1
|
Topping J, Taylor A, Nadat F, Crouch S, Ibbotson A, Čermák J, Symeonidis A, Tatic A, Langemeijer S, Hellström-Lindberg E, Culligan D, Garelius HG, Ashcroft J, Nga E, Parker J, Kolade S, McDermott MF, De Witte T, Bowen D, Smith A, Cargo C, Savic S. Inflammatory profile of lower risk myelodysplastic syndromes. Br J Haematol 2024; 205:1044-1054. [PMID: 38772913 DOI: 10.1111/bjh.19530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
The precise link between inflammation and pathogenesis of myelodysplastic syndrome (MDS) is yet to be fully established. We developed a novel method to measure ASC/NLRP3 protein specks which are specific for the NLRP3 inflammasome only. We combined this with cytokine profiling to characterise various inflammatory markers in a large cohort of patients with lower risk MDS in comparison to healthy controls and patients with defined autoinflammatory disorders (AIDs). The ASC/NLRP3 specks were significantly elevated in MDS patients compared to healthy controls (p < 0.001) and these levels were comparable to those found in patients with AIDs. The distribution of protein specks positive only for ASC was different to ASC/NLRP3 ones suggesting that other ASC-containing inflammasome complexes might be important in the pathogenesis of MDS. Patients with MDS-SLD had the lowest levels of interleukin (IL)-1β, tumour necrosis factor (TNF), IL-23, IL-33, interferon (IFN) γ and IFN-α2, compared to other diagnostic categories. We also found that inflammatory cytokine TNF was positively associated with MDS progression to a more aggressive form of disease and IL-6 and IL-1β with time to first red blood cell transfusion. Our study shows that there is value in analysing inflammatory biomarkers in MDS, but their diagnostic and prognostic utility is yet to be fully validated.
Collapse
Affiliation(s)
- Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Adele Taylor
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Fatima Nadat
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, UK
| | - Simon Crouch
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Alice Ibbotson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Jaroslav Čermák
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Praha, Czech Republic
| | - Argiris Symeonidis
- Division of Hematology, Department of Internal Medicine, University of Patras Medical School, Patras, Greece
| | - Aurelia Tatic
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Saskia Langemeijer
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Hellström-Lindberg
- Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dominic Culligan
- Department of Haematology, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - John Ashcroft
- Department of Hematology, Mid Yorkshire Hospitals, Wakefield, UK
| | - Emma Nga
- Department of Haematology, Royal Blackburn Teaching Hospital, Blackburn, Lancashire, UK
| | - Jane Parker
- Northampton General Hospital, Northampton, UK
| | - Seye Kolade
- Department of Haematology, Blackpool Victoria Hospital, Blackpool, Lancashire, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Theo De Witte
- Department of Tumor Immunology, Nijmegen Center for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - David Bowen
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Alexandra Smith
- Epidemiology and Cancer Statistics Group, University of York, York, UK
| | - Catherine Cargo
- Haematological Malignancy Diagnostic Service, St James's University Hospital, Leeds, UK
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- National Institute for Health Research-Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
2
|
Alkhulaifi FM, Alonaizan R, rady A, Alomar S. Study of gene polymorphisms in Toll-like receptor 2 in patients with acute lymphoblastic leukemia. Heliyon 2024; 10:e33754. [PMID: 39040297 PMCID: PMC11261853 DOI: 10.1016/j.heliyon.2024.e33754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Objectives Acute Lymphoblastic Leukemia (ALL) is a multifactorial disease that results from the interaction between multiple genetic factors. ALL is characterized by uncontrolled production of hematopoietic precursor cells of the lymphoid progenitors within the bone marrow. The development of hematological malignancies has been associated with malignant-like cells that express low levels of immunogenic surface molecules, thus, facilitating their escape from cellular antineoplastic immune responses. This risk may be partly influenced by variations in polymorphic genes that control immune function and regulation. Toll-like receptors (TLRs) are well known pattern recognition receptors playing key role in innate immune response. Abnormal expression and dysregulation of TLRs will provide an opportunity for cancer cells to escape from the immune system and enhance their proliferation and angiogenesis. Toll-like receptor 2 (TLR2) play an essential role in innate immunity. Single nucleotide polymorphisms (SNPs) are present in a number of TLR genes and have been associated with various disorders. Methods In this study, 265 subjects have been divided into two groups included 150 patients with ALL and115 healthy volunteers. All subjects were genotyped using TaqMan PCR techniques. In total, Five SNPs were statistically evaluated in the TLR2 (rs1898830 A/G, rs3804099 T/C, rs3804100 T/C, rs1339 T/C, and rs1337 C/G), which may influence the susceptibility of ALL. Minor allele frequency and genotype distribution were compared across the study groups, and the relative risk and differences between patients and controls were estimated. Moreover, the mRNA expression level was evaluated in patients with ALL and the matched healthy individuals by Real-Time Quantitative Reverse Transcription PCR (qRT-PCR). Results TLR2 rs1898830 A/G; rs3804099 T/C; rs3804100 T/C; rs1339 T/C, were significantly decrease the risk in our population, overall and for certain subtypes and ALL samples exhibited significant increase in the mRNA levels of TLR2. Conclusions This study shows that TLR2 could be an independent prognostic factor of ALL risks in the Saudi population. Suggesting that genetic variation in genes associated with an immune response may be important in the etiology of ALL. In addition, the results herein revealed that TLR2 overexpression is associated with ALL and has diverse biological significance in the context of the complex relationship between inflammation and cancer development. Therefore, these data could open further studies to explore the possible clinical relevance of TLRs as pathological markers for Leukemia and enhance the strategies regarding hematological malignancies prevention based on their gene expression.
