1
|
Kouyate TS, Nguyen AN, Plotkin AL, Ford R, Idoko OT, Odumade OA, Masiria G, Jude J, Diray-Arce J, McEnaney K, Ozonoff A, Steen H, Kollmann TR, Richmond PC, van den Biggelaar AHJ, Kampmann B, Pomat W, Levy O, Smolen KK. Plasma adenosine deaminase-1 and -2 activities are lower at birth in Papua New Guinea than in The Gambia but converge over the first weeks of life. Front Immunol 2024; 15:1425349. [PMID: 39386208 PMCID: PMC11461337 DOI: 10.3389/fimmu.2024.1425349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Dynamic cellular and molecular adaptations in early life significantly impact health and disease. Upon birth, newborns are immediately challenged by their environment, placing urgent demands on the infant immune system. Adenosine deaminases (ADAs) are enzymatic immune modulators present in two isoforms - ADA-1 and ADA-2. Infants exhibit low ADA activity, resulting in high plasma adenosine concentrations and a consequent anti-inflammatory/anti-Th1 bias. While longitudinal studies of plasma ADA have been conducted in infants in The Gambia (GAM), little is known regarding ADA trajectories in other parts of the world. Methods Herein, we characterized plasma ADA activity in an infant cohort in Papua New Guinea (PNG; n=83) and compared to ontogeny of ADA activity in a larger cohort in GAM (n=646). Heparinized peripheral blood samples were collected at day of life (DOL) 0, DOL7, DOL30, and DOL128. Plasma ADA-1, ADA-2, and total ADA activities were measured by chromogenic assay. Results Compared to GAM infants, PNG infants had significantly lower ADA-1 (0.9-fold), ADA-2 (0.42-fold), and total ADA (0.84-fold) activities at birth which converged by DOL30. Discussion Overall, discovery of a distinct baseline and a consistent pattern of increasing plasma ADA activity in early life in two genetically and geographically distinct populations validates and extends previous findings on the robustness of early life immune ontogeny.
Collapse
Affiliation(s)
- Thomas S Kouyate
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Athena N Nguyen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Alec L Plotkin
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Rebeca Ford
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Olubukola T Idoko
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oludare A Odumade
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children's Hospital, Boston, MA, United States
| | - Geraldine Masiria
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joe Jude
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Kerry McEnaney
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Department of Pathology, Boston Children's Hospital, Boston, MA, United States
| | | | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
- Division of Pediatrics, School of Medicine, University of Western Australia, Perth Children's Hospital, Perth, WA, Australia
| | - Anita H J van den Biggelaar
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- Charité Centre for Global Health and Institute for International Health, Charité - Universitätsmedizin, Berlin, Germany
| | - William Pomat
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology & Harvard, Cambridge, MA, United States
| | - Kinga K Smolen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Poblano-Pérez LI, Monroy-García A, Fragoso-González G, Mora-García MDL, Castell-Rodríguez A, Mayani H, Álvarez-Pérez MA, Pérez-Tapia SM, Macías-Palacios Z, Vallejo-Castillo L, Montesinos JJ. Mesenchymal Stem/Stromal Cells Derived from Dental Tissues Mediate the Immunoregulation of T Cells through the Purinergic Pathway. Int J Mol Sci 2024; 25:9578. [PMID: 39273524 PMCID: PMC11395442 DOI: 10.3390/ijms25179578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Monroy-García
- Immunology and Cancer Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Gladis Fragoso-González
- Institute of Biomedical Research, Department of Immunology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - María de Lourdes Mora-García
- Immunobiology Laboratory, Cell Differentiation and Cancer Unit, Facultad de Estudios Superiores-Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico
| | - Andrés Castell-Rodríguez
- Department of Cellular and Tissue Biology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Héctor Mayani
- Hematopoietic Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Marco Antonio Álvarez-Pérez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sonia Mayra Pérez-Tapia
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Department of Immunology, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Zaira Macías-Palacios
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Vallejo-Castillo
- Research and Development in Biotherapeutic Unit (UDIBI), National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- National Laboratory for Specialized Services of Investigation, Development and Innovation (I+D+i) for Pharma Chemicals and Biotechnological Products (LANSEIDI-FarBiotec-CONACyT), Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, Centro Médico Nacional SXXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| |
Collapse
|
3
|
Ivarola P, Urdinez L, Oleastro M, Labonia D, Roizen M, Caraballo R, Tenembaum S. A Clinical Neurological Approach to the Child With Adenosine Deaminase Deficiency. Pediatr Neurol 2024; 158:49-56. [PMID: 38959649 DOI: 10.1016/j.pediatrneurol.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Severe combined immunodeficiency secondary to adenosine deaminase deficiency is rare. The deficiency of this enzyme results in the accumulation of substrates in the tissues, including the brain. Clinical signs of neurological involvement may include seizures, neurodevelopmental disorders, hypotonia, and sensorineural hearing loss. Hematopoietic stem cell transplantation corrects the failure of the immune system but not the neurological involvement. OBJECTIVES To describe the spectrum of neurological complications identified in a series of children with severe combined immunodeficiency due to adenosine deaminase deficiency. Additionally, we propose a neurological approach including electrophysiological, radiological, and neurocognitive studies to address this group of children in an efficient and timely manner. METHODS A descriptive, observational, retro-, and prospective analysis of patients with a confirmed immunological diagnosis seen between 1996 and 2021 and referred to the Department of Neurology for neurological evaluation was conducted. RESULTS Ten patients met the inclusion criteria. The median age at diagnosis was 4 months (range, 1-36 months). All patients had neurodevelopmental delay with hypotonia in six, language delay in three, sensorineural hearing loss in four, and spastic paraparesis in one patient. Two children developed an epileptic syndrome, consisting of generalized epilepsy in one and focal epilepsy in the other. Neuroimaging showed brain calcifications in the basal ganglia and/or centrum semiovale in four patients and enlarged subarachnoid spaces in two other patients. CONCLUSION In this pediatric series, the rate of neurological involvement associated with abnormalities on neuroimaging was high. Although this involvement could be related to accumulation of adenosine metabolites in the central nervous system, the possibility of associated chronic infections should be ruled out. Given the neurological manifestations, it is important to involve the pediatric neurologist in the multidisciplinary follow-up team.
Collapse
Affiliation(s)
- Paula Ivarola
- Department of Neurology, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina.
| | - Luciano Urdinez
- Department of Immunology and Rheumatology, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Matias Oleastro
- Department of Immunology and Rheumatology, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Danila Labonia
- Unit of Bone Marrow Transplantation, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Mariana Roizen
- Unit of Bone Marrow Transplantation, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Roberto Caraballo
- Department of Neurology, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| | - Silvia Tenembaum
- Department of Neurology, Hospital Nacional de Pediatría Prof. Dr. Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
4
|
Hacioglu C, Kar F, Sahin MC. Neurochemical Research of LOXBlock-1 and ZnSO 4 against Neurodegenerative Damage Induced by Amyloid Beta(1-42). Biol Trace Elem Res 2024; 202:3204-3214. [PMID: 37872362 DOI: 10.1007/s12011-023-03908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 10/25/2023]
Abstract
Synaptosomes offer an intriguing ex vivo model system for investigating the molecular mechanisms of neurodegenerative processes. Lipoxygenases significantly affect the course of neurodegenerative diseases. Homeostasis of trace elements such as zinc is necessary for the continuity of brain functions. In this study, we purpose to determine whether LOXBlock-1, a 12/15 lipoxygenase inhibitor, and zinc sulfate (ZnSO4) provide any biochemical protection during neurodegenerative damage in synaptosomes induced by amyloid beta 1-42 (Aβ1-42). In this study, animals (30 Wistar Albino male rats 30) were divided into 5 groups (6 animals in each group): Control, 10µM Aβ1-42, 10µM Aβ1-42+25mM LOXBlock-1, 10µM Aβ1-42+10µM ZnSO4, and 10µM Aβ1-42+25mM LOXBlock-1+10µM ZnSO4. Synaptosomes were isolated from the rat cerebral cortex. Following, 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, malondialdehyde (MDA) levels, adenosine deaminase (ADA) levels, reduced-glutathione (GSH) levels, neuronal nitric oxide synthase (nNOS) levels, acetylcholinesterase (AChE) activity, catalase (CAT) activity, and 8-OHdG levels in synaptosomes were detected according to the ELISA method. ADA and AChE expression and protein levels were analyzed. MDA, nNOS, AChE, and 8-OHdG levels in synaptosomes treated with Aβ1-42 resulted in an increase, while there was a decrease in ADA, GSH, and CAT levels (p<0.001 vs. control). Conversely, LOXBlock-1 and ZnSO4 treatments in synaptosomes treated with Aβ1-42 decreased MDA, nNOS, AChE, and 8-OHdG levels, while ADA, GSH, and CAT levels increased. Moreover, the most effective improvement was seen in the co-treatment group of LOXBlock-1 and ZnSO4. Our data showed that LOXBlock-1 and ZnSO4 co-treatment may protect against Aβ1-42 exposure in rat brain synaptosomes.
Collapse
Affiliation(s)
- Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey.
- Department of Medical Biochemistry, Faculty of Medicine, Duzce University, Duzce, Turkey.
| | - Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Meryem Cansu Sahin
- Department of Medical Services and Techniques, Medical Imaging Techniques Program, Uşak University, Uşak, Turkey
| |
Collapse
|
5
|
Makhe PA, Vagga AA. Comparison of Adenosine Deaminase, C-reactive Protein, Uric Acid, and Rheumatoid Arthritis Levels in Patients With Rheumatoid Arthritis and Those Without Arthritis: A Review. Cureus 2024; 16:e57433. [PMID: 38699124 PMCID: PMC11063568 DOI: 10.7759/cureus.57433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
One of the hallmarks of rheumatoid arthritis (RA) is inflammation of the synovial membrane, and oxidative stress is a mediator of tissue damage. RA is characterized by persistent joint inflammation, which leads to pain, edema, and finally joint destruction. Numerous biochemical markers can cause RA because of their impact on systemic and local inflammation. Numerous biomarkers have been investigated for their potential application in the diagnosis and prognosis of RA. In this review article, we evaluate the role of RA factor or rheumatoid factor (RF), uric acid, C-reactive protein (CRP), and adenosine deaminases (ADAs) as biomarkers in patients with and without arthritis. Studies that analyze and compare the levels of uric acid, ADAs, CRP, and RF in patients with and without arthritis. Although recent research has shown higher levels of uric acid, ADA, CRP, and RA in patients with RF compared to healthy controls, these findings may indicate a role for these markers in reflecting inflammation and disease activity. In the metabolism of purines, the enzyme ADA is involved. The liver produces CRP, which is then released into the bloodstream. In inflammatory situations, there is a rise in CRP levels. This biomarker is frequently used for systemic inflammatory assessment in RA. The pathophysiology and severity of RA have both been connected to uric acid, which has historically been linked to gout. One particular biomarker for RA is RF. When compared to a healthy control group of individuals with arthritis, this review provides valuable insights into the diagnostic and prognostic use of uric acid, CRP, ADAs, and RF.
