1
|
Wu Q, Liu C, Shu X, Duan L. Mechanistic and therapeutic perspectives of non-coding RNA-modulated apoptotic signaling in diabetic retinopathy. Cell Biol Toxicol 2024; 40:53. [PMID: 38970639 PMCID: PMC11227466 DOI: 10.1007/s10565-024-09896-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/21/2024] [Indexed: 07/08/2024]
Abstract
Diabetic retinopathy (DR), a significant and vision-endangering complication associated with diabetes mellitus, constitutes a substantial portion of acquired instances of preventable blindness. The progression of DR appears to prominently feature the loss of retinal cells, encompassing neural retinal cells, pericytes, and endothelial cells. Therefore, mitigating the apoptosis of retinal cells in DR could potentially enhance the therapeutic approach for managing the condition by suppressing retinal vascular leakage. Recent advancements have highlighted the crucial regulatory roles played by non-coding RNAs (ncRNAs) in diverse biological processes. Recent advancements have highlighted that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), act as central regulators in a wide array of biogenesis and biological functions, exerting control over gene expression associated with histogenesis and cellular differentiation within ocular tissues. Abnormal expression and activity of ncRNAs has been linked to the regulation of diverse cellular functions such as apoptosis, and proliferation. This implies a potential involvement of ncRNAs in the development of DR. Notably, ncRNAs and apoptosis exhibit reciprocal regulatory interactions, jointly influencing the destiny of retinal cells. Consequently, a thorough investigation into the complex relationship between apoptosis and ncRNAs is crucial for developing effective therapeutic and preventative strategies for DR. This review provides a fundamental comprehension of the apoptotic signaling pathways associated with DR. It then delves into the mutual relationship between apoptosis and ncRNAs in the context of DR pathogenesis. This study advances our understanding of the pathophysiology of DR and paves the way for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Qin Wu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China.
| | | | - Xiangwen Shu
- Jinan Second People's Hospital & The Ophthalmologic Hospital of Jinan, Jinan, 250021, China
| | - Lian Duan
- Department of Ophthalmology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
2
|
Payen SH, Adhikari K, Petereit J, Uppal T, Rossetto CC, Verma SC. SARS-CoV-2 superinfection in CD14 + monocytes with latent human cytomegalovirus (HCMV) promotes inflammatory cascade. Virus Res 2024; 345:199375. [PMID: 38642618 PMCID: PMC11061749 DOI: 10.1016/j.virusres.2024.199375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of coronavirus disease 2019 (COVID-19), has posed significant challenges to global health. While much attention has been directed towards understanding the primary mechanisms of SARS-CoV-2 infection, emerging evidence suggests co-infections or superinfections with other viruses may contribute to increased morbidity and mortality, particularly in severe cases of COVID-19. Among viruses that have been reported in patients with SARS-CoV-2, seropositivity for Human cytomegalovirus (HCMV) is associated with increased COVID-19 risk and hospitalization. HCMV is a ubiquitous beta-herpesvirus with a seroprevalence of 60-90 % worldwide and one of the leading causes of mortality in immunocompromised individuals. The primary sites of latency for HCMV include CD14+ monocytes and CD34+ hematopoietic cells. In this study, we sought to investigate SARS-CoV-2 infection of CD14+ monocytes latently infected with HCMV. We demonstrate that CD14+ cells are susceptible and permissive to SARS-CoV-2 infection and detect subgenomic transcripts indicative of replication. To further investigate the molecular changes triggered by SARS-CoV-2 infection in HCMV-latent CD14+ monocytes, we conducted RNA sequencing coupled with bioinformatic differential gene analysis. The results revealed significant differences in cytokine-cytokine receptor interactions and inflammatory pathways in cells superinfected with replication-competent SARS-CoV-2 compared to the heat-inactivated and mock controls. Notably, there was a significant upregulation in transcripts associated with pro-inflammatory response factors and a decrease in anti-inflammatory factors. Taken together, these findings provide a basis for the heightened inflammatory response, offering potential avenues for targeted therapeutic interventions among HCMV-infected severe cases of COVID-19. SUMMARY: COVID-19 patients infected with secondary viruses have been associated with a higher prevalence of severe symptoms. Individuals seropositive for human cytomegalovirus (HCMV) infection are at an increased risk for severe COVID-19 disease and hospitalization. HCMV reactivation has been reported in severe COVID-19 cases with respiratory failure and could be the result of co-infection with SARS-CoV-2 and HCMV. In a cell culture model of superinfection, HCMV has previously been shown to increase infection of SARS-CoV-2 of epithelial cells by upregulating the human angiotensin-converting enzyme-2 (ACE2) receptor. In this study, we utilize CD14+ monocytes, a major cell type that harbors latent HCMV, to investigate co-infection of SARS-CoV-2 and HCMV. This study is a first step toward understanding the mechanism that may facilitate increased COVID-19 disease severity in patients infected with SARS-CoV-2 and HCMV.
Collapse
Affiliation(s)
- Shannon Harger Payen
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Kabita Adhikari
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Juli Petereit
- Nevada Bioinformatics Center (RRID:SCR_017802), University of Nevada, Reno, NV 89557, United States
| | - Timsy Uppal
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Cyprian C Rossetto
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States
| | - Subhash C Verma
- Reno School of Medicine, Department of Microbiology & Immunology/MS 320, University of Nevada, Reno, NV 89557, United States.
| |
Collapse
|
3
|
Hou M, Leng Y, Shi Y, Tan Z, Min X. Astragalus membranaceus as a Drug Candidate for Inflammatory Bowel Disease: The Preclinical Evidence. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1501-1526. [PMID: 37530507 DOI: 10.1142/s0192415x23500684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). Today, IBD has no successful treatment. As a result, it is of paramount importance to develop novel therapeutic agents for IBD prevention and treatment. Astragalus membranaceus (AMS) is a traditional Chinese medicine found in the AMS root. Modern pharmacological studies indicate that AMS and its constituents exhibit multiple bioactivities, such as anti-inflammatory, anti-oxidant, immune regulatory, anticancer, hypolipidemic, hypoglycemic, hepatoprotective, expectorant, and diuretic effects. AMS and its active constituents, which have been reported to be effective in IBD treatment, are believed to be viable candidate drugs for IBD treatment. These underlying mechanisms are associated with anti-inflammation, anti-oxidation, immunomodulation, intestinal epithelial repair, gut microbiota homeostasis, and improved energy metabolism. In this review, we summarize the efficacy and underlying mechanisms involved in IBD treatment with AMS and its active constituents in preclinical studies.
Collapse
Affiliation(s)
- Min Hou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufang Leng
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yajing Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhiguo Tan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiangzhen Min
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
4
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Sun H, Li Y, Zhang P, Xing H, Zhao S, Song Y, Wan D, Yu J. Targeting toll-like receptor 7/8 for immunotherapy: recent advances and prospectives. Biomark Res 2022; 10:89. [PMID: 36476317 PMCID: PMC9727882 DOI: 10.1186/s40364-022-00436-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptors (TLRs) are a large family of proteins that are expressed in immune cells and various tumor cells. TLR7/8 are located in the intracellular endosomes, participate in tumor immune surveillance and play different roles in tumor growth. Activation of TLRs 7 and 8 triggers induction of a Th1 type innate immune response in the highly sophisticated process of innate immunity signaling with the recent research advances involving the small molecule activation of TLR 7 and 8. The wide range of expression and clinical significance of TLR7/TLR8 in different kinds of cancers have been extensively explored. TLR7/TLR8 can be used as novel diagnostic biomarkers, progression and prognostic indicators, and immunotherapeutic targets for various tumors. Although the mechanism of action of TLR7/8 in cancer immunotherapy is still incomplete, TLRs on T cells are involved in the regulation of T cell function and serve as co-stimulatory molecules and activate T cell immunity. TLR agonists can activate T cell-mediated antitumor responses with both innate and adaptive immune responses to improve tumor therapy. Recently, novel drugs of TLR7 or TLR8 agonists with different scaffolds have been developed. These agonists lead to the induction of certain cytokines and chemokines that can be applied to the treatment of some diseases and can be used as good adjutants for vaccines. Furthermore, TLR7/8 agonists as potential therapeutics for tumor-targeted immunotherapy have been developed. In this review, we summarize the recent advances in the development of immunotherapy strategies targeting TLR7/8 in patients with various cancers and chronic hepatitis B.
Collapse
Affiliation(s)
- Hao Sun
- Department of Radiotherapy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Haizhou Xing
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004 Henan China
| |
Collapse
|
6
|
Liu ZM, Yang MH, Yu K, Lian ZX, Deng SL. Toll-like receptor (TLRs) agonists and antagonists for COVID-19 treatments. Front Pharmacol 2022; 13:989664. [PMID: 36188605 PMCID: PMC9518217 DOI: 10.3389/fphar.2022.989664] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) rapidly infects humans and animals which make coronavirus disease 2019 (COVID-19) a grievous epidemic worldwide which broke out in 2020. According to data analysis of the other coronavirus family, for instance severe acute respiratory syndrome SARS coronavirus (SARS-CoV), can provide experience for the mutation of SARS-CoV-2 and the prevention and treatment of COVID-19. Toll-like receptors (TLRs) as a pattern recognition receptor (PRRs), have an indispensable function in identifying the invader even activate the innate immune system. It is possible for organism to activate different TLR pathways which leads to secretion of proinflammatory cytokines such as Interleukin 1 (IL-1), Interleukin 6 (IL-6), Tumor necrosis factor α (TNFα) and type Ⅰ interferon. As a component of non-specific immunity, TLRs pathway may participate in the SARS-CoV-2 pathogenic processes, due to previous works have proved that TLRs are involved in the invasion and infection of SARS-CoV and MERS to varying degrees. Different TLR, such as TLR2, TLR4, TLR7, TLR8 and TLR9 probably have a double-sided in COVID-19 infection. Therefore, it is of great significance for a correctly acknowledging how TLR take part in the SARS-CoV-2 pathogenic processes, which will be the development of treatment and prevention strategies.
Collapse
Affiliation(s)
- Zhi-Mei Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Hui Yang
- Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, China
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
- *Correspondence: Zheng-Xing Lian, ; Shou-Long Deng,
| |
Collapse
|
7
|
Matissek SJ, Karbalivand M, Han W, Boutilier A, Yzar-Garcia E, Kehoe LL, Gardner DS, Hage A, Fleck K, Jeffers V, Rajsbaum R, Elsawa SF. A novel mechanism of regulation of the oncogenic transcription factor GLI3 by toll-like receptor signaling. Oncotarget 2022; 13:944-959. [PMID: 35937499 PMCID: PMC9348707 DOI: 10.18632/oncotarget.28261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
The transcription factor GLI3 is a member of the GLI family and has been shown to be regulated by canonical hedgehog (HH) signaling through smoothened (SMO). Little is known about SMO-independent regulation of GLI3. Here, we identify TLR signaling as a novel pathway regulating GLI3 expression. We show that GLI3 expression is induced by LPS/TLR4 in human monocyte cell lines and peripheral blood CD14+ cells. Further analysis identified TRIF, but not MyD88, signaling as the adapter used by TLR4 to regulate GLI3. Using pharmacological and genetic tools, we identified IRF3 as the transcription factor regulating GLI3 downstream of TRIF. Furthermore, using additional TLR ligands that signal through TRIF such as the TLR4 ligand, MPLA and the TLR3 ligand, Poly(I:C), we confirm the role of TRIF-IRF3 in the regulation of GLI3. We found that IRF3 directly binds to the GLI3 promoter region and this binding was increased upon stimulation of TRIF-IRF3 with Poly(I:C). Furthermore, using Irf3 -/- MEFs, we found that Poly(I:C) stimulation no longer induced GLI3 expression. Finally, using macrophages from mice lacking Gli3 expression in myeloid cells (M-Gli3-/- ), we found that in the absence of Gli3, LPS stimulated macrophages secrete less CCL2 and TNF-α compared with macrophages from wild-type (WT) mice. Taken together, these results identify a novel TLR-TRIF-IRF3 pathway that regulates the expression of GLI3 that regulates inflammatory cytokines and expands our understanding of the non-canonical signaling pathways involved in the regulation of GLI transcription factors.
Collapse
Affiliation(s)
- Stephan J. Matissek
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Mona Karbalivand
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Weiguo Han
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Ava Boutilier
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Estefania Yzar-Garcia
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Laura L. Kehoe
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Devin Storm Gardner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Adam Hage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Krista Fleck
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Vicki Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Ricardo Rajsbaum
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
8
|
Redwan EM, Aljadawi AA, Uversky VN. Hepatitis C Virus Infection and Intrinsic Disorder in the Signaling Pathways Induced by Toll-Like Receptors. BIOLOGY 2022; 11:1091. [PMID: 36101469 PMCID: PMC9312352 DOI: 10.3390/biology11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
In this study, we examined the interplay between protein intrinsic disorder, hepatitis C virus (HCV) infection, and signaling pathways induced by Toll-like receptors (TLRs). To this end, 10 HCV proteins, 10 human TLRs, and 41 proteins from the TLR-induced downstream pathways were considered from the prevalence of intrinsic disorder. Mapping of the intrinsic disorder to the HCV-TLR interactome and to the TLR-based pathways of human innate immune response to the HCV infection demonstrates that substantial levels of intrinsic disorder are characteristic for proteins involved in the regulation and execution of these innate immunity pathways and in HCV-TLR interaction. Disordered regions, being commonly enriched in sites of various posttranslational modifications, may play important functional roles by promoting protein-protein interactions and support the binding of the analyzed proteins to other partners such as nucleic acids. It seems that this system represents an important illustration of the role of intrinsic disorder in virus-host warfare.
Collapse
Affiliation(s)
- Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Abdullah A. Aljadawi
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
| | - Vladimir N. Uversky
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (E.M.R.); (A.A.A.)
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
9
|
Querrey M, Chiu S, Lecuona E, Wu Q, Sun H, Anderson M, Kelly M, Ravi S, Misharin AV, Kreisel D, Bharat A, Budinger GS. CD11b suppresses TLR activation of nonclassical monocytes to reduce primary graft dysfunction after lung transplantation. J Clin Invest 2022; 132:157262. [PMID: 35838047 PMCID: PMC9282933 DOI: 10.1172/jci157262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/25/2022] [Indexed: 02/03/2023] Open
Abstract
Primary graft dysfunction (PGD) is the leading cause of postoperative mortality in lung transplant recipients and the most important risk factor for development of chronic lung allograft dysfunction. The mechanistic basis for the variability in the incidence and severity of PGD between lung transplant recipients is not known. Using a murine orthotopic vascularized lung transplant model, we found that redundant activation of Toll-like receptors 2 and 4 (TLR2 and -4) on nonclassical monocytes activates MyD88, inducing the release of the neutrophil attractant chemokine CXCL2. Deletion of Itgam (encodes CD11b) in nonclassical monocytes enhanced their production of CXCL2 and worsened PGD, while a CD11b agonist, leukadherin-1, administered only to the donor lung prior to lung transplantation, abrogated CXCL2 production and PGD. The damage-associated molecular pattern molecule HMGB1 was increased in peripheral blood samples from patients undergoing lung transplantation after reperfusion and induced CXCL2 production in nonclassical monocytes via TLR4/MyD88. An inhibitor of HMGB1 administered to the donor and recipient prior to lung transplantation attenuated PGD. Our findings suggest that CD11b acts as a molecular brake to prevent neutrophil recruitment by nonclassical monocytes following lung transplantation, revealing an attractive therapeutic target in the donor lung to prevent PGD in lung transplant recipients.
Collapse
Affiliation(s)
- Melissa Querrey
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stephen Chiu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia Lecuona
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Qiang Wu
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haiying Sun
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Anderson
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Kelly
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sowmya Ravi
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine and,Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Ahn JH, Song EJ, Jung DH, Kim YJ, Seo IS, Park SC, Jung YS, Cho ES, Mo SH, Hong JJ, Cho JY, Park JH. The sesquiterpene lactone estafiatin exerts anti-inflammatory effects on macrophages and protects mice from sepsis induced by LPS and cecal ligation puncture. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153934. [PMID: 35172258 DOI: 10.1016/j.phymed.2022.153934] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previously, we found that the water extract of Artermisia scoparia Waldst. & Kit suppressed the cytokine production of lipopolysaccharide (LPS)-stimulated macrophages and alleviated carrageenan-induced acute inflammation in mice. Artemisia contains various sesquiterpene lactones and most of them exert immunomodulatory activity. PURPOSE In the present study, we investigated the immunomodulatory effect of estafiatin (EST), a sesquiterpene lactone derived from A. scoparia, on LPS-induced inflammation in macrophages and mouse sepsis model. STUDY DESIGN AND METHODS Murine bone marrow-derived macrophages (BMDMs) and THP-1 cells, a human monocytic leukemia cell line, were pretreated with different doses of EST for 2 h, followed by LPS treatment. The gene and protein expression of pro-inflammatory cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-α, and inducible nitric oxide synthase (iNOS) were measured by quantitative real-time polymerase chain reaction (qPCR) and Western blot analysis. The activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) was also evaluated at the level of phosphorylation. The effect of EST on inflammatory cytokine production, lung histopathology, and survival rate was assessed in an LPS-induced mice model of septic shock. The effect of EST on the production of cytokines in LPS-stimulated peritoneal macrophages was evaluated by in vitro and ex vivo experiments and protective effect of EST on cecal ligation and puncture (CLP) mice was also assessed. RESULTS The LPS-induced expression of IL-6, TNF-α, and iNOS was suppressed at the mRNA and protein levels in BMDMs and THP-1 cells, respectively, by pretreatment with EST. The half-maximal inhibitory concentration (IC50) of EST on IL-6 and TNF-α production were determined as 3.2 μM and 3.1 μM in BMDMs, 3 μM and 3.4 μM in THP1 cells, respectively. In addition, pretreatment with EST significantly reduced the LPS-induced phosphorylation p65, p38, JNK, and ERK in both cell types. In the LPS-induced mice model of septic shock, serum levels of IL-6, TNF-α, IL-1β, CXCL1, and CXCL2 were lower in EST-treated mice than in the control animals. Histopathology analysis revealed that EST treatment ameliorated LPS-induced lung damage. Moreover, while 1 of 7 control mice given lethal dose of LPS survived, 3 of 7 EST-treated (1.25 mg/kg) mice and 5 of 7 EST-treated (2.5 mg/kg) mice were survived. Pretreatment of EST dose-dependently suppressed the LPS-induced production of IL-6, TNF-α and CXCL1 in peritoneal macrophages. In CLP-induced mice sepsis model, while all 6 control mice was dead at 48 h, 1 of 6 EST-treated (1.25 mg/kg) mice and 3 of 6 EST-treated (2.5 mg/kg) mice survived for 96 h. CONCLUSION These results demonstrated that EST exerts anti-inflammatory effects on LPS-stimulated macrophages and protects mice from sepsis. Our study suggests that EST could be developed as a new therapeutic agent for sepsis and various inflammatory diseases.
Collapse
Affiliation(s)
- Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yeong-Jun Kim
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - In-Su Seo
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Seong-Chan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - You-Seok Jung
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Eun-Seo Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Sang Hyun Mo
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk 28116, Republic of Korea.
| | - Jeong-Yong Cho
- Department of Food Science & Technology, Chonnam National University, Gwangju, Republic of Korea.
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
11
|
Zhang X, Chu C, Huang Y. Inhibition of thioredoxin-interacting protein may enhance the therapeutic effect of dehydrocostus lactone in cardiomyocytes under doxorubicin stimulation via the inhibition of the inflammatory response. Exp Ther Med 2022; 23:226. [PMID: 35222703 PMCID: PMC8812107 DOI: 10.3892/etm.2022.11150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 11/06/2022] Open
Abstract
Heart failure (HF) is the leading cause of death around the world, the mortality caused by HF is growing rapidly, and has become a great threaten to both public health and economic growth. Dehydrocostus lactone (DHE) is the active constituent of Saussurea lappa and is widely used in traditional Chinese medicine for its multiple biological functions, including anti-inflammatory, antioxidant and anti-cancer. To the best of our knowledge, DHE's effect on HF has not been clarified. Thioredoxin-interacting protein (TXNIP) regulates the process of oxidative stress and inflammation and leads to an increase in oxidative stress via oxidization of thioredoxin, TXNIP promotes the activation of the immune response by its binding with the NOD-like receptor protein 3 inflammasome. An MTT assay revealed that the overexpression or inhibition of TXNIP markedly decreased or significantly increased the proliferation of H9c2 cells, respectively. Through reverse transcription-quantitative PCR (RT-qPCR) and western blotting, it was determined that the expression of proinflammatory cytokines was significantly decreased with the increased expression of anti-inflammatory cytokines in a TXNIP knockout model. Further study utilizing RT-qPCR and western blotting demonstrated that these effects may be mediated by the nuclear factor erythroid 2-related factor 2/heme oxygenase-1/NF-κB signaling pathway. In conclusion, TXNIP inhibition may promote the therapeutic effect of DHE on oxidative stress-induced damage.