Collapse
Affiliation(s)
- Fadwa M. Alkhulaifi
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Rasha Alonaizan
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Ahmed rady
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| | - Suliman Alomar
- Zoology Department, College of Science, King Saud University, P.O. Box: 2455, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Putnam CM, Kondeti L, Kesler MBA, Varney ME. Modulating the immune system as a therapeutic target for myelodysplastic syndromes and acute myeloid leukemia. Biochem Cell Biol 2023; 101:481-495. [PMID: 37566901 DOI: 10.1139/bcb-2022-0374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Modulating the immune system to treat diseases, including myeloid malignancies, has resulted in the development of a multitude of novel therapeutics in recent years. Myelodysplastic syndromes or neoplasms (MDS) and acute myeloid leukemia (AML) are hematologic malignancies that arise from defects in hematopoietic stem and progenitor cells (HSPCs). Dysregulated immune responses, especially in innate immune and inflammatory pathways, are highly associated with the acquisition of HSPC defects in MDS and AML pathogenesis. In addition to utilizing the immune system in immunotherapeutic interventions such as chimeric antigen receptor T cell therapy, vaccines, and immune checkpoint inhibitors, mitigating dysregulation of innate immune and inflammatory responses in MDS and AML remains a priority in slowing the initiation and progression of these myeloid malignancies. This review provides a comprehensive summary of the current progress of diverse strategies to utilize or modulate the immune system in the treatment of MDS and AML.
Collapse
Affiliation(s)
- Caroline M Putnam
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Lahari Kondeti
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Meredith B A Kesler
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| | - Melinda E Varney
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, USA
| |
Collapse
|
5
|
He Y, Zhao J, Dong H, Zhang X, Duan Y, Ma Y, Yu M, Fei J, Huang F. TLR2 deficiency is beneficial at the late phase in MPTP-induced Parkinson' disease mice. Life Sci 2023; 333:122171. [PMID: 37827233 DOI: 10.1016/j.lfs.2023.122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
AIMS Parkinson's disease (PD) is a progressive neurodegenerative disorder. The etiology of PD is still elusive but neuroinflammation is proved to be an important contributor. Toll-like receptor 2 (TLR2) involves in the release of several inflammatory cytokines. Whether TLR2 serves as a mediator contributing to the damage of DA system in PD remain unclear. MAIN METHODS Tlr2 knockout (Tlr2-/-) and wild-type (WT) mice were treated with a subacute regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At 3, 7 and 14 days after MPTP injection, the behavioral performance, including the Pole test, the Rotarod test, the Rearing test and the Wire hang test was evaluated. Moreover, the PD-like phenotypes, including dopaminergic degeneration, the activation of glial cells and the α-Syn expression were systematically analyzed in the nigrostriatal pathway. Finally, the composition of gut microbiota in the MPTP-treated groups were assessed. KEY FINDINGS TLR2 deficiency had no obvious impact on the dopaminergic injury at 3 and 7 days following MPTP administration. On the contrary, at 14 days post injection, TLR2 deficiency not only significantly attenuated motor deficits in the Pole test and the Rotarod test, and the nigrostriatal dopaminergic degeneration, but also mitigated α-Syn abnormality, astrocyte activation and neuroinflammation through the suppressed TLR2/MyD88/TRAF6/NF-κB signaling pathways. Additionally, the alteration of gut microbiota was also detected in the mutant mice. SIGNIFICANCE These findings highlight the neuroprotective effect of TLR2-pathways at the late phase in the MPTP-induced PD mouse model.
Collapse
Affiliation(s)
- Yongtao He
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Jiayin Zhao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hongtian Dong
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xiaoshuang Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yufei Duan
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Yuanyuan Ma
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Mei Yu
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Engineering Research Center for Model Organisms, Shanghai Model Organisms Center, INC., Shanghai 201203, China.