Collapse
Affiliation(s)
- Priyanka A Makhe
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anjali A Vagga
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
7
|
Çelik FÇ, Soyöz Ö, Bölük SÖ, Taşkırdı İ, Hacı İA, Kaya MŞ, Demir A, Uzunoğlu B, Yıldırım AT, Onay H, Gözmen S, Gülez N, Genel F. Successful management of delayed-onset adenosine deaminase deficiency with novel mutation. Per Med 2024; 21:11-19. [PMID: 38088159 DOI: 10.2217/pme-2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A 4-year-old boy presented with acute-onset autoimmune cytopenia with severe, persistent lymphopenia, autoimmune thyroiditis, elevated IgE and glucose 6-phosphate dehydrogenase enzyme deficiency. In immunologic evaluation, lower T, B and natural killer cells and higher levels of adenosine deaminase (ADA) metabolites were observed. The compound heterozygous novel ADA gene mutations causing ADA deficiency were detected. Successful immunologic and metabolic cure was achieved with enzyme replacement therapy, followed by reduced intensity conditioning hematopoietic stem cell transplantation from a matched unrelated donor. An interesting aspect of this patient is the detection of novel compound heterozygous mutations without consanguinity and a secondary outcome is the recovery of glucose 6-phosphate dehydrogenase deficiency after hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Figen Çelebi Çelik
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Özgen Soyöz
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Selime Özen Bölük
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - İlke Taşkırdı
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - İdil Akay Hacı
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Mehmet Şirin Kaya
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Ayça Demir
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Berna Uzunoğlu
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Ayşen Türedi Yıldırım
- Celal Bayar University Faculty of Medicine, Department of Pediatrics, Department of Pediatric Hematology, Manisa, Turkey
| | | | - Salih Gözmen
- Katip Celebi University Faculty of Medicine, Department of Pediatric Hematology, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital Hematopoietic Stem Cell Transplantation Unit, İzmir, Turkey
| | - Nesrin Gülez
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| | - Ferah Genel
- University of Health Sciences, Izmir Faculty of Medicine, Dr. Behcet Uz Pediatric Diseases & Surgery Training & Research Hospital, Department of Pediatric Allergy & Immunology, Izmir, Turkey
| |
Collapse
|
8
|
Charles C, Lloyd SM, Piyarathna DWB, Gohlke J, Rasaily U, Putluri V, Simons BW, Zaslavsky A, Nallandhighal S, Michailidis G, Palanisamy N, Navone N, Jones JA, Ittmann MM, Putluri N, Rowley DR, Salami SS, Palapattu GS, Sreekumar A. Role of adenosine deaminase in prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:594-612. [PMID: 38148936 PMCID: PMC10749386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023]
Abstract
Prostate cancer (PCa) is the second most common cancer and constitutes about 14.7% of total cancer cases. PCa is highly prevalent and more aggressive in African-American (AA) men than in European-American (EA) men. PCa tends to be highly heterogeneous, and its complex biology is not fully understood. We use metabolomics to better understand the mechanisms behind PCa progression and disparities in its clinical outcome. Adenosine deaminase (ADA) is a key enzyme in the purine metabolic pathway; it was found to be upregulated in PCa and is associated with higher-grade PCa and poor disease-free survival. The inosine-to-adenosine ratio, which is a surrogate for ADA activity was high in PCa patient urine and higher in AA PCa compared to EA PCa. To understand the significance of high ADA in PCa, we established ADA overexpression models and performed various in vitro and in vivo studies. Our studies have revealed that an acute increase in ADA expression during later stages of tumor development enhances in vivo growth in multiple pre-clinical models. Further analysis revealed that mTOR signaling activation could be associated with this tumor growth. Chronic ADA overexpression shows alterations in the cells' adhesion machinery and a decrease in cells' ability to adhere to the extracellular matrix in vitro. Losing cell-matrix interaction is critical for metastatic dissemination which suggests that ADA could potentially be involved in promoting metastasis. This is supported by the association of higher ADA expression with higher-grade tumors and poor patient survival. Overall, our findings suggest that increased ADA expression may promote PCa progression, specifically tumor growth and metastatic dissemination.
Collapse
Affiliation(s)
- Christy Charles
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX 77030, USA
| | - Stacy M Lloyd
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
| | | | | | - Uttam Rasaily
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
| | - Vasanta Putluri
- Advanced Technology Core, Baylor College of MedicineHouston, TX 77030, USA
| | - Brian W Simons
- Center for Comparative Medicine, Baylor College of MedicineHouston, TX 77030, USA
| | | | | | - George Michailidis
- Statistics and Data Science, University of CaliforniaLos Angeles, CA 90095, USA
| | | | - Nora Navone
- Department of Genitourinary Medical Oncology - Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jeffrey A Jones
- Michael E. DeBakey Veteran Affairs Medical CenterHouston, TX 77030, USA
- Department of Urology, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| | - Michael M Ittmann
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of MedicineHouston, TX 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Advanced Technology Core, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| | - Simpa S Salami
- Department of Urology, University of MichiganAnn Arbor, MI 48109, USA
| | | | - Arun Sreekumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of MedicineHouston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of MedicineHouston, TX 77030, USA
| |
Collapse
|
9
|
Xu R, Peng J, Ma Z, Xie K, Li M, Wang Q, Guo X, Nan N, Wang S, Li J, Xu J, Gong M. Prolonged administration of total glucosides of paeony improves intestinal immune imbalance and epithelial barrier damage in collagen-induced arthritis rats based on metabolomics-network pharmacology integrated analysis. Front Pharmacol 2023; 14:1187797. [PMID: 38026929 PMCID: PMC10679728 DOI: 10.3389/fphar.2023.1187797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and joint damage with complex pathological mechanisms. In recent years, many studies have shown that the dysregulation of intestinal mucosal immunity and the damage of the epithelial barrier are closely related to the occurrence of RA. Total glucosides of paeony (TGP) have been used clinically for the treatment of RA in China for decades, while the pharmacological mechanism is still uncertain. The purpose of this study was to investigate the regulatory effect and mechanism of TGP on intestinal immunity and epithelial barrier in RA model rats. The results showed that TGP alleviated immune hyperfunction by regulating the ratio of CD3+, CD4+ and CD8+ in different lymphocyte synthesis sites of the small intestine, including Peyer's patches (PPs), intraepithelial lymphocytes (IELs), and lamina propria lymphocytes (LPLs). Specially, TGP first exhibited immunomodulatory effects on sites close to the intestinal lumen (IELs and LPLs), and then on PPs far away from the intestinal lumen as the administration time prolonged. Meanwhile, TGP restores the intestinal epithelial barrier by upregulating the ratio of villi height (V)/crypt depth (C) and expression of tight junction proteins (ZO-1, occludin). Finally, the integrated analysis of metabolomics-network pharmacology was also used to explore the possible regulation mechanism of TGP on the intestinal tract. Metabolomics analysis revealed that TGP reversed the intestinal metabolic profile disturbance in CIA rats, and identified 32 biomarkers and 163 corresponding targets; network pharmacology analysis identified 111 potential targets for TGP to treat RA. By intersecting the results of the two, three key targets such as ADA, PNP and TYR were determined. Pharmacological verification experiments showed that the levels of ADA and PNP in the small intestine of CIA rats were significantly increased, while TGP significantly decreased their ADA and PNP levels. In conclusion, purine metabolism may play an important role in the process of TGP improving RA-induced intestinal immune imbalance and impaired epithelial barrier.
Collapse
Affiliation(s)
- Rui Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jine Peng
- Department of Pharmacy, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhe Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Kaili Xie
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Meijing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Qi Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Xiaomeng Guo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Nan Nan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Sihui Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jing Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Jingjing Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
10
|
Habib Dzulkarnain SM, Hashim IF, Zainudeen ZT, Taib F, Mohamad N, Nasir A, Wan Ab Rahman WS, Ariffin H, Abd Hamid IJ. Purine Nucleoside Phosphorylase Deficient Severe Combined Immunodeficiencies: A Case Report and Systematic Review (1975-2022). J Clin Immunol 2023; 43:1623-1639. [PMID: 37328647 DOI: 10.1007/s10875-023-01532-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Purine nucleoside phosphorylase deficient severe combined immunodeficiency (PNP SCID) is one of the rare autosomal recessive primary immunodeficiency disease, and the data on epidemiology and outcome are limited. We report the successful management of a child with PNP SCID and present a systematic literature review of published case reports, case series, and cohort studies on PNP SCID listed in PubMed, Web of Science, and Scopus from 1975 until March 2022. Forty-one articles were included from the 2432 articles retrieved and included 100 PNP SCID patients worldwide. Most patients presented with recurrent infections, hypogammaglobulinaemia, autoimmune manifestations, and neurological deficits. There were six reported cases of associated malignancies, mainly lymphomas. Twenty-two patients had undergone allogeneic hematopoietic stem cell transplantation with full donor chimerism seen mainly in those receiving matched sibling donors and/or conditioning chemotherapy before the transplant. This research provides a contemporary, comprehensive overview on clinical manifestations, epidemiology, genotype mutations, and transplant outcome of PNP SCID. These data highlight the importance of screening for PNP SCID in cases presented with recurrent infections, hypogammaglobulinaemia, and neurological deficits.
Collapse
Affiliation(s)
- Syarifah Masyitah Habib Dzulkarnain
- Primary Immunodeficiency Diseases Group, Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
- Cawangan Pulau Pinang, Fakulti Sains Kesihatan, Universiti Teknologi MARA, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Zarina Thasneem Zainudeen
- Primary Immunodeficiency Diseases Group, Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia
| | - Fahisham Taib
- Department of Paediatric, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Hospital USM, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Norsarwany Mohamad
- Department of Paediatric, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Hospital USM, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Ariffin Nasir
- Department of Paediatric, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Hospital USM, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Wan Suriana Wan Ab Rahman
- Hospital USM, 16150 Kubang Kerian, Kelantan, Malaysia
- School of Dental Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hany Ariffin
- Department of Paediatrics, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Intan Juliana Abd Hamid
- Primary Immunodeficiency Diseases Group, Department of Clinical Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Kepala Batas, Pulau Pinang, Malaysia.
| |
Collapse
|
11
|
Jayaprakash Demirel K, Wu R, Neves Guimaraes A, Demirel I. The role of NLRP3 in regulating gingival epithelial cell responses evoked by Aggregatibacter actinomycetemcomitans. Cytokine 2023; 169:156316. [PMID: 37541072 DOI: 10.1016/j.cyto.2023.156316] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) has myriads of virulence factors among which leukotoxin provides A. actinomycetemcomitans with the advantage to thrive in the surrounding hostile environment and evade host immune defences. The NLRP3 inflammasome has been associated with periodontal disease development. However, our understanding of the involvement of caspase-1, caspase-4, and NLRP3 in the release of IL-1β and other inflammatory mediators from gingival epithelial cells during a A. actinomycetemcomitans infection is limited. The aim of this study was to investigate how the inflammasome-associated proteins caspase-1, caspase-4 and NLRP3 regulate the immune response of gingival epithelial cells during a A. actinomycetemcomitans infection. Human gingival epithelial cells (Ca9-22) deficient in NLRP3, caspase-1 or caspase-4 were created using CRISPR/Cas9. Gingival epithelial cells were stimulated with the A. actinomycetemcomitans low-leukotoxic strain NCTC9710 or the highly leukotoxic JP2 strain HK 165 for 6, 12 and 24 h. The results showed that the JP2 strain HK1651 induced higher IL-1β and IL-1RA release and mediated more epithelial cell death compared to the NCTC9710 strain. These findings were found to be capsase-1, caspase-4 and NLRP3-dependant. A targeted protein analysis of inflammation-related proteins showed that the expression of 37 proteins were identified as being significantly altered after HK1651 infection compared to unstimulated Cas9 and NLRP3-deficient cells. Of the 37 proteins, 23 of these inflammation-related proteins released by NLRP3-deficient cells differed significantly compared to Cas9 cells after infection. This suggests that NLRP3 has a broad effect on the inflammatory response in gingival epithelial cells.
Collapse
Affiliation(s)
- Kartheyaene Jayaprakash Demirel
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Alessandra Neves Guimaraes
- Department of Odontological Research, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden; Department of Periodontology and Implantology, Public Dental Service, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
12
|
Papaioannou I, Owen JS, Yáñez‐Muñoz RJ. Clinical applications of gene therapy for rare diseases: A review. Int J Exp Pathol 2023; 104:154-176. [PMID: 37177842 PMCID: PMC10349259 DOI: 10.1111/iep.12478] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/15/2023] Open
Abstract
Rare diseases collectively exact a high toll on society due to their sheer number and overall prevalence. Their heterogeneity, diversity, and nature pose daunting clinical challenges for both management and treatment. In this review, we discuss recent advances in clinical applications of gene therapy for rare diseases, focusing on a variety of viral and non-viral strategies. The use of adeno-associated virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treatment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector licenced for the treatment of refractory metastatic melanoma, will be an example of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo production of chimeric antigen receptor T cells (CAR-T), licenced for the treatment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral technology can be applied to autologous haematopoietic stem cells, exemplified by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe combined immunodeficiency (ADA-SCID) and β-thalassaemia respectively. Antisense oligonucleotide technologies will be highlighted through Onpattro and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR) amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular atrophy (SMA). An initial comparison of the effectiveness of AAV and oligonucleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector, and Spinraza. Through these examples of marketed gene therapies and gene cell therapies, we will discuss the expanding applications of such novel technologies to previously intractable rare diseases.
Collapse
Affiliation(s)
| | - James S. Owen
- Division of MedicineUniversity College LondonLondonUK
| | - Rafael J. Yáñez‐Muñoz
- AGCTlab.orgCentre of Gene and Cell TherapyCentre for Biomedical SciencesDepartment of Biological SciencesSchool of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
13
|
Ma Y, Bao Y, Zheng M. Epstein-Barr virus-associated B-cell lymphoproliferative disorder meeting the definition of CAEBV B cell disease: a case report. BMC Infect Dis 2023; 23:453. [PMID: 37420238 DOI: 10.1186/s12879-023-08430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus infection (CAEBV) is a systemic EBV-positive lymphoproliferative disorder (EBV-LPD) considered to be associated with a genetic immunological abnormality, although its cause is still unclear. EBV is usually detected in T cells or NK cells in CAEBV patients with only a few cases involving B cells described in East Asia, which may be due to differences in genetic and environmental factors. CASE DESCRIPTION A 16-year-old boy who seemed to be diagnosed as CAEBV of B cell type was studied. The patient had IM-like symptoms persisting for more than 3 months, high levels of EBV DNA in the PB, and positive EBER in situ hybridization in B cells. In addition, to exclude underlying genetic disorders, we performed next-generation sequencing (NGS) and whole-exome sequencing (WES), which identified the missense mutation in PIK3CD (E1021K), ADA (S85L) and CD3D (Q140K) in the patient while no same genetic mutation was detected in his parents and sister. However, there is no diagnosis of CAEBV of B cell type in the most recent World Health Organization classification of tumors of hematopoietic and lymphoid tissues, therefore we finally diagnosed this patient as EBV-B-LPD. CONCLUSIONS This study shows a rare case of a patient meeting the definition of CAEBV B-cell disease in East Asia. Meanwhile, the case indicates that the missense mutation and the disease are related.
Collapse
Affiliation(s)
- Yaxian Ma
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yuhan Bao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Miao Zheng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China.
| |
Collapse
|
14
|
Onodera M, Uchiyama T, Ariga T, Yamada M, Miyamura T, Arizono H, Morio T. Safety and efficacy of elapegademase in patients with adenosine deaminase deficiency: A multicenter, open-label, single-arm, phase 3, and postmarketing clinical study. Immun Inflamm Dis 2023; 11:e917. [PMID: 37506145 PMCID: PMC10367445 DOI: 10.1002/iid3.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Adenosine deaminase (ADA) deficiency is an ultrarare inherited purine metabolism disorder characterized by severe combined immunodeficiency. Elapegademase-lvlr is a new pegylated recombinant bovine ADA used in enzyme-replacement therapy (ERT) for ADA deficiency. Therefore, replacement with the new drug may eliminate the infectious risks associated with the currently used bovine intestinal-derived product, pegademase. METHODS We conducted a multicenter, single-arm, open-label, phase 3, and postmarketing clinical study of elapegademase for patients with ADA deficiency. The following biochemical markers were monitored to determine an appropriate dose of elapegademase: the trough deoxyadenosine nucleotide (dAXP) level ≤0.02 μmol/mL in erythrocytes or whole blood and the trough serum ADA activity ≥1100 U/L (equivalent to plasma levels ≥15 μmol/h/mL) indicated sufficient enzyme activity and detoxification as efficacy endpoints and monitored adverse events during the study as safety endpoints. RESULTS A total of four patients (aged 0-25 years) were enrolled. One infant patient died of pneumonia caused by cytomegalovirus infection whereas the other three completed the study and have been observed in the study period over 3 years. The infant patient had received elapegademase at 0.4 mg/kg/week until decease and the others received elapegademase at maximum doses of 0.3 mg/kg/week for 164-169 weeks. As a result, all four patients achieved undetectable levels of dAXPs together with sufficient enzyme activity, increased T and B cell numbers, and slightly elevated and maintained IgM and IgA immunoglobulin levels. Serious adverse events occurred in three patients, all of which were assessed as unrelated to elapegademase. CONCLUSIONS This study showed that elapegademase had comparable safety and efficacy to pegademase as ERT for ADA deficiency by demonstrating stable maintenance of sufficient ADA activity and lowering dAXP to undetectable levels, while no drug-related adverse events were reported (Trial registration: JapicCTI-163204).
Collapse
Affiliation(s)
- Masafumi Onodera
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Division of Immunology, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Food and Human Wellness, Rakuno Gakuen University, Ebetsu, Japan
| | - Takako Miyamura
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hironori Arizono
- Pharmaceutical Development & Production Division, Teijin Pharma Limited, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Ucku D, Armutlu A, Cipe F, Ersoy GZ, Karakaya AD, Arikan C. Hepatocellular Carcinoma in ADA-SCID Patient After Hematopoietic Stem Cell Transplantation. J Pediatr Hematol Oncol 2023; 45:285-289. [PMID: 37027238 DOI: 10.1097/mph.0000000000002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 04/08/2023]
Abstract
Adenosine deaminase (ADA) deficiency is one of the most prevalent forms of severe combined immunodeficiency and results in the accumulation of toxic substrates which creates a systemic metabolic disease. It predisposes patients to the development of malignancies, most commonly lymphoma. We report an 8-month-old infant with ADA deficient severe combined immunodeficiency who developed progressive liver dysfunction and hepatocellular carcinoma after successful hematopoietic stem cell transplantation. This is the first case report of an ADA-deficient patient who presented with hepatocellular carcinoma and gives an insight into the complex etiology that can lie behind liver dysfunction in these patients.
Collapse
Affiliation(s)
| | | | - Funda Cipe
- Department of Pediatric Allergy and Immunology, Istinye University School of Medicine
| | - Gizem Zengin Ersoy
- Altinbas University School of Medicine, Bahcelievler Medical Park Hospital, Pediatric Hematology-Oncology and Bone Marrow Transplantation Unit, Istanbul, Turkey
| | | | - Cigdem Arikan
- Pediatric Gastroenterology, Hepatology and Nutrition, Koc University School of Medicine
| |
Collapse
|
16
|
Arlabosse T, Booth C, Candotti F. Gene Therapy for Inborn Errors of Immunity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1592-1601. [PMID: 37084938 DOI: 10.1016/j.jaip.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023]
Abstract
In the early 1990s, gene therapy (GT) entered the clinical arena as an alternative to hematopoietic stem cell transplantation for forms of inborn errors of immunity (IEIs) that are not medically manageable because of their severity. In principle, the use of gene-corrected autologous hematopoietic stem cells presents several advantages over hematopoietic stem cell transplantation, including making donor searches unnecessary and avoiding the risks for graft-versus-host disease. In the past 30 years or more of clinical experience, the field has witnessed multiple examples of successful applications of GT to a number of IEIs, as well as some serious drawbacks, which have highlighted the potential genotoxicity of integrating viral vectors and stimulated important progress in the development of safer gene transfer tools. The advent of gene editing technologies promises to expand the spectrum of IEIs amenable to GT to conditions caused by mutated genes that require the precise regulation of expression or by dominant-negative variants. Here, we review the main concepts of GT as it applies to IEIs and the clinical results obtained to date. We also describe the challenges faced by this branch of medicine, which operates in the unprofitable sector of human rare diseases.
Collapse
Affiliation(s)
- Tiphaine Arlabosse
- Pediatric Immuno-Rheumatology of Western Switzerland, Division of Pediatrics, Women-Mother-Child Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital for Sick Children NHS Foundation Trust, London, United Kingdom.
| | - Fabio Candotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Grunebaum E, Booth C, Cuvelier GDE, Loves R, Aiuti A, Kohn DB. Updated Management Guidelines for Adenosine Deaminase Deficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1665-1675. [PMID: 36736952 DOI: 10.1016/j.jaip.2023.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 02/04/2023]
Abstract
Inherited defects in the adenosine deaminase (ADA) gene typically cause severe combined immunodeficiency. In addition to infections, ADA-deficient patients can present with neurodevelopmental, behavioral, hearing, skeletal, lung, heart, skin, kidney, urogenital, and liver abnormalities. Some patients also suffer from autoimmunity and malignancies. In recent years, there have been remarkable advances in the management of ADA deficiency. Most ADA-deficient patients can be identified by newborn screening for severe combined immunodeficiency, which facilitates early diagnosis and treatment of asymptomatic infants. Most patients benefit from enzyme replacement therapy (ERT). Allogeneic hematopoietic cell transplantation from an HLA-matched sibling donor or HLA-matched family member donor with no conditioning is currently the preferable treatment. When matched sibling donor or matched family member donor is not available, autologous ADA gene therapy with nonmyeloablative conditioning and ERT withdrawal, which is reported in recent studies to result in 100% overall survival and 90% to 95% engraftment, should be pursued. If gene therapy is not immediately available, ERT can be continued for a few years, although its excessive cost might be prohibitive. The recent improved outcome of hematopoietic cell transplantation using HLA-mismatched family-related donors or HLA-matched unrelated donors, after reduced-intensity conditioning, suggests that such procedures might also be considered rather than continuing ERT for prolonged periods. Long-term follow-up will further assist in determining the optimal treatment approach for ADA-deficient patients.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital, London, United Kingdom
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robyn Loves
- Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, and the Università Vita-Salute San Raffaele, Milan, Italy
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif
| |
Collapse
|
18
|
Ameratunga R, Edwards ESJ, Lehnert K, Leung E, Woon ST, Lea E, Allan C, Chan L, Steele R, Longhurst H, Bryant VL. The Rapidly Expanding Genetic Spectrum of Common Variable Immunodeficiency-Like Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1646-1664. [PMID: 36796510 DOI: 10.1016/j.jaip.2023.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
The understanding of common variable immunodeficiency disorders (CVID) is in evolution. CVID was previously a diagnosis of exclusion. New diagnostic criteria have allowed the disorder to be identified with greater precision. With the advent of next-generation sequencing (NGS), it has become apparent that an increasing number of patients with a CVID phenotype have a causative genetic variant. If a pathogenic variant is identified, these patients are removed from the overarching diagnosis of CVID and are deemed to have a CVID-like disorder. In populations where consanguinity is more prevalent, the majority of patients with severe primary hypogammaglobulinemia will have an underlying inborn error of immunity, usually an early-onset autosomal recessive disorder. In nonconsanguineous societies, pathogenic variants are identified in approximately 20% to 30% of patients. These are often autosomal dominant mutations with variable penetrance and expressivity. To add to the complexity of CVID and CVID-like disorders, some genetic variants such as those in TNFSF13B (transmembrane activator calcium modulator cyclophilin ligand interactor) predispose to, or enhance, disease severity. These variants are not causative but can have epistatic (synergistic) interactions with more deleterious mutations to worsen disease severity. This review is a description of the current understanding of genes associated with CVID and CVID-like disorders. This information will assist clinicians in interpreting NGS reports when investigating the genetic basis of disease in patients with a CVID phenotype.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Emily S J Edwards
- The Jeffrey Modell Diagnostic and Research Centre for Primary Immunodeficiencies, and Allergy and Clinical Immunology Laboratory, Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Edward Lea
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Caroline Allan
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand
| | - Lydia Chan
- Department of Clinical immunology, Auckland Hospital, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Auckland, New Zealand; Department of Respiratory Medicine, Wellington Hospital, Wellington, New Zealand
| | - Hilary Longhurst
- Department of Medicine, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa L Bryant
- Department of Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Parkville, VIC, Australia
| |
Collapse
|
19
|
Vittal A, Abdul Majeed N, Garabedian E, Marko J, Kleiner DE, Sokolic R, Candotti F, Malech H, Heller T, Koh C. Severe combined immunodeficiency: improved survival leading to detection of underlying liver disease. BMC Gastroenterol 2023; 23:166. [PMID: 37208598 DOI: 10.1186/s12876-023-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Adenosine deaminase deficiency (ADA) is an autosomal recessive disorder leading to severe combined immunodeficiency (SCID). It is characterized patho-physiologically by intracellular accumulation of toxic products affecting lymphocytes. Other organ systems are known to be affected causing non-immune abnormalities. We aimed to conduct a cross sectional study to describe liver disease in autosomal recessive ADA-SCID. METHODS Single center retrospective analysis of genetically confirmed autosomal recessive ADA-SCID was performed. Liver disease was defined as ≥1.5x the gender specific upper limit of normal (ULN; 33 IU/L for males and 25 IU/L for females) alanine aminotransferase (ALT) or moderate and severe increase in liver echogenicity on ultrasound. RESULTS The cohort included 18 patients with 11 males. The median age was 11.5 (3.5-30.0 years) and median BMI percentile was 75.5 [36.75, 89.5]. All patients received enzyme replacement therapy at the time of evaluation. Seven (38%) and five (27%) patients had gene therapy (GT) and hematopoietic stem cell transplant (HSCT) in the past. Five patients had 1.5x ALT level more than 1.5x the U. Liver echogenicity was mild in 6 (33%), moderate in 2 (11%) and severe in 2 (11%) patients. All patients had normal Fibrosis-4 Index and Non-alcoholic fatty liver disease fibrosis biomarker scores indicating absence of advanced fibrosis in our cohort. Of 5 patients who had liver biopsies, steatohepatitis was noted in 3 patients (NAS score of 3,3,4). DISCUSSION Non-immunologic manifestations of ADA-SCID have become more apparent in recent years as survival improved. We concluded that steatosis is the most common finding noted in our ADA-SCID cohort.
Collapse
Affiliation(s)
- Anusha Vittal
- Clinical Research Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Nehna Abdul Majeed
- Clinical Research Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | | | - Jamie Marko
- Department of Radiology and Imaging Sciences, NIH, Bethesda, MD, USA
| | | | - Rob Sokolic
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
- IQVIA Biotech, Sharon, MA, MD, USA
| | - Fabio Candotti
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Harry Malech
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Theo Heller
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
| | - Christopher Koh
- Clinical Research Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
- Translational Hepatology Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA.
| |
Collapse
|
20
|
Targeted metabolomics detects a putatively diagnostic signature in plasma and dried blood spots from head and neck paraganglioma patients. Oncogenesis 2023; 12:10. [PMID: 36841802 PMCID: PMC9968333 DOI: 10.1038/s41389-023-00456-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
Head and neck paragangliomas (HNPGLs), rare chemoresistant tumors curable only with surgery, are strongly influenced by genetic predisposition, hence patients and relatives require lifetime follow-up with MRI and/or PET-CT because of de novo disease risk. This entails exposure to electromagnetic/ionizing radiation, costs, and organizational challenges, because patients and relatives are scattered far from reference centers. Simplified first-line screening strategies are needed. We employed flow injection analysis tandem mass spectrometry, as used in newborn metabolic screening, to compare the plasma metabolic profile of HNPGL patients (59 samples, 56 cases) and healthy controls (24 samples, 24 cases). Principal Component Analysis (PCA) and Partial Least Discriminant Analysis (PLS-DA) highlighted a distinctive HNPGL signature, likely reflecting the anaplerotic conversion of the TCA cycle to glutaminolysis and catabolism of branched amino acids, DNA damage and deoxyadenosine (dAdo) accumulation, impairment of fatty acid oxidation, switch towards the Warburg effect and proinflammatory lysophosphatidylcholines (LPCs) signaling. Statistical analysis of the metabolites that most impacted on PLS-DA was extended to 10 acoustic neuroma and 2 cholesteatoma patients, confirming significant differences relative to the HNPGL plasma metabolomic profile. The best confusion matrix from the ROC curve built on 2 metabolites, dAdo and C26:0-LPC, provided specificity of 94.29% and sensitivity of 89.29%, with positive and negative predictive values of 96.2% and 84.6%, respectively. Analysis of dAdo and C26:0-LPC levels in dried venous and capillary blood confirmed that dAdo, likely deriving from 2'-deoxy-ATP accumulated in HNPGL cells following endogenous genotoxic damage, efficiently discriminated HNPGL patients from healthy controls and acoustic neuroma/cholesteatoma patients on easily manageable dried blood spots.
Collapse
|
21
|
Dąbrowska-Leonik N, Piątosa B, Słomińska E, Bohynikova N, Bernat-Sitarz K, Bernatowska E, Wolska-Kuśnierz B, Kałwak K, Kołtan S, Dąbrowska A, Goździk J, Ussowicz M, Pac M. National experience with adenosine deaminase deficiency related SCID in Polish children. Front Immunol 2023; 13:1058623. [PMID: 36685585 PMCID: PMC9853035 DOI: 10.3389/fimmu.2022.1058623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction Deficiency of adenosine deaminase (ADA) manifests as severe combined immunodeficiency (SCID), caused by accumulation of toxic purine degradation by-products. Untreated patients develop immune and non-immune symptoms with fatal clinical course. According to ESID and EBMT recommendations enzyme replacement therapy (ERT) should be implemented as soon as possible to stabilize the patient's general condition, normalize transaminases, treat pulmonary proteinosis, bone dysplasia, and protect from neurological damage. Hematopoietic stem cell transplantation (HSCT) from a matched related donor (MRD) is a treatment of choice. In absence of such donor, gene therapy (GT) should be considered. HSCT from a matched unrelated donor (MUD) and haploidentical hematopoietic stem cell transplantation (hHSCT) are associated with worse prognosis. Material and methods We retrospectively evaluated the clinical course and results of biochemical, immunological and genetic tests of 7 patients diagnosed in Poland with ADA deficiency since 2010 to 2022. Results All patients demonstrated lymphopenia affecting of T, B and NK cells. Diagnosis was made on the basis of ADA activity in red blood cells and/or genetic testing. Patients manifested with various non-immunological symptoms including: lung proteinosis, skeletal dysplasia, liver dysfunction, atypical hemolytic-uremic syndrome, and psychomotor development disorders. Five patients underwent successful HSCT: 3 patients from matched unrelated donor, 2 from matched sibling donor, and 1 haploidentical from a parental donor. In 4 patients HSCT was preceded by enzyme therapy (lasting from 2 to 5 months). One patient with multiple organ failure died shortly after admission, before the diagnosis was confirmed. None of the patients had undergone gene therapy. Conclusions It is important to diagnose ADA SCID as early as possible, before irreversible multi-organ failure occurs. In Poland HSCT are performed according to international immunological societies recommendations, while ERT and GT are less accessible. Implementation of Newborn Screening (NBS) for SCID in Poland could enable recognition of SCID, including ADA-SCID.
Collapse
Affiliation(s)
- Nel Dąbrowska-Leonik
- Department of Immunology, Children’s Memorial Health Institute, Warsaw, Poland,*Correspondence: Nel Dąbrowska-Leonik,
| | - Barbara Piątosa
- Histocompatibility Laboratory, Children’s Memorial Health Institute (IPCZD), Warsaw, Masovian, Poland
| | - Ewa Słomińska
- Biochemistry Department, Medical University of Gdansk, Gdansk, Poland
| | - Nadezda Bohynikova
- Department of Immunology, Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Ewa Bernatowska
- Department of Immunology, Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Krzysztof Kałwak
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Anna Dąbrowska
- Department of Pediatrics, Hematology and Oncology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Jolanta Goździk
- Department of Clinical Immunology and Transplantology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marek Ussowicz
- Department of Paediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Pac
- Department of Immunology, Children’s Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
22
|
Atakisi O, Dalginli KY, Gulmez C, Kalacay D, Atakisi E, Zhumabaeva TT, Aşkar TK, Demirdogen RE. The Role of Reduced Glutathione on the Activity of Adenosine Deaminase, Antioxidative System, and Aluminum and Zinc Levels in Experimental Aluminum Toxicity. Biol Trace Elem Res 2022:10.1007/s12011-022-03503-0. [PMID: 36456741 DOI: 10.1007/s12011-022-03503-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Aluminum (Al) is one of the most abundant element in the world. But aluminum exposure and accumulation causes serious diseases, related with free radicals. Reduced glutathione (GSH) is a tripeptide with intracellular antioxidant effects. This study aimed to investigate the role of GSH on adenosine deaminase (ADA), antioxidant system, and aluminum and zinc (Zn) levels in acute aluminum toxicity. In this study, Sprague-Dawley rats (n = 32) were used. The rats were divided into four equal groups (n = 8). Group I received 0.5 mL intraperitoneal injection of 0.9% saline solution (NaCI), Group II received single-dose AlCI3, Group III was given GSH for seven days, and Group IV was given AlCI3 single dose, and at the same time, 100 mg/kg GSH was given for seven days. At the end of the trial, blood samples were collected by cardiac puncture. Serum total antioxidant status (TAS) and Zn levels were lower in the aluminum-administered group than the control group. In contrast, plasma total oxidant status (TOS) and aluminum concentrations and ADA activity were found higher in the aluminum-administered group than in the control group. Unlike the other groups, group GSH administrated with aluminum was similar to the control group. As a result, GSH administration has a regulatory effect on ADA activity, antioxidant system, and Zn levels in experimental aluminum toxicity. In addition, GSH may reduce the oxidant capacity increased by Al administration and may have a tolerant role on the accumulated serum Al levels. But long-term experimental Al toxicity studies are needed to reach a firm conclusion.
Collapse
Affiliation(s)
- Onur Atakisi
- Department of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey.
| | - Kezban Yildiz Dalginli
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Canan Gulmez
- Department of Pharmacy Services, Tuzluca Vocational School, Igdir University, Igdir, Turkey
| | - Destan Kalacay
- Department of Chemistry and Chemical Processing Technologies Kars Vocational School, Kafkas University, Kars, Turkey
| | - Emine Atakisi
- Faculty of Veterinary Medicine Department of Biochemistry, Kafkas University, Kars, Turkey
| | | | - Tunay Kontaş Aşkar
- Department of Dietetics and Nutrition, Faculty of Health Sciences, Çankırı Karatekin University, Çankırı, Turkey
| | - Ruken Esra Demirdogen
- Deptartments of Chemistry Faculty of Science, Çankırı Karatekin University, Çankırı, Turkey
| |
Collapse
|
23
|
Antherjanam S, Saraswathyamma B. Simultaneous electroanalysis of adenine and adenosine on a poly-nicotinic acid modified pencil graphite electrode. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02985-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Zhu X, Hu J. Adenosine Deaminase is a Potential Molecular Marker for Diagnosis and Prognosis of Haemorrhagic Fever with Renal Syndrome. Infect Drug Resist 2022; 15:5197-5205. [PMID: 36090607 PMCID: PMC9462936 DOI: 10.2147/idr.s379228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
Objective Haemorrhagic fever with renal syndrome (HFRS) is a serious zoonotic disease which seriously endangers physical health and mainly occurs in China. To date, there is still a lack of early and novel biomarkers to detect the severity of disease and prognosis of HFRS. This study was aimed to examine the value of the serum Adenosine deaminase (ADA) concentrations in the patients with HFRS. Methods The clinical and laboratory data of 124 adult patients with HFRS and 131 patients with similar clinical symptoms to HFRS were analyzed. A receiver operating characteristic (ROC) curve was used to analyze the diagnostic value of ADA in HFRS. Results The ADA levels in the serum of HFRS patients were significantly higher than those in control patients (P < 0.001), and ADA has a strong positive correlation with HFRS (r = 0.785, P < 0.001). The optimal cut-off value of ADA for diagnosis of HFRS was 18 U/L and the area under the curve (AUC) was 0.953 (95% CI: 0.925, 0.981). The sensitivity was 84.8%, the specificity was 93.1%, the positive predictive value was 92.2%, the negative predictive value was 86.5% and the Youden index was 77.9%. Serum ADA levels in patients with HFRS tended to decrease at discharge compared with those at admission. Conclusion ADA could be a potential molecular marker for diagnosis and prognosis of HFRS patients.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Department of Laboratory Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China
| | - Jinxi Hu
- Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, People’s Republic of China,Correspondence: Jinxi Hu, Department of Oncological Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, No. 150 Ximen Road of Linhai, Taizhou, Zhejiang Province, 317000, People’s Republic of China, Tel +86 18257689350, Email
| |
Collapse
|
25
|
Cuvelier GDE, Logan BR, Prockop SE, Buckley RH, Kuo CY, Griffith LM, Liu X, Yip A, Hershfield MS, Ayoub PG, Moore TB, Dorsey MJ, O'Reilly RJ, Kapoor N, Pai SY, Kapadia M, Ebens CL, Forbes Satter LR, Burroughs LM, Petrovic A, Chellapandian D, Heimall J, Shyr DC, Rayes A, Bednarski JJ, Chandra S, Chandrakasan S, Gillio AP, Madden L, Quigg TC, Caywood EH, Dávila Saldaña BJ, DeSantes K, Eissa H, Goldman FD, Rozmus J, Shah AJ, Vander Lugt MT, Thakar MS, Parrott RE, Martinez C, Leiding JW, Torgerson TR, Pulsipher MA, Notarangelo LD, Cowan MJ, Dvorak CC, Haddad E, Puck JM, Kohn DB. Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC. Blood 2022; 140:685-705. [PMID: 35671392 PMCID: PMC9389638 DOI: 10.1182/blood.2022016196] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.
Collapse
Affiliation(s)
- Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Susan E Prockop
- Stem Cell Transplant Service, Dana Farber Cancer Institute/Boston Children's Hospital, Boston, MA
| | | | - Caroline Y Kuo
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Alison Yip
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | | | - Paul G Ayoub
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, CA
| | - Morna J Dorsey
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Richard J O'Reilly
- Stem Cell Transplantation and Cellular Therapy, MSK Kids, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children's Hospital, Los Angeles, CA
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Malika Kapadia
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN
| | - Lisa R Forbes Satter
- Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David C Shyr
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Ahmad Rayes
- Primary Children's Hospital, University of Utah, Salt Lake City, UT
| | | | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Alfred P Gillio
- Children's Cancer Institute, Hackensack University Medical Center, Hackensack, NJ
| | - Lisa Madden
- Methodist Children's Hospital of South Texas, San Antonio, TX
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplant and Cellular Therapy Program, Helen DeVos Children's Hospital, Michigan State University College of Human Medicine, Grand Rapids, MI
| | - Emi H Caywood
- Nemours Children's Health, Thomas Jefferson University, Wilmington, DE
| | | | - Kenneth DeSantes
- Division of Pediatric Hematology-Oncology & Bone Marrow Transplant, University of Wisconsin, American Family Children's Hospital, Madison, WI
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, Aurora, CO
| | - Frederick D Goldman
- Division of Pediatric Hematology and Oncology and Bone Marrow Transplant, University of Alabama at Birmingham, Birmingham, AL
| | - Jacob Rozmus
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Ami J Shah
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI
| | - Monica S Thakar
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | | | - Caridad Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Johns Hopkins University, St Petersburg, FL
| | | | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute at the University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD; and
| | - Morton J Cowan
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Christopher C Dvorak
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Elie Haddad
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Jennifer M Puck
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| |
Collapse
|
26
|
Diehl FF, Miettinen TP, Elbashir R, Nabel CS, Darnell AM, Do BT, Manalis SR, Lewis CA, Vander Heiden MG. Nucleotide imbalance decouples cell growth from cell proliferation. Nat Cell Biol 2022; 24:1252-1264. [PMID: 35927450 PMCID: PMC9359916 DOI: 10.1038/s41556-022-00965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
Nucleotide metabolism supports RNA synthesis and DNA replication to enable cell growth and division. Nucleotide depletion can inhibit cell growth and proliferation, but how cells sense and respond to changes in the relative levels of individual nucleotides is unclear. Moreover, the nucleotide requirement for biomass production changes over the course of the cell cycle, and how cells coordinate differential nucleotide demands with cell cycle progression is not well understood. Here we find that excess levels of individual nucleotides can inhibit proliferation by disrupting the relative levels of nucleotide bases needed for DNA replication and impeding DNA replication. The resulting purine and pyrimidine imbalances are not sensed by canonical growth regulatory pathways like mTORC1, Akt and AMPK signalling cascades, causing excessive cell growth despite inhibited proliferation. Instead, cells rely on replication stress signalling to survive during, and recover from, nucleotide imbalance during S phase. We find that ATR-dependent replication stress signalling is activated during unperturbed S phases and promotes nucleotide availability to support DNA replication. Together, these data reveal that imbalanced nucleotide levels are not detected until S phase, rendering cells reliant on replication stress signalling to cope with this metabolic problem and disrupting the coordination of cell growth and division.
Collapse
Affiliation(s)
- Frances F Diehl
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Ryan Elbashir
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Alicia M Darnell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
27
|
Qu Y, Dunn ZS, Chen X, MacMullan M, Cinay G, Wang HY, Liu J, Hu F, Wang P. Adenosine Deaminase 1 Overexpression Enhances the Antitumor Efficacy of Chimeric Antigen Receptor-Engineered T Cells. Hum Gene Ther 2022; 33:223-236. [PMID: 34225478 PMCID: PMC9206478 DOI: 10.1089/hum.2021.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy mediates unprecedented benefit in certain leukemias and lymphomas, but has yet to achieve similar success in combating solid tumors. A substantial body of work indicates that the accumulation of adenosine in the solid tumor microenvironment (TME) plays a crucial role in abrogating immunotherapies. Adenosine deaminase 1 (ADA) catabolizes adenosine into inosine and is indispensable for a functional immune system. We have, for the first time, engineered CAR T cells to overexpress ADA. To potentially improve the pharmacokinetic profile of ADA, we have modified the overexpressed ADA in two ways, through the incorporation of a (1) albumin-binding domain or (2) collagen-binding domain. ADA and modified ADA were successfully expressed by CAR T cells and augmented CAR T cell exhaustion resistance. In a preclinical engineered ovarian carcinoma xenograft model, ADA and collagen-binding ADA overexpression significantly enhanced CAR T cell expansion, tumor tissue infiltration, tumor growth control, and overall survival, whereas albumin-binding ADA overexpression did not. Furthermore, in a syngeneic colon cancer solid tumor model, the overexpression of mouse ADA by cancer cells significantly reduced tumor burden and remodeled the TME to favor antitumor immunity. The overexpression of ADA for enhanced cell therapy is a safe, straightforward, reproducible genetic modification that can be utilized in current CAR T cell constructs to result in an armored CAR T product with superior therapeutic potential.
Collapse
Affiliation(s)
- Yun Qu
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering
| | - Zachary S. Dunn
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy
| | - Melanie MacMullan
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering
| | - Gunce Cinay
- Department of Biomedical Engineering, Viterbi School of Engineering
| | - Hsuan-yao Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy
| | - Jiangyue Liu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine; University of Southern California, Los Angeles, California, USA
| | - Fangheng Hu
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering;,Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy;,Department of Biomedical Engineering, Viterbi School of Engineering;,Correspondence: Dr. Pin Wang, Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
28
|
Moretti FA, Giardino G, Attenborough TCH, Gkazi AS, Margetts BK, la Marca G, Fairbanks L, Crompton T, Gaspar HB. Metabolite and thymocyte development defects in ADA-SCID mice receiving enzyme replacement therapy. Sci Rep 2021; 11:23221. [PMID: 34853379 PMCID: PMC8636570 DOI: 10.1038/s41598-021-02572-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 11/22/2022] Open
Abstract
Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme intrinsic to the purine salvage pathway, leads to severe combined immunodeficiency (SCID) both in humans and mice. Lack of ADA results in the intracellular accumulation of toxic metabolites which have effects on T cell development and function. While untreated ADA-SCID is a fatal disorder, there are different therapeutic options available to restore ADA activity and reconstitute a functioning immune system, including enzyme replacement therapy (ERT). Administration of ERT in the form of pegylated bovine ADA (PEG-ADA) has proved a life-saving though non-curative treatment for ADA-SCID patients. However, in many patients treated with PEG-ADA, there is suboptimal immune recovery with low T and B cell numbers. Here, we show reduced thymus cellularity in ADA-SCID mice despite weekly PEG-ADA treatment. This was associated with lack of effective adenosine (Ado) detoxification in the thymus. We also show that thymocyte development in ADA-deficient thymi is arrested at the DN3-to-DN4 stage transition with thymocytes undergoing dATP-induced apoptosis rather than defective TCRβ rearrangement or β-selection. Our studies demonstrate at a detailed level that exogenous once-a-week enzyme replacement does not fully correct intra-thymic metabolic or immunological abnormalities associated with ADA deficiency.
Collapse
Affiliation(s)
| | | | | | | | - Ben K Margetts
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Giancarlo la Marca
- Department of Experimental and Clinical Biomedical Sciences, University of Florence and Newborn Screening, Clinical Chemistry and Pharmacology Lab, Meyer Children's Hospital, Florence, Italy
| | | | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - H Bobby Gaspar
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
29
|
Tiwari-Heckler S, Yee EU, Yalcin Y, Park J, Nguyen DHT, Gao W, Csizmadia E, Afdhal N, Mukamal KJ, Robson SC, Lai M, Schwartz RE, Jiang ZG. Adenosine deaminase 2 produced by infiltrative monocytes promotes liver fibrosis in nonalcoholic fatty liver disease. Cell Rep 2021; 37:109897. [PMID: 34706243 PMCID: PMC8606247 DOI: 10.1016/j.celrep.2021.109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/19/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Elevated circulating activity of adenosine deaminase 2 (ADA2) is associated with liver fibrosis in nonalcoholic fatty liver disease (NAFLD). In the liver of NAFLD patients, ADA2-positive portal macrophages are significantly associated with the degree of liver fibrosis. These liver macrophages are CD14- and CD16-positive and co-express chemokine receptors CCR2, CCR5, and CXCR3, indicating infiltrative monocyte origin. Human circulatory monocytes release ADA2 upon macrophage differentiation in vitro. When stimulated by recombinant human ADA2 (rhADA2), human monocyte-derived macrophages demonstrate upregulation of pro-inflammatory and pro-fibrotic genes, including PDGF-B, a key pro-fibrotic cytokine. This PDGF-B upregulation is reproduced by inosine, the enzymatic product of ADA2, but not adenosine, and is abolished by E359N, a loss-of-function mutation in ADA2. Finally, rhADA2 also stimulates PDGF-B production from Kupffer cells in primary human liver spheroids. Together, these data suggest that infiltrative monocytes promote fibrogenesis in NAFLD via ADA2-mediated autocrine/paracrine signaling culminating in enhanced PDGF-B production.
Collapse
Affiliation(s)
- Shilpa Tiwari-Heckler
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eric U Yee
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 11794, USA
| | - Yusuf Yalcin
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jiwoon Park
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Duc-Huy T Nguyen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA 02118, USA
| | - Eva Csizmadia
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nezam Afdhal
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kenneth J Mukamal
- Division of General Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Simon C Robson
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston MA 02215, USA
| | - Michelle Lai
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA.
| | - Z Gordon Jiang
- Department of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Baloh CH, Borkar SA, Chang KF, Yao J, Hershfield MS, Parikh SH, Kohn DB, Goodenow MM, Sleasman JW, Yin L. Normal IgH Repertoire Diversity in an Infant with ADA Deficiency After Gene Therapy. J Clin Immunol 2021; 41:1597-1606. [PMID: 34184208 PMCID: PMC9906566 DOI: 10.1007/s10875-021-01034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/05/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Adenosine deaminase (ADA) deficiency causes severe combined immunodeficiency (SCID) through an accumulation of toxic metabolites within lymphocytes. Recently, ADA deficiency has been successfully treated using lentiviral-transduced autologous CD34+ cells carrying the ADA gene. T and B cell function appears to be fully restored, but in many patients' B cell numbers remain low, and assessments of the immunoglobulin heavy (IgHV) repertoire following gene therapy are lacking. METHODS We performed deep sequencing of IgHV repertoire in peripheral blood lymphocytes from a child following lentivirus-based gene therapy for ADA deficiency and compared to the IgHV repertoire in healthy infants and adults. RESULTS After gene therapy, Ig diversity increased over time as evidenced by V, D, and J gene usage, N-additions, CDR3 length, extent of somatic hypermutation, and Ig class switching. There was the emergence of predominant IgHM, IgHG, and IgHA CDR3 lengths after gene therapy indicating successful oligoclonal expansion in response to antigens. This provides proof of concept for the feasibility and utility of molecular monitoring in following B cell reconstitution following gene therapy for ADA deficiency. CONCLUSION Based on deep sequencing, gene therapy resulted in an IgHV repertoire with molecular diversity similar to healthy infants.
Collapse
Affiliation(s)
- Carolyn H Baloh
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Samiksha A Borkar
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Kai-Fen Chang
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - Jiqiang Yao
- Department of Biostatistics and bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Michael S Hershfield
- Division of Rheumatology and Immunology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Suhag H Parikh
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Donald B Kohn
- Division of Hematology & Oncology, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - Maureen M Goodenow
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | - John W Sleasman
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Li Yin
- Molecular HIV Host Interaction Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| |
Collapse
|
31
|
Estrada A, Rodriguez AC, Rodriguez G, Grant AH, Ayala-Marin YM, Arrieta AJ, Kirken RA. Phosphorylation of CrkL S114 induced by common gamma chain cytokines and T-cell receptor signal transduction. Sci Rep 2021; 11:16951. [PMID: 34417497 PMCID: PMC8379229 DOI: 10.1038/s41598-021-96428-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/23/2021] [Indexed: 11/09/2022] Open
Abstract
T-cell activation and cellular expansion by common gamma chain cytokines such as Interleukin-2 is necessary for adaptive immunity. However, when unregulated these same pathways promote pathologies ranging from autoimmune disorders to cancer. While the functional role of Interleukin-2 and downstream effector molecules is relatively clear, the repertoire of phosphoregulatory proteins downstream of this pathway is incomplete. To identify phosphoproteins downstream of common gamma chain receptor, YT cells were radiolabeled with [32P]-orthophosphate and stimulated with Interleukin-2. Subsequently, tyrosine phosphorylated proteins were immunopurified and subjected to tandem mass spectrometry-leading to the identification of CrkL. Phosphoamino acid analysis revealed concurrent serine phosphorylation of CrkL and was later identified as S114 by mass spectrometry analysis. S114 was inducible through stimulation with Interleukin-2 or T-cell receptor stimulation. Polyclonal antibodies were generated against CrkL phospho-S114, and used to show its inducibility by multiple stimuli. These findings confirm CrkL as an Interleukin-2 responsive protein that becomes phosphorylated at S114 by a kinase/s downstream of PI3K and MEK/ERK signaling.
Collapse
Affiliation(s)
- Armando Estrada
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Alejandro C Rodriguez
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Georgialina Rodriguez
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Alice H Grant
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Yoshira M Ayala-Marin
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Amy J Arrieta
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA
| | - Robert A Kirken
- Department of Biological Sciences, The University of Texas At El Paso, El Paso, TX, 79968, USA.
- Border Biomedical Research Center, The University of Texas At El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
32
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
33
|
Shahryari A, Burtscher I, Nazari Z, Lickert H. Engineering Gene Therapy: Advances and Barriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Shahryari
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Stem Cell Research Center Golestan University of Medical Sciences Gorgan 49341‐74515 Iran
| | - Ingo Burtscher
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| | - Zahra Nazari
- Department of Biology School of Basic Sciences Golestan University Gorgan 49361‐79142 Iran
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research Helmholtz Zentrum München 85764 Neuherberg Germany
- School of Medicine Department of Human Genetics Technical University of Munich Klinikum Rechts der Isar 81675 München Germany
- Institute of Stem Cell Research Helmholtz Zentrum München 85764 Neuherberg Germany
| |
Collapse
|
34
|
Stangel M, Becker V, Elias-Hamp B, Havla J, Grothe C, Pul R, Rau D, Richter S, Schmidt S. Oral pulsed therapy of relapsing multiple sclerosis with cladribine tablets - expert opinion on issues in clinical practice. Mult Scler Relat Disord 2021; 54:103075. [PMID: 34261026 DOI: 10.1016/j.msard.2021.103075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Oral cladribine is the first oral pulsed therapy licensed for relapsing multiple sclerosis (RMS). Three years after the introduction into the European market, we evaluated practical aspects in the use of cladribine tablets, incorporating the experience gained in routine clinical practice and real-world studies. METHODS Based on a structured review process, a panel of nine neurologists experienced in MS therapy discussed salient statements regarding the use of cladribine tables. For each statement the level of evidence was determined according to the levels of evidence recommended by the Centre for Evidence-Based Medicine, Oxford. The strength of each expert statement was then evaluated by means of a linear scale from 1 (very strong rejection) to 9 (very strong approval). Votes were collected by a formalized blinded process. Consent was considered to be reached if at least 75% of the experts agreed on a particular statement (i.e. voted for 7-9 points on the linear scale). RESULTS . Statements include efficacy in early RMS, risk of side effects and infections, vaccination, pregnancy, and monitoring requirements. CONCLUSION The consented recommendations summarize the practical experience inthe use of cladribine tablets in a real-world setting. These may provide guidance for unanswered questions arising with the introduction of new treatments such as cladribine tablets.
Collapse
Affiliation(s)
- Martin Stangel
- Klinik für Neurologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Veit Becker
- Neurologische Praxis Eppendorf, Kümmellstr. 1, D-20249 Hamburg, Germany.
| | - Birte Elias-Hamp
- Birte Elias-Hamp, Praxis für Neurologie und Psychiatrie, Bengelsdorfstr. 5, D-22179 Hamburg, Germany.
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, and Data Integration for Future Medicine (DIFUTURE) consortium, LMU Hospital, Ludwig-Maximilians Universität München, Munich, Germany.
| | - Christoph Grothe
- GFO-Kliniken Troisdorf, Wilhelm-Busch-Straße 9, D-53840 Troisdorf, Germany.
| | - Refik Pul
- Klinik für Neurologie am Universitätsklinikum in Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| | - Daniela Rau
- Nervenfachärztliche Gemeinschaftspraxis in Ulm, Pfauengasse 8, D-89073 Ulm, Germany.
| | - Stephan Richter
- MIND-MVZ Stuttgart, Charlottenstr. 14, D-70182 Stuttgart, Germany.
| | - Stephan Schmidt
- Neurologische Gemeinschaftspraxis Bonn, Gesundheitszentrum St. Johannes, Kölnstr. 54, D-53111 Bonn, Germany.
| |
Collapse
|
35
|
Odumade OA, Plotkin AL, Pak J, Idoko OT, Pettengill MA, Kollmann TR, Ozonoff A, Kampmann B, Levy O, Smolen KK. Plasma Adenosine Deaminase (ADA)-1 and -2 Demonstrate Robust Ontogeny Across the First Four Months of Human Life. Front Immunol 2021; 12:578700. [PMID: 34122398 PMCID: PMC8190399 DOI: 10.3389/fimmu.2021.578700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Human adenosine deaminases (ADAs) modulate the immune response: ADA1 via metabolizing adenosine, a purine metabolite that inhibits pro-inflammatory and Th1 cytokine production, and the multi-functional ADA2, by enhancing T-cell proliferation and monocyte differentiation. Newborns are relatively deficient in ADA1 resulting in elevated plasma adenosine concentrations and a Th2/anti-inflammatory bias compared to adults. Despite the growing recognition of the role of ADAs in immune regulation, little is known about the ontogeny of ADA concentrations. Methods In a subgroup of the EPIC002-study, clinical data and plasma samples were collected from 540 Gambian infants at four time-points: day of birth; first week of life; one month of age; and four months of age. Concentrations of total extracellular ADA, ADA1, and ADA2 were measured by chromogenic assay and evaluated in relation to clinical data. Plasma cytokines/chemokine were measured across the first week of life and correlated to ADA concentrations. Results ADA2 demonstrated a steady rise across the first months of life, while ADA1 concentration significantly decreased 0.79-fold across the first week then increased 1.4-fold by four months of life. Males demonstrated significantly higher concentrations of ADA2 (1.1-fold) than females at four months; newborns with early-term (37 to <39 weeks) and late-term (≥41 weeks) gestational age demonstrated significantly higher ADA1 at birth (1.1-fold), and those born to mothers with advanced maternal age (≥35 years) had lower plasma concentrations of ADA2 at one month (0.93-fold). Plasma ADA1 concentrations were positively correlated with plasma CXCL8 during the first week of life, while ADA2 concentrations correlated positively with TNFα, IFNγ and CXCL10, and negatively with IL-6 and CXCL8. Conclusions The ratio of plasma ADA2/ADA1 concentration increased during the first week of life, after which both ADA1 and ADA2 increased across the first four months of life suggesting a gradual development of Th1/Th2 balanced immunity. Furthermore, ADA1 and ADA2 were positively correlated with cytokines/chemokines during the first week of life. Overall, ADA isoforms demonstrate robust ontogeny in newborns and infants but further mechanistic studies are needed to clarify their roles in early life immune development and the correlations with sex, gestational age, and maternal age that were observed.
Collapse
Affiliation(s)
- Oludare A. Odumade
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Medicine Critical Care, Boston Children’s Hospital, Boston, MA, United States
| | - Alec L. Plotkin
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Jensen Pak
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
| | - Olubukola T. Idoko
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew A. Pettengill
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tobias R. Kollmann
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Al Ozonoff
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Beate Kampmann
- Vaccines & Immunity Theme, Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Broad Institute of MIT & Harvard, Cambridge, MA, United States
| | - Kinga K. Smolen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Marchetti M, Faggiano S, Mozzarelli A. Enzyme Replacement Therapy for Genetic Disorders Associated with Enzyme Deficiency. Curr Med Chem 2021; 29:489-525. [PMID: 34042028 DOI: 10.2174/0929867328666210526144654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Mutations in human genes might lead to loss of functional proteins, causing diseases. Among these genetic disorders, a large class is associated with the deficiency in metabolic enzymes, resulting in both an increase in the concentration of substrates and a loss in the metabolites produced by the catalyzed reactions. The identification of therapeutic actions based on small molecules represents a challenge to medicinal chemists because the target is missing. Alternative approaches are biology-based, ranging from gene and stem cell therapy, CRISPR/Cas9 technology, distinct types of RNAs, and enzyme replacement therapy (ERT). This review will focus on the latter approach that since the 1990s has been successfully applied to cure many rare diseases, most of them being lysosomal storage diseases or metabolic diseases. So far, a dozen enzymes have been approved by FDA/EMA for lysosome storage disorders and only a few for metabolic diseases. Enzymes for replacement therapy are mainly produced in mammalian cells and some in plant cells and yeasts and are further processed to obtain active, highly bioavailable, less degradable products. Issues still under investigation for the increase in ERT efficacy are the optimization of enzymes interaction with cell membrane and internalization, the reduction in immunogenicity, and the overcoming of blood-brain barrier limitations when neuronal cells need to be targeted. Overall, ERT has demonstrated its efficacy and safety in the treatment of many genetic rare diseases, both saving newborn lives and improving patients' life quality, and represents a very successful example of targeted biologics.
Collapse
Affiliation(s)
- Marialaura Marchetti
- Biopharmanet-TEC Interdepartmental Center, University of Parma, Parco Area delle Scienze, Bldg 33., 43124, Parma, Italy
| | - Serena Faggiano
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 23/A, 43124, Parma, Italy
| | - Andrea Mozzarelli
- Institute of Biophysics, National Research Council, Via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
37
|
Knight V, Heimall JR, Chong H, Nandiwada SL, Chen K, Lawrence MG, Sadighi Akha AA, Kumánovics A, Jyonouchi S, Ngo SY, Vinh DC, Hagin D, Forbes Satter LR, Marsh RA, Chiang SCC, Willrich MAV, Frazer-Abel AA, Rider NL. A Toolkit and Framework for Optimal Laboratory Evaluation of Individuals with Suspected Primary Immunodeficiency. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3293-3307.e6. [PMID: 34033983 DOI: 10.1016/j.jaip.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/27/2022]
Abstract
Knowledge related to the biology of inborn errors of immunity and associated laboratory testing methods continues to expand at a tremendous rate. Despite this, many patients with inborn errors of immunity suffer for prolonged periods of time before identification of their underlying condition, thereby delaying appropriate care. Understanding that test selection and optimal evaluation for patients with recurrent infections or unusual patterns of inflammation can be unclear, we present a document that distills relevant clinical features of immunologic disease due to inborn errors of immunity and related appropriate and available test options. This document is intended to serve the practicing clinical immunologist and, in turn, patients by describing best available test options for initial and expanded immunologic evaluations across the disease spectrum. Our goal is to demystify the process of evaluating patients with suspected immune dysfunction and to enable more rapid and accurate diagnosis of such individuals.
Collapse
Affiliation(s)
- Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Jennifer R Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Hey Chong
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pa
| | - Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Karin Chen
- Department of Immunology, University of Washington and Seattle Children's Hospital, Seattle, Wash
| | - Monica G Lawrence
- Division of Asthma, Allergy and Clinical Immunology, University of Virginia, Charlottesville, Va
| | - Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Perlman School of Medicine at University of Pennsylvania, Philadelphia, Pa
| | - Suzanne Y Ngo
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colo
| | - Donald C Vinh
- Division of Infectious Diseases, Allergy & Clinical Immunology, Department of Medical Microbiology and Human Genetics, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Hagin
- Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lisa R Forbes Satter
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Samuel C C Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Maria A V Willrich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minn
| | - Ashley A Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colo
| | - Nicholas L Rider
- The Texas Children's Hospital, Section of Immunology, Allergy and Retrovirology, The Baylor College of Medicine and the William T. Shearer Center for Human Immunobiology, Houston, Tex.
| |
Collapse
|
38
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
39
|
Sipe CJ, Claudio Vázquez PN, Skeate JG, McIvor RS, Moriarity BS. Targeted genome editing for the correction or alleviation of primary Immunodeficiencies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:111-151. [PMID: 34175040 DOI: 10.1016/bs.pmbts.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Primary immunodeficiencies (PID) are a growing list of unique disorders that result in a failure of the innate/adaptive immune systems to fully respond to disease or infection. PIDs are classified into five broad categories; B cell disorders, combined B and T cell disorders, phagocytic disorders, complement disorders, and disorders with recurrent fevers and inflammation. Many of these disorders, such as X-SCID, WAS, and CGD lead to early death in children if intervention is not implemented. At present, the predominant method of curative therapy remains an allogeneic transplant from a healthy donor, however many complications and limitations exist with his therapy such as availability of donors, graft vs host disease, graft rejection, and infection. More recently, gene therapy using viral based complementation vectors have successfully been implemented to functionally correct patient cells in an autologous transplant, but these methods carry significant risks, including insertional mutagenesis, and provide non-physiological gene expression. For these reasons, gene-editing reagents such as targeted nucleases, base editors (BE), and prime editors (PE) are being explored. The BE and PE tools, sometimes referred to as digital editors, are of very high interest as they provide both enhanced molecular specificity and do not rely on DNA repair pathways after DSBs to change individual base pairs or directly replace DNA sequences responsible for pathogenic phenotypes. With this in mind the purpose of this chapter is to highlight some of the most common PIDs found within the human population, discuss successes and shortcomings of previous intervention strategies, and highlight how the next generation of gene-editing tools may be deployed to directly repair the underlying genetic causes of this class of disease.
Collapse
Affiliation(s)
- Christopher J Sipe
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Patricia N Claudio Vázquez
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Joseph G Skeate
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - R Scott McIvor
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
40
|
Tecle E, Chhan CB, Franklin L, Underwood RS, Hanna-Rose W, Troemel ER. The purine nucleoside phosphorylase pnp-1 regulates epithelial cell resistance to infection in C. elegans. PLoS Pathog 2021; 17:e1009350. [PMID: 33878133 PMCID: PMC8087013 DOI: 10.1371/journal.ppat.1009350] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 04/06/2021] [Indexed: 11/19/2022] Open
Abstract
Intestinal epithelial cells are subject to attack by a diverse array of microbes, including intracellular as well as extracellular pathogens. While defense in epithelial cells can be triggered by pattern recognition receptor-mediated detection of microbe-associated molecular patterns, there is much to be learned about how they sense infection via perturbations of host physiology, which often occur during infection. A recently described host defense response in the nematode C. elegans called the Intracellular Pathogen Response (IPR) can be triggered by infection with diverse natural intracellular pathogens, as well as by perturbations to protein homeostasis. From a forward genetic screen, we identified the C. elegans ortholog of purine nucleoside phosphorylase pnp-1 as a negative regulator of IPR gene expression, as well as a negative regulator of genes induced by extracellular pathogens. Accordingly, pnp-1 mutants have resistance to both intracellular and extracellular pathogens. Metabolomics analysis indicates that C. elegans pnp-1 likely has enzymatic activity similar to its human ortholog, serving to convert purine nucleosides into free bases. Classic genetic studies have shown how mutations in human purine nucleoside phosphorylase cause immunodeficiency due to T-cell dysfunction. Here we show that C. elegans pnp-1 acts in intestinal epithelial cells to regulate defense. Altogether, these results indicate that perturbations in purine metabolism are likely monitored as a cue to promote defense against epithelial infection in the nematode C. elegans.
Collapse
Affiliation(s)
- Eillen Tecle
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Crystal B. Chhan
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Latisha Franklin
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ryan S. Underwood
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
41
|
Vignesh P, Rawat A, Kumrah R, Singh A, Gummadi A, Sharma M, Kaur A, Nameirakpam J, Jindal A, Suri D, Gupta A, Khadwal A, Saikia B, Minz RW, Sharma K, Desai M, Taur P, Gowri V, Pandrowala A, Dalvi A, Jodhawat N, Kambli P, Madkaikar MR, Bhattad S, Ramprakash S, Cp R, Jayaram A, Sivasankaran M, Munirathnam D, Balaji S, Rajendran A, Aggarwal A, Singh K, Na F, George B, Mehta A, Lashkari HP, Uppuluri R, Raj R, Bartakke S, Gupta K, Sreedharanunni S, Ogura Y, Kato T, Imai K, Chan KW, Leung D, Ohara O, Nonoyama S, Hershfield M, Lau YL, Singh S. Clinical, Immunological, and Molecular Features of Severe Combined Immune Deficiency: A Multi-Institutional Experience From India. Front Immunol 2021; 11:619146. [PMID: 33628209 PMCID: PMC7897653 DOI: 10.3389/fimmu.2020.619146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 01/04/2023] Open
Abstract
Background Severe Combined Immune Deficiency (SCID) is an inherited defect in lymphocyte development and function that results in life-threatening opportunistic infections in early infancy. Data on SCID from developing countries are scarce. Objective To describe clinical and laboratory features of SCID diagnosed at immunology centers across India. Methods A detailed case proforma in an Excel format was prepared by one of the authors (PV) and was sent to centers in India that care for patients with primary immunodeficiency diseases. We collated clinical, laboratory, and molecular details of patients with clinical profile suggestive of SCID and their outcomes. Twelve (12) centers provided necessary details which were then compiled and analyzed. Diagnosis of SCID/combined immune deficiency (CID) was based on 2018 European Society for Immunodeficiencies working definition for SCID. Results We obtained data on 277 children; 254 were categorized as SCID and 23 as CID. Male-female ratio was 196:81. Median (inter-quartile range) age of onset of clinical symptoms and diagnosis was 2.5 months (1, 5) and 5 months (3.5, 8), respectively. Molecular diagnosis was obtained in 162 patients - IL2RG (36), RAG1 (26), ADA (19), RAG2 (17), JAK3 (15), DCLRE1C (13), IL7RA (9), PNP (3), RFXAP (3), CIITA (2), RFXANK (2), NHEJ1 (2), CD3E (2), CD3D (2), RFX5 (2), ZAP70 (2), STK4 (1), CORO1A (1), STIM1 (1), PRKDC (1), AK2 (1), DOCK2 (1), and SP100 (1). Only 23 children (8.3%) received hematopoietic stem cell transplantation (HSCT). Of these, 11 are doing well post-HSCT. Mortality was recorded in 210 children (75.8%). Conclusion We document an exponential rise in number of cases diagnosed to have SCID over the last 10 years, probably as a result of increasing awareness and improvement in diagnostic facilities at various centers in India. We suspect that these numbers are just the tip of the iceberg. Majority of patients with SCID in India are probably not being recognized and diagnosed at present. Newborn screening for SCID is the need of the hour. Easy access to pediatric HSCT services would ensure that these patients are offered HSCT at an early age.
Collapse
Affiliation(s)
- Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Kumrah
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anjani Gummadi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anit Kaur
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Johnson Nameirakpam
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepti Suri
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Anju Gupta
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Bone Marrow Transplantation Unit, Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Biman Saikia
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ranjana Walker Minz
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kaushal Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Mukesh Desai
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Prasad Taur
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Vijaya Gowri
- Department of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Ambreen Pandrowala
- Bone Marrow Transplantation Unit, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Aparna Dalvi
- ICMR-National Institute of Immunohematology, Mumbai, India
| | - Neha Jodhawat
- ICMR-National Institute of Immunohematology, Mumbai, India
| | | | | | - Sagar Bhattad
- Pediatric Immunology and Rheumatology, Aster CMI hospital, Bengaluru, India
| | - Stalin Ramprakash
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | - Raghuram Cp
- Pediatric Hemat-oncology and BMT Unit, Aster CMI Hospital, Bengaluru, India
| | | | | | | | - Sarath Balaji
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Aruna Rajendran
- Institute of Child Health, Madras Medical College, Chennai, India
| | - Amita Aggarwal
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Komal Singh
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Fouzia Na
- Christian Medical College, Vellore, India
| | | | | | | | | | | | | | - Kirti Gupta
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sreejesh Sreedharanunni
- Department of Hematology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Yumi Ogura
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan.,Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koon Wing Chan
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | | | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Surjit Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
42
|
Eudy BJ, da Silva RP. Systematic deletion of adenosine receptors reveals novel roles in inflammation and pyroptosis in THP-1 macrophages. Mol Immunol 2021; 132:1-7. [PMID: 33524770 DOI: 10.1016/j.molimm.2021.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Macrophages perform the fundamental function of sensing cellular damage, initiating and mediating immune response and tissue repair. Adenine nucleotides are in relatively high abundance in cells and are released from cells during tissue damage that are converted to adenosine in the extracellular environment. The A1, A2A, A2B and A3 adenosine receptors serve to regulate immune function. Despite characterization of the adenosine receptors, a comprehensive examination of adenosine receptor signaling in THP-1 macrophage cells has not been done. Moreover, previous studies employed chemical agonists and antagonists that have the potential for off-target affects. Here we systematically knockdown each of the four known adenosine receptors in THP-1 macrophages using validated siRNA and investigated their function under LPS stimulation. We demonstrate that the A1 receptor is required for adenosine-stimulated IL-10 and IL-1β secretion indicating an important role of this receptor during resolution of inflammation and tissue repair in these cells. The A1 and A3 receptor were required for IL-6 and IL-1β secretion showing a net pro-inflammatory role for these receptors. Finally, we present the novel finding that THP-1 macrophages lacking the A2B receptor undergo pyroptosis when exposed to LPS, demonstrating a novel role of the A2B receptor in regulation of programmed cell death during inflammation. This work underscores the fundamental importance of adenosine signaling and provides insight into the independent roles of the adenosine receptors in modulating cytokine signaling.
Collapse
Affiliation(s)
- Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Robin P da Silva
- University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.
| |
Collapse
|
43
|
Houghton BC, Booth C. Gene Therapy for Primary Immunodeficiency. Hemasphere 2021; 5:e509. [PMID: 33403354 PMCID: PMC7773329 DOI: 10.1097/hs9.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/21/2020] [Indexed: 12/27/2022] Open
Abstract
Over the past 3 decades, there has been significant progress in refining gene therapy technologies and procedures. Transduction of hematopoietic stem cells ex vivo using lentiviral vectors can now create a highly effective therapeutic product, capable of reconstituting many different immune system dysfunctions when reinfused into patients. Here, we review the key developments in the gene therapy landscape for primary immune deficiency, from an experimental therapy where clinical efficacy was marred by adverse events, to a commercialized product with enhanced safety and efficacy. We also discuss progress being made in preclinical studies for challenging disease targets and emerging gene editing technologies that are showing promising results, particularly for conditions where gene regulation is important for efficacy.
Collapse
Affiliation(s)
- Benjamin C. Houghton
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Department of Paediatric Immunology, Great Ormond Street NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
44
|
Tucci F, Scaramuzza S, Aiuti A, Mortellaro A. Update on Clinical Ex Vivo Hematopoietic Stem Cell Gene Therapy for Inherited Monogenic Diseases. Mol Ther 2020; 29:489-504. [PMID: 33221437 DOI: 10.1016/j.ymthe.2020.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Gene transfer into autologous hematopoietic stem progenitor cells (HSPCs) has the potential to cure monogenic inherited disorders caused by an altered development and/or function of the blood system, such as immune deficiencies and red blood cell and platelet disorders. Gene-corrected HSPCs and their progeny can also be exploited as cell vehicles to deliver molecules into the circulation and tissues, including the central nervous system. In this review, we focus on the progress of clinical development of medicinal products based on HSPCs engineered and modified by integrating viral vectors for the treatment of monogenic blood disorders and metabolic diseases. Two products have reached the stage of market approval in the EU, and more are foreseen to be approved in the near future. Despite these achievements, several challenges remain for HSPC gene therapy (HSPC-GT) precluding a wider application of this type of gene therapy to a wider set of diseases while gene-editing approaches are entering the clinical arena.
Collapse
Affiliation(s)
- Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Samantha Scaramuzza
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Pediatric Immunohematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita Salute San Raffaele University, Milan, Italy.
| | - Alessandra Mortellaro
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
45
|
Gao ZW, Wang X, Zhang HZ, Lin F, Liu C, Dong K. The roles of adenosine deaminase in autoimmune diseases. Autoimmun Rev 2020; 20:102709. [PMID: 33197575 DOI: 10.1016/j.autrev.2020.102709] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases patients are characterized by the autoimmune disorders, whose immune system can't distinguish between auto- and foreign- antigens. Thus, Immune homeostasis disorder is the key factor for autoimmune diseases development. Adenosine deaminase (ADA) is the degrading enzyme for an immunosuppressive signal - adenosine, and play an important role in immune homeostasis regulation. Increasing evidences have shown that ADA is involved in various autoimmune diseases. ADA activity were changed in multiple autoimmune diseases patients and could be served as a biomarker for clinical diagnosis. In this study, we analyze the change of ADA activity in patients with autoimmune diseases, and we underline its potential diagnostic value for autoimmune diseases patients.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Xi Wang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Hui-Zhong Zhang
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Fang Lin
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Chong Liu
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China
| | - Ke Dong
- Department of Clinical Diagnose, Tangdu Hospital, Airforce military medical university, Xi'an City, Shannxi Province, China.
| |
Collapse
|
46
|
Manalo JM, Liu H, Ding D, Hicks J, Sun H, Salvi R, Kellems RE, Pereira FA, Xia Y. Adenosine A2B receptor: A pathogenic factor and a therapeutic target for sensorineural hearing loss. FASEB J 2020; 34:15771-15787. [PMID: 33131093 DOI: 10.1096/fj.202000939r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
Over 466 million people worldwide are diagnosed with hearing loss (HL). About 90% of HL cases are sensorineural HL (SNHL) with treatments limited to hearing aids and cochlear implants with no FDA-approved drugs. Intriguingly, ADA-deficient patients have been reported to have bilateral SNHL, however, its underlying cellular and molecular basis remain unknown. We report that Ada-/- mice, phenocopying ADA-deficient humans, displayed SNHL. Ada-/- mice cochlea with elevated adenosine caused substantial nerve fiber demyelination and mild hair cell loss. ADA enzyme therapy in these mice normalized cochlear adenosine levels, attenuated SNHL, and prevented demyelination. Additionally, ADA enzyme therapy rescued SNHL by restoring nerve fiber structure in Ada-/- mice post two-week drug withdrawal. Moreover, elevated cochlear adenosine in untreated mice was associated with enhanced Adora2b gene expression. Preclinically, ADORA2B-specific antagonist treatment in Ada-/- mice significantly improved HL, nerve fiber density, and myelin compaction. We also provided genetic evidence that ADORA2B is detrimental for age-related SNHL by impairing cochlear myelination in WT aged mice. Overall, understanding purinergic molecular signaling in SNHL in Ada-/- mice allows us to further discover that ADORA2B is also a pathogenic factor underlying aged-related SNHL by impairing cochlear myelination and lowering cochlear adenosine levels or blocking ADORA2B signaling are effective therapies for SNHL.
Collapse
Affiliation(s)
- Jeanne M Manalo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dalian Ding
- Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Hong Sun
- Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Richard Salvi
- Department of Communicative Disorders and Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fred A Pereira
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Graduate School of Biomedical Science, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
47
|
Abstract
INTRODUCTION Primary immunodeficiencies (PIDs) are monogenic disorders of the immune system associated with increased susceptibility to life-threatening infection. Curative treatment has been limited to hematopoietic stem cell transplant (HSCT), however toxic immunosuppression, graft failure, and graft versus host disease greatly reduce overall survival rates. Gene therapy is a targeted curative therapy that reduces these risks by utilizing autologous hematopoietic stem cells. The treatment has found significant success and is anticipated to become the standard of care in a number of PIDs. AREAS COVERED This review is a summary of the developments in gene therapy, gene editing, and current gene therapy approaches in specific PIDs. EXPERT OPINION The field of gene therapy has rapidly developed over the last three decades, with the first licensed pharmaceutical gene therapy product now available. After initial clinical trials discovered serious adverse events in the form of insertional oncogenesis, significant improvements in vector design have made the treatment a viable curative therapy. Cryopreservation has expanded the scope of gene therapy by increasing accessibility of the product to wider geographic locations. Targeted gene editing using engineered nucleases, while still in early stages of development, will further add to the repertoire of potential treatments available for PIDs.
Collapse
Affiliation(s)
- Kritika Chetty
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Claire Booth
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, London, United Kingdom.,Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
48
|
Panchal N, Ghosh S, Booth C. T cell gene therapy to treat immunodeficiency. Br J Haematol 2020; 192:433-443. [PMID: 33280098 DOI: 10.1111/bjh.17070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/16/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
Abstract
The application of therapeutic T cells for a number of conditions has been developed over the past few decades with notable successes including donor lymphocyte infusions, virus-specific T cells and more recently CAR-T cell therapy. Primary immunodeficiencies are monogenetic disorders leading to abnormal development or function of the immune system. Haematopoietic stem cell transplantation and, in specific candidate diseases, haematopoietic stem cell gene therapy has been the only definitive treatment option so far. However, autologous gene-modified T cell therapy may offer a potential cure in conditions primarily affecting the lymphoid compartment. In this review we will highlight several T cell gene addition or gene-editing approaches in different target diseases with a focus on what we have learnt from clinical experience and promising preclinical studies in primary immunodeficiencies. Functional T cells are required not only for normal immune responses to infection (affected in CD40 ligand deficiency), but also for immune regulation [disrupted in IPEX syndrome (immune dysregulation, polyendocrinopathy, enteropathy, X-Linked) due to dysfunctional FOXP3 and CTLA4 deficiency] or cytotoxicity [defective in X-lymphoproliferative disease and familial haemophagocytic lymphohistiocytosis (HLH) syndromes]. In all these candidate diseases, restoration of T cell function by gene therapy could be of great value.
Collapse
Affiliation(s)
- Neelam Panchal
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Center of Child and Adolescent Health, Heinrich-Heine-University, Düsseldorf, Germany
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Paediatric Immunology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
49
|
Alarcón S, Toro MDLÁ, Villarreal C, Melo R, Fernández R, Ayuso Sacido A, Uribe D, San Martín R, Quezada C. Decreased Equilibrative Nucleoside Transporter 1 (ENT1) Activity Contributes to the High Extracellular Adenosine Levels in Mesenchymal Glioblastoma Stem-Like Cells. Cells 2020; 9:E1914. [PMID: 32824670 PMCID: PMC7463503 DOI: 10.3390/cells9081914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme is one of the most malignant types of cancer. This is mainly due to a cell subpopulation with an extremely aggressive potential, called glioblastoma stem-like cells (GSCs). These cells produce high levels of extracellular adenosine which has been associated with increased chemoresistance, migration, and invasion in glioblastoma. In this study, we attempted to elucidate the mechanisms that control extracellular adenosine levels in GSC subtypes. By using primary and U87MG-derived GSCs, we associated increased extracellular adenosine with the mesenchymal phenotype. [3H]-adenosine uptake occurred mainly through the equilibrative nucleoside transporters (ENTs) in GSCs, but mesenchymal GSCs have lower expression and ENT1-mediated uptake activity than proneural GSCs. By analyzing expression and enzymatic activity, we determined that ecto-5'-nucleotidase (CD73) is predominantly expressed in proneural GSCs, driving AMPase activity. While in mesenchymal GSCs, both CD73 and Prostatic Acid Phosphatase (PAP) contribute to the AMP (adenosine monophosphate) hydrolysis. We did not observe significant differences between the expression of proteins involved in the metabolization of adenosine among the GCSs subtypes. In conclusion, the lower expression and activity of the ENT1 transporter in mesenchymal GSCs contributes to the high level of extracellular adenosine that these GSCs present.
Collapse
Affiliation(s)
- Sebastián Alarcón
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - María de los Ángeles Toro
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Carolina Villarreal
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Rómulo Melo
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago 7500691, Chile; (R.M.); (R.F.)
| | - Rodrigo Fernández
- Servicio de Neurocirugía, Instituto de Neurocirugía Dr. Asenjo, Santiago 7500691, Chile; (R.M.); (R.F.)
| | - Angel Ayuso Sacido
- Brain Tumour Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain;
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| | - Daniel Uribe
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Rody San Martín
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
| | - Claudia Quezada
- Laboratorio de Biología Tumoral, Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile; (S.A.); (M.d.l.Á.T.); (C.V.); (D.U.); (R.S.M.)
- Instituto Milenio de Inmunología e Inmunoterapia, Santiago 8320000, Chile
| |
Collapse
|
50
|
Grunebaum E, Campbell N, Leon-Ponte M, Xu X, Chapdelaine H. Partial Purine Nucleoside Phosphorylase Deficiency Helps Determine Minimal Activity Required for Immune and Neurological Development. Front Immunol 2020; 11:1257. [PMID: 32695102 PMCID: PMC7338719 DOI: 10.3389/fimmu.2020.01257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: Complete or near complete absence of the purine nucleoside phosphorylase (PNP) enzyme causes a profound T cell immunodeficiency and neurological abnormalities that are often lethal in infancy and early childhood. We hypothesized that patients with partial PNP deficiency, characterized by a late and mild phenotype due to residual PNP enzyme, would provide important information about the minimal PNP activity needed for normal development. Methods: Three siblings with a homozygous PNP gene mutation (c.769C>G, p.His257Asp) resulting in partial PNP deficiency were investigated. PNP activity was semi-quantitively assayed by the conversion of [14C]inosine in hemolysates, mononuclear cells, and lymphoblastoid B cells. PNP protein expression was determined by Western Blotting in lymphoblastoid B cells. DNA repair was quantified by measuring viability of lymphoblastoid B cells following ionizing irradiation. Results: A 21-year-old female was referred for recurrent sino-pulmonary infections while her older male siblings, aged 25- and 28- years, did not suffer from significant infections. Two of the siblings had moderately reduced numbers of T, B, and NK cells, while the other had near normal lymphocyte subset numbers. T cell proliferations were normal in the two siblings tested. Hypogammaglobulinemia was noted in two siblings, including one that required immunoglobulin replacement. All siblings had typical (normal) neurological development. PNP activity in various cells from two patients were 8-11% of the normal level. All siblings had normal blood uric acid and increased PNP substrates in the urine. PNP protein expression in cells from the two patients examined was similar to that observed in cells from healthy controls. The survival of lymphoblastoid B cells from 2 partial PNP-deficient patients after irradiation was similar to that of PNP-proficient cells and markedly higher than the survival of cells from a patient with absent PNP activity or a patient with ataxia telangiectasia. Conclusions: Patients with partial PNP deficiency can present in the third decade of life with mild-moderate immune abnormalities and typical development. Near-normal immunity might be achieved with relatively low PNP activity.
Collapse
Affiliation(s)
- Eyal Grunebaum
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, ON, Canada.,Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Nicholas Campbell
- Department of Medicine, Centre Hospitalier de I'Universite de Montreal, and Montreal Clinical Research Institute, Montreal, QC, Canada
| | - Matilde Leon-Ponte
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaobai Xu
- Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, ON, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Centre Hospitalier de I'Universite de Montreal, and Montreal Clinical Research Institute, Montreal, QC, Canada
| |
Collapse
|