Collapse
Affiliation(s)
- Xuezhi Zhang
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Cuiyu Chu
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Yuankun Huang
- Department of Critical Care Medicine, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| |
Collapse
|
12
|
Patel VK, Paudel KR, Shukla SD, Liu G, Oliver BG, Hansbro PM, Dua K. Toll-like receptors, innate immune system, and lung diseases: a vital trilateral association. EXCLI JOURNAL 2022; 21:519-523. [PMID: 35651656 PMCID: PMC9149966 DOI: 10.17179/excli2022-4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Affiliation(s)
- Vyoma K. Patel
- Macular Disease Foundation, NSW 2000, Australia,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav R. Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Shakti D. Shukla
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gang Liu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Brian G. Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia,Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
| | - Philip M. Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia,Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia,*To whom correspondence should be addressed: Kamal Dua, Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia, E-mail:
| |
Collapse
|
13
|
Interplay between Dysbiosis of Gut Microbiome, Lipid Metabolism, and Tumorigenesis: Can Gut Dysbiosis Stand as a Prognostic Marker in Cancer? DISEASE MARKERS 2022; 2022:2941248. [PMID: 35178126 PMCID: PMC8847007 DOI: 10.1155/2022/2941248] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
The gut bacterial community is involved in the metabolism of bile acids and short-chain fatty acids (SCFAs). Bile acids are involved in the absorption of fat and the regulation of lipid homeostasis through emulsification and are transformed into unconjugated bile acids by the gut microbiota. The gut microbiota is actively involved in the production of bile acid metabolites, such as deoxycholic acid, lithocholic acid, choline, and SCFAs such as acetate, butyrate, and propionate. Metabolites derived from the gut microbiota or modified gut microbiota metabolites contribute significantly to host pathophysiology. Gut bacterial metabolites, such as deoxycholic acid, contribute to the development of hepatocellular carcinoma and colon cancer by factors such as inflammation and oxidative DNA damage. Butyrate, which is derived from gut bacteria such as Megasphaera, Roseburia, Faecalibacterium, and Clostridium, is associated with the activation of Treg cell differentiation in the intestine through histone acetylation. Butyrate averts the action of class I histone deacetylases (HDAC), such as HDAC1 and HDAC3, which are responsible for the transcription of genes such as p21/Cip1, and cyclin D3 through hyperacetylation of histones, which orchestrates G1 cell cycle arrest. It is essential to identify the interaction between the gut microbiota and bile acid and SCFA metabolism to understand their role in gastrointestinal carcinogenesis including colon, gastric, and liver cancer. Metagenomic approaches with bioinformatic analyses are used to identify the bacterial species in the metabolism of bile acids and SCFAs. This review provides an overview of the current knowledge of gut microbiota-derived bile acid metabolism in tumor development and whether it can stand as a marker for carcinogenesis. Additionally, this review assesses the evidence of gut microbiota-derived short-chain fatty acids including butyric acid in antitumor activity. Future research is required to identify the beneficial commensal gut bacteria and their metabolites which will be considered to be therapeutic targets in inflammation-mediated gastrointestinal cancers.
Collapse
|
14
|
Li X, Sun X, Guo X, Li X, Peng S, Mu X. Chemical reagents modulate nucleic acid-activated toll-like receptors. Biomed Pharmacother 2022; 147:112622. [PMID: 35008000 DOI: 10.1016/j.biopha.2022.112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid-mediated interferon signaling plays a pivotal role in defense against microorganisms, especially during viral infection. Receptors sensing exogenous nucleic acid molecules are localized in the cytosol and endosomes. Cytosolic sensors, including cGAS, RIG-I, and MDA5, and endosome-anchored receptors are toll-like receptors (TLR3, TLR7, TLR8, and TLR9). These TLRs share the same domain architecture and have similar structures, facing the interior of endosomes so their binding to nucleic acids of invading pathogens via endocytosis is possible. The correct function of these receptors is crucial for cell homeostasis and effective response against pathogen invasion. A variety of endogenous mechanisms modulates their activities. Nevertheless, naturally occurring mutations lead to aberrant TLR-mediated interferon (IFN) signaling. Furthermore, certain pathogens require a more robust defense against control. Thus, manipulating these TLR activities has a profound impact. High-throughput virtual screening followed by experimental validation led to the discovery of numerous chemicals that can change these TLR-mediated IFN signaling activities. Many of them are unique in selectivity, while others regulate more than one TLR due to commonalities in these receptors. We summarized these nucleic acid-sensing TLR-mediated IFN signaling pathways and the corresponding chemicals activating or deactivating their signaling.
Collapse
Affiliation(s)
- Xiao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyuan Sun
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xuemin Guo
- Meizhou People's Hospital, Meizhou 514031, China; Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou 514031, China
| | - Xueren Li
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China
| | - Shouchun Peng
- Department of Respiratory Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin 300350, China.
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Abstract
The intimate involvement of pathogens with the heightened risk for developing certain cancers is an area of research that has captured a great deal of attention over the last 10 years. One firmly established paradigm that highlights this aspect of disease progression is in the instance of Helicobacter pylori infection and the contribution it makes in elevating the risk for developing gastric cancer. Whilst the molecular mechanisms that pinpoint the contribution that this microorganism inflicts towards host cells during gastric cancer initiation have come into greater focus, another picture that has also emerged is one that implicates the host's immune system, and the chronic inflammation that can arise therefrom, as being a central contributory factor in disease progression. Consequently, when taken with the underlying role that the extracellular matrix plays in the development of most cancers, and how this dynamic can be modulated by proteases expressed from the tumor or inflammatory cells, a complex and detailed relationship shared between the individual cellular components and their surroundings is coming into focus. In this review article, we draw attention to the emerging role played by the cathepsin proteases in modulating the stage-specific progression of Helicobacter pylori-initiated gastric cancer and the underlying immune response, while highlighting the therapeutic significance of this dynamic and how it may be amenable for novel intervention strategies within a basic research or clinical setting.
Collapse
|
16
|
Shin S, Park J, Lee YE, Ko H, Youn HS. Isobavachalcone suppresses the TRIF-dependent signaling pathway of Toll-like receptors. Arch Pharm (Weinheim) 2021; 355:e2100404. [PMID: 34964142 DOI: 10.1002/ardp.202100404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/18/2021] [Accepted: 12/08/2021] [Indexed: 11/09/2022]
Abstract
Toll-like receptors (TLRs) are integral membrane-bound receptors that are central to innate and adaptive immune responses. They are known to activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. Dysregulated activation of TLR signaling pathways can induce the activation of various transcription factors, such as nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). TLRs act via MyD88- and TRIF-mediated pathways to induce inflammatory responses. To evaluate the therapeutic potential of isobavachalcone (IBC), a natural chalcone component of Angelica keiskei, we examined its effects on signal transduction via TLR signaling pathways. IBC inhibited the activation of NF-κB and IRF3 induced by TLR agonists and their target genes. IBC also inhibited the activation of NF-κB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that IBC can regulate both MyD88- and TRIF-dependent signaling pathways of TLRs, resulting in a dramatic increase of new therapeutic options for various inflammatory diseases involving TLRs.
Collapse
Affiliation(s)
- Seokwon Shin
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Jayeon Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Ye Eun Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hanbin Ko
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| | - Hyung-Sun Youn
- Department of ICT Environmental Health System, Graduate School, SoonChunHyang University, Asan-si, Chungnam, South Korea.,Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan-si, Chungnam, South Korea
| |
Collapse
|
17
|
Chen H, Ji H, Kong X, Lei P, Yang Q, Wu W, Jin L, Sun D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021; 13:1892. [PMID: 34834306 PMCID: PMC8622331 DOI: 10.3390/pharmaceutics13111892] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expressions of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. Globally, BGs have been used as vaccine delivery systems and vaccine adjuvants. There is an increasing interest in the development of novel delivery systems that are based on BGs for biomedical applications. Due to intact reservation of bacterial cell membranes, BGs have an inherent immunogenicity, which enables targeted drug delivery and controlled release. As carrier vehicles, BGs protect drugs from interference by external factors. In recent years, there has been an increasing interest in BG-based delivery systems against tumors, inflammation, and infection, among others. Herein, we reviewed the preparation methods for BGs, interactions between BGs and the host, and further highlighted research progress in BG development.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Xiangjun Kong
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Pengyu Lei
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education & State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| |
Collapse
|
18
|
Gastric Microenvironment-A Partnership between Innate Immunity and Gastric Microbiota Tricks Helicobacter pylori. J Clin Med 2021; 10:jcm10153258. [PMID: 34362042 PMCID: PMC8347153 DOI: 10.3390/jcm10153258] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) carcinogenicity depends on three major factors: bacterial virulence constituents, environmental factors and host's genetic susceptibility. The relationship between microenvironmental factors and H. pylori virulence factors are incontestable. H. pylori infection has a major impact on both gastric and colonic microbiota. The presence of non-H. pylori bacteria within the gastric ecosystem is particularly important since they might persistently act as an antigenic stimulus or establish a partnership with H. pylori in order to augment the subsequent inflammatory responses. The gastric ecosystem, i.e., microbiota composition in children with H. pylori infection is dominated by Streptoccocus, Neisseria, Rothia and Staphylococcus. The impairment of this ecosystem enhances growth and invasion of different pathogenic bacteria, further impairing the balance between the immune system and mucosal barrier. Moreover, altered microbiota due to H. pylori infection is involved in increasing the gastric T regulatory cells response in children. Since gastric homeostasis is defined by the partnership between commensal bacteria and host's immune system, this review is focused on how pathogen recognition through toll-like receptors (TLRs-an essential class of pathogen recognition receptors-PRRs) on the surface of macrophages and dendritic cells impact the immune response in the setting of H. pylori infection. Further studies are required for delineate precise role of bacterial community features and of immune system components.
Collapse
|
19
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
20
|
Almasabi S, Ahmed AU, Boyd R, Williams BRG. A Potential Role for Integrin-Linked Kinase in Colorectal Cancer Growth and Progression via Regulating Senescence and Immunity. Front Genet 2021; 12:638558. [PMID: 34163519 PMCID: PMC8216764 DOI: 10.3389/fgene.2021.638558] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 01/10/2023] Open
Abstract
Integrin-linked kinase (ILK) has been implicated as a molecular driver and mediator in both inflammation and tumorigenesis of the colon. ILK functions as an adaptor and mediator protein linking the extracellular matrix with downstream signaling pathways. ILK is broadly expressed in many human tissues and cells. It is also overexpressed in many cancers, including colorectal cancer (CRC). Inflammation, as evidenced by inflammatory bowel disease (IBD), is one of the highest risk factors for initiating CRC. This has led to the hypothesis that targeting ILK therapeutically could have potential in CRC, as it regulates different cellular processes associated with CRC development and progression as well as inflammation in the colon. A number of studies have indicated an ILK function in senescence, a cellular process that arrests the cell cycle while maintaining active metabolism and transcription. Senescent cells produce different secretions collectively known as the senescence-associated secretory phenotype (SASP). The SASP secretions influence infiltration of different immune cells, either positively for clearing senescent cells or negatively for promoting tumor growth, reflecting the dual role of senescence in cancer. However, a role for ILK in senescence and immunity in CRC remains to be determined. In this review, we discuss the possible role for ILK in senescence and immunity, paying particular attention to the relevance of ILK in CRC. We also examine how activating Toll-like receptors (TLRs) and their agonists in CRC could trigger immune responses against cancer, as a combination therapy with ILK inhibition.
Collapse
Affiliation(s)
- Saleh Almasabi
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Cartherics, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Clinical Laboratory Sciences, Applied Medical Sciences, Najran University, Najran, Saudi Arabia.,Department of Molecular and Translational Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Afsar U Ahmed
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Richard Boyd
- Cartherics, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Bryan R G Williams
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
21
|
Kim SY, Shin S, Kwon M, Youn D, Sung NJ, Kim NH, Park SA, Youn HS. Suppression of the TRIF-dependent signaling pathway of TLRs by epoxomicin. Arch Pharm (Weinheim) 2021; 354:e2100130. [PMID: 34060134 DOI: 10.1002/ardp.202100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 11/05/2022]
Abstract
Toll-like receptors (TLRs) can recognize specific signatures of invading microbial pathogens and activate a cascade of downstream signals to induce the secretion of inflammatory cytokines, chemokines, and type I interferons. The activation of TLRs triggers two downstream signaling pathways: the MyD88- and the TRIF-dependent pathways. To evaluate the therapeutic potential of epoxomicin, a member of the linear peptide α',β'-epoxyketone first isolated from an actinomycetes strain, we examined its effects on signal transduction via TLR signaling pathways. Epoxomicin inhibited the activation of NF-kB and IRF3 induced by TLR agonists, decreased the expression of interferon-inducible protein-10, and inhibited the activation of NF-kB and IRF3 induced by overexpression of downstream signaling components of TLR signaling pathways. These results suggest that epoxomicin can regulate both the MyD88- and TRIF-dependent signaling pathways of TLRs. Thus, it might have potential as a new therapeutic drug for a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Su Y Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| | - Seokwon Shin
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| | - Minji Kwon
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| | - Daniel Youn
- Department of Ecology and Evolutionary Biology, College of Life Sciences, University of Arizona, Tucson, Arizona, USA
| | - Nam J Sung
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| | - Na H Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| | - Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea.,Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea.,Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Chungnam, Asan-si, Republic of Korea
| |
Collapse
|
22
|
Zuo L, Wijegunawardana D. Redox Role of ROS and Inflammation in Pulmonary Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:187-204. [PMID: 34019270 DOI: 10.1007/978-3-030-68748-9_11] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS), either derived from exogenous sources or overproduced endogenously, can disrupt the body's antioxidant defenses leading to compromised redox homeostasis. The lungs are highly susceptible to ROS-mediated damage. Oxidative stress (OS) caused by this redox imbalance leads to the pathogenesis of multiple pulmonary diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). OS causes damage to important cellular components in terms of lipid peroxidation, protein oxidation, and DNA histone modification. Inflammation further enhances ROS production inducing changes in transcriptional factors which mediate cellular stress response pathways. This deviation from normal cell function contributes to the detrimental pathological characteristics often seen in pulmonary diseases. Although antioxidant therapies are feasible approaches in alleviating OS-related lung impairment, a comprehensive understanding of the updated role of ROS in pulmonary inflammation is vital for the development of optimal treatments. In this chapter, we review the major pulmonary diseases-including COPD, asthma, ARDS, COVID-19, and lung cancer-as well as their association with ROS.
Collapse
Affiliation(s)
- Li Zuo
- College of Arts and Sciences, Molecular Physiology and Biophysics Lab, University of Maine, Presque Isle Campus, Presque Isle, ME, USA. .,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA.
| | | |
Collapse
|
23
|
Kelly LA, O'Dea MI, Zareen Z, Melo AM, McKenna E, Strickland T, McEneaney V, Donoghue V, Boylan G, Sweetman D, Butler J, Vavasseur C, Miletin J, El-Khuffash AF, O'Neill LAJ, O'Leary JJ, Molloy EJ. Altered inflammasome activation in neonatal encephalopathy persists in childhood. Clin Exp Immunol 2021; 205:89-97. [PMID: 33768526 PMCID: PMC8209598 DOI: 10.1111/cei.13598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022] Open
Abstract
Neonatal encephalopathy (NE) is characterized by altered neurological function in term infants and inflammation plays an important pathophysiological role. Inflammatory cytokines interleukin (IL)‐1β, IL‐1ra and IL‐18 are activated by the nucleotide‐binding and oligomerization domain (NOD)‐, leucine‐rich repeat domain (LRR)‐ and NOD‐like receptor protein 3 (NLRP3) inflammasome; furthermore, we aimed to examine the role of the inflammasome multiprotein complex involved in proinflammatory responses from the newborn period to childhood in NE. Cytokine concentrations were measured by multiplex enzyme‐linked immunosorbent assay (ELISA) in neonates and children with NE in the absence or presence of lipopolysaccharide (LPS) endotoxin. We then investigated expression of the NLRP3 inflammasome genes, NLRP3, IL‐1β and ASC by polymerase chain reaction (PCR). Serum samples from 40 NE patients at days 1 and 3 of the first week of life and in 37 patients at age 4–7 years were analysed. An increase in serum IL‐1ra and IL‐18 in neonates with NE on days 1 and 3 was observed compared to neonatal controls. IL‐1ra in NE was decreased to normal levels at school age, whereas serum IL‐18 in NE was even higher at school age compared to school age controls and NE in the first week of life. Percentage of LPS response was higher in newborns compared to school‐age NE. NLRP3 and IL‐1β gene expression were up‐regulated in the presence of LPS in NE neonates and NLRP3 gene expression remained up‐regulated at school age in NE patients compared to controls. Increased inflammasome activation in the first day of life in NE persists in childhood, and may increase the window for therapeutic intervention.
Collapse
Affiliation(s)
- L A Kelly
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - M I O'Dea
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - Z Zareen
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland.,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland
| | - A M Melo
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - E McKenna
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - T Strickland
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - V McEneaney
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
| | - V Donoghue
- Radiology, National Maternity Hospital, Dublin, Ireland
| | - G Boylan
- Department of Pediatrics and Child Health, University College Cork, Cork, Ireland.,Infant Research Centre, Cork University Hospital, Cork, Ireland
| | - D Sweetman
- National Maternity Hospital, Dublin, Ireland
| | - J Butler
- Meso-Scale Diagnostics, Manchester, UK
| | - C Vavasseur
- National Maternity Hospital, Dublin, Ireland
| | - J Miletin
- Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland
| | | | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - J J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin, Ireland
| | - E J Molloy
- Discipline of Paediatrics, Trinity College, University of Dublin, Dublin, Ireland.,Trinity Translational Medicine Institute (TTMI), Trinity College Dublin and Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland.,Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.,Neonatology, Coombe Women and Infants University Hospital, Dublin, Ireland.,CHI at Crumlin, Dublin, Ireland
| |
Collapse
|
24
|
Huang X, Zhang X, Lu M. Recent trends in the development of Toll-like receptor 7/8-targeting therapeutics. Expert Opin Drug Discov 2021; 16:869-880. [PMID: 33678093 DOI: 10.1080/17460441.2021.1898369] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Toll-like receptor (TLR) 7 and TLR8 are functionally localized to endosomes and recognize specific RNA sequences. They play crucial roles in initiating innate and adaptive immune responses. TLR7/8 activation protects the host against invading pathogens and enhances immune responses. In contrast, sustained TLR7/8 signaling leads to immune overreaction. Therefore, agonists or antagonists targeting TLR7/8 signaling are favorable drug candidates for the treatment of immune disorders.Areas covered: Basic knowledge about TLR7 and TLR8 and their signaling pathways are briefly reviewed. Various therapeutic agents have been designed to activate or antagonize TLR7/8 signaling pathways, and their safety and efficacy for the treatment of multiple diseases have been investigated in preclinical animal models and clinical trials. TLR7/8 agonists exhibit potent antiviral activity and regulate anti-tumor immune responses. TLR7 agonists have also been used as adjuvants to improve vaccine immunogenicity and generate greater seroprotection. TLR7/8 antagonists are promising candidates for the treatment of autoimmune and inflammatory diseases.Expert opinion: TLR7/8 pathways are favorable targets for immunological therapies. Future research should concentrate on the optimization of drug safety, efficiency, and specificity. Detailed mechanistic studies will contribute to the development of TLR7/8 immunomodulators and novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuan Huang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, Essen, Germany
| |
Collapse
|
25
|
Castro-Alves VC, Nascimento JROD. Size matters: TLR4-mediated effects of α-(1,5)-linear arabino-oligosaccharides in macrophage-like cells depend on their degree of polymerization. Food Res Int 2021; 141:110093. [PMID: 33641969 DOI: 10.1016/j.foodres.2020.110093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 12/09/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Linear arabino-oligosaccharides (LAOS) produced from controlled enzymatic hydrolysis of arabinans from sugar beet are well-known because of their chain-length dependent prebiotic effects. However, it is not clear if these α-(1,5)-linked arabinose oligosaccharides can interact directly with immune system cells, as well as if its degree of polymerization (DP) influences possible biological effects. Four high purity LAOS with distinct DP were tested in macrophage-like cells exposed or not to LPS. Results shown that LAOS interact with Toll-like receptor (TLR) 4 in a chain length-dependent manner. LAOS with higher DP induce stimulatory effects mainly through the TLR4/MyD88 pathway, thereby enhancing the release of tumor necrosis factor alpha (TNF-α), interleukin (IL-) 1β, 6, 12, and chemokines including MCP-1, RANTES, IL-8, and IP-10. Notably, LAOS with lower DP appears to have an opposite effect to those counterparts with higher DP, as they does not induce the secretion of cytokines and chemokines in macrophages-like cells, while also inhibit TLR4-mediated effects induced by both lipopolysaccharide and LAOS with higher DP. These findings provide not only insights into potential biological effects of LAOS, but also reveal that controlled enzymatic hydrolysis of sugar beet arabinans may lead to dietary oligosaccharides with desired biological properties.
Collapse
Affiliation(s)
- Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil.
| | - João Roberto Oliveira do Nascimento
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Food Research Center (FoRC), Research, Innovation and Dissemination Centers, São Paulo Research Foundation (CEPID-FAPESP), São Paulo, Brazil; Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Appetite problem in cancer patients: Pathophysiology, diagnosis, and treatment. Cancer Treat Res Commun 2021; 27:100336. [PMID: 33607591 DOI: 10.1016/j.ctarc.2021.100336] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
AIM This study aims to review the current evidence regarding appetite problem in cancer patients, mainly focusing on pathophysiology, diagnosis, and treatment. INTRODUCTION Anorexia is the common symptom of malnutrition in cancer patients. Recently, the understanding of the pathophysiological mechanism of the appetite problem in cancer patients has been increasing that give impact to rigorous research to find the therapies for improving appetite in cancer patients. DISCUSSION The development of anorexia in cancer patients is a complex process that involves many cytokines, receptors, chemical mediators/substances, hormones, and peptides. Growth and differentiation factor-15 (GDF-15) and toll-like receptor (TLR-4) have recently been found to be implicated in the pathogenesis of anorexia. To help diagnose the appetite problem in cancer patients, several questionnaires can be used, starting from well-known questionnaires such as Functional Assessment of Anorexia Cachexia Therapy (FAACT), Visual Analog Scale (VAS), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ30). Several drugs with different mechanisms of action have been studied to help in improving appetite in cancer patients. New repurposed agents such as anamorelin, mirtazapine, thalidomide, and eicosapentaenoic acid (EPA) have shown a beneficial effect in improving appetite and quality of life in cancer patients, however more phase 3 clinical trial studies is still needed. CONCLUSION The pathophysiology of appetite problems in cancer patients is a complex process that involves many factors. Several drugs that target those factors have been studied, however more phase 3 clinical trial studies are needed to confirm the findings from previous studies.
Collapse
|
27
|
Mielcarska MB, Bossowska-Nowicka M, Toka FN. Cell Surface Expression of Endosomal Toll-Like Receptors-A Necessity or a Superfluous Duplication? Front Immunol 2021; 11:620972. [PMID: 33597952 PMCID: PMC7882679 DOI: 10.3389/fimmu.2020.620972] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/11/2020] [Indexed: 12/28/2022] Open
Abstract
Timely and precise delivery of the endosomal Toll-like receptors (TLRs) to the ligand recognition site is a critical event in mounting an effective antimicrobial immune response, however, the same TLRs should maintain the delicate balance of avoiding recognition of self-nucleic acids. Such sensing is widely known to start from endosomal compartments, but recently enough evidence has accumulated supporting the idea that TLR-mediated signaling pathways originating in the cell membrane may be engaged in various cells due to differential expression and distribution of the endosomal TLRs. Therefore, the presence of endosomal TLRs on the cell surface could benefit the host responses in certain cell types and/or organs. Although not fully understood why, TLR3, TLR7, and TLR9 may occur both in the cell membrane and intracellularly, and it seems that activation of the immune response can be initiated concurrently from these two sites in the cell. Furthermore, various forms of endosomal TLRs may be transported to the cell membrane, indicating that this may be a normal process orchestrated by cysteine proteases-cathepsins. Among the endosomal TLRs, TLR3 belongs to the evolutionary distinct group and engages a different protein adapter in the signaling cascade. The differently glycosylated forms of TLR3 are transported by UNC93B1 to the cell membrane, unlike TLR7, TLR8, and TLR9. The aim of this review is to reconcile various views on the cell surface positioning of endosomal TLRs and add perspective to the implication of such receptor localization on their function, with special attention to TLR3. Cell membrane-localized TLR3, TLR7, and TLR9 may contribute to endosomal TLR-mediated inflammatory signaling pathways. Dissecting this signaling axis may serve to better understand mechanisms influencing endosomal TLR-mediated inflammation, thus determine whether it is a necessity for immune response or simply a circumstantial superfluous duplication, with other consequences on immune response.
Collapse
Affiliation(s)
- Matylda Barbara Mielcarska
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Magdalena Bossowska-Nowicka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Felix Ngosa Toka
- Division of Immunology, Institute of Veterinary Medicine, Department of Preclinical Sciences, Warsaw University of Life Sciences, Warsaw, Poland.,Center for Integrative Mammalian Research, Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| |
Collapse
|
28
|
Zhang S, Zhong R, Han H, Yi B, Yin J, Chen L, Zhang H. Short-Term Lincomycin Exposure Depletion of Murine Microbiota Affects Short-Chain Fatty Acids and Intestinal Morphology and Immunity. Antibiotics (Basel) 2020; 9:antibiotics9120907. [PMID: 33327537 PMCID: PMC7765009 DOI: 10.3390/antibiotics9120907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022] Open
Abstract
Lincomycin, as one of the most commonly used antibiotics, may cause intestinal injury, enteritis and other side effects, but it remains unknown whether these effects are associated with microbial changes and the effects of different doses of lincomycin on infants. Here, 21-day old mice were exposed to 1 and 5 g/L lincomycin to explore the effects of lincomycin on the gut microbiota, metabolites and inflammation. Compared to the control mice, 1 g/L lincomycin exposure decreased the body weight gain of mice (p < 0.05). Both 1 and 5 g/L lincomycin exposure reduced the diversity and microbial composition of mice (p < 0.05). Furthermore, 1 and 5 g/L lincomycin reduced the relative concentrations of acetate, propionate, butyrate, valerate, isobutyric acid and isovaleric acid in the colon chyme of mice (p < 0.05). In addition, 5 g/L lincomycin exposure reduced the villus height, crypt depth, and relative expression of TLR2, TLR3, TLR4, IL-18, TNF-α, and p65 in the jejunum of mice (p < 0.05), while 1 g/L lincomycin exposure reduced the relative expression of TLR2, TLR3, TNF-α, and p65 (p < 0.05). Collectively, these results highlight the depletion effect of short-term lincomycin exposure on microbiota and the further regulatory effect on intestinal morphology and immunosuppression in infant mice.
Collapse
Affiliation(s)
- Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (J.Y.); (L.C.); Tel.: +86-10-62819432 (L.C.)
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
- Correspondence: (J.Y.); (L.C.); Tel.: +86-10-62819432 (L.C.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Z.); (R.Z.); (H.H.); (B.Y.); (H.Z.)
| |
Collapse
|
29
|
Abstract
The hygiene hypothesis posits that the decreased incidence of parasitic infection in developed countries may underlie an increased prevalence of allergic and autoimmune diseases in these countries. As unique inflammation modulator of intracellular parasitism, Trichinella spiralis, or its excretory-secretory (ES) product, shows improved responses to allergies, autoimmune diseases, inflammatory bowel disease, type 1 diabetes, rheumatic arthritis and autoimmune encephalomyelitis by exerting immunomodulatory effects on both innate and adaptive immune cells in animal models. Research has shown that T. spiralis differs from other helminths in manipulation of the host immune response not only by well-known characteristics of its life cycle, but also by its inflammation modulation pathway. How the parasite achieves inflammation modulation has not been fully elucidated yet. This review will generalize the mechanism and focuses on ES immunomodulatory molecules of T. spiralis that may be important for developing new therapeutics for inflammatory disorders.
Collapse
|
30
|
Nasr R, Shamseddine A, Mukherji D, Nassar F, Temraz S. The Crosstalk between Microbiome and Immune Response in Gastric Cancer. Int J Mol Sci 2020; 21:ijms21186586. [PMID: 32916853 PMCID: PMC7556019 DOI: 10.3390/ijms21186586] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the end result of a complex interplay between host genetics, environmental factors, and microbial factors. The link between gut microbiome and gastric cancer has been attributed to persistent activation of the host's immune system by gut microbiota. The end result of this dysregulated interaction between host epithelium and microbes is a state of chronic inflammation. Gut bacteria can promote anti-tumor immune responses through several mechanisms. These include triggering T-cell responses to bacterial antigens that can cross-react with tumor antigens or cause tumor-specific antigen recognition; engagement of pattern recognition receptors that mediate pro-immune or anti-inflammatory effects or via small metabolites that mediate systemic effects on the host. Here we review the role of the gut microbiome including H. pylori and non-H. pylori gastric bacteria, the immune response, and immunotherapy using checkpoint inhibitors. We also review the evidence for cross talk between the gut microbiome and immune response in gastric cancer.
Collapse
Affiliation(s)
- Rihab Nasr
- Department of Anatomy, Cell Biology and Physiology, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon;
| | - Ali Shamseddine
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
| | - Deborah Mukherji
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
| | - Farah Nassar
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
| | - Sally Temraz
- Department of Internal Medicine, Hematology/Oncology Division, American University of Beirut Medical Center, Riad El Solh, Beirut 1107, Lebanon; (A.S.); (D.M.); (F.N.)
- Correspondence: ; Tel.: +961-137-4374
| |
Collapse
|
31
|
Decoding Susceptibility to Respiratory Viral Infections and Asthma Inception in Children. Int J Mol Sci 2020; 21:ijms21176372. [PMID: 32887352 PMCID: PMC7503410 DOI: 10.3390/ijms21176372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/19/2023] Open
Abstract
Human Respiratory Syncytial Virus and Human Rhinovirus are the most frequent cause of respiratory tract infections in infants and children and are major triggers of acute viral bronchiolitis, wheezing and asthma exacerbations. Here, we will discuss the application of the powerful tools of systems biology to decode the molecular mechanisms that determine risk for infection and subsequent asthma. An important conceptual advance is the understanding that the innate immune system is governed by a Bow-tie architecture, where diverse input signals converge onto a few core pathways (e.g., IRF7), which in turn generate diverse outputs that orchestrate effector and regulatory functions. Molecular profiling studies in children with severe exacerbations of asthma/wheeze have identified two major immunological phenotypes. The IRF7hi phenotype is characterised by robust upregulation of antiviral response networks, and the IRF7lo phenotype is characterised by upregulation of markers of TGFβ signalling and type 2 inflammation. Similar phenotypes have been identified in infants and children with severe viral bronchiolitis. Notably, genome-wide association studies supported by experimental validation have identified key pathways that increase susceptibility to HRV infection (ORMDL3 and CHDR3) and modulate TGFβ signalling (GSDMB, TGFBR1, and SMAD3). Moreover, functional deficiencies in the activation of type I and III interferon responses are already evident at birth in children at risk of developing febrile lower respiratory tract infections and persistent asthma/wheeze, suggesting that the trajectory to asthma begins at birth or in utero. Finally, exposure to microbes and their products reprograms innate immunity and provides protection from the development of allergies and asthma in children, and therefore microbial products are logical candidates for the primary prevention of asthma.
Collapse
|
32
|
Birra D, Benucci M, Landolfi L, Merchionda A, Loi G, Amato P, Licata G, Quartuccio L, Triggiani M, Moscato P. COVID 19: a clue from innate immunity. Immunol Res 2020; 68:161-168. [PMID: 32524333 PMCID: PMC7286633 DOI: 10.1007/s12026-020-09137-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent COVID-19 pandemic has had a significant impact on our lives and has rapidly expanded to reach more than 4 million cases worldwide by May 2020. These cases are characterized by extreme variability, from a mild or asymptomatic form lasting for a few days up to severe forms of interstitial pneumonia that may require ventilatory therapy and can lead to patient death.Several hypotheses have been drawn up to understand the role of the interaction between the infectious agent and the immune system in the development of the disease and the most severe forms; the role of the cytokine storm seems important.Innate immunity, as one of the first elements of guest interaction with different infectious agents, could play an important role in the development of the cytokine storm and be responsible for boosting more severe forms. Therefore, it seems important to study also this important arm of the immune system to adequately understand the pathogenesis of the disease. Research on this topic is also needed to develop therapeutic strategies for treatment of this disease.
Collapse
Affiliation(s)
- Domenico Birra
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy.
| | | | - Luigi Landolfi
- UOC of Internal Medicine, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Salerno, Italy
| | - Anna Merchionda
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | - Gabriella Loi
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| | | | - Gaetano Licata
- Dermatology Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Luca Quartuccio
- Clinic of Rheumatology, Department of Medicine (DAME), ASUFC, University of Udine, Udine, Italy
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Fisciano, Italy
| | - Paolo Moscato
- UOC of Internal Medicine - Rheumatology Outpatients Unit, Azienda Ospedaliero-Universitaria San Giovanni di Dio e Ruggi D'Aragona, Via San Leonardo 1, Salerno, Italy
| |
Collapse
|
33
|
Lau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, Cheung TH, McNeish IA, Kwong J. Paclitaxel Induces Immunogenic Cell Death in Ovarian Cancer via TLR4/IKK2/SNARE-Dependent Exocytosis. Cancer Immunol Res 2020; 8:1099-1111. [PMID: 32354736 DOI: 10.1158/2326-6066.cir-19-0616] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Emerging evidence shows that the efficacy of chemotherapeutic drugs is reliant on their capability to induce immunogenic cell death (ICD), thus transforming dying tumor cells into antitumor vaccines. We wanted to uncover potential therapeutic strategies that target ovarian cancer by having a better understanding of the standard-of-care chemotherapy treatment. Here, we showed in ovarian cancer that paclitaxel induced ICD-associated damage-associated molecular patterns (DAMP, such as CALR exposure, ATP secretion, and HMGB1 release) in vitro and elicited significant antitumor responses in tumor vaccination assays in vivo Paclitaxel-induced TLR4 signaling was essential to the release of DAMPs, which led to the activation of NF-κB-mediated CCL2 transcription and IkappaB kinase 2-mediated SNARE-dependent vesicle exocytosis, thus exposing CALR on the cell surface. Paclitaxel induced endoplasmic reticulum stress, which triggered protein kinase R-like ER kinase activation and eukaryotic translation initiation factor 2α phosphorylation independent of TLR4. Paclitaxel chemotherapy induced T-cell infiltration in ovarian tumors of the responsive patients; CALR expression in primary ovarian tumors also correlated with patients' survival and patient response to chemotherapy. These findings suggest that the effectiveness of paclitaxel relied upon the activation of antitumor immunity through ICD via TLR4 and highlighted the importance of CALR expression in cancer cells as an indicator of response to paclitaxel chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
- Tat San Lau
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Loucia Kit Ying Chan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Gene Chi Wai Man
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Chi Hang Wong
- Department of Clinical Oncology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Jacqueline Ho Sze Lee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - So Fan Yim
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Tak Hong Cheung
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Iain A McNeish
- Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Joseph Kwong
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
34
|
Amemiya K, Dankmeyer JL, Bearss JJ, Zeng X, Stonier SW, Soffler C, Cote CK, Welkos SL, Fetterer DP, Chance TB, Trevino SR, Worsham PL, Waag DM. Dysregulation of TNF-α and IFN-γ expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunol 2020; 21:5. [PMID: 32013893 PMCID: PMC6998218 DOI: 10.1186/s12865-020-0333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-γ, IL-1α, IL-1β, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1α, IL-1β, TNF-α, IFN-γ) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-γ, TNF-α, and MIP-1α ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-α and IFN-γ without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | - Jennifer L Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jeremy J Bearss
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Spencer W Stonier
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Carl Soffler
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Susan L Welkos
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - David P Fetterer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Taylor B Chance
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Sylvia R Trevino
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Patricia L Worsham
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - David M Waag
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
35
|
O'Dea MI, Kelly L, McKenna E, Melo AM, Ni Bhroin M, Hurley T, Byrne AT, Colleran G, Vavasseur C, El-Khuffash A, Miletin J, Murphy J, Hickey F, Molloy EJ. Dysregulated Monocyte and Neutrophil Functional Phenotype in Infants With Neonatal Encephalopathy Requiring Therapeutic Hypothermia. Front Pediatr 2020; 8:598724. [PMID: 33659224 PMCID: PMC7917189 DOI: 10.3389/fped.2020.598724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Neonatal encephalopathy (NE) is a significant cause of morbidity and mortality. Persistent inflammation and activation of leukocytes mediate brain injury in NE. The standard of care for NE, therapeutic hypothermia (TH), does not improve outcomes in nearly half of moderate to severe cases, resulting in the need for new adjuvant therapies, and immunomodulation holds promise. Our objective was to explore systemic leukocyte phenotype in infants with NE and healthy controls in response to lipopolysaccharide (LPS). Twenty-four infants with NE (NE II-20; NE III = 4) requiring TH and 17 term neonatal controls were enrolled, and blood samples were analyzed between days 1 and 4 of life at a mean (SD) timepoint of 2.1 (± 0.81) days of postnatal life at the time of the routine phlebotomy. Leukocyte cell surface expression levels of Toll-like receptor 4, NADPH oxidase (NOX2), CD11b, mitochondrial mass, and mitochondrial superoxide production were measured by flow cytometry. Gene expression of TRIF (TIR domain-containing adapter-inducing interferon-β), MyD88 and IRAK4 was measured by reverse transcription-polymerase chain reaction. Infants with NE had significantly lower expression of neutrophil CD11b and NOX2 with LPS stimulation compared to healthy term controls. Mitochondrial mass in neutrophils and monocytes was significantly increased in NE infants with LPS compared to controls, potentially indicating a dysregulated metabolism. Infants with NE had significantly lower IRAK4 at baseline than controls. NE infants display a dysregulated inflammatory response compared to healthy infants, with LPS hyporesponsiveness to CD11b and NOX2 and decreased IRAK4 gene expression. This dysregulated immune profile may indicate an adaptable response to limit hyperinflammation.
Collapse
Affiliation(s)
- Mary Isabel O'Dea
- Department of Paediatrics and Neonatology, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre (NCRC), Crumlin, Ireland
| | - Lynne Kelly
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ellen McKenna
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Ashanty M Melo
- Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Megan Ni Bhroin
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Tim Hurley
- Department of Paediatrics and Child Health, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | - Jan Miletin
- Department of Paediatrics and Neonatology, Coombe Women & Infants University Hospital, Dublin, Ireland
| | - John Murphy
- National Maternity Hospital, Dublin, Ireland
| | - Fionnuala Hickey
- Trinity Health Kidney Centre, Faculty of Health Sciences, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Eleanor J Molloy
- Department of Paediatrics and Neonatology, Coombe Women & Infants University Hospital, Dublin, Ireland.,Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre (NCRC), Crumlin, Ireland.,Our Lady's Children's Hospital (CHI), Crumlin, Ireland.,Department of Paediatrics, Tallaght University Hospital, Dublin, Ireland
| |
Collapse
|
36
|
Kim SY, Heo S, Kim SH, Kwon M, Sung NJ, Ryu AR, Lee MY, Park SA, Youn HS. Suppressive effects of dehydrocostus lactone on the toll-like receptor signaling pathways. Int Immunopharmacol 2019; 78:106075. [PMID: 31812722 DOI: 10.1016/j.intimp.2019.106075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/17/2023]
Abstract
Toll-like receptors (TLRs) are a group of pattern-recognition receptors (PRRs) that are at the core of innate and adaptive immune responses. TLRs activation triggers the activation of two downstream signaling pathways, the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-β (TRIF)-dependent pathways. To evaluate the therapeutic potential of DHL, a natural sesquiterpene lactone derived from Inulahelenium L. and Saussurea lappa, we examined its effect on signal transduction via the TLR signaling pathways. DHL inhibited the activation of nuclear factor-κB (NF-κB) and interferon regulatory factor 3 (IRF3), the representative transcription factors involved in the inflammatory response, induced by TLR agonists, as well as the expression of cyclooxygenase-2 and interferon inducible protein-10. DHL also inhibited the activation of NF-κB and IRF3 induced by the overexpression of downstream signaling components of the TLRs signaling pathways. All results suggest that DHL might become a new therapeutic drug for a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Su Yeon Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sunghye Heo
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Seung Han Kim
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Minji Kwon
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Nam Ji Sung
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - A-Reum Ryu
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Mi-Young Lee
- Department of Medical Science, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Sin-Aye Park
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyung-Sun Youn
- Department of Biomedical Laboratory Science, College of Medical Sciences, SoonChunHyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
37
|
Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp TR, Goodlett DR. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection. Front Immunol 2019; 10:2388. [PMID: 31695691 PMCID: PMC6817561 DOI: 10.3389/fimmu.2019.02388] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
In recent years, a lot of scientific interest has focused on cancer immunotherapy. Although chronic inflammation has been described as one of the hallmarks of cancer, acute inflammation can actually trigger the immune system to fight diseases, including cancer. Toll-like receptor (TLR) ligands have long been used as adjuvants for traditional vaccines and it seems they may also play a role enhancing efficiency of tumor immunotherapy. The aim of this perspective is to discuss the effects of TLR stimulation in cancer, expression of various TLRs in different types of tumors, and finally the role of TLRs in anti-cancer immunity and tumor rejection.
Collapse
Affiliation(s)
- Zuzanna Urban-Wojciuk
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdaǹsk, Gdaǹsk, Poland
| | - Mohd M Khan
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,University of Maryland School of Medicine, Baltimore, MD, United States
| | - Benjamin L Oyler
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robin Fåhraeus
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdaǹsk, Gdaǹsk, Poland.,Department of Medical Biosciences, Umeå University, Umeå, Sweden.,Université Paris 7, INSERM, UMR 1162, Paris, France.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Natalia Marek-Trzonkowska
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdaǹsk, Gdaǹsk, Poland.,Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdaǹsk, Gdaǹsk, Poland
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology (LISB), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdaǹsk, Gdaǹsk, Poland.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia.,Cell Signaling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - David R Goodlett
- International Centre for Cancer Vaccine Science (ICCVS), University of Gdaǹsk, Gdaǹsk, Poland.,Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, MD, United States
| |
Collapse
|
38
|
Shin KK, Park JG, Hong YH, Aziz N, Park SH, Kim S, Kim E, Cho JY. Anti-Inflammatory Effects of Licania macrocarpa Cuatrec Methanol Extract Target Src- and TAK1-Mediated Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:4873870. [PMID: 31611922 PMCID: PMC6757254 DOI: 10.1155/2019/4873870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/13/2019] [Accepted: 08/17/2019] [Indexed: 12/15/2022]
Abstract
In this study, we investigated the anti-inflammatory effects of Licania macrocarpa Cuatrec methanol extract (Lm-ME) in vitro and in vivo and found pharmacological target proteins of Lm-ME in TLR4-mediated inflammatory signaling. This extract reduced NO production and mRNA expression of inflammatory cytokines such as iNOS, COX-2, IL-6, and IL-1β. In the NF-κB- and AP-1-mediated luciferase reporter gene assay, transcription factor activities decreased under cotransfection with MyD88 or TRIF. Phosphorylated protein levels of Src, PI3K, IKKα/β, and IκBα as well as p50 and p65 in the NF-κB signal pathway were downregulated, and phosphorylation of TAK1, MEK1/2, MKK4/7, and MKK3/6 as well as ERK, JNK, and p38 was decreased in the AP-1 signal pathway. Through overexpression of HA-Src and HA-TAK1, respectively, Lm-ME inhibited autophosphorylation of overexpressed proteins and thereby activated fewer downstream signaling molecules. Lm-ME also attenuated stomach ulcers in an HCl/EtOH-induced acute gastritis model mice, and COX-2 mRNA expression and phosphorylated TAK1 levels in gastric tissues were diminished. The flavonoids kaempferol and quercetin were identified in the HPLC analysis of Lm-ME; both are actively anti-inflammatory. Therefore, these results suggest that Lm-ME can be used for anti-inflammatory remedy by targeting Src and TAK1.
Collapse
Affiliation(s)
- Kon Kuk Shin
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Gwang Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Division of Translational Science, Research Institute, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yo Han Hong
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nur Aziz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Hee Park
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sunggyu Kim
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunji Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
39
|
Ayala‐Cuellar AP, Cho J, Choi K. Toll‐like receptors: A pathway alluding to cancer control. J Cell Physiol 2019; 234:21707-21715. [DOI: 10.1002/jcp.28879] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Ana Patricia Ayala‐Cuellar
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine Chungbuk National University Cheongju Chungbuk Republic of Korea
| | - Jaejin Cho
- Department of Dental Regenerative Biotechnology Seoul National University Seoul Republic of Korea
| | - Kyung‐Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine Chungbuk National University Cheongju Chungbuk Republic of Korea
- Institute of Life Science and Bio‐Engineering, TheraCell Bio & Science Cheongju Chungbuk Republic of Korea
| |
Collapse
|
40
|
Phosphatidylinositide 3-Kinase Contributes to the Anti-Inflammatory Effect of Abutilon crispum L. Medik Methanol Extract. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1935902. [PMID: 30598682 PMCID: PMC6287140 DOI: 10.1155/2018/1935902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/18/2018] [Indexed: 01/03/2023]
Abstract
Abutilon crispum L. Medik, better known as bladdermallow, is used as a traditional remedy in India, for its anti-inflammatory effect due to its high content of flavonoids. However, research about its anti-inflammatory effect at the molecular level has not been performed. In this study, we aimed to investigate the mechanism of Abutilon crispum methanol extract (Ac-ME) in inhibiting the inflammatory response by conducting several experiments including cellular and molecular assays. Ac-ME inhibited the production of nitric oxide (NO) in RAW264.7 cells during treatment of LPS and Pam3CSK4 without exhibiting cytotoxicity. Ac-ME also suppressed the mRNA expression of inducible nitric oxide (iNOS) and proinflammatory cytokines such as interleukin (IL)-1β and IL-6. Moreover, Ac-ME was shown to inhibit the NF-κB pathway, according to the luciferase reporter gene assay performed with a NF-κB-Luc construct containing NF-κB-binding promoter regions under MyD88 and TRIF overexpression conditions, and immunoblotting analysis by determining the phospho-form levels of IκBα, IKKα/β, and p85, a regulatory domain of phosphatidylinositide 3-kinase (PI3K). Finally, we observed that the level of phospho-p85 induced by the overexpression of spleen tyrosine kinase (Syk) and Src was decreased by Ac-ME at 200 μg/ml. Therefore, these results suggest that Ac-ME has an anti-inflammatory effect by targeting PI3K in the NF-κB signaling pathway.
Collapse
|
41
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
42
|
Yen IC, Shi LS, Chung MC, Ahmetaj-Shala B, Chang TC, Lee SY. Antrolone, a Novel Benzoid Derived from Antrodia cinnamomea, Inhibits the LPS-Induced Inflammatory Response in RAW264.7 Macrophage Cells by Balancing the NF-κB and Nrf2 Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1297-1313. [DOI: 10.1142/s0192415x18500684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antrodia cinnamomea, a medicinal mushroom, has previously demonstrated anti-inflammatory activity, although the specific compound responsible for the effect remains unclear. The present study was designed to investigate the anti-inflammatory property of antrolone, a novel benzoid derived from A. cinnamomea mycelium, and to clarify the underlying mechanisms of action. To this end, murine macrophage RAW264.7 cells were treated with antrolone (0.1–30[Formula: see text][Formula: see text]M) 30[Formula: see text]min prior to stimulation with lipopolysaccharides (LPS, 0.1[Formula: see text][Formula: see text]g/ml) for 24[Formula: see text]h. Cell viability, nitric oxide (NO) and prostaglandin E2 (PGE2) production, levels of pro-inflammatory cytokines and chemokines, and the signaling pathways involved in the inflammatory cascades were then investigated. Our results show that antrolone significantly decreased LPS-induced NO, PGE2, pro-inflammatory cytokine, and keratinocyte chemoattractant CXCL1 (KC) production and reduced levels of the proteins inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). These effects were independent of the effect of antrolone on macrophage cytotoxicity. Moreover, antrolone significantly inhibited the activation of the NF[Formula: see text]B, MAPK, and AKT pathways, while it increased nuclear factor erythroid-2-related factor (Nrf2) and heme oxygenase-1 (HO-1) levels. Our findings suggest that antrolone exhibits potent anti-inflammatory activity and may, therefore, be a lead compound for the development of an anti-inflammatory drug.
Collapse
Affiliation(s)
- I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Min-Chieh Chung
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | | | - Tsu-Chung Chang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
43
|
Mullane K, Williams M. Alzheimer's disease (AD) therapeutics - 2: Beyond amyloid - Re-defining AD and its causality to discover effective therapeutics. Biochem Pharmacol 2018; 158:376-401. [PMID: 30273552 DOI: 10.1016/j.bcp.2018.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/25/2022]
Abstract
Compounds targeted for the treatment of Alzheimer's Disease (AD) have consistently failed in clinical trials despite evidence for target engagement and pharmacodynamic activity. This questions the relevance of compounds acting at current AD drug targets - the majority of which reflect the seminal amyloid and, to a far lesser extent, tau hypotheses - and limitations in understanding AD causality as distinct from general dementia. The preeminence of amyloid and tau led to many alternative approaches to AD therapeutics being ignored or underfunded to the extent that their causal versus contributory role in AD remains unknown. These include: neuronal network dysfunction; cerebrovascular disease; chronic, local or systemic inflammation involving the innate immune system; infectious agents including herpes virus and prion proteins; neurotoxic protein accumulation associated with sleep deprivation, circadian rhythm and glymphatic/meningeal lymphatic system and blood-brain-barrier dysfunction; metabolic related diseases including diabetes, obesity hypertension and hypocholesterolemia; mitochondrial dysfunction and environmental factors. As AD has become increasingly recognized as a multifactorial syndrome, a single treatment paradigm is unlikely to work in all patients. However, the biomarkers required to diagnose patients and parse them into mechanism/disease-based sub-groups remain rudimentary and unvalidated as do non-amyloid, non-tau translational animal models. The social and economic impact of AD is also discussed in the context of new FDA regulatory draft guidance and a proposed biomarker-based Framework (re)-defining AD and its stages as part of the larger landscape of treating dementia via the 2013 G8 initiative to identify a disease-modifying therapy for dementia/AD by 2025.
Collapse
Affiliation(s)
- Kevin Mullane
- Gladstone Institutes, San Francisco, CA, United States
| | - Michael Williams
- Department of Biological Chemistry and Pharmacology, College of Medicine, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
44
|
Arndt L, Dokas J, Gericke M, Kutzner CE, Müller S, Jeromin F, Thiery J, Burkhardt R. Tribbles homolog 1 deficiency modulates function and polarization of murine bone marrow-derived macrophages. J Biol Chem 2018; 293:11527-11536. [PMID: 29899113 DOI: 10.1074/jbc.ra117.000703] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 05/23/2018] [Indexed: 01/12/2023] Open
Abstract
Macrophages are essential for innate immunity and inflammatory responses and differentiate into various functional phenotypes. Tribbles homolog 1 (Trib1), a member of the mammalian Tribbles homolog pseudokinase family, has been implicated in regulation of cell differentiation, proliferation, and metabolism, but its role in macrophage biology has not been fully elucidated. Here, we investigated the consequences of Trib1 deficiency on macrophage functions and M1/M2 polarization. Bone marrow-derived macrophages (BMDMs) from Trib1-deficient (Trib1-/-) mice exhibited elevated phagocytic capacity, correlating with up-regulation of several scavenger receptors. Concomitantly, uptake of modified low-density lipoprotein was increased in Trib1-/- BMDMs. Trib1-/- macrophages also exhibited diminished migration in the presence of the chemokine MCP-1, associated with reduced expression of the MCP-1 receptor Ccr2 Furthermore, Trib1 deficiency attenuated the response of BMDMs to both M1 and M2 stimuli; induction of the M1-marker genes Il6, Il1b, and Nos2 upon LPS/IFNγ stimulation and of the M2-marker genes Cd206, Fizz1, and Arg1 upon IL-4 stimulation was reduced. Functionally, Trib1 deficiency decreased secretion of proinflammatory cytokines (IL-6, TNFα, IL-1β, and CXCL1) and reduced nitric oxide and reactive oxygen species production in M1-polarized macrophages. Supporting the attenuated M2 phenotype, IL-4-stimulated Trib1-/- macrophages secreted less IL-10 and TGFβ. Mechanistically, Trib1-/- BMDMs displayed lower levels of Janus kinase 1 (JAK1), resulting in reduced activation of LPS/IFNγ-mediated STAT1 signaling. Likewise, decreased levels of JAK1 along with lower activation of STAT6 and STAT3 were observed in M2-polarized Trib1-/- BMDMs. Our findings suggest that Trib1 extensively controls macrophage M1/M2 polarization via the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Lilli Arndt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Janine Dokas
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany
| | - Carl Elias Kutzner
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Silvana Müller
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Franziska Jeromin
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany
| | - Ralph Burkhardt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany; LIFE-Leipzig Research Center for Civilization Diseases, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
45
|
Plasma cell differentiation is controlled by multiple cell division-coupled epigenetic programs. Nat Commun 2018; 9:1698. [PMID: 29703886 PMCID: PMC5923265 DOI: 10.1038/s41467-018-04125-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
The genomic loci associated with B cell differentiation that are subject to transcriptional and epigenetic regulation in vivo are not well defined, leaving a gap in our understanding of the development of humoral immune responses. Here, using an in vivo T cell independent B cell differentiation model, we define a cellular division-dependent cis-regulatory element road map using ATAC-seq. Chromatin accessibility changes correlate with gene expression and reveal the reprogramming of transcriptional networks and the genes they regulate at specific cell divisions. A subset of genes in naive B cells display accessible promoters in the absence of transcription and are marked by H3K27me3, an EZH2 catalyzed repressive modification. Such genes encode regulators of cell division and metabolism and include the essential plasma cell transcription factor Blimp-1. Chemical inhibition of EZH2 results in enhanced plasma cell formation, increased expression of the above gene set, and premature expression of Blimp-1 ex vivo. These data provide insights into cell-division coupled epigenetic and transcriptional processes that program plasma cells. During B cell differentiation, the role of different genomic loci in transcriptional and epigenetic regulation in vivo is not well defined. Here the authors use an in vivo B cell differentiation model to map cellular division-dependent cis-regulatory element road map with ATAC-seq.
Collapse
|
46
|
Wang L, Wang M, Li S, Wu H, Shen Q, Zhang S, Fang L, Liu R. Nebulized lidocaine ameliorates allergic airway inflammation via downregulation of TLR2. Mol Immunol 2018; 97:94-100. [PMID: 29609129 DOI: 10.1016/j.molimm.2018.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 01/15/2023]
Abstract
Nebulized lidocaine has been suggested to be beneficial in asthma therapy, but the underlying mechanisms are little known. We aimed to investigate whether Toll-like receptor (TLR) 2 was involved in the protective effect of lidocaine on allergic airway inflammation. Female C57BL/6 mice were sensitized and challenged with ovalbumin (OVA). Meanwhile, some of the mice were treated with TLR2 agonist (Pam3CSK4, 100 μg) intraperitoneally in combination with OVA on day 0. Just after allergen provocation, mice were treated with inhaled lidocaine or vehicle for 30 min. In this model, we found that lidocaine markedly attenuated OVA-evoked airway inflammation, leukocyte recruitment and mucus production. Moreover, lidocaine abrogated the increased concentrations of T cytokines and TNF-α in bronchoalveolar lavage fluid (BALF) of allergic mice, as well as reducing the expression of phosphorylated nuclear factor (P-NF)-κBp65 and the NOD-like receptor pyridine containing 3 (NLRP3), which are important for the production of pro-inflammatory cytokines. In addition, our study showed that lidocaine dramatically decreased OVA-induced increased expression of TLR2 in the lung tissues. Furthermore, activation of TLR2 aggravated OVA-challenged airway inflammation, meanwhile, it also elevated OVA-induced expression of P-NF-κBp65 and NLRP3 in the lungs. However, lidocaine effectively inhibited airway inflammation and counteracted the expression of P-NF-κBp65 and NLRP3 in allergic mice pretreated with Pam3CSK4. Taken together, the present study demonstrated that lidocaine prevented allergic airway inflammation via TLR2 in an OVA-induced murine allergic airway inflammation model. TLR2/NF-κB/NLRP3 pathway may serve as a promising therapeutic strategy for allergic airway inflammation.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China; Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Muzi Wang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Shuai Li
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Huimei Wu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Qiying Shen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Shihai Zhang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Lei Fang
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China
| | - Rongyu Liu
- Department of Pulmonary, Anhui Geriatric Institute, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, Anhui 230022, PR China.
| |
Collapse
|
47
|
Anti-Inflammatory Effect of Lupinalbin A Isolated from Apios americana on Lipopolysaccharide-Treated RAW264.7 Cells. Molecules 2018; 23:molecules23030583. [PMID: 29509670 PMCID: PMC6017804 DOI: 10.3390/molecules23030583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 12/02/2022] Open
Abstract
Apios americana, a leguminous plant, is used as food in some countries. Although the biological activities of Apios extract have been reported, there have been no reports about the anti-inflammatory mechanism of lupinalbin A on the RAW264.7 cells. In this study, we investigated the anti-inflammatory effect of A. americana lupinalbin A on lipopolysaccharide (LPS)-treated RAW264.7 cells. Lupinalbin A significantly inhibited nitric oxide production and inducible nitric oxide synthase expression in LPS-treated RAW264.7 cells. The expression of cytokines, including interleukin-6, tumor necrosis factor-α, and chemokine of monocyte chemoattractant protein, was reduced under lupinalbin A exposure in LPS-treated RAW264.7 cells. In addition, lupinalbin A significantly decreased LPS-induced interferon (IFN)-β production and STAT1 protein levels in RAW264.7 cells. Taken together, these results suggest that A. americana lupinalbin A exerts anti-inflammatory effects via the inhibition of pro-inflammatory cytokines and blocking of IFN-β/STAT1 pathway activation.
Collapse
|
48
|
Morale MG, da Silva Abjaude W, Silva AM, Villa LL, Boccardo E. HPV-transformed cells exhibit altered HMGB1-TLR4/MyD88-SARM1 signaling axis. Sci Rep 2018; 8:3476. [PMID: 29472602 PMCID: PMC5823898 DOI: 10.1038/s41598-018-21416-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/30/2018] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer is one of the leading causes of cancer death in women worldwide. Persistent infection with high-risk human papillomavirus (HPV) types is the main risk factor for the development of cervical cancer precursor lesions. HPV persistence and tumor development is usually characterized by innate immune system evasion. Alterations in Toll-like receptors (TLR) expression and activation may be important for the control of HPV infections and could play a role in the progression of lesions and tumors. In the present study, we analyzed the mRNA expression of 84 genes involved in TLR signaling pathways. We observed that 80% of the differentially expressed genes were downregulated in cervical cancer cell lines relative to normal keratinocytes. Major alterations were detected in genes coding for several proteins of the TLR signaling axis, including TLR adaptor molecules and genes associated with MAPK pathway, NFκB activation and antiviral immune response. In particular, we observed major alterations in the HMGB1-TLR4 signaling axis. Functional analysis also showed that HMGB1 expression is important for the proliferative and tumorigenic potential of cervical cancer cell lines. Taken together, these data indicate that alterations in TLR signaling pathways may play a role in the oncogenic potential of cells expressing HPV oncogenes.
Collapse
Affiliation(s)
- Mirian Galliote Morale
- Department of Biochemistry, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil.,Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Walason da Silva Abjaude
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Aline Montenegro Silva
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- Centre of Translational Oncology, Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil.,Department of Radiology and Oncology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
49
|
Ding X, Jin S, Tong Y, Jiang X, Chen Z, Mei S, Zhang L, Billiar TR, Li Q. TLR4 signaling induces TLR3 up-regulation in alveolar macrophages during acute lung injury. Sci Rep 2017; 7:34278. [PMID: 28198368 PMCID: PMC5309825 DOI: 10.1038/srep34278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/08/2016] [Indexed: 01/05/2023] Open
Abstract
Acute lung injury is a life-threatening inflammatory response caused by severe infection. Toll-like receptors in alveolar macrophages (AMΦ) recognize the molecular constituents of pathogens and activate the host's innate immune responses. Numerous studies have documented the importance of TLR-TLR cross talk, but few studies have specifically addressed the relationship between TLR4 and TLR3. We explored a novel mechanism of TLR3 up-regulation that is induced by LPS-TLR4 signaling in a dose- and time-dependent manner in AMΦ from C57BL/6 mice, while the LPS-induced TLR3 expression was significantly reduced in TLR4-/- and Myd88-/- mice and following pretreatment with a NF-κB inhibitor. The enhanced TLR3 up-regulation in AMΦ augmented the expression of cytokines and chemokines in response to sequential challenges with LPS and Poly I:C, a TLR3 ligand, which was physiologically associated with amplified AMΦ-induced PMN migration into lung alveoli. Our study demonstrates that the synergistic effect between TLR4 and TLR3 in macrophages is an important determinant in acute lung injury and, more importantly, that TLR3 up-regulation is dependent on TLR4-MyD88-NF-κB signaling. These results raise the possibility that bacterial infections can induce sensitivity to viral infections, which may have important implications for the therapeutic manipulation of the innate immune system.
Collapse
Affiliation(s)
- Xibing Ding
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuqing Jin
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Tong
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xi Jiang
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhixia Chen
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuya Mei
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liming Zhang
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213, USA
| | - Quan Li
- Department of Anesthesiology, East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
50
|
Duran A, Valero N, Mosquera J, Delgado L, Alvarez-Mon M, Torres M. Role of the myeloid differentiation primary response (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF) pathways in dengue. Life Sci 2016; 162:33-40. [PMID: 27575706 DOI: 10.1016/j.lfs.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 08/16/2016] [Accepted: 08/25/2016] [Indexed: 12/29/2022]
Abstract
AIMS Dengue disease courses with high viremia titers and high cytokine production suggesting viral replication and active immune response that could be related to viral evasion. One of the main targets of dengue virus (DENV) is monocyte/macrophage cells; however, little information regarding viral evasive mechanisms and pathway activation in monocytes infected by DENV is available. The aim of this study was to determine the role of myeloid differentiation primary response (MyD88), TIR-domain-containing adapter- inducing interferon-β (TRIF) and NF-kB pathways in viral replication and cytokine production in human monocyte cultures infected by DENV2. MAIN METHODS In this regard Pepinh- TRIF, Pepinh- MYD and pyrrolidine dithiocarbamate (PDTC) were used to inhibit TRIF, MYD88 and NF-kB pathways. Cytokine production was measured by ELISA. KEY FINDINGS Increased DENV replication and IFNα/β, TNF-α, IL-12 and IL-18 in infected cultures at 24h were found. All of these parameters were significantly decreased after TRIF, MYD88 or NF-kB inhibition. Association analysis between viral replication and cytokine production showed high significant positive correlation in TRIF and MYD88 treated cultures. SIGNIFICANCE This study shows that DENV2 induces activation of innate-immune response and transcription factors to drive viral expression and replication in the face of pro-inflammatory antiviral responses in vitro.
Collapse
Affiliation(s)
- Anyelo Duran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Cátedra de Bioquímica General, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología
| | - Nereida Valero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela; Sociedad Venezolana de Microbiología.
| | - Jesus Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Lineth Delgado
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Melchor Alvarez-Mon
- Servicio de Enfermedades del Sistema Inmune y Oncología, Hospital Universitario "Príncipe de Asturias", Universidad de Alcalá, Madrid, Spain
| | - Mariana Torres
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|