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Parrondo RD, Iqbal M, Von Roemeling R, Von Roemeling C, Tun HW. IRAK-4 inhibition: emavusertib for the treatment of lymphoid and myeloid malignancies. Front Immunol 2023; 14:1239082. [PMID: 37954584 PMCID: PMC10637517 DOI: 10.3389/fimmu.2023.1239082] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/17/2023] [Indexed: 11/14/2023] Open
Abstract
Several studies have identified mutations in the MYD88L265P gene as a key driver mutation in several B-cell lymphomas. B-cell lymphomas that harbor the MYD88L265P mutation form a complex with phosphorylated Bruton's tyrosine kinase (BTK) and are responsive to BTK inhibition. However, BTK inhibition in B-cell lymphomas rarely results in a complete response and most patients experience eventual disease relapse. Persistent survival signaling though downstream molecules such as interleukin 1 receptor-associated kinase 4 (IRAK-4), an integral part of the "myddosome" complex, has been shown to be constitutively active in B-cell lymphoma patients treated with BTK inhibitors. Emerging evidence is demonstrating the therapeutic benefit of IRAK-4 inhibition in B-cell lymphomas, along with possibly reversing BTK inhibitor resistance. While MYD88 gene mutations are not present in myeloid malignancies, downstream overexpression of the oncogenic long form of IRAK-4 has been found in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), particularly in AML and MDS that harbor mutations in splicing factors U2AF1 and SF3B1. These data suggest that the anti-leukemic activity of IRAK-4 inhibition can be exploited in relapsed/refractory (R/R) AML/MDS. In this review article, we discuss the currently available pre-clinical and clinical data of emavusertib, a selective, orally bioavailable IRAK-4 inhibitor in the treatment of R/R B-cell lymphomas and myeloid malignancies.
Collapse
Affiliation(s)
- Ricardo D. Parrondo
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | - Madiha Iqbal
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | | | - Han W. Tun
- Department of Hematology-Oncology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| |
Collapse
|
7
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Bennett J, Ishikawa C, Agarwal P, Yeung J, Sampson A, Uible E, Vick E, Bolanos LC, Hueneman K, Wunderlich M, Kolt A, Choi K, Volk A, Greis KD, Rosenbaum J, Hoyt SB, Thomas CJ, Starczynowski DT. Paralog-specific signaling by IRAK1/4 maintains MyD88-independent functions in MDS/AML. Blood 2023; 142:989-1007. [PMID: 37172199 PMCID: PMC10517216 DOI: 10.1182/blood.2022018718] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/14/2023] Open
Abstract
Dysregulation of innate immune signaling is a hallmark of hematologic malignancies. Recent therapeutic efforts to subvert aberrant innate immune signaling in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) have focused on the kinase IRAK4. IRAK4 inhibitors have achieved promising, though moderate, responses in preclinical studies and clinical trials for MDS and AML. The reasons underlying the limited responses to IRAK4 inhibitors remain unknown. In this study, we reveal that inhibiting IRAK4 in leukemic cells elicits functional complementation and compensation by its paralog, IRAK1. Using genetic approaches, we demonstrate that cotargeting IRAK1 and IRAK4 is required to suppress leukemic stem/progenitor cell (LSPC) function and induce differentiation in cell lines and patient-derived cells. Although IRAK1 and IRAK4 are presumed to function primarily downstream of the proximal adapter MyD88, we found that complementary and compensatory IRAK1 and IRAK4 dependencies in MDS/AML occur via noncanonical MyD88-independent pathways. Genomic and proteomic analyses revealed that IRAK1 and IRAK4 preserve the undifferentiated state of MDS/AML LSPCs by coordinating a network of pathways, including ones that converge on the polycomb repressive complex 2 complex and JAK-STAT signaling. To translate these findings, we implemented a structure-based design of a potent and selective dual IRAK1 and IRAK4 inhibitor KME-2780. MDS/AML cell lines and patient-derived samples showed significant suppression of LSPCs in xenograft and in vitro studies when treated with KME-2780 as compared with selective IRAK4 inhibitors. Our results provide a mechanistic basis and rationale for cotargeting IRAK1 and IRAK4 for the treatment of cancers, including MDS/AML.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Chiharu Ishikawa
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Puneet Agarwal
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Jennifer Yeung
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Avery Sampson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Emma Uible
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | - Eric Vick
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Lyndsey C. Bolanos
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Kathleen Hueneman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | | | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
| | - Andrew Volk
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Kenneth D. Greis
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
| | | | - Scott B. Hoyt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
| | - Craig J. Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Cincinnati, OH
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH
- University of Cincinnati Cancer Center, Cincinnati, OH
| |
Collapse
|
9
|
Vegivinti CTR, Keesari PR, Veeraballi S, Martins Maia CMP, Mehta AK, Lavu RR, Thakur RK, Tella SH, Patel R, Kakumani VK, Pulakurthi YS, Aluri S, Aggarwal RK, Ramachandra N, Zhao R, Sahu S, Shastri A, Verma A. Role of innate immunological/inflammatory pathways in myelodysplastic syndromes and AML: a narrative review. Exp Hematol Oncol 2023; 12:60. [PMID: 37422676 DOI: 10.1186/s40164-023-00422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/22/2023] [Indexed: 07/10/2023] Open
Abstract
Dysregulation of the innate immune system and inflammatory-related pathways has been implicated in hematopoietic defects in the bone marrow microenvironment and associated with aging, clonal hematopoiesis, myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). As the innate immune system and its pathway regulators have been implicated in the pathogenesis of MDS/AML, novel approaches targeting these pathways have shown promising results. Variability in expression of Toll like receptors (TLRs), abnormal levels of MyD88 and subsequent activation of NF-κβ, dysregulated IL1-receptor associated kinases (IRAK), alterations in TGF-β and SMAD signaling, high levels of S100A8/A9 have all been implicated in pathogenesis of MDS/AML. In this review we not only discuss the interplay of various innate immune pathways in MDS pathogenesis but also focus on potential therapeutic targets from recent clinical trials including the use of monoclonal antibodies and small molecule inhibitors against these pathways.
Collapse
Affiliation(s)
- Charan Thej Reddy Vegivinti
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | | | | | - Ansh Krishnachandra Mehta
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Hematology and Oncology, Jacobi Medical Center/ Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rohit Reddy Lavu
- Department of Oncology, Yashoda hospitals, Hyderabad, 500036, India
| | - Rahul Kumar Thakur
- Department of Medicine, Jacobi Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Sri Harsha Tella
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, US
| | - Riya Patel
- Department of Hematology and Oncology, University of Buffalo - Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, US
| | | | | | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | | | - Nandini Ramachandra
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Rongbao Zhao
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Srabani Sahu
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Aditi Shastri
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, 10461, US.
- Department of Oncology, Blood Cancer Institute, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, 10461, US.
| |
Collapse
|
10
|
Kirtek T, Hamdan H, Van Arnam JS, Park S, Kovach AE, Pillai V, Weinberg OK. Spontaneous remission of acute lymphoblastic leukemia: A series of nine cases and a review of literature. Int J Lab Hematol 2023. [PMID: 36806637 DOI: 10.1111/ijlh.14042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/26/2023] [Indexed: 02/23/2023]
Abstract
AIMS To report a series of acute lymphoblastic leukemia (ALL) cases with spontaneous remission and provide presenting clinical and pathologic information and details of clinical course to raise awareness among oncologists and patients. METHODS We identified and analyzed nine patients with ALL and spontaneous remission. Review of literature reveals an additional nine previously reported cases with similar clinical course. RESULTS All of these patients, ranging in age from 2 to 12 years of age, presented with inciting signs and symptoms of viral or bacterial infection. All of the patients showed varying percentages of lymphoblasts (.2% to 90%) in diagnostic bone marrow biopsy. All B-ALL cases shared a similar blast phenotype on flow cytometry with coexpression of CD19, CD10 and TdT and variable CD20 expression. All nine patients achieved spontaneous remission of their leukemia as confirmed by flow cytometry and/or bone marrow biopsy without chemotherapeutic intervention. Time to remission from presentation ranged from 1 to 8 weeks. After remission, all patients redeveloped ALL, and time from remission to reemergence ranged from 2 to 24 weeks. CONCLUSION Our series of cases and cases identified in literature show that ALL diagnosed with modern methods of flow cytometry and molecular analysis will recur within weeks to months from disappearance, usually with cytopenias, which provides a template for oncologic follow-up and testing in these patients.
Collapse
Affiliation(s)
- Timothy Kirtek
- Department of pathology, University of Texas Southwestern Medical Center (UTSW), Dallas, Texas, USA
| | - Hanan Hamdan
- Department of pathology, University of Texas Southwestern Medical Center (UTSW), Dallas, Texas, USA
| | | | - Sunita Park
- Department of Pathology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Alexandra E Kovach
- Department of pathology, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Vinodh Pillai
- Department of pathology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Olga K Weinberg
- Department of pathology, University of Texas Southwestern Medical Center (UTSW), Dallas, Texas, USA
| |
Collapse
|
11
|
Leśniak M, Lipniarska J, Majka P, Kopyt W, Lejman M, Zawitkowska J. The Role of TRL7/8 Agonists in Cancer Therapy, with Special Emphasis on Hematologic Malignancies. Vaccines (Basel) 2023; 11:vaccines11020277. [PMID: 36851155 PMCID: PMC9967151 DOI: 10.3390/vaccines11020277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Toll-like receptors (TLR) belong to the pattern recognition receptors (PRR). TLR7 and the closely correlated TLR8 affiliate with toll-like receptors family, are located in endosomes. They recognize single-stranded ribonucleic acid (RNA) molecules and synthetic deoxyribonucleic acid (DNA)/RNA analogs-oligoribonucleotides. TLRs are primarily expressed in hematopoietic cells. There is compiling evidence implying that TLRs also direct the formation of blood cellular components and make a contribution to the pathogenesis of certain hematopoietic malignancies. The latest research shows a positive effect of therapy with TRL agonists on the course of hemato-oncological diseases. Ligands impact activation of antigen-presenting cells which results in production of cytokines, transfer of mentioned cells to the lymphoid tissue and co-stimulatory surface molecules expression required for T-cell activation. Toll-like receptor agonists have already been used in oncology especially in the treatment of dermatological neoplastic lesions. The usage of these substances in the treatment of solid tumors is being investigated. The present review discusses the direct and indirect influence that TLR7/8 agonists, such as imiquimod, imidazoquinolines and resiquimod have on neoplastic cells and their promising role as adjuvants in anticancer vaccines.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Weronika Kopyt
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| |
Collapse
|
12
|
Zhong C, Wang R, Morimoto LM, Longcore T, Franklin M, Rogne T, Metayer C, Wiemels JL, Ma X. Outdoor artificial light at night, air pollution, and risk of childhood acute lymphoblastic leukemia in the California Linkage Study of Early-Onset Cancers. Sci Rep 2023; 13:583. [PMID: 36631468 PMCID: PMC9834257 DOI: 10.1038/s41598-022-23682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/03/2022] [Indexed: 01/13/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer in children (age 0-14 years); however, the etiology remains incompletely understood. Several environmental exposures have been linked to risk of childhood ALL, including air pollution. Closely related to air pollution and human development is artificial light at night (ALAN), which is believed to disrupt circadian rhythm and impact health. We sought to evaluate outdoor ALAN and air pollution on risk of childhood ALL. The California Linkage Study of Early-Onset Cancers is a large population-based case-control in California that identifies and links cancer diagnoses from the California Cancer Registry to birth records. For each case, 50 controls with the same year of birth were obtained from birth records. A total of 2,782 ALL cases and 139,100 controls were identified during 2000-2015. ALAN was assessed with the New World Atlas of Artificial Night Sky Brightness and air pollution with an ensemble-based air pollution model of particulate matter smaller than 2.5 microns (PM2.5). After adjusting for known and suspected risk factors, the highest tertile of ALAN was associated with an increased risk of ALL in Hispanic children (odds ratio [OR] = 1.15, 95% confidence interval [CI] 1.01-1.32). There also appeared to be a borderline association between PM2.5 level and risk of ALL among non-Hispanic White children (OR per 10 µg/m3 = 1.24, 95% CI 0.98-1.56). We observed elevated risk of ALL in Hispanic children residing in areas of greater ALAN. Further work is needed to understand the role of ALAN and air pollution in the etiology of childhood ALL in different racial/ethnic groups.
Collapse
Affiliation(s)
- Charlie Zhong
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rong Wang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Libby M Morimoto
- School of Public Health, University of California, Berkeley, Berkley, CA, USA
| | - Travis Longcore
- Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Meredith Franklin
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Statistical Sciences, University of Toronto, Toronto, ON, Canada
| | - Tormod Rogne
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
- Gemini Center for Sepsis Research, Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Catherine Metayer
- School of Public Health, University of California, Berkeley, Berkley, CA, USA
| | - Joseph L Wiemels
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaomei Ma
- Department of Chronic Disease Epidemiology, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
13
|
Rahmati A, Mafi A, Soleymani F, Babaei Aghdam Z, Masihipour N, Ghezelbash B, Asemi R, Aschner M, Vakili O, Homayoonfal M, Asemi Z, Sharifi M, Azadi A, Mirzaei H, Aghadavod E. Circular RNAs: pivotal role in the leukemogenesis and novel indicators for the diagnosis and prognosis of acute myeloid leukemia. Front Oncol 2023; 13:1149187. [PMID: 37124518 PMCID: PMC10140500 DOI: 10.3389/fonc.2023.1149187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy and affected patients have poor overall survival (OS) rates. Circular RNAs (circRNAs) are a novel class of non-coding RNAs (ncRNAs) with a unique loop structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been identified exhibiting either up-regulation or down-regulation in AML patients compared with healthy controls. Recent studies have reported that circRNAs regulate leukemia cell proliferation, stemness, and apoptosis, both positively and negatively. Additionally, circRNAs could be promising biomarkers and therapeutic targets in AML. In this study, we present a comprehensive review of the regulatory roles and potentials of a number of dysregulated circRNAs in AML.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Masihipour
- Department of Medicine, Lorestan University of Medical Science, Lorestan, Iran
| | - Behrooz Ghezelbash
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Azadi
- Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abbas Azadi, ; Esmat Aghadavod, ; Hamed Mirzaei, ;
| |
Collapse
|
14
|
Li S, Yao JC, Oetjen KA, Krambs JR, Xia J, Zhang J, Schmidt AP, Helton NM, Fulton RS, Heath SE, Turnbull IR, Mbalaviele G, Ley TJ, Walter MJ, Link DC. IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function. Blood 2022; 140:1607-1620. [PMID: 35675516 PMCID: PMC9707400 DOI: 10.1182/blood.2022016084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) reside in localized microenvironments, or niches, in the bone marrow that provide key signals regulating their activity. A fundamental property of hematopoiesis is the ability to respond to environmental cues such as inflammation. How these cues are transmitted to HSPCs within hematopoietic niches is not well established. Here, we show that perivascular bone marrow dendritic cells (DCs) express a high basal level of Toll-like receptor-1 (TLR1) and TLR2. Systemic treatment with a TLR1/2 agonist induces HSPC expansion and mobilization. It also induces marked alterations in the bone marrow microenvironment, including a decrease in osteoblast activity and sinusoidal endothelial cell numbers. TLR1/2 agonist treatment of mice in which Myd88 is deleted specifically in DCs using Zbtb46-Cre show that the TLR1/2-induced expansion of multipotent HPSCs, but not HSPC mobilization or alterations in the bone marrow microenvironment, is dependent on TLR1/2 signaling in DCs. Interleukin-1β (IL-1β) is constitutively expressed in both murine and human DCs and is further induced after TLR1/2 stimulation. Systemic TLR1/2 agonist treatment of Il1r1-/- mice show that TLR1/2-induced HSPC expansion is dependent on IL-1β signaling. Single-cell RNA-sequencing of low-risk myelodysplastic syndrome bone marrow revealed that IL1B and TLR1 expression is increased in DCs. Collectively, these data suggest a model in which TLR1/2 stimulation of DCs induces secretion of IL-1β and other inflammatory cytokines into the perivascular niche, which in turn, regulates multipotent HSPCs. Increased DC TLR1/2 signaling may contribute to altered HSPC function in myelodysplastic syndrome by increasing local IL-1β expression.
Collapse
Affiliation(s)
- Sidan Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Hematology Oncology Center, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medial University, Beijing, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juo-Chin Yao
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Karolyn A. Oetjen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Joseph R. Krambs
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jun Xia
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jingzhu Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amy P. Schmidt
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nichole M. Helton
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Sharon E. Heath
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Isaiah R. Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Disease, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Matthew J. Walter
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel C. Link
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
15
|
He FF, Wang YM, Chen YY, Huang W, Li ZQ, Zhang C. Sepsis-induced AKI: From pathogenesis to therapeutic approaches. Front Pharmacol 2022; 13:981578. [PMID: 36188562 PMCID: PMC9522319 DOI: 10.3389/fphar.2022.981578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a heterogenous and highly complex clinical syndrome, which is caused by infectious or noninfectious factors. Acute kidney injury (AKI) is one of the most common and severe complication of sepsis, and it is associated with high mortality and poor outcomes. Recent evidence has identified that autophagy participates in the pathophysiology of sepsis-associated AKI. Despite the use of antibiotics, the mortality rate is still at an extremely high level in patients with sepsis. Besides traditional treatments, many natural products, including phytochemicals and their derivatives, are proved to exert protective effects through multiple mechanisms, such as regulation of autophagy, inhibition of inflammation, fibrosis, and apoptosis, etc. Accumulating evidence has also shown that many pharmacological inhibitors might have potential therapeutic effects in sepsis-induced AKI. Hence, understanding the pathophysiology of sepsis-induced AKI may help to develop novel therapeutics to attenuate the complications of sepsis and lower the mortality rate. This review updates the recent progress of underlying pathophysiological mechanisms of sepsis-associated AKI, focuses specifically on autophagy, and summarizes the potential therapeutic effects of phytochemicals and pharmacological inhibitors.
Collapse
|
16
|
Abstract
Progress in neuroimmunology established that the nervous and the immune systems are two functionally related physiological systems. Unique sensory and immune receptors enable them to control interactions of the organism with the inner and the outer worlds. Both systems undergo an experience-driven selection process during their ontogeny. They share the same mediators/neurotransmitters and use synapses for intercellular communication. They keep a memory of previous experiences. Immune cells can affect nervous cells, nervous cells can affect immune cells, and they regulate each other. I however argue that the two systems differ by three major points: 1) Unlike the nervous system, the immune system has a loose anatomical structure, in which molecular and cellular events mostly occur at random; 2) The immune system can respond to molecules of the living world whereas the nervous system can respond to phenomena of the physical world; 3) Responses of the immune system act both on the organism and on the stimulus that triggered the response, whereas responses of the nervous system act on the organism only. The nervous and the immune systems therefore appear as two complementary systems of relations that closely work together, and whose reactivities are well-suited to deal with physical and biological stimuli, respectively. Its ability both to adapt the organism to the living world and to adapt the living world to the organism endows the immune system with powerful adaptive properties that enable the organism to live in peace with itself and with other living beings, whether pathogens or commensals.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d’Immunologie de Marseille-Luminy, Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d’histoire et de philosophie des sciences et des techniques, Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
- *Correspondence: Marc Daëron,
| |
Collapse
|
17
|
Marín-Rubio JL, Peltier-Heap RE, Dueñas ME, Heunis T, Dannoura A, Inns J, Scott J, Simpson AJ, Blair HJ, Heidenreich O, Allan JM, Watt JE, Martin MP, Saxty B, Trost M. A Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Assay Identifies Nilotinib as an Inhibitor of Inflammation in Acute Myeloid Leukemia. J Med Chem 2022; 65:12014-12030. [PMID: 36094045 PMCID: PMC9511480 DOI: 10.1021/acs.jmedchem.2c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Inflammatory responses are important in cancer, particularly
in the context of monocyte-rich aggressive myeloid neoplasm. We developed
a label-free cellular phenotypic drug discovery assay to identify
anti-inflammatory drugs in human monocytes derived from acute myeloid
leukemia (AML), by tracking several features ionizing from only 2500
cells using matrix-assisted laser desorption/ionization-time of flight
(MALDI-TOF) mass spectrometry. A proof-of-concept screen showed that
the BCR-ABL inhibitor nilotinib, but not the structurally similar
imatinib, blocks inflammatory responses. In order to identify the
cellular (off-)targets of nilotinib, we performed thermal proteome
profiling (TPP). Unlike imatinib, nilotinib and other later-generation
BCR-ABL inhibitors bind to p38α and inhibit the p38α-MK2/3
signaling axis, which suppressed pro-inflammatory cytokine expression,
cell adhesion, and innate immunity markers in activated monocytes
derived from AML. Thus, our study provides a tool for the discovery
of new anti-inflammatory drugs, which could contribute to the treatment
of inflammation in myeloid neoplasms and other diseases.
Collapse
Affiliation(s)
- José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Rachel E Peltier-Heap
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Maria Emilia Dueñas
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Tiaan Heunis
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Abeer Dannoura
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Joseph Inns
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Jonathan Scott
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Helen J Blair
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Olaf Heidenreich
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - James M Allan
- Translational and Clinical Research Institute, Newcastle University, Herschel Building, Level 6, Brewery Lane, Newcastle upon Tyne NE1 7RU, UK
| | - Jessica E Watt
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Mathew P Martin
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Barbara Saxty
- LifeArc, SBC Open Innovation Campus, Stevenage SG1 2FX, UK
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| |
Collapse
|
18
|
Association of Toll-like receptors polymorphisms with the risk of acute lymphoblastic leukemia in the Brazilian Amazon. Sci Rep 2022; 12:15159. [PMID: 36071076 PMCID: PMC9452670 DOI: 10.1038/s41598-022-19130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children in childhood. Single-nucleotide polymorphism (SNPs) in key molecules of the immune system, such as Toll-like receptors (TLRs) and CD14 molecules, are associated with the development of several diseases. However, their role in ALL is unknown. A case–control study was performed with 152 ALL patients and 187 healthy individuals to investigate the role of SNPs in TLRs and the CD14 gene in ALL. In this study, TLR6 C > T rs5743810 [OR: 3.20, 95% CI: 1.11–9.17, p = 0.003) and TLR9 C > T rs187084 (OR: 2.29, 95% CI: 1.23–4.26, p = 0.000) seems to be a risk for development of ALL. In addition, the TLR1 T > G rs5743618 and TLR6 C > T rs5743810 polymorphisms with protection against death (OR: 0.17, 95% IC: 0.04–0.79, p = 0.008; OR: 0.48, 95% IC: 0.24–0.94, p = 0.031, respectively). Our results show that SNPs in TLRs genes may be involved in the pathogenesis of ALL and may influence clinical prognosis; however, further studies are necessary to elucidate the role of TLR1, TLR4, TLR5, TLR6, TLR9 and CD14 polymorphisms in this disease.
Collapse
|
19
|
Therapeutic applications of toll-like receptors (TLRs) agonists in AML. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:2319-2329. [PMID: 35962918 DOI: 10.1007/s12094-022-02917-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive type of blood cancer affecting bone marrow (BM). In AML, hematopoietic precursors are arrested in the early stages of development and are defined as the presence of ≥ 20% blasts (leukemia cells) in the BM. Toll-like receptors (TLR) are major groups of pattern recognition receptors expressed by almost all innate immune cells that enable them to detect a wide range of pathogen-associated molecular patterns and damage-associated molecular patterns to prime immune responses toward adaptive immunity. Because TLRs are commonly expressed on transformed immune system cells (ranging from blasts to memory cells), they can be a potential option for developing efficient clinical alternatives in hematologic tumors. This is because several in vitro and in vivo investigations have demonstrated that TLR signaling increased the immunogenicity of AML cells, making them more vulnerable to T cell-mediated invasion. This study aimed to review the current knowledge in this field and provide some insight into the therapeutic potentials of TLRs in AML.
Collapse
|
20
|
Wang J, Erlacher M, Fernandez-Orth J. The role of inflammation in hematopoiesis and bone marrow failure: What can we learn from mouse models? Front Immunol 2022; 13:951937. [PMID: 36032161 PMCID: PMC9403273 DOI: 10.3389/fimmu.2022.951937] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Hematopoiesis is a remarkable system that plays an important role in not only immune cell function, but also in nutrient transport, hemostasis and wound healing among other functions. Under inflammatory conditions, steady-state hematopoiesis switches to emergency myelopoiesis to give rise to the effector cell types necessary to fight the acute insult. Sustained or aberrant exposure to inflammatory signals has detrimental effects on the hematopoietic system, leading to increased proliferation, DNA damage, different forms of cell death (i.e., apoptosis, pyroptosis and necroptosis) and bone marrow microenvironment modifications. Together, all these changes can cause premature loss of hematopoiesis function. Especially in individuals with inherited bone marrow failure syndromes or immune-mediated aplastic anemia, chronic inflammatory signals may thus aggravate cytopenias and accelerate disease progression. However, the understanding of the inflammation roles in bone marrow failure remains limited. In this review, we summarize the different mechanisms found in mouse models regarding to inflammatory bone marrow failure and discuss implications for future research and clinical practice.
Collapse
Affiliation(s)
- Jun Wang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Juncal Fernandez-Orth
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
- *Correspondence: Juncal Fernandez-Orth,
| |
Collapse
|
21
|
Banescu C, Tripon F, Bojan AS, Trifa AP, Muntean C, Crauciuc GA, Boglis A, Candea M, Lazar E, Jimbu L, Iancu M. Association of TLR4 Rs4986791 Polymorphism and TLR9 Haplotypes with Acute Myeloid Leukemia Susceptibility: A Case-Control Study of Adult Patients. J Pers Med 2022; 12:jpm12030409. [PMID: 35330409 PMCID: PMC8950293 DOI: 10.3390/jpm12030409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Toll-like receptors (TLRs) have an important role in innate immunity, and single nucleotide polymorphisms (SNPs) of TLR genes influence the risk of developing hematological malignancies. We aimed to evaluate the effect of TLR2 (rs5743708), TLR4 (rs11536889, rs4986790, rs4986791), TLR9 (rs187084, rs352140, rs5743836) on AML risk, the relation between investigated SNPs and somatic mutations, clinical features, and the overall survival of adult AML patients. All mentioned SNPs were genotyped in 511 AML cases and 503 healthy controls. DNMT3A (R882), FLT3 (D835, ITD), and NPM1 mutations’ status were investigated in AML patients. TLR4 rs4986791 was associated with an increased risk of AML under the dominant model (OR = 1.61, 95% CI: 1.001–2.59). Variant genotypes of the TLR4 rs4986790 or rs4986791 were associated with the odds of developing AML in the codominant model (OR = 3.14; 95% CI: 1.12–8.84; p = 0.032). The TLR9 rs5743836 variant genotype was associated with the NPM1 mutation (p = 0.002). The investigated SNPs were not associated with the DNMT3A, FLT3 mutations and had no significant contribution to the hazard of death after adjusting for covariates. Our findings suggest that TLR4 rs4986791 is associated with AML susceptibility. The combined variant genotypes of TLR4 rs4986790 and rs4986791 increase AML risk, the TLR9 C-G-A haplotype may represent a promising approach to predict a person’s risk for developing AML.
Collapse
Affiliation(s)
- Claudia Banescu
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Genetics Laboratory, County Emergency Clinical Hospital of Targu Mures, 50, Gheorghe Marinescu Street, 540136 Targu Mures, Romania
- Correspondence:
| | