aimed to evaluate serum TWEAK and its decoy receptor CD163 as probable biomarkers to monitor myocardial iron overload (MIO) in transfusion dependent thalassemia major (TDTM) patients and to predict iron-induced cardiac decompensation (IICD). METHODS A total of 140 TDTM patients were enrolled. Patients were categorized into two groups; group I (n = 70) diagnosed with IICD while group II (n = 70) had no evidence of IICD. sTWEAK and sCD163 were quantitated utilizing Enzyme-linked-immunosorbent- assay. RESULTS sTWEAK was evidently lower in group I than group II (medians, 412 and 1052 pg/mL respectively). sCD163 was higher in group I than group II (medians, 615.5 and 323.5 ng/mL respectively). sTWEAK positively correlated with cardiac MRI-T2 mapping and ventricular ejection fractions and negatively correlated with B-Natriuretic peptide and cardiac troponin. An inverse relationship between TWEAK and CD163 was documented throughout the study. sTWEAK, sCD163 and TWEAK/CD163 ratio proved to be significant predictors of IICD in TDTM patients. TWEAK/CD163 ratio < 1.04 discriminated IICD in TDTM patients with 100 % clinical sensitivity and specificity. CONCLUSION Circulating TWEAK and CD163 appears to be promising biomarkers for monitoring MIO and predicting IICD in TDTM patients.
Collapse
Affiliation(s)
- Mona M Watany
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Marwa M Elhosary
- Msc Immunology from Tanta University, Faculty of Science, Tanta 31527, Egypt
| |
Collapse
|
2
|
Boswell L, Amor AJ, Montagud-Marrahi E, Casals G, Díaz-Catalan D, Banon-Maneus E, Ramírez-Bajo MJ, Hierro N, Diekmann F, Musquera M, Serés-Noriega T, Esmatjes E, Ferrer-Fàbrega J, Ventura-Aguiar P, Hanzu FA. Midnight Cortisol is Associated with Changes in Systolic Blood Pressure and Diabetic Neuropathy in Subjects with Type 1 Diabetes Undergoing Simultaneous Kidney-Pancreas Transplantation. Diabetes Ther 2024; 15:165-181. [PMID: 37917327 PMCID: PMC10786804 DOI: 10.1007/s13300-023-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
INTRODUCTION An increased midnight cortisol (MC) has been described in end-stage kidney disease (ESKD) and type 1 diabetes (T1D). Lower circulating levels of the cytokine soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) have been found in T1D and ESKD and associated with cardiovascular (CV) events in the latter. We aimed to study MC and sTWEAK in simultaneous pancreas-kidney transplant (SPKT) recipients, and the association of these markers with CV risk factors and transplant outcomes. METHODS This was a retrospective cohort study including subjects with T1D who received a first SPKT between 2008 and 2020. MC and sTWEAK at baseline were correlated with CV risk factors and evolution 1 year after SPKT. RESULTS We included 29 subjects (58.6% women, mean age 43.5 ± 7.5 years, diabetes duration 31.9 ± 9.4 years). Systolic blood pressure (SBP) increased directly with MC quartiles, despite similar hypertension prevalence (p < 0.05). At 1 year, antihypertensive treatment was deintensified in those in lower MC quartiles (p < 0.05). Diabetic neuropathy prevalence decreased progressively in higher cortisol quartiles (p for trend = 0.005). Low MC was associated with delayed kidney graft function (p for trend = 0.044), and high sTWEAK with kidney graft rejection (p for trend = 0.018). In multivariate analyses, MC (standardized-β 0.505, p = 0.004) and age (standardized-β - 0.460, p = 0.040) were independently correlated with SBP, and MC was independently associated with the presence of diabetic neuropathy (OR 0.633, 95% CI 0.425-0.944, p = 0.025), adjusted for confounders. CONCLUSIONS In this exploratory study, lower MC was associated with a lower baseline SBP, an improvement of antihypertensive treatment 1 year after transplant, and a higher diabetic neuropathy prevalence in SPKT recipients.
Collapse
Affiliation(s)
- Laura Boswell
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- Endocrinology and Nutrition Department, Althaia University Health Network, Manresa, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Vic, Spain
| | - Antonio J Amor
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Enrique Montagud-Marrahi
- Kidney Transplant Unit, Nephrology Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Gregori Casals
- University of Barcelona, Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Daniela Díaz-Catalan
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisenda Banon-Maneus
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Hierro
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Fritz Diekmann
- Kidney Transplant Unit, Nephrology Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Mireia Musquera
- Urology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Tonet Serés-Noriega
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Enric Esmatjes
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Carlos III Health Institute, Madrid, Spain
| | - Joana Ferrer-Fàbrega
- Hepatobiliopancreatic and Liver Transplant Department, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Pedro Ventura-Aguiar
- Kidney Transplant Unit, Nephrology Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain.
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Red de Investigación Renal (REDinREN), Madrid, Spain.
| | - Felicia A Hanzu
- Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, Villarroel 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
3
|
Guerrero-Hue M, Vallejo-Mudarra M, García-Caballero C, Córdoba-David GM, Palomino-Antolín A, Herencia C, Vendrell-Casana B, Rubio-Navarro A, Egido J, Blanco-Colio LM, Moreno JA. Tweak/Fn14 system is involved in rhabdomyolysis-induced acute kidney injury. Biomed Pharmacother 2023; 169:115925. [PMID: 38007933 DOI: 10.1016/j.biopha.2023.115925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Rhabdomyolysis is a severe clinical syndrome associated to acute kidney injury (AKI) and chronic kidney disease (CKD). TWEAK/Fn14 signaling axis regulates renal inflammation and tubular cell death. However, the functional role of TWEAK/Fn14 in rhabdomyolysis remains unknown. METHODS Rhabdomyolysis was induced in wild-type, TWEAK- and Fn14-deficient mice or mice treated with TWEAK blocking antibody. Renal injury, inflammation, fibrosis and cell death were assessed. Additionally, we performed in vivo and in vitro studies to explore the possible signalling pathways involved in Fn14 regulation. FINDINGS Fn14 renal expression was increased in mice with rhabdomyolysis, correlating with decline of renal function. Mechanistically, myoglobin (Mb) induced Fn14 expression via ERK and p38 pathway, whereas Nrf2 activation diminished Mb-mediated Fn14 upregulation in cultured renal cells. TWEAK or Fn14 genetic depletion ameliorated rhabdomyolysis-associated loss of renal function, histological damage, tubular cell death, inflammation, and expression of both tubular and endothelial injury markers. Deficiency of TWEAK or Fn14 also decreased long-term renal inflammation and fibrosis in mice with rhabdomyolysis. Finally, pharmacological treatment with a blocking TWEAK antibody diminished the expression of acute renal injury markers and cell death and lessened residual kidney fibrosis and chronic inflammation in rhabdomyolysis. INTERPRETATION TWEAK/Fn14 axis participates in the pathogenesis of rhabdomyolysis-AKI and subsequent AKI-CKD transition. Blockade of this signaling pathway may represent a promising therapeutic strategy for reducing rhabdomyolysis-mediated renal injury. FUNDING Spanish Ministry of Science and Innovation, ISCIII and Junta de Andalucía.
Collapse
Affiliation(s)
- Melania Guerrero-Hue
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Mercedes Vallejo-Mudarra
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Cristina García-Caballero
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Gina Marcela Córdoba-David
- Renal, Vascular and Diabetes Research Lab, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain
| | - Alejandra Palomino-Antolín
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, Madrid, Spain; Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Autonoma University, Madrid, Spain
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Lab, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain
| | - Beatriz Vendrell-Casana
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Cordoba, Spain
| | - Alfonso Rubio-Navarro
- Laboratory of Advanced Therapies: Differentiation, Regeneration and Cancer (CTS-963). Center of Biomedical Research. University of Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Lab, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain; Centre of Biomedical Research in Network of Diabetes and Metabolic Disease Associated (CIBERDEM), Madrid, Spain
| | - Luis Miguel Blanco-Colio
- Renal, Vascular and Diabetes Research Lab, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz, Autonoma University, Madrid, Spain; Centre of Biomedical Research in Network of Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Juan Antonio Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina Sofía, Cordoba, Spain; Centre of Biomedical Research in Network of Cardiovascular Diseases (CIBERCV), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain.
| |
Collapse
|
4
|
Junho CVC, Frisch J, Soppert J, Wollenhaupt J, Noels H. Cardiomyopathy in chronic kidney disease: clinical features, biomarkers and the contribution of murine models in understanding pathophysiology. Clin Kidney J 2023; 16:1786-1803. [PMID: 37915935 PMCID: PMC10616472 DOI: 10.1093/ckj/sfad085] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 11/03/2023] Open
Abstract
The cardiorenal syndrome (CRS) is described as a multi-organ disease encompassing bidirectionally heart and kidney. In CRS type 4, chronic kidney disease (CKD) leads to cardiac injury. Different pathological mechanisms have been identified to contribute to the establishment of CKD-induced cardiomyopathy, including a neurohormonal dysregulation, disturbances in the mineral metabolism and an accumulation of uremic toxins, playing an important role in the development of inflammation and oxidative stress. Combined, this leads to cardiac dysfunction and cardiac pathophysiological and morphological changes, like left ventricular hypertrophy, myocardial fibrosis and cardiac electrical changes. Given that around 80% of dialysis patients suffer from uremic cardiomyopathy, the study of cardiac outcomes in CKD is clinically highly relevant. The present review summarizes clinical features and biomarkers of CKD-induced cardiomyopathy and discusses underlying pathophysiological mechanisms recently uncovered in the literature. It discloses how animal models have contributed to the understanding of pathological kidney-heart crosstalk, but also provides insights into the variability in observed effects of CKD on the heart in different CKD mouse models, covering both "single hit" as well as "multifactorial hit" models. Overall, this review aims to support research progress in the field of CKD-induced cardiomyopathy.
Collapse
Affiliation(s)
| | - Janina Frisch
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Saarland University, Center for Human and Molecular Biology, Homburg/Saar, Germany
| | - Josefin Soppert
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Julia Wollenhaupt
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), University Hospital RWTH Aachen, Aachen, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Chen YM, Liu PY, Tang KT, Liu HJ, Liao TL. TWEAK-Fn14 Axis Induces Calcium-Associated Autophagy and Cell Death To Control Mycobacterial Survival in Macrophages. Microbiol Spectr 2022; 10:e0317222. [PMID: 36321903 PMCID: PMC9769850 DOI: 10.1128/spectrum.03172-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Autophagy is a natural defense mechanism that protects the host against pathogens. We previously demonstrated that mycobacterial infection upregulated tumor necrosis factor-like weak inducer of apoptosis (TWEAK) to promote autophagy and mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Fibroblast growth factor-inducible 14 (Fn14) is the receptor of TWEAK. But the role of Fn14 in mycobacterial infection remains elusive. Herein, we observed increased expression of Fn14 in peripheral blood mononuclear cells of active tuberculosis (TB) patients. Downregulation of cellular Fn14 enhanced mycobacterial survival in macrophages. Conversely, Fn14 overexpression inhibited mycobacterial growth, suggesting that Fn14 can inhibit mycobacterial infection. The in vitro results revealed that TWEAK-promoted mycobacterial phagosome maturation is Fn14-dependent. We demonstrated that TWEAK-Fn14 signaling promotes oxidative stress to enhance the expression of stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. Elevated calcium influx stimulated the activation of CaMCCK2 (calcium/calmodulin-dependent protein kinase kinase 2) and its downstream effector AMPK, thus inducing autophagy in early infection. Persistently TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. Genetic Fn14 deficiency or TWEAK blockers decreased oxidative stress-induced calcium influx, thus suppressing autophagy and cell death in mycobacteria-infected macrophages, and resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. Our results offer a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection. IMPORTANCE Tuberculosis remains a major cause of morbidity and mortality worldwide. We previously demonstrated a relationship between TWEAK and activation of the autophagic machinery, which promotes anti-mycobacterial immunity. The TWEAK-Fn14 axis is multi-functional and involved in the pathogenesis of many diseases, thus blockade of TWEAK-Fn14 axis has been considered as a potential therapeutic target. Here, we demonstrated that the TWEAK-Fn14 axis plays a novel role in anti-mycobacterial infection by regulating calcium-associated autophagy. Persistently, TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. TWEAK blocker or Fn14 deficiency could suppress oxidative stress and calcium-associated autophagy, resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. This study offers a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Po-Yu Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Kuo-Tung Tang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
| | - Hung-Jen Liu
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan, Republic of China
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Tsai-Ling Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan, Republic of China
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan, Republic of China
| |
Collapse
|
6
|
Tatlisu MA, Atici A, Ozcan FB, Kirac E, Baycan OF, Caliskan M. Can plasma TWEAK levels predict coronary slow flow in patients with chronic kidney disease? Am J Med Sci 2022; 364:595-600. [PMID: 35545142 DOI: 10.1016/j.amjms.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 07/23/2021] [Accepted: 05/02/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is one of the inflammatory mediators contributing to the atherosclerotic process. TWEAK has been studied in patients with chronic kidney disease (CKD), and it has demonstrated that its level declines as estimated glomerular filtration rate (eGFR) decreases. Most studies have found that the decreased TWEAK levels were seen in atherosclerosis and associated with plaque calcification. The objective of this prospective study was to clarify any relationship between coronary slow-flow (CSF) and TWEAK levels in patients with CKD under conservative treatment. METHODS This prospective study included 93 consecutive patients with CKD (mean creatinine level was 1.8±0.4 mg/dL) undergoing invasive coronary angiography (ICA) for any reason except for acute coronary syndromes from May 2019 to March 2020. A total of 93 patients were divided into two groups concerning having CSF (n=35) or no-CSF (n=58). RESULTS Patients with CSF had higher TWEAK levels than those without CSF (695.2± 225.2 vs. 465.8±157.6, p<0.001). As the number of coronary arteries with slow flow increased, TWEAK levels increased statistically significantly (r:0.635/ p<0.001). Receiver operating characteristic (ROC) analysis showed that TWEAK levels of 516 pg/mL could predict CSF in patients with CKD. CONCLUSIONS Our study has shown that plasma TWEAK levels were an independent predictor for CSF in patients with CKD. In addition, our study has found that elevated TWEAK levels may not reflect the healthy arteries as it was hypothesized in the past.
Collapse
Affiliation(s)
- Mustafa A Tatlisu
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, 34722, Turkey.
| | - Adem Atici
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, 34722, Turkey
| | - Fatma Betul Ozcan
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, 34722, Turkey
| | - Eray Kirac
- Department of Biochemistry, Istanbul Medeniyet University Faculty of Medicine, Istanbul, 34722, Turkey
| | - Omer Faruk Baycan
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, 34722, Turkey
| | - Mustafa Caliskan
- Department of Cardiology, Istanbul Medeniyet University Faculty of Medicine, Istanbul, 34722, Turkey
| |
Collapse
|
7
|
Tatlisu MA, Atici A, Ozcan FB, Çelik M, Kirac E, Baycan OF, Caliskan M. A Associação de TWEAK com Calcificação da Artéria Coronária em Pacientes com Doença Renal Crônica. Arq Bras Cardiol 2022; 119:436-445. [PMID: 35703664 PMCID: PMC9438529 DOI: 10.36660/abc.20210599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/09/2022] [Indexed: 11/29/2022] Open
Abstract
Fundamento O receptor fraco indutor de apoptose semelhante a fator de necrose tumoral solúvel (sTWEAK) é um membro da superfamília de TNF que tem um papel crítico na proliferação e inflamação na circulação arterial. Objetivos Este estudo prospectivo tem o objetivo de mostrar a relação entre os níveis de sTWEAK e calcificação da artéria coronária (CAC) em pacientes com doença renal crônica (DRC). Métodos Este estudo prospectivo incluiu 139 pacientes consecutivos que passaram por angiografia coronariana por tomografia computadorizada, por qualquer motivo, para síndromes coronarianas agudas, de agosto de 2020 a fevereiro de 2021. Um total de 12 pacientes foi excluído do estudo devido aos critérios de exclusão. Os pacientes foram divididos em dois grupos com base em terem um escore CAC menor que 400 (n=84) ou um escore de 400 ou mais (n=43). A significância foi presumida em p-valor bilateral <0,05. Resultados À medida que o escore CAC aumentou, os níveis de sTWEAK diminuíram de forma estatisticamente significativa e detectou-se uma relação forte entre níveis de sTWEAK e escore CAC (r: -0,779, p<0,001). A análise ROC revelou que o nível de corte ideal de sTWEAK para prever o escore CAC de 400 era 761 pg/mL com uma sensibilidade de 71% e especificidade de 73% (AUC: 0,78; IC 95%: 0,70-0,85; p <0,001). Conclusões Embora os estudos em larga escala tenham demonstrado uma correlação positiva entre os níveis de TFGe e sTWEAK, alguns estudos detectaram que o aumento nos níveis de sTWEAK estão associados a mortalidade e gravidade do sistema da artéria coronária em pacientes com DRC. Nossos resultados comprovam nossa hipótese de que os níveis de sTWEAK mostram calcificação coronária em vez de outros tipos de placas ateroscleróticas.
Collapse
|
8
|
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a member of the TNF superfamily that controls a multitude of cellular events including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK control of these events is via an expanding list of intracellular signalling pathways which include NF-κB, ERK/MAPK, Notch, EGFR and AP-1. Two receptors have been identified for TWEAK - Fn14, which targets the membrane bound form of TWEAK, and CD163, which scavenges the soluble form of TWEAK. TWEAK appears to elicit specific events based on the receptor to which it binds, tissue type in which it is expressed, specific extrinsic conditions, and the presence of other cytokines. TWEAK signalling is protective in healthy tissues, but in chronic inflammatory states become detrimental to the tissue. Consistent data show a role for the TWEAK/FN14/CD163 axis in metabolic disease, chronic autoimmune diseases, and acute ischaemic stroke. Low circulating concentrations of soluble TWEAK are predictive of poor cardiovascular outcomes in those with and without diabetes. This review details the current understanding of the TWEAK/Fn14/CD163 axis as one of the chief regulators of immune signalling and its cell-specific role in metabolic disease development and progression.
Collapse
Affiliation(s)
- Wiktoria Ratajczak
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Sarah D Atkinson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Catriona Kelly
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital Campus, C-TRIC Building Glenshane Road, Derry/Londonderry, Northern Ireland, UK.
| |
Collapse
|
9
|
Quiroga B, Ortiz A, Navarro-González JF, Santamaría R, de Sequera P, Díez J. From cardiorenal syndromes to cardionephrology: a reflection by nephrologists on renocardiac syndromes. Clin Kidney J 2022; 16:19-29. [PMID: 36726435 PMCID: PMC9871856 DOI: 10.1093/ckj/sfac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiorenal syndromes (CRS) are broadly defined as disorders of the heart and kidneys whereby acute or chronic dysfunction in one organ may induce acute or chronic dysfunction of the other. CRS are currently classified into five categories, mostly based on disease-initiating events and their acuity or chronicity. CRS types 3 and 4 (also called renocardiac syndromes) refer to acute and chronic kidney dysfunction resulting in acute and chronic heart dysfunction, respectively. The notion of renocardiac syndromes has broadened interest in kidney-heart interactions but uncertainty remains in the nephrological community's understanding of the clinical diversity, pathophysiological mechanisms and optimal management approaches of these syndromes. This triple challenge that renocardiac syndromes (and likely other cardiorenal syndromes) pose to the nephrologist can only be faced through a specific and demanding training plan to enhance his/her cardiological scientific knowledge and through an appropriate clinical environment to develop his/her cardiological clinical skills. The first must be the objective of the subspecialty of cardionephrology (or nephrocardiology) and the second must be the result of collaboration with cardiologists (and other specialists) in cardiorenal care units. This review will first consider various aspects of the challenges that renocardiac syndromes pose to nephrologists and, then, will discuss those aspects of cardionephrology and cardiorenal units that can facilitate an effective response to the challenges.
Collapse
Affiliation(s)
| | | | - Juan F Navarro-González
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology and Research Unit, University Hospital Nuestra Señora de Candelaria, and University Institute of Biomedical Technologies, University of La Laguna, Santa Cruz de Tenerife, Spain
| | - Rafael Santamaría
- RICORS2040, Carlos III Institute of Health, Madrid, Spain,Division of Nephrology, University Hospital Reina Sofia, Cordoba, Spain,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
| | - Patricia de Sequera
- Department of Nephrology, University Hospital Infanta Leonor, University Complutense of Madrid, Madrid, Spain
| | | |
Collapse
|
10
|
Iglesias-Rey R, Custodia A, Alonso-Alonso ML, López-Dequidt I, Rodríguez-Yáñez M, Pumar JM, Castillo J, Sobrino T, Campos F, da Silva-Candal A, Hervella P. The Smoking Paradox in Stroke Patients Under Reperfusion Treatment Is Associated With Endothelial Dysfunction. Front Neurol 2022; 13:841484. [PMID: 35401421 PMCID: PMC8987913 DOI: 10.3389/fneur.2022.841484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective This study aimed to explore the association between smoking habit and the serum levels of soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK), in relation with the functional outcome of patients with acute ischemic stroke undergoing reperfusion treatment. Methods Observational and retrospective study of a series of patients with acute ischemic stroke subjected to reperfusion treatments. Clinical, analytical, and neuroimaging parameters were analyzed. The main endpoint was the functional outcome at 3 months, measured by the modified Ranking Scale (mRS). Logistic regression models were used to analyze the association between smoking and sTWEAK levels with functional outcome and leukoaraiosis. Results The results showed that smoking habit was associated with a good functional outcome at 3 months in patients with stroke (OR: 3.52; 95% CI: 1.03–11.9; p = 0.044). However, this independent association was lost after adjusting by sTWEAK levels (OR 1.73; 95% CI: 0.86–13.28; p = 0.116). sTWEAK levels were significantly lower in smoker patients [4015.5 (973.66–7921.83) pg/ml vs. 5,628 (2,848–10,202) pg/ml, p < 0.0001], while sTWEAK levels were significantly higher in patients with poor functional outcomes at 3 months [10,284 (7,388–13.247) pg/ml vs. 3,405 (2,329–6,629) pg/ml, p < 0.0001]. Conclusion The decrease in sTWEAK levels was associated with a good functional outcome in smoker patients with stroke undergoing reperfusion therapy.
Collapse
Affiliation(s)
- Ramón Iglesias-Rey
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Ramón Iglesias-Rey
| | - Antía Custodia
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- NeuroAging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Maria Luz Alonso-Alonso
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Santiago de Compostela, Spain
| | - José M. Pumar
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Department of Neuroradiology, Hospital Clínico Universitario de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- NeuroAging Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Andres da Silva-Candal
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Neurovascular Diseases Laboratory, Neurology Service, University Hospital Complex of A Coruña, Biomedical Research Institute, A Coruña, Spain
- Andres da Silva-Candal
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- Clinical Neurosciences Research Laboratories, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
- *Correspondence: Pablo Hervella
| |
Collapse
|
11
|
Rastogi T, Girerd N, Lamiral Z, Bresso E, Bozec E, Boivin JM, Rossignol P, Zannad F, Ferreira JP. Impact of smoking on cardiovascular risk and premature ageing: Findings from the STANISLAS cohort. Atherosclerosis 2022; 346:1-9. [DOI: 10.1016/j.atherosclerosis.2022.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/20/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022]
|
12
|
Silva‐Candal A, Custodia A, López‐Dequidt I, Rodríguez‐Yáñez M, Alonso‐Alonso ML, Ávila‐Gómez P, Pumar JM, Castillo J, Sobrino T, Campos F, Iglesias‐Rey R, Hervella P. sTWEAK
is a leukoaraiosis biomarker associated with neurovascular angiopathy. Ann Clin Transl Neurol 2022; 9:171-180. [PMID: 35060359 PMCID: PMC8862435 DOI: 10.1002/acn3.51502] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Objective Leukoaraiosis (LA) refers to white matter lesions of undetermined etiology associated with the appearance and worsening of vascular pathologies. The aim is to confirm an increased frequency and intensity of LA in symptomatic patients with neurovascular pathology compared with asymptomatic subjects, and its association with circulating serum levels of soluble tumor necrosis factor‐like weak inducer of apoptosis (sTWEAK). Methods An observational study was conducted in which two groups of patients were compared. Group I (N = 242) comprised of asymptomatic subjects with arterial hypertension and/or diabetes or with a history of transient ischemic attacks, and Group II (N = 382) comprised patients with lacunar stroke or deep hemispheric intracerebral hemorrhage (ICH) of hypertensive origin. Serum levels of sTWEAK were analyzed and correlated with prevalence and intensity of LA according to the Fazekas scale. Results The prevalence of LA was higher in symptomatic (85.1%) versus asymptomatic patients (62.0%). Logistic regression model showed a significant relation of LA with neurovascular pathologies (OR: 2.69, IC 95%: 1.10–6.59, p = 0.003). When stratified according to the Fazekas scale, LA of grade II (OR: 3.53, IC 95%: 1.10–6.59, p = 0.003) and specially grade III (OR: 4.66, 95% CI: 1.09–19.84, p = 0.037) showed correlation with neurovascular pathologies. Increased sTWEAK levels were found in the symptomatic group in all LA grades (p < 0.0001), and associated with 5.06 times more risk of presenting clinical symptoms (OR: 5.06, 95% CI: 2.66–9.75, p < 0.0001). Interpretation LA showed a higher prevalence in patients with symptomatic lacunar stroke or deep hemispheric ICH. There is an association between sTWEAK levels and LA degree.
Collapse
Affiliation(s)
- Andrés Silva‐Candal
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
- Neurovascular Diseases Laboratory Neurology Service University Hospital Complex of A Coruña Biomedical Research Institute (INIBIC) A Coruña Spain
| | - Antia Custodia
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Iria López‐Dequidt
- Stroke Unit Department of Neurology Hospital Clínico Universitario Santiago de Compostela Spain
| | - Manuel Rodríguez‐Yáñez
- Stroke Unit Department of Neurology Hospital Clínico Universitario Santiago de Compostela Spain
| | - Maria Luz Alonso‐Alonso
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Paulo Ávila‐Gómez
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - José M. Pumar
- Department of Neuroradiology Hospital Clínico Universitario Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Ramón Iglesias‐Rey
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratories (LINC) Health Research Institute of Santiago de Compostela (IDIS) Santiago de Compostela Spain
| |
Collapse
|
13
|
Pello Lázaro AM, Blanco-Colio LM, Franco Peláez JA, Tuñón J. Anti-Inflammatory Drugs in Patients with Ischemic Heart Disease. J Clin Med 2021; 10:2835. [PMID: 34198968 PMCID: PMC8268779 DOI: 10.3390/jcm10132835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation has long been known to play a role in atherogenesis and plaque complication, as well as in some drugs used in therapy for atherosclerotic disease, such as statins, acetylsalicylic acid, and modulators of the renin-angiotensin system, which also have anti-inflammatory effects. Furthermore, inflammatory biomarkers have been demonstrated to predict the incidence of cardiovascular events. In spite of this, and with the exception of acetylsalicylic acid, non-steroidal anti-inflammatory drugs are unable to decrease the incidence of cardiovascular events and may even be harmful to the cardiovascular system. In recent years, other anti-inflammatory drugs, such as canakinumab and colchicine, have shown an ability to reduce the incidence of cardiovascular events in secondary prevention. Colchicine could be a potential candidate for use in clinical practice given its safety and low price, although the results of temporary studies require confirmation in large randomized clinical trials. In this paper, we discuss the evidence linking inflammation with atherosclerosis and review the results from various clinical trials performed with anti-inflammatory drugs. We also discuss the potential use of these drugs in routine clinical settings.
Collapse
Affiliation(s)
- Ana María Pello Lázaro
- Department of Cardiology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.M.P.L.); (J.A.F.P.)
- Department of Medicine, Autónoma University, 28029 Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- CIBERCV, 28029 Madrid, Spain
| | - Juan Antonio Franco Peláez
- Department of Cardiology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.M.P.L.); (J.A.F.P.)
- Department of Medicine, Autónoma University, 28029 Madrid, Spain
| | - José Tuñón
- Department of Cardiology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain; (A.M.P.L.); (J.A.F.P.)
- Department of Medicine, Autónoma University, 28029 Madrid, Spain
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain;
- CIBERCV, 28029 Madrid, Spain
| |
Collapse
|
14
|
Costa TC, Mendes TA, Fontes MM, Lopes MM, Du M, Serão NV, Sanglard LM, Bertolini F, Rothschild MF, Silva FF, Gionbelli MP, Duarte M. Transcriptome changes in newborn goats’ skeletal muscle as a result of maternal feed restriction at different stages of gestation. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Hervella P, Pérez-Mato M, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Sobrino T, Campos F, Castillo J, da Silva-Candal A, Iglesias-Rey R. sTWEAK as Predictor of Stroke Recurrence in Ischemic Stroke Patients Treated With Reperfusion Therapies. Front Neurol 2021; 12:652867. [PMID: 34046003 PMCID: PMC8144448 DOI: 10.3389/fneur.2021.652867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/09/2021] [Indexed: 11/20/2022] Open
Abstract
Aim: The purpose of this study was to investigate clinical and neuroimaging factors associated with stroke recurrence in reperfused ischemic stroke patients, as well as the influence of specific biomarkers of inflammation and endothelial dysfunction. Methods: We conducted a retrospective analysis on a prospectively registered database. Of the 875 patients eligible for this study (53.9% males; mean age 69.6 ± 11.8 years vs. 46.1% females; mean age 74.9 ± 12.6 years), 710 underwent systemic thrombolysis, 87 thrombectomy and in 78, systemic or intra-arterial thrombolysis together with thrombectomy was applied. Plasma levels of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) were analyzed as markers of inflammation, and soluble tumor necrosis factor-like inducer of apoptosis (sTWEAK) as an endothelial dysfunction marker. The main outcome variables of the study were the presence and severity of leukoaraiosis (LA) and stroke recurrence. Results: The average follow-up time of the study was 25 ± 13 months, during which 127 patients (14.5%) showed stroke recurrence. The presence and severity of LA was more severe in the second stroke episode (Grade III of the Fazekas 28.3 vs. 52.8%; p < 0.0001). IL-6 levels at the first admission and before reperfusion treatment in patients with and without subsequent recurrence were similar (9.9 ± 10.4 vs. 9.1 ± 7.0 pg/mL, p = 0.439), but different for TNFα (14.7 ± 5.6 vs. 15.9 ± 5.7 pg/mL, p = 0.031) and sTWEAK (5,970.8 ± 4,330.4 vs. 8,660.7 ± 5,119.0 pg/mL, p < 0.0001). sTWEAK values ≥7,000 pg/mL determined in the first stroke were independently associated to recurrence (OR 2.79; CI 95%: 1.87–4.16, p < 0.0001). Conclusions: The severity and the progression of LA are the main neuroimaging factors associated with stroke recurrence. Likewise, sTWEAK levels were independently associated to stroke recurrence, so further studies are necessary to investigate sTWEAK as a therapeutic target.
Collapse
Affiliation(s)
- Pablo Hervella
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, IdiPAZ, UAM, Madrid, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - José M Pumar
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
16
|
Ministrini S, Carbone F, Montecucco F. Updating concepts on atherosclerotic inflammation: From pathophysiology to treatment. Eur J Clin Invest 2021; 51:e13467. [PMID: 33259635 DOI: 10.1111/eci.13467] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is recognized as a systemic low-grade inflammatory disease. Furthermore, the dysregulation of the inflammatory response and its timely resolution is a pivotal process in determining the clinical manifestations of cardiac and cerebral acute ischaemia following atherothrombosis. METHODS This narrative review is based on the material searched on PubMed up to October 2020. The search terms we used were as follows: "atherosclerosis, inflammation, acute myocardial infarction and ischemic stroke" in combination with "biomarker, inflammatory cells and molecules, treatment." RESULTS The expected goal of addressing inflammation for the treatment of atherosclerosis and its acute ischaemic complications is reducing mortality and morbidity related to atherosclerotic cardiovascular disease, which are currently the first cause of death and disability worldwide. In this narrative review, we summarize the evidence about the main cellular and molecular mechanisms of inflammation in atherogenesis, atherothrombosis and acute ischaemic complications, with particular focus on the potential molecular targets for novel pharmacological treatments. CONCLUSION Although a large amount of evidence from animal models of atherothrombotic disease, and promising results of clinical trials, anti-inflammatory treatments against atherosclerosis are not yet recommended. A deepest understanding of pathophysiological mechanisms underlying the mechanisms driving resolution of the acute inflammation will probably allow to identify the optimal molecular target.
Collapse
Affiliation(s)
- Stefano Ministrini
- Department of Medicine, Internal Medicine, Università degli Studi di Perugia, Perugia, Italy.,Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy
| | - Federico Carbone
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, First Clinic of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa - Italian Cardiovascular Network, Genoa, Italy
| |
Collapse
|
17
|
Wang Y, Meagher RB, Ambati S, Cheng H, Ma P, Phillips BG. Patients with Obstructive Sleep Apnea Have Altered Levels of Four Cytokines Associated with Cardiovascular and Kidney Disease, but Near Normal Levels with Airways Therapy. Nat Sci Sleep 2021; 13:457-466. [PMID: 33790678 PMCID: PMC8006954 DOI: 10.2147/nss.s282869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Obstructive sleep apnea (OSA) results in chronic intermittent hypoxia leading to systemic inflammation, increases in pro-inflammatory cytokines TNF-Alpha and IL-6, and increased risk for a number of life threatening medical disorders such as cardiovascular and kidney disease. METHODS A BioPlex Array was used to examined the serum levels of four cytokines also expressed in endothelial cells and/or macrophages and associated with cardiovascular and kidney disease risk. RESULTS Relative to untreated OSA patients, airways treated OSA patients had a 5.4-fold higher median level of MMP2 (p = 9.1x10-11), a 1.4-fold higher level of TWEAK (p = 1.8x10-7), a 1.7-fold higher level of CD163 (p = 1.4x10-6), but a 2.0-fold lower level of MMP3 (p = 7.9x10-7). Airway treatment resulted in levels more similar to or indistinguishable from control subjects. Both t-SNE or UMAP analysis of the global structure of these multi-dimensional data revealed two data clusters, one populated primarily with data for controls and most airways treated OSA patients and a second populated primarily with data for OSA patients. DISCUSSION We discuss a concept in which the aberrant levels of these cytokines in untreated OSA patients may represent a chronic response after years of experiencing intermittent nightly hypoxia, which attenuated the acute response to hypoxia. A balanced therapeutic correction of the aberrant levels of these cytokines may limit the progression of CVD and kidney disease in OSA patients.
Collapse
Affiliation(s)
- Ye Wang
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Richard B Meagher
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Suresh Ambati
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Huimin Cheng
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Ping Ma
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Bradley G Phillips
- Clinical and Administrative Pharmacy, Clinical and Translational Research Unit, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
18
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
19
|
Melin EO, Dereke J, Hillman M. Low levels of soluble TWEAK, indicating on-going inflammation, were associated with depression in type 1 diabetes: a cross-sectional study. BMC Psychiatry 2020; 20:574. [PMID: 33261587 PMCID: PMC7709277 DOI: 10.1186/s12888-020-02977-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Low levels of the soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK) and depression are linked to cardiovascular disease. Galectin-3, inadequate glycemic control and low high-density lipoprotein (HDL)-cholesterol levels were previously linked to depression in these patients with type 1 diabetes mellitus (T1DM). The main aim was to explore whether sTWEAK was associated with depression. A secondary aim was to explore diabetes related variables associated with low sTWEAK. METHODS Cross-sectional design. T1DM patients (n = 283, men 56%, age18-59 years) were consecutively recruited from one specialist diabetes clinic. Depression was defined as Hospital Anxiety and Depression Scale-Depression sub scale ≥8 points. Blood samples, anthropometrics and blood pressure were collected, supplemented with data from electronic health records. Enzyme linked immunosorbent assays were used to measure sTWEAK and galectin-3. Low sTWEAK was defined as < 7.2 ng/ml and high galectin-3 as ≥2.6 ng/ml. Multiple logistic regression analyses were performed, calibrated and validated for goodness of fit. We adjusted for age, sex, diabetes duration, galectin-3, metabolic variables, serum-creatinine, smoking, physical inactivity, medication, and cardiovascular complications. RESULTS For 29 depressed versus 254 non-depressed patients the prevalence rates were for low sTWEAK: 93 and 68% (p = 0.003) and for high galectin-3: 34 and 13% (p = 0.005) respectively. HDL-cholesterol levels were lower for the depressed (p = 0.015). Patients with low sTWEAK versus high sTWEAK had lower usage of continuous subcutaneous insulin infusion (CSII) (6% versus 17%, p = 0.005). Low sTWEAK (adjusted odds ratio (AOR) 9.0, p = 0.006), high galectin-3 (AOR 6.3, p = 0.001), HDL-cholesterol (per mmol/l) (AOR 0.1, p = 0.006), use of antidepressants (AOR 8.4, p < 0.001), and age (per year) (AOR 1.05, p = 0.027) were associated with depression. CSII (AOR 0.3, p = 0.003) and depression (AOR 7.1, p = 0.009) were associated with low sTWEAK. CONCLUSIONS Lower levels of sTWEAK and HDL-cholesterol and higher levels of galectin-3 were independently associated with depression in T1DM. These factors might all contribute to the increased risk for cardiovascular disease and mortality previously demonstrated in patients with depression. CSII (inversely) and depression were independently associated with low sTWEAK levels.
Collapse
Affiliation(s)
- Eva O Melin
- Lund University, Faculty of Medicine, Clinical Sciences, Diabetes Research Laboratory, Lund, Sweden.
- Department of Research and Development, Region Kronoberg, Box 1223, SE-351 12, Växjö, Sweden.
| | - Jonatan Dereke
- Lund University, Faculty of Medicine, Clinical Sciences, Diabetes Research Laboratory, Lund, Sweden
| | - Magnus Hillman
- Lund University, Faculty of Medicine, Clinical Sciences, Diabetes Research Laboratory, Lund, Sweden
| |
Collapse
|
20
|
da Silva-Candal A, Pérez-Mato M, Rodríguez-Yáñez M, López-Dequidt I, Pumar JM, Ávila-Gómez P, Sobrino T, Campos F, Castillo J, Hervella P, Iglesias-Rey R. The presence of leukoaraiosis enhances the association between sTWEAK and hemorrhagic transformation. Ann Clin Transl Neurol 2020; 7:2103-2114. [PMID: 33022893 PMCID: PMC7664267 DOI: 10.1002/acn3.51171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Objective To investigate whether elevated serum levels of sTWEAK (soluble tumor necrosis factor‐like inducer of apoptosis) might be involved in a higher frequency of symptomatic hemorrhagic transformation (HT) through the presence of leukoaraiosis (LA) in patients with acute ischemic stroke (IS) undergoing reperfusion therapies. Methods This is a retrospective observational study. The primary endpoint was to study the sTWEAK‐LA‐HT relationship by comparing results with biomarkers associated to HT and evaluating functional outcome at 3‐months. Clinical factors, neuroimaging variables and biomarkers associated to inflammation, endothelial/atrial dysfunction or blood‐brain barrier damage were also investigated. Results We enrolled 875 patients (mean age 72.3 ± 12.2 years; 46.0% women); 710 individuals underwent intravenous thrombolysis, 87 endovascular therapy and 78 both. HT incidence was 32%; LA presence was 75.4%. Patients with poor functional outcome at 3‐months showed higher sTWEAK levels at admission (9844.2 [7460.4–12,542.0] vs. 2717.3 [1489.7–5852.3] pg/mL, P < 0.0001). By means of logistic regression models, PDGF‐CC and sTWEAK were associated with mechanisms linked simultaneously to HT and LA. Serum sTWEAK levels at admission ≥6700 pg/mL were associated with an odds ratio of 13 for poor outcome at 3‐months (OR: 13.6; CI 95%: 8.2–22.6, P < 0.0001). Conclusions Higher sTWEAK levels are independently associated with HT and poor functional outcome in patients with IS undergoing reperfusion therapies through the presence of LA. sTWEAK could become a therapeutic target to reduce HT incidence in patients with IS.
Collapse
Affiliation(s)
- Andrés da Silva-Candal
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - María Pérez-Mato
- Neuroscience and Cerebrovascular Research Laboratory, La Paz University Hospital, IdiPAZ, UAM, Paseo de la Castellana 261, Madrid, 28046, Spain
| | - Manuel Rodríguez-Yáñez
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Iria López-Dequidt
- Stroke Unit, Department of Neurology, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - José M Pumar
- Department of Neuroradiology, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Paulo Ávila-Gómez
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Francisco Campos
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| |
Collapse
|
21
|
Gutiérrez-Muñoz C, Méndez-Barbero N, Svendsen P, Sastre C, Fernández-Laso V, Quesada P, Egido J, Escolá-Gil JC, Martín-Ventura JL, Moestrup SK, Blanco-Colio LM. CD163 deficiency increases foam cell formation and plaque progression in atherosclerotic mice. FASEB J 2020; 34:14960-14976. [PMID: 32924185 DOI: 10.1096/fj.202000177r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/08/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the vessel wall. Macrophages depend on their polarization to exert either pro-inflammatory or anti-inflammatory effects. Macrophages of the anti-inflammatory phenotype express high levels of CD163, a scavenger receptor for the hemoglobin-haptoglobin complex. CD163 can also bind to the pro-inflammatory cytokine TWEAK. Using ApoE-deficient or ApoE/CD163 double-deficient mice we aim to investigate the involvement of CD163 in atherosclerosis development and its capacity to neutralize the TWEAK actions. ApoE/CD163 double-deficient mice displayed a more unstable plaque phenotype characterized by an increased lipid and macrophage content, plaque size, and pro-inflammatory cytokine expression. In vitro experiments demonstrated that the absence of CD163 in M2-type macrophages-induced foam cell formation through upregulation of CD36 expression. Moreover, exogenous TWEAK administration increased atherosclerotic lesion size, lipids, and macrophages content in ApoE-/- /CD163-/- compared with ApoE-/- /CD163+/+ mice. Treatment with recombinant CD163 was able to neutralize the proatherogenic effects of TWEAK in ApoE/CD163 double-deficient mice. Recombinant CD163 abolished the pro-inflammatory actions of TWEAK on vascular smooth muscle cells, decreasing NF-kB activation, cytokines and metalloproteinases expression, and macrophages migration. In conclusion, CD163-expressing macrophages serve as a protective mechanism to prevent the deleterious effects of TWEAK on atherosclerotic plaque development and progression.
Collapse
Affiliation(s)
- Carmen Gutiérrez-Muñoz
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Nerea Méndez-Barbero
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Pia Svendsen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Cristina Sastre
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Valvanera Fernández-Laso
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Patricia Quesada
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain
| | - Joan C Escolá-Gil
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas (CIBERDEM), Madrid, Spain.,Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Barcelona, Spain
| | - Jose L Martín-Ventura
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Soren K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, Oddense, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Luis M Blanco-Colio
- Vascular Research Laboratory, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
22
|
Epigenetic Modulation by Apabetalone Counters Cytokine-Driven Acute Phase Response In Vitro, in Mice and in Patients with Cardiovascular Disease. Cardiovasc Ther 2020; 2020:9397109. [PMID: 32821285 PMCID: PMC7416228 DOI: 10.1155/2020/9397109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic systemic inflammation contributes to cardiovascular disease (CVD) and correlates with the abundance of acute phase response (APR) proteins in the liver and plasma. Bromodomain and extraterminal (BET) proteins are epigenetic readers that regulate inflammatory gene transcription. We show that BET inhibition by the small molecule apabetalone reduces APR gene and protein expression in human hepatocytes, mouse models, and plasma from CVD patients. Steady-state expression of serum amyloid P, plasminogen activator inhibitor 1, and ceruloplasmin, APR proteins linked to CVD risk, is reduced by apabetalone in cultured hepatocytes and in humanized mouse liver. In cytokine-stimulated hepatocytes, apabetalone reduces the expression of C-reactive protein (CRP), alpha-2-macroglobulin, and serum amyloid P. The latter two are also reduced by apabetalone in the liver of endotoxemic mice. BET knockdown in vitro also counters cytokine-mediated induction of the CRP gene. Mechanistically, apabetalone reduces the cytokine-driven increase in BRD4 BET occupancy at the CRP promoter, confirming that transcription of CRP is BET-dependent. In patients with stable coronary disease, plasma APR proteins CRP, IL-1 receptor antagonist, and fibrinogen γ decrease after apabetalone treatment versus placebo, resulting in a predicted downregulation of the APR pathway and cytokine targets. We conclude that CRP and components of the APR pathway are regulated by BET proteins and that apabetalone counters chronic cytokine signaling in patients.
Collapse
|
23
|
Gómez-Martin JM, Aracil E, Insenser M, de la Peña G, Lasunción MA, Galindo J, Escobar-Morreale HF, Balsa JA, Botella-Carretero JI. Changes in Soluble TWEAK Concentrations, but Not Those in Amyloid-β(1-40), Are Associated with a Decrease in Carotid Intima-Media Thickness after Bariatric Surgery in Obese Women. Obes Facts 2020; 13:321-330. [PMID: 32388504 PMCID: PMC7445568 DOI: 10.1159/000507087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIM Soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and amyloid-β(1-40) (Aβ40) emerged as markers of cardiovascular risk because of their actions in the endothelium and their role in atherosclerotic progression. The aim of this study was to analyze the association of these two factors with the decrease in carotid intima-media thickness (cIMT) after bariatric surgery in obese women. METHODS We studied 60 severely obese women, of whom 20 were submitted to laparoscopic Roux-en-Y gastric bypass (RYGB), 20 to sleeve gastrectomy (SG), and 20 to lifestyle modification therapy. Circulating sTWEAK, Aβ40, high-sensitivity C-reactive protein, plasminogen activator inhibitor type 1, insulin resistance (HOMA-IR), and cIMT were measured at baseline and after 1 year of follow-up. RESULTS sTWEAK increased similarly after both surgical procedures, whereas the increase observed after lifestyle intervention did not reach statistical significance. Aβ40 showed no differences between groups of women, nor did it change during follow-up. The decrease in cIMT at 12 months correlated with the decrease in body mass index (BMI) (r = 0.45; p < 0.001) and fasting insulin (r = 0.30; p = 0.038), and also with the increase in sTWEAK (r = -0.43; p = 0.002). Multivariate linear regression showed that only the changes in BMI (β = 0.389; p = 0.005) and sTWEAK (β = -0.358; p = 0.009) were associated with the decrease in cIMT (R2 = 0.313; F = 9.348; p < 0.001). CONCLUSIONS One year after bariatric surgery, RYGB and SG induced a similar increase in circulating sTWEAK that occurred in parallel to the decrease observed in cIMT.
Collapse
Affiliation(s)
- Jesús M Gómez-Martin
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Enrique Aracil
- Department of Vascular Surgery, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - María Insenser
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Gema de la Peña
- Department of Biochemistry Research, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Miguel A Lasunción
- Department of Biochemistry Research, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - Julio Galindo
- Department of General and Gastrointestinal Surgery, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Héctor F Escobar-Morreale
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - José A Balsa
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain
| | - José I Botella-Carretero
- Department of Endocrinology and Nutrition, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain,
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Madrid, Spain,
| |
Collapse
|
24
|
Stienen S, Ferreira JP, Kobayashi M, Preud'homme G, Dobre D, Machu JL, Duarte K, Bresso E, Devignes MD, López N, Girerd N, Aakhus S, Ambrosio G, Brunner-La Rocca HP, Fontes-Carvalho R, Fraser AG, van Heerebeek L, Heymans S, de Keulenaer G, Marino P, McDonald K, Mebazaa A, Papp Z, Raddino R, Tschöpe C, Paulus WJ, Zannad F, Rossignol P. Enhanced clinical phenotyping by mechanistic bioprofiling in heart failure with preserved ejection fraction: insights from the MEDIA-DHF study (The Metabolic Road to Diastolic Heart Failure). Biomarkers 2020; 25:201-211. [PMID: 32063068 DOI: 10.1080/1354750x.2020.1727015] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome for which clear evidence of effective therapies is lacking. Understanding which factors determine this heterogeneity may be helped by better phenotyping. An unsupervised statistical approach applied to a large set of biomarkers may identify distinct HFpEF phenotypes.Methods: Relevant proteomic biomarkers were analyzed in 392 HFpEF patients included in Metabolic Road to Diastolic HF (MEDIA-DHF). We performed an unsupervised cluster analysis to define distinct phenotypes. Cluster characteristics were explored with logistic regression. The association between clusters and 1-year cardiovascular (CV) death and/or CV hospitalization was studied using Cox regression.Results: Based on 415 biomarkers, we identified 2 distinct clusters. Clinical variables associated with cluster 2 were diabetes, impaired renal function, loop diuretics and/or betablockers. In addition, 17 biomarkers were higher expressed in cluster 2 vs. 1. Patients in cluster 2 vs. those in 1 experienced higher rates of CV death/CV hospitalization (adj. HR 1.93, 95% CI 1.12-3.32, p = 0.017). Complex-network analyses linked these biomarkers to immune system activation, signal transduction cascades, cell interactions and metabolism.Conclusion: Unsupervised machine-learning algorithms applied to a wide range of biomarkers identified 2 HFpEF clusters with different CV phenotypes and outcomes. The identified pathways may provide a basis for future research.Clinical significanceMore insight is obtained in the mechanisms related to poor outcome in HFpEF patients since it was demonstrated that biomarkers associated with the high-risk cluster were related to the immune system, signal transduction cascades, cell interactions and metabolismBiomarkers (and pathways) identified in this study may help select high-risk HFpEF patients which could be helpful for the inclusion/exclusion of patients in future trials.Our findings may be the basis of investigating therapies specifically targeting these pathways and the potential use of corresponding markers potentially identifying patients with distinct mechanistic bioprofiles most likely to respond to the selected mechanistically targeted therapies.
Collapse
Affiliation(s)
- Susan Stienen
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - João Pedro Ferreira
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France.,Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Masatake Kobayashi
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Gregoire Preud'homme
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Daniela Dobre
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France.,Clinical research and Investigation Unit, Psychotherapeutic Center of Nancy, Laxou, France
| | - Jean-Loup Machu
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Kevin Duarte
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Emmanuel Bresso
- Equipe CAPSID, LORIA (CNRS, Inria NGE, Université de Lorraine), Vandoeuvre-lès-Nancy, France
| | | | - Natalia López
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Nicolas Girerd
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Svend Aakhus
- Department of Cardiology and Institute for Surgical Research, Oslo University Hospital, Oslo, Norway.,ISB, Norwegian University of Science and Technology, Trondheim, Norway
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, Perugia, Italy
| | | | - Ricardo Fontes-Carvalho
- Department of Surgery and Physiology, Cardiovascular Research Unit (UnIC), Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alan G Fraser
- Wales Heart Research Institute, Cardiff University, Cardiff, UK
| | - Loek van Heerebeek
- Department of Cardiology, Onze Lieve Vrouwe Gasthuis, Amsterdam, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, Belgium.,William Harvey Research Institute, Barts Heart Centre, Queen Mary University of London, London, UK
| | - Gilles de Keulenaer
- Laboratory of Physiopharmacology, Antwerp University, and ZNA Hartcentrum, Antwerp, Belgium
| | - Paolo Marino
- Clinical Cardiology, Università del Piemonte Orientale, Department of Translational Medicine, Azienda Ospedaliero Universitaria "Maggiore della Carità", Novara, Italy
| | - Kenneth McDonald
- School of Medicine and Medical Sciences, St Michael's Hospital Dun Laoghaire Co. Dublin, Dublin, Ireland
| | - Alexandre Mebazaa
- Department of Anaesthesiology and Critical Care Medicine, Saint Louis and Lariboisière University Hospitals and INSERM UMR-S 942, Paris, France
| | - Zoltàn Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Riccardo Raddino
- Department of Cardiology, Spedali Civili di Brescia, Brescia, Italy
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow-Klinikum, C, Harite Universitaetsmedizin Berlin, Berlin Institute of Health - Center for Regenerative Therapies (BIH-BCRT), and the German Center for Cardiovascular Research (DZHK; Berlin partner site), Berlin, Germany
| | - Walter J Paulus
- Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Faiez Zannad
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| | - Patrick Rossignol
- CHRU de Nancy, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), INSERM U1116, Centre d'Investigation Clinique et Plurithématique 1433, INSERM, Université de Lorraine, Nancy, France
| |
Collapse
|
25
|
Tumor Necrosis Factor-Like Weak Inducer of Apoptosis (TWEAK)/Fibroblast Growth Factor-Inducible 14 (Fn14) Axis in Cardiovascular Diseases: Progress and Challenges. Cells 2020; 9:cells9020405. [PMID: 32053869 PMCID: PMC7072601 DOI: 10.3390/cells9020405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality in Western countries. CVD include several pathologies, such as coronary artery disease, stroke, peripheral artery disease, and aortic aneurysm, among others. All of them are characterized by a pathological vascular remodeling in which inflammation plays a key role. Interaction between different members of the tumor necrosis factor superfamily and their cognate receptors induce several biological actions that may participate in CVD. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its functional receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed during pathological cardiovascular remodeling. The TWEAK/Fn14 axis controls a variety of cellular functions, such as proliferation, differentiation, and apoptosis, and has several biological functions, such as inflammation and fibrosis that are linked to CVD. It has been demonstrated that persistent TWEAK/Fn14 activation is involved in both vessel and heart remodeling associated with acute and chronic CVD. In this review, we summarized the role of the TWEAK/Fn14 axis during pathological cardiovascular remodeling, highlighting the cellular components and the signaling pathways that are involved in these processes.
Collapse
|
26
|
Mendez-Barbero N, Yuste-Montalvo A, Nuñez-Borque E, Jensen BM, Gutiérrez-Muñoz C, Tome-Amat J, Garrido-Arandia M, Díaz-Perales A, Ballesteros-Martinez C, Laguna JJ, Beitia J, Poulsen LK, Cuesta-Herranz J, Blanco-Colio LM, Esteban V. The TNF-like weak inducer of the apoptosis/fibroblast growth factor–inducible molecule 14 axis mediates histamine and platelet-activating factor–induced subcutaneous vascular leakage and anaphylactic shock. J Allergy Clin Immunol 2020; 145:583-596.e6. [DOI: 10.1016/j.jaci.2019.09.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
|
27
|
Méndez-Barbero N, Gutierrez-Muñoz C, Madrigal-Matute J, Mínguez P, Egido J, Michel JB, Martín-Ventura JL, Esteban V, Blanco-Colio LM. A major role of TWEAK/Fn14 axis as a therapeutic target for post-angioplasty restenosis. EBioMedicine 2019; 46:274-289. [PMID: 31395500 PMCID: PMC6712059 DOI: 10.1016/j.ebiom.2019.07.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 11/04/2022] Open
Abstract
Background Tumor necrosis factor-like weak inducer of apoptosis (Tnfsf12; TWEAK) and its receptor Fibroblast growth factor-inducible 14 (Tnfrsf12a; Fn14) participate in the inflammatory response associated with vascular remodeling. However, the functional effect of TWEAK on vascular smooth muscle cells (VSMCs) is not completely elucidated. Methods Next generation sequencing-based methods were performed to identify genes and pathways regulated by TWEAK in VSMCs. Flow-citometry, wound-healing scratch experiments and transwell migration assays were used to analyze VSMCs proliferation and migration. Mouse wire injury model was done to evaluate the role of TWEAK/Fn14 during neointimal hyperplasia. Findings TWEAK up-regulated 1611 and down-regulated 1091 genes in VSMCs. Using a gene-set enrichment method, we found a functional module involved in cell proliferation defined as the minimal network connecting top TWEAK up-regulated genes. In vitro experiments in wild-type or Tnfrsf12a deficient VSMCs demonstrated that TWEAK increased cell proliferation, VSMCs motility and migration. Mechanistically, TWEAK increased cyclins (cyclinD1), cyclin-dependent kinases (CDK4, CDK6) and decreased cyclin-dependent kinase inhibitors (p15lNK4B) mRNA and protein expression. Downregulation of p15INK4B induced by TWEAK was mediated by mitogen-activated protein kinase ERK and Akt activation. Tnfrsf12a or Tnfsf12 genetic depletion and pharmacological intervention with TWEAK blocking antibody reduced neointimal formation, decreasing cell proliferation, cyclin D1 and CDK4/6 expression, and increasing p15INK4B expression compared with wild type or IgG-treated mice in wire-injured femoral arteries. Finally, immunohistochemistry in human coronary arteries with stenosis or in-stent restenosis revealed high levels of Fn14, TWEAK and PCNA in VSMCs enriched areas of the neointima as compared with healthy coronary arteries. Interpretation Our data define a major role of TWEAK/Fn14 in the control of VSMCs proliferation and migration during neointimal hyperplasia after wire injury in mice, and identify TWEAK/Fn14 as a potential target for treating in-stent restenosis. Fund ISCiii-FEDER, CIBERCV and CIBERDEM.
Collapse
Affiliation(s)
| | | | - Julio Madrigal-Matute
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, USA
| | - Pablo Mínguez
- Department of Genetics and Genomics, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Renal and Diabetes Research Lab, CIBERDEM, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Jean-Baptiste Michel
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), Paris, France
| | | | - Vanesa Esteban
- Department of Immunology and ARADyAL, IIS-Fundación Jiménez Díaz, Madrid, Spain.
| | | |
Collapse
|
28
|
Xiao G, Lyu M, Wang Y, He S, Liu X, Ni J, Li L, Fan G, Han J, Gao X, Wang X, Zhu Y. Ginkgo Flavonol Glycosides or Ginkgolides Tend to Differentially Protect Myocardial or Cerebral Ischemia-Reperfusion Injury via Regulation of TWEAK-Fn14 Signaling in Heart and Brain. Front Pharmacol 2019; 10:735. [PMID: 31333457 PMCID: PMC6624656 DOI: 10.3389/fphar.2019.00735] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Shuxuening injection (SXNI), one of the pharmaceutical preparations of Ginkgo biloba extract, has significant effects on both ischemic stroke and heart diseases from bench to bedside. Its major active ingredients are ginkgo flavonol glycosides (GFGs) and ginkgolides (GGs). We have previously reported that SXNI as a whole protected ischemic brain and heart, but the active ingredients and their contribution to the therapeutic effects remain unclear. Therefore, we combined experimental and network analysis approach to further explore the specific effects and underlying mechanisms of GFGs and GGs of SXNI on ischemia–reperfusion injury in mouse brain and heart. In the myocardial ischemia–reperfusion injury (MIRI) model, pretreatment with GFGs at 2.5 ml/kg was superior to the same dose of GGs in improving cardiac function and coronary blood flow and reducing the levels of lactate dehydrogenase and aspartate aminotransferase in serum, with an effect similar to that achieved by SXNI. In contrast, pretreatment with GGs at 2.5 ml/kg reduced cerebral infarction area and cerebral edema similarly to that of SXNI but more significantly compared with GFGs in cerebral ischemia–reperfusion injury (CIRI) model. Network pharmacology analysis of GFGs and GGs revealed that tumor necrosis factor-related weak inducer of apoptosis (TWEAK)–fibroblast growth factor-inducible 14 (Fn14) signaling pathway as an important common mechanism but with differential targets in MIRI and CIRI. In addition, immunohistochemistry and enzyme linked immunosorbent assay (ELISA) assays were performed to evaluate the regulatory roles of GFGs and GGs on the common TWEAK–Fn14 signaling pathway to protect the heart and brain. Experimental results confirmed that TWEAK ligand and Fn14 receptor were downregulated by GFGs to mitigate MIRI in the heart while upregulated by GGs to improve CIRI in the brain. In conclusion, our study showed that GFGs and GGs of SXNI tend to differentially protect brain and heart from ischemia–reperfusion injuries at least in part by regulating a common TWEAK–Fn14 signaling pathway.
Collapse
Affiliation(s)
- Guangxu Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Ming Lyu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.,Institute of Chinese Materia Medica, China Academy of Chinese Medicial Sciences, Beijing, China
| | - Yule Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Shuang He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Xinyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Jingyu Ni
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lan Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jihong Han
- College of Life Sciences, Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China; College of Biomedical Engineering, Hefei University of Technology, Hefei, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| |
Collapse
|
29
|
Pedro Ferreira J, Verdonschot J, Collier T, Wang P, Pizard A, Bär C, Björkman J, Boccanelli A, Butler J, Clark A, Cleland JG, Delles C, Diez J, Girerd N, González A, Hazebroek M, Huby AC, Jukema W, Latini R, Leenders J, Levy D, Mebazaa A, Mischak H, Pinet F, Rossignol P, Sattar N, Sever P, Staessen JA, Thum T, Vodovar N, Zhang ZY, Heymans S, Zannad F. Proteomic Bioprofiles and Mechanistic Pathways of Progression to Heart Failure. Circ Heart Fail 2019; 12:e005897. [PMID: 31104495 PMCID: PMC8361846 DOI: 10.1161/circheartfailure.118.005897] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
Background Identifying the mechanistic pathways potentially associated with incident heart failure (HF) may provide a basis for novel preventive strategies. Methods and Results To identify proteomic biomarkers and the potential underlying mechanistic pathways that may be associated with incident HF defined as the first hospitalization for HF, a nested-matched case-control design was used with cases (incident HF) and controls (without HF) selected from 3 cohorts (>20 000 individuals). Controls were matched on cohort, follow-up time, age, and sex. Two independent sample sets (a discovery set with 286 cases and 591 controls and a replication set with 276 cases and 280 controls) were used to discover and replicate the findings. Two hundred fifty-two circulating proteins in the plasma were studied. Adjusting for the matching variables age, sex, and follow-up time (and correcting for multiplicity of tests), 89 proteins were found to be associated with incident HF in the discovery phase, of which 38 were also associated with incident HF in the replication phase. These 38 proteins pointed to 4 main network clusters underlying incident HF: (1) inflammation and apoptosis, indicated by the expression of the TNF (tumor necrosis factor)-family members; (2) extracellular matrix remodeling, angiogenesis and growth, indicated by the expression of proteins associated with collagen metabolism, endothelial function, and vascular homeostasis; (3) blood pressure regulation, indicated by the expression of natriuretic peptides and proteins related to the renin-angiotensin-aldosterone system; and (4) metabolism, associated with cholesterol and atherosclerosis. Conclusions Clusters of biomarkers associated with mechanistic pathways leading to HF were identified linking inflammation, apoptosis, vascular function, matrix remodeling, blood pressure control, and metabolism. These findings provide important insight on the pathophysiological mechanisms leading to HF. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02556450.
Collapse
Affiliation(s)
- João Pedro Ferreira
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 14–33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France, Department of Physiology and Cardiothoracic Surgery, Cardiovascular Research and Development Unit, Faculty of Medicine, University of Porto, Portugal
| | - Job Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, the Netherlands, Department of Clinical Genetics, Maastricht University Medical Center, the Netherlands
| | - Timothy Collier
- London School of Hygiene and Tropical Medicine, United Kingdom
| | - Ping Wang
- Department of Clinical Genetics, Maastricht University Medical Center, the Netherlands
| | - Anne Pizard
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 14–33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France, Inserm 1024, Institut de Biologie de l’École Normale Supérieure (IBENS), PSL University of Paris, France
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany
| | - Jens Björkman
- Department of Medicine, University of Mississippi School of Medicine, Jackson, Excellence Cluster REBIRTH, Hannover Medical School, Germany
| | | | | | - Andrew Clark
- Hull York Medical School, Castle Hill Hospital, Cottingham, United Kingdom
| | - John G. Cleland
- Robertson Centre for Biostatistics and Clinical Trials, Institute of Health and Wellbeing, Glasgow, United Kingdom, National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, University of Glasgow, London, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, United Kingdom
| | - Javier Diez
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain, CIBERCV, Carlos III Institute of Health, Madrid, Spain, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain, Departments of Nephrology, and Cardiology and Cardiac Surgery, University of Navarra Clinic, Pamplona, Spain
| | - Nicolas Girerd
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 14–33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Arantxa González
- Program of Cardiovascular Diseases, Centre for Applied Medical Research, University of Navarra, Pamplona, Spain, CIBERCV, Carlos III Institute of Health, Madrid, Spain, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Spain
| | - Mark Hazebroek
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, the Netherlands
| | - Anne-Cécile Huby
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 14–33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, the Netherlands
| | - Roberto Latini
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | - Daniel Levy
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, MA, Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Alexandre Mebazaa
- UMRS 942, University Paris Diderot; APHP, University Hospitals Saint Louis Lariboisière, France
| | | | - Florence Pinet
- Inserm U1167, Institut Pasteur de Lille, Université de Lille, FHU-REMOD-VHF, France
| | - Patrick Rossignol
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 14–33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Naveed Sattar
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom
| | - Peter Sever
- International Centre for Circulatory Health, National Heart and Lung Institute, Imperial College London, England
| | - Jan A. Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Germany, National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Nicolas Vodovar
- UMRS 942, University Paris Diderot; APHP, University Hospitals Saint Louis Lariboisière, France
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Centre, Center for Heart Failure Research, Cardiovascular Research Institute Maastricht (CARIM), University Hospital Maastricht, the Netherlands, Department of Cardiovascular Research, University of Leuven, Belgium, Netherlands Heart Institute (ICIN), Utrecht, the Netherlands
| | - Faiez Zannad
- Université de Lorraine, Inserm, Centre d’Investigations Cliniques-Plurithématique 14–33, and Inserm U1116, CHRU, F-CRIN INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| |
Collapse
|
30
|
Liu J, Liu Y, Peng L, Li J, Wu K, Xia L, Wu J, Wang S, Wang X, Liu Q, Zeng W, Xia Y. TWEAK/Fn14 Signals Mediate Burn Wound Repair. J Invest Dermatol 2019; 139:224-234. [DOI: 10.1016/j.jid.2018.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/20/2023]
|
31
|
Askarian F, Ghorbanihaghjo A, Argani H, Sanajou D, Nasehi N, Askarian R, Ahmadi R, Rahtchizadeh N. Soluble Tumor Necrosis Factor Like Weak Inducer of Apoptosis and Vitamin D in Hemodialysis Patients: Relation to Carotid Intima-Media Thickness. Indian J Clin Biochem 2018; 33:297-303. [PMID: 30072829 DOI: 10.1007/s12291-017-0675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/26/2017] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease, as the leading cause of patient death with chronic kidney disease, could be predicted by carotid atherosclerosis. The aim of the present study was to evaluate a possible relationship between serum soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and Vitamin D levels with mean right/left carotid intima-media thickness (cIMT), in the hemodialysis (HD) patients. In this cross-sectional study, serums were obtained from 50 stable chronic HD patients and 39 healthy controls. The serum levels of sTWEAK, Vitamin D, intact parathyroid hormone (iPTH) in both groups, and cIMT were determined in HD patients by standard methods. Serum levels of sTWEAK were higher [808.8 (521.6-5032.4) pg/ml vs. 664.4 (487.4-2955.8) pg/ml (p = 0.006)] and Vitamin D levels were lower [13.4 (2.5-153) ng/ml vs. 27.8 (18.4-59.0) ng/ml (p = 0.001)] in the hemodialysis patients than in the healthy control. No important correlation was found between sTWEAK Vitamin D levels (r = 0.010/p = 0.946), and mean right(r = -0.194/p = 0.178) and left (r = 0.061/p = 0.673) cIMT in the HD patients. Our study shows that sTWEAK levels are elevated in HD patients. This elevation has no association with the cIMT.
Collapse
Affiliation(s)
- Farahnaz Askarian
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Nasehi
- 2Department of Radiology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Roya Askarian
- 3Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ravan Ahmadi
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rahtchizadeh
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
32
|
Das NA, Carpenter AJ, Yoshida T, Kumar SA, Gautam S, Mostany R, Izadpanah R, Kumar A, Mummidi S, Siebenlist U, Chandrasekar B. TRAF3IP2 mediates TWEAK/TWEAKR-induced pro-fibrotic responses in cultured cardiac fibroblasts and the heart. J Mol Cell Cardiol 2018; 121:107-123. [PMID: 29981796 DOI: 10.1016/j.yjmcc.2018.07.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7 days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Collapse
Affiliation(s)
- Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Tadashi Yoshida
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Senthil A Kumar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Sandeep Gautam
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University Health Science Center, New Orleans, LA, USA
| | - Reza Izadpanah
- Medicine/Heart and Vascular Institute, Tulane University Health Science Center, New Orleans, LA, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Srinivas Mummidi
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, The University of Texas Rio Grande Valley School of Medicine, Edinburg, TX, USA
| | | | - Bysani Chandrasekar
- Medicine/Cardiology, University of Missouri School of Medicine, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Liu J, Peng L, Liu Y, Wu K, Wang S, Wang X, Liu Q, Xia Y, Zeng W. Topical TWEAK Accelerates Healing of Experimental Burn Wounds in Mice. Front Pharmacol 2018; 9:660. [PMID: 29977207 PMCID: PMC6021523 DOI: 10.3389/fphar.2018.00660] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/01/2018] [Indexed: 01/06/2023] Open
Abstract
The interaction of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor inducible 14 (Fn14) participates in inflammatory responses, fibrosis, and tissue remodeling, which are central in the repair processes of wounds. Fn14 is expressed in main skin cells including dermal fibroblasts. This study was designed to explore the therapeutic effect of TWEAK on experimental burn wounds and the relevant mechanism underlying such function. Third-degree burns were introduced in two BALB/c mouse strains. Recombinant TWEAK was administrated topically, followed by the evaluation of wound areas and histologic changes. Accordingly, the downstream cytokines, inflammatory cell infiltration, and extracellular matrix synthesis were examined in lesional tissue. Moreover, the differentiation markers were analyzed in cultured human dermal fibroblasts upon TWEAK stimulation. The results showed that topical TWEAK accelerated the healing of burn wounds in wild-type mice but not in Fn14-deficient mice. TWEAK strengthened inflammatory cell infiltration, and exaggerated the production of growth factor and extracellular matrix components in wound areas of wild-type mice. Moreover, TWEAK/Fn14 activation elevated the expression of myofibroblastic differentiation markers, including alpha-smooth muscle actin and palladin, in cultured dermal fibroblasts. Therefore, topical TWEAK exhibits therapeutic effect on experimental burn wounds through favoring regional inflammation, cytokine production, and extracellular matrix synthesis. TWEAK/Fn14 activation induces the myofibroblastic differentiation of dermal fibroblasts, partially contributing to the healing of burn wounds.
Collapse
Affiliation(s)
- Jing Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Lingling Peng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xuening Wang
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Qilu Liu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
34
|
Effect of influenza vaccine on tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in older adults. Vaccine 2018; 36:2220-2225. [PMID: 29548604 DOI: 10.1016/j.vaccine.2017.11.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022]
Abstract
Influenza immunization is recommended for older adults annually, and has been reported to have cardiovascular protective effects. TNF-related weak inducer of apoptosis (TWEAK), an inflammatory mediator implicated in the development of cardiovascular diseases, could be a mechanism for such effect. The objective of this study was to evaluate the effect of influenza vaccine on TWEAK levels. Older persons over 70 years of age were recruited during 2007-2008 influenza season and immunized with the standard dose trivalent inactivated influenza vaccine. Frailty was evaluated using a validated set of criteria. Sera were collected immediately before and during the 4th week after vaccination. Pre- and post-vaccination levels of TWEAK, soluble CD163 (sCD163) and strain-specific influenza antibody titers were measured in 69 participants. Multiple regression analyses were employed to examine the effect of influenza vaccine on TWEAK and sCD163, adjusting for age, sex, and hypertension. Post-vaccination TWEAK [mean ± standard deviation (SD) = 591.7 ± 290.1 pg/ml] was significantly lower than pre-vaccination level (690.6 ± 330.0 pg/ml) (p = .003). No significant difference was observed between pre and post-vaccination sCD163 levels (p = .71). Post-vaccination TWEAK levels were significantly higher in men (p = .01) and in participants with college or higher level of education (p = .044). There was no significant difference in post-vaccination TWEAK according to other demographics or pre-existing medical conditions. A 2-fold or greater antibody titer against H1N1 vaccine strain was associated with a more pronounced reduction in TWEAK at the p < .10 level (p = .091). A time by frailty interaction term (p = .091) indicated that the vaccination-induced reduction of TWEAK was greatest among frail individuals. These results of this observational study indicate that the impact of Influenza vaccine on TWEAK, including the role of specific antibody responses of specific vaccine strains and frailty status, warrants further investigation. Such investigation may elucidate whether this effect plays a role in mediating cardiovascular protection of influenza vaccination.
Collapse
|
35
|
Maracle CX, Agca R, Helder B, Meeuwsen JAL, Niessen HWM, Biessen EAL, de Winther MPJ, de Jager SCA, Nurmohamed MT, Tas SW. Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis 2018; 270:33-41. [PMID: 29407886 DOI: 10.1016/j.atherosclerosis.2018.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/31/2017] [Accepted: 01/18/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND AIMS Neovascularization is associated with atherosclerotic plaque instability and increased chance of myocardial infarction (MI). Patients with chronic inflammatory diseases (CID) have increased risk of atherosclerosis, and evidence demonstrates that NF-κB inducing kinase (NIK)-mediated noncanonical NF-κB signaling in endothelial cells (EC) is linked to inflammation and angiogenesis. Here, we hypothesized NIK may also be activated in EC of atherosclerotic lesion microvessels. METHODS Using cohorts of atherosclerotic lesions from coronary and carotid arteries, we quantified NIK expression in plaque microvessels and compared it to pathological markers, including inflammatory cell content, plaque characteristics and MI. Differences in gene transcripts were evaluated between stable and ruptured lesions. RESULTS NIK+EC were present in both coronary and carotid lesions. In CID patients, plaques with stenosis >40% had an increased number of NIK+EC and higher content of immune cells (p < .05) as compared to controls. Immune cells per NIK+EC were also greater in CID patients (p < .05), with pronounced differences as stenosis increased. In unstable lesions, NIK+EC were elevated as were EC expressing CXCL12 (p < .05). NIK+EC were increased in lesions with lipid content >40% (p < .05) and more abundant in coronary artery lesions implicated in MI (p < .05). These vessels also associated with atheromatous rather than fibrous plaque morphology (p < .05). Transcriptomic profiling demonstrated components of noncanonical NF-κB pathway were also upregulated in ruptured plaques (p < .05). CONCLUSIONS NIK+EC associate with chronic inflammation in advanced lesions and are linked to markers of local inflammation, lipid content, unstable plaque phenotype and development of MI. Therefore, targeting noncanonical NF-κB signaling may hold therapeutic potential for patients with atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Chrissta X Maracle
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Rabia Agca
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Boy Helder
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - John A L Meeuwsen
- Laboratory for Experimental Cardiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Hans W M Niessen
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik A L Biessen
- Department of Experimental Vascular Pathology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Menno P J de Winther
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia C A de Jager
- Laboratory for Experimental Cardiology, Utrecht University Medical Center, Utrecht, The Netherlands
| | - Mike T Nurmohamed
- Amsterdam Rheumatology and Immunology Center, READE, Amsterdam, The Netherlands; Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander W Tas
- Amsterdam Rheumatology and Immunology Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Laboratory for Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Icli A, Cure MC, Cure E, Arslan S, Unal M, Sakiz D, Ozucan M, Toker A, Turkmen K, Kucuk A. Soluble Tumor Necrosis Factor (TNF)-Like Weak Inducer of Apoptosis (Tweak) Independently Predicts Subclinical Atherosclerosis in Behcet's Disease. ACTA MEDICA (HRADEC KRALOVE) 2018; 61:86-92. [PMID: 30543512 DOI: 10.14712/18059694.2018.123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Vasculopathy is a major cause of mortality and morbidity in Behcet's Disease (BD). Subclinical atherosclerosis can even be detected in the early stage of BD. Soluble tumor necrosis factor-like (TNF) weak inducer of apoptosis (TWEAK) is known as a good marker of the inflammation in vascular tree. The aim of this study is to examine the relationship between carotid artery intima-media thickness (cIMT) and serum TWEAK levels in patients with BD. MATERIALS AND METHODS In line with International BD Study Group criteria, 48 BD, and 30 controls were included in our study. Disease activity was evaluated according to BD current activity form (BDCAF). C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), lipid parameters, serum TWEAK levels, and cIMT were measured. RESULTS Disease activity score of BD patients was found as 2 (range 0-7). cIMT, serum TWEAK, CRP and ESR levels of BD patients were significantly higher comparing to cIMT (0.62 ± 0.13 mm vs. 0.43 ± 0.09 mm, p < 0.001), serum TWEAK (667.5 ± 130.6 vs. 603.4 ± 89.6 pg/ml, p = 0.015), CRP (3.9 ± 4.3 vs. 1.4 ± 1.0 mg/dl, p < 0.001) and ESR (10.2 ± 10.0 vs. 5.6 ± 3.7 mm/h, p = 0.005) levels of the control group. There was a positive correlation between serum TWEAK level and disease activity (r = 0.251, p = 0.030) and cIMT (r = 0.463, p < 0.001). Our study also revealed an independent correlation between cIMT and serum TWEAK levels (beta = 0.354, p < 0.001). CONCLUSION Increased serum TWEAK levels can play a part in the development of atherosclerotic heart disease in BD. Due to their liability to atherosclerosis, patients with BD must followed closely.
Collapse
Affiliation(s)
- Abdullah Icli
- Department of Cardiology, Necmettin Erbakan University, Konya, Turkey
| | | | - Erkan Cure
- Department of Internal Medicine, Camlica Erdem Hospital, Istanbul, Turkey.
| | - Sevket Arslan
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Mehmet Unal
- Department of Dermatology, Konya Numune Hospital, Konya, Turkey
| | - Davut Sakiz
- Division of Endocrinology, Department of Internal Medicine, Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Miyase Ozucan
- Department of Internal Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Aysun Toker
- Department of Biochemistry, Necmettin Erbakan University, Konya, Turkey
| | - Kultigin Turkmen
- Division of Nephrology, Department of Internal Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Adem Kucuk
- Division of Rheumatology, Department of Internal Medicine, Malatya State Hospital, Malatya, Turkey
| |
Collapse
|
37
|
Liu H, Lin D, Xiang H, Chen W, Zhao S, Peng H, Yang J, Chen P, Chen S, Lu H. The role of tumor necrosis factor-like weak inducer of apoptosis in atherosclerosis via its two different receptors. Exp Ther Med 2017; 14:891-897. [PMID: 28781615 DOI: 10.3892/etm.2017.4600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
At present, it is commonly accepted that atherosclerosis is a chronic inflammatory disease characterized by disorder of the arterial wall. As one of the inflammatory cytokines of the tumor necrosis factor superfamily, tumor necrosis factor-like weak inducer of apoptosis (TWEAK) participates in the formation and progression of atherosclerosis. TWEAK, when binding to its initial receptor, fibroblast growth factor inducible molecule 14 (Fn14), exerts adverse biological functions in atherosclerosis, including dysfunction of endothelial cells, phenotypic change of smooth muscle cells and inflammatory responses of monocytes/macrophages. However, accumulating data supports that, besides Fn14, TWEAK also binds to cluster of differentiation (CD)163, an anti-inflammatory cytokine and a scavenger receptor exclusively expressed by monocytes and macrophages. Furthermore, it has been demonstrated that CD163 is able to internalize TWEAK and likely elicits protective effects in atherosclerosis by terminating inflammation induced by TWEAK. In the present study, the role of TWEAK in atherosclerosis was reviewed, with a predominant focus on CD163 and Fn14 receptors.
Collapse
Affiliation(s)
- Hengdao Liu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Dan Lin
- Qingdao Center for Disease Control and Prevention, Qingdao, Shandong 266033, P.R. China
| | - Hong Xiang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wei Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shaoli Zhao
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hui Peng
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jie Yang
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Pan Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shuhua Chen
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Hongwei Lu
- Center for Experimental Medical Research, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China.,Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
38
|
Soluble TWEAK and atheromatosis progression in patients with chronic kidney disease. Atherosclerosis 2017; 260:130-137. [DOI: 10.1016/j.atherosclerosis.2017.03.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/24/2017] [Accepted: 03/30/2017] [Indexed: 12/18/2022]
|
39
|
TWEAK blockade decreases atherosclerotic lesion size and progression through suppression of STAT1 signaling in diabetic mice. Sci Rep 2017; 7:46679. [PMID: 28447667 PMCID: PMC5406837 DOI: 10.1038/srep46679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/27/2017] [Indexed: 11/30/2022] Open
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK/Tnfsf12) is a cytokine implicated in different steps associated with vascular remodeling. However, the role of TWEAK under hyperglycemic conditions is currently unknown. Using two different approaches, genetic deletion of Tnfsf12 and treatment with a TWEAK blocking mAb, we have analyzed the effect of TWEAK inhibition on atherosclerotic plaque progression and stability in streptozotocin-induced diabetic ApoE deficient mice. Genetic inactivation of Tnfsf12 reduced atherosclerosis extension and severity in diabetic ApoE deficient mice. Tnfsf12 deficient mice display a more stable plaque phenotype characterized by lower lipid and macrophage content within atherosclerotic plaques. A similar phenotype was observed in diabetic mice treated with anti-TWEAK mAb. The proatherosclerotic effects of TWEAK were mediated, at least in part, by STAT1 activation and expression of proinflammatory target genes (CCL5, CXCL10 and ICAM-1), both in plaques of ApoE mice and in cultured vascular smooth muscle cells (VSMCs) under hyperglycemic conditions. Loss-of-function experiments demonstrated that TWEAK induces proinflammatory genes mRNA expression through its receptor Fn14 and STAT1 activation in cultured VSMCs. Overall, TWEAK blockade delay plaque progression and alter plaque composition in diabetic atherosclerotic mice. Therapies aimed to inhibit TWEAK expression and/or function could protect from diabetic vascular complications.
Collapse
|
40
|
Yang B, Yan P, Gong H, Zuo L, Shi Y, Guo J, Guo R, Xie J, Li B. TWEAK protects cardiomyocyte against apoptosis in a PI3K/AKT pathway dependent manner. Am J Transl Res 2016; 8:3848-3860. [PMID: 27725864 PMCID: PMC5040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Myocyte apoptosis is a key determinant of cardiac recovery and prognosis of patients with acute myocardial infarction (AMI). Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of TNF superfamily, is a pro-inflammatory and pro-angiogenic cytokine implicated in physiological tissue regeneration and wound repair and is closely related to cardiac remodeling, dysfunction and fibrosis. However, the role of TWEAK and its receptor Fn14 in the cardiomyocyte apoptosis is still poorly understood. The present study aimed to investigate whether the TWEAK enhanced the cardiomyocyte apoptosis in AMI. The apoptosis of the cardiomyocyte cell line H9C2 was induced by hypoxia/reoxygenation. The apoptosis of H9C2 cells was evaluated by flow cytometry and caspase-3 activity assay under treatment with TWEAK at different concentrations. The phosphorylated signaling molecules and the expression involved in the surprising protection of TWEAK against the apoptosis with a dose-dependent manner (≥50 ng/ml). Furthermore, a rat myocardial ischemia and reperfusion (I/R) model was established by TWEAK preconditioning through injecting the TWEAK into the scar and border after ischemia immediately induced by ligating the left anterior descending coronary artery for 50 min and followed by different reperfusion times. The heart function was significantly improved in TWEAK preconditioning rats compared with controls as well as the infarct size was significantly reduced 21 days after reperfusion. Meanwhile, TWEAK protected the cardiac apoptosis by activation of cardioprotective signaling PI3K/AKT during I/R. Our findings suggest that TWEAK may represent a cardioprotective factor that inhibits the myocyte death of myocardial IRI.
Collapse
Affiliation(s)
- Bin Yang
- Shanxi Medical UniversityTaiyuan, China
- The Cardiovascular Disease Hospital of Shanxi Medical UniversityTaiyuan, China
| | - Ping Yan
- Shanxi Medical UniversityTaiyuan, China
- The First Hospital of Shanxi Medical UniversityTaiyuan, China
| | - Hui Gong
- Shanxi Medical UniversityTaiyuan, China
| | - Lin Zuo
- Shanxi Medical UniversityTaiyuan, China
| | - Ying Shi
- Shanxi Medical UniversityTaiyuan, China
- The Second Hospital of Shanxi Medical UniversityTaiyuan, China
| | - Jian Guo
- Senboll Biotechnology Inc.Toronto, Ontario, Canada
| | - Rui Guo
- Shanxi Medical UniversityTaiyuan, China
| | - Jun Xie
- Shanxi Medical UniversityTaiyuan, China
| | - Bao Li
- Shanxi Medical UniversityTaiyuan, China
- The Cardiovascular Disease Hospital of Shanxi Medical UniversityTaiyuan, China
- The Second Hospital of Shanxi Medical UniversityTaiyuan, China
| |
Collapse
|
41
|
TWEAK favors phosphate-induced calcification of vascular smooth muscle cells through canonical and non-canonical activation of NFκB. Cell Death Dis 2016; 7:e2305. [PMID: 27441657 PMCID: PMC4973358 DOI: 10.1038/cddis.2016.220] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/10/2016] [Accepted: 06/14/2016] [Indexed: 12/24/2022]
Abstract
Vascular calcification (VC) is associated with increased cardiovascular mortality in aging, chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM) and atherosclerosis. TNF-like weak inducer of apoptosis (TWEAK) recently emerged as a new biomarker for the diagnosis and prognosis of cardiovascular diseases. TWEAK binding to its functional receptor Fn14 was reported to promote several steps of atherosclerotic plaque progression. However, no information is currently available on the role of TWEAK/Fn14 on the development of medial calcification, which is highly prevalent in aging, CKD and T2DM. This study explored the involvement of TWEAK in human vascular smooth muscle cells (h-VSMCs) calcification in vitro. We report that TWEAK binding to Fn14 promotes inorganic phosphate-induced h-VSMCs calcification, favors h-VSMCs osteogenic transition, decreasing acta2 and myh11 and increasing bmp2 mRNA and tissue non-specific alkaline phosphatase (TNAP), and increases MMP9 activity. Blockade of the canonical NFκB pathway reduced by 80% TWEAK pro-calcific properties and decreased osteogenic transition, TNAP and MMP9 activity. Blockade of non-canonical NFκB signaling by a siRNA targeting RelB reduced by 20% TWEAK pro-calcific effects and decreased TWEAK-induced loss of h-VSMCs contractile phenotype and MMP9 activity, without modulating bmp2 mRNA or TNAP activity. Inhibition of ERK1/2 activation by a MAPK kinase inhibitor did not influence TWEAK pro-calcific properties. Our results suggest that TWEAK/Fn14 directly favors inorganic phosphate-induced h-VSMCs calcification by activation of both canonical and non-canonical NFκB pathways. Given the availability of neutralizing anti-TWEAK strategies, our study sheds light on the TWEAK/Fn14 axis as a novel therapeutic target in the prevention of VC.
Collapse
|
42
|
YUAN YE, ZHANG YINGYING, ZHANG XIAOXU, YU YANAN, LI BING, WANG PENGQIAN, LI HAIXIA, ZHAO YIJUN, SHEN CHUNTI, WANG ZHONG. Deciphering the genetic and modular connections between coronary heart disease, idiopathic pulmonary arterial hypertension and pulmonary heart disease. Mol Med Rep 2016; 14:661-70. [PMID: 27221156 PMCID: PMC4918609 DOI: 10.3892/mmr.2016.5298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 04/26/2016] [Indexed: 01/13/2023] Open
Abstract
Coronary heart disease (CHD), idiopathic pulmonary arterial hypertension (IPAH) and pulmonary heart disease (PHD) are circulatory system diseases that may simultaneously emerge in a patient and they are often treated together in clinical practice. However, the molecular mechanisms connecting these three diseases remain unclear. In order to determine the multidimensional characteristic correlations between these three diseases based on genomic networks to aid in medical decision-making, genes from the Online Mendelian Inheritance in Man database were obtained, and applied network construction and modularized analysis were conducted. Functional enrichment analysis was conducted to explore the associations between overlapping genes, modules and pathways. A total of 29 overlapping genes and 3 common modules were identifed for the 3 diseases. Glycosphingolipid biosynthesis and the arachidonic acid metabolism are common pathways, and the biosynthetic process is suggested to be the major function involved in the three diseases. The current study reported, to the best of our knowledge for the first time, the role of glycosphingolipid biosynthesis in IPAH and PHD. The present study provided an improved understanding of the pathological mechanisms underlying CHD, IPAH and PHD. The overlapping genes, modules and pathways suggest novel areas for further research, and drug targets. The observations of the current study additionally suggest that drug indications can be broadened because of the presence of common targets.
Collapse
Affiliation(s)
- YE YUAN
- Department of Respiration, Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - YINGYING ZHANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - XIAOXU ZHANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - YANAN YU
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - BING LI
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - PENGQIAN WANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - HAIXIA LI
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - YIJUN ZHAO
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| | - CHUNTI SHEN
- Department of Respiration, Changzhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - ZHONG WANG
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, P.R. China
| |
Collapse
|
43
|
Fernández-Laso V, Sastre C, Valdivielso JM, Betriu A, Fernández E, Egido J, Martín-Ventura JL, Blanco-Colio LM. Soluble TWEAK and Major Adverse Cardiovascular Events in Patients with CKD. Clin J Am Soc Nephrol 2016; 11:413-22. [PMID: 26728587 DOI: 10.2215/cjn.07900715] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Soluble TNF-like weak inducer of apoptosis (sTWEAK) is a proinflammatory cytokine belonging to the TNF superfamily. sTWEAK concentrations have been associated with the presence of CKD and cardiovascular disease (CVD). We hypothesized that sTWEAK levels may relate to a higher prevalence of atherosclerotic plaques, vascular calcification, and cardiovascular outcomes observed in patients with CKD. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A 4-year prospective, multicenter, longitudinal study was conducted in 1058 patients with CKD stages 3-5D (mean age =58±13 years old; 665 men) but without any history of CVD from the NEFRONA Study (a study design on the prevalence of surrogate markers of CVD). Ankle-brachial index and B-mode ultrasound were performed to detect the presence of carotid and/or femoral atherosclerotic plaques together with biochemical measurements and sTWEAK assessment. Patients were followed for cardiovascular outcomes (follow-up of 3.13±1.15 years). RESULTS Patients with more advanced CKD had lower sTWEAK levels. sTWEAK concentrations were independently and negatively associated with carotid intima-media thickness. sTWEAK levels were lower in patients with carotid atherosclerotic plaques but not in those with femoral plaques. After adjustment by confounders, the odds ratio (OR) for presenting carotid atherosclerotic plaques in patients in the lowest versus highest tertile of sTWEAK was 4.18 (95% confidence interval [95% CI], 2.89 to 6.08; P<0.001). Furthermore, sTWEAK levels were lower in patients with calcified carotid atherosclerotic plaques. The OR for presenting calcified carotid plaques was 1.77 (95% CI, 1.06 to 2.93; P=0.02) after multivariable adjustment. After the follow-up, 41 fatal and 68 nonfatal cardiovascular events occurred. In a Cox model, after controlling for potential confounding factors, patients in the lowest tertile of sTWEAK concentrations had a higher risk of fatal and nonfatal cardiovascular events (hazard ratio [HR], 2.40; 95% CI, 1.33 to 4.33; P=0.004) and cardiovascular mortality (HR, 2.67; 95% CI, 1.05 to 6.76; P=0.04). CONCLUSIONS Low sTWEAK levels were associated with the presence of carotid atherosclerotic plaques in patients with CKD. Additionally, lower sTWEAK levels were associated with a higher risk of cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Valvanera Fernández-Laso
- Vascular Research Laboratory, Fundación Jiménez Díaz University Hospital-Health Research Institute, Madrid, Spain; and
| | - Cristina Sastre
- Vascular Research Laboratory, Fundación Jiménez Díaz University Hospital-Health Research Institute, Madrid, Spain; and
| | - Jose M Valdivielso
- Unit for Detection and Treatment of Atherothrombotic Diseases, Experimental Nephrology Laboratory, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Angels Betriu
- Unit for Detection and Treatment of Atherothrombotic Diseases, Experimental Nephrology Laboratory, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Elvira Fernández
- Unit for Detection and Treatment of Atherothrombotic Diseases, Experimental Nephrology Laboratory, Arnau de Vilanova University Hospital, Biomedical Research Institute of Lleida, Lleida, Spain
| | - Jesús Egido
- Vascular Research Laboratory, Fundación Jiménez Díaz University Hospital-Health Research Institute, Madrid, Spain; and
| | - Jose L Martín-Ventura
- Vascular Research Laboratory, Fundación Jiménez Díaz University Hospital-Health Research Institute, Madrid, Spain; and
| | - Luis M Blanco-Colio
- Vascular Research Laboratory, Fundación Jiménez Díaz University Hospital-Health Research Institute, Madrid, Spain; and
| |
Collapse
|
44
|
The association of high sCD163/sTWEAK ratio with cardiovascular disease in hemodialysis patients. Int Urol Nephrol 2015; 47:2023-30. [PMID: 26433887 DOI: 10.1007/s11255-015-1114-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 01/12/2023]
Abstract
PURPOSE Cardiovascular disease (CVD) is the most common cause of death in hemodialysis (HD) patients. Transmembrane proteins that circulate as soluble form such as tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and CD163 have been proposed in previous studies as CVD biomarkers in chronic kidney disease patients. In HD patients, since studies are scarce, the role of these proteins is not completely understood. We tested the hypothesis that sTWEAK, sCD163 or sCD163/sTWEAK ratio could be associated with cardiovascular disease in HD patients. METHODS We recorded current clinical and biological data, and we measured sTWEAK and sCD163 serum levels by ELISA in 70 hemodialysis patients. Univariate analysis and multivariate (logistic regression) analysis were used to identify the relation between sTWEAK, sCD163 and sCD163/sTWEAK ratio and CVD. RESULTS In univariate analysis, CVD in HD patients is associated with higher sCD163/sTWEAK ratio (p = 0.04), sCD163 (p = 0.07), CRP (p = 0.04), age (p = 0.07), smoking (p = 0.09) and vascular calcifications (p = 0.10). In multivariate analysis, only logarithm of sCD163/sTWEAK ratio (p = 0.04) and smoking (p = 0.03) was significantly associated with CVD. The levels of these molecules and their ratio were correlated with atherosclerosis risk factors: diabetes mellitus, high fasting glucose, tricipital skinfold thickness and CRP as well as (for sCD163/sTWEAK) intravenous iron therapy. CONCLUSIONS Cardiovascular disease is associated with increased sCD163/sTWEAK ratio. To our knowledge, this is the first report about this relationship in HD patients.
Collapse
|
45
|
The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2015; 35:2145-55. [PMID: 26300004 DOI: 10.1038/onc.2015.310] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as 'GB multiforme'). GB is the most common and aggressive primary malignant brain tumor and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but is upregulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype; (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue; and (iii) TWEAK Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells.
Collapse
|
46
|
Madrigal-Matute J, Fernandez-Laso V, Sastre C, Llamas-Granda P, Egido J, Martin-Ventura JL, Zalba G, Blanco-Colio LM. TWEAK/Fn14 interaction promotes oxidative stress through NADPH oxidase activation in macrophages. Cardiovasc Res 2015. [PMID: 26224570 DOI: 10.1093/cvr/cvv204] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIM The interaction between TNF-like weak inducer of apoptosis (TWEAK, Tnfsf12) and the receptor, fibroblast growth factor-inducible 14 (Fn14), regulates vascular damage through different mechanisms, including inflammation. Oxidative stress plays a major role in inflammation and the development of atherosclerosis, but the relationship between TWEAK and oxidative stress is, however, poorly understood. METHODS AND RESULTS In this study, we found that TWEAK and Fn14 are co-localized with the NADPH subunits, p22phox and Nox2, in human advanced atherosclerotic plaques. Using primary human macrophages and a murine macrophage cell line, we demonstrate that TWEAK promotes ROS production and enhances NADPH oxidase activity. Hence, we show a direct involvement of the TWEAK-Fn14 axis in oxidative stress, as genetic silencing of Fn14 or Nox2 abrogates the TWEAK-induced ROS production. Furthermore, our results point at Rac1 as an upstream mediator of TWEAK during oxidative stress. Finally, using an in vivo murine model we confirmed the major role of TWEAK in oxidative stress, as genetic silencing of Tnfsf12 in an ApoE(-/-) background reduces the number of DHE and 8-hydroxydeoxyguanosine-positive macrophages by 50%. CONCLUSIONS Our results suggest that TWEAK regulates vascular damage by stimulating ROS production in an Nox2-dependent manner. These new insights into the TWEAK/Fn14 axis underline their potential use as therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Julio Madrigal-Matute
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Valvanera Fernandez-Laso
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Cristina Sastre
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Patricia Llamas-Granda
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Jesús Egido
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - José Luis Martin-Ventura
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| | - Guillermo Zalba
- Division of Cardiovascular Sciences, CIMA University of Navarra, Pamplona, Spain Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, IIS-Fundación Jiménez Díaz, Autonoma University, Av. Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
47
|
Burkly LC. Regulation of Tissue Responses: The TWEAK/Fn14 Pathway and Other TNF/TNFR Superfamily Members That Activate Non-Canonical NFκB Signaling. Front Immunol 2015; 6:92. [PMID: 25784914 PMCID: PMC4345838 DOI: 10.3389/fimmu.2015.00092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Linda C Burkly
- Department of Immunology, Biogen Idec, Inc. , Cambridge, MA , USA
| |
Collapse
|
48
|
Simone TM, Higgins SP, Archambeault J, Higgins CE, Ginnan RG, Singer H, Higgins PJ. A small molecule PAI-1 functional inhibitor attenuates neointimal hyperplasia and vascular smooth muscle cell survival by promoting PAI-1 cleavage. Cell Signal 2015; 27:923-33. [PMID: 25617690 DOI: 10.1016/j.cellsig.2015.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of urokinase-and tissue-type plasminogen activators (uPA and tPA), is an injury-response gene implicated in the development of tissue fibrosis and cardiovascular disease. PAI-1 mRNA and protein levels were elevated in the balloon catheter-injured carotid and in the vascular smooth muscle cell (VSMC)-enriched neointima of ligated arteries. PAI-1/uPA complex formation and PAI-1 antiproteolytic activity can be inhibited, via proteolytic cleavage, by the small molecule antagonist tiplaxtinin which effectively increased the VSMC apoptotic index in vitro and attenuated carotid artery neointimal formation in vivo. In contrast to the active full-length serine protease inhibitor (SERPIN), elastase-cleaved PAI-1 (similar to tiplaxtinin) also promoted VSMC apoptosis in vitro and similarly reduced neointimal formation in vivo. The mechanism through which cleaved PAI-1 (CL-PAI-1) stimulates apoptosis appears to involve the TNF-α family member TWEAK (TNF-α weak inducer of apoptosis) and it's cognate receptor, fibroblast growth factor (FGF)-inducible 14 (FN14). CL-PAI-1 sensitizes cells to TWEAK-stimulated apoptosis while full-length PAI-1 did not, presumably due to its ability to down-regulate FN14 in a low density lipoprotein receptor-related protein 1 (LRP1)-dependent mechanism. It appears that prolonged exposure of VSMCs to CL-PAI-1 induces apoptosis by augmenting TWEAK/FN14 pro-apoptotic signaling. This work identifies a critical, anti-stenotic, role for a functionally-inactive (at least with regard to its protease inhibitory function) cleaved SERPIN. Therapies that promote the conversion of full-length to cleaved PAI-1 may have translational implications.
Collapse
Affiliation(s)
- Tessa M Simone
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Stephen P Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Jaclyn Archambeault
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Craig E Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Roman G Ginnan
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Harold Singer
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| | - Paul J Higgins
- Center for Cell Biology & Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, United States.
| |
Collapse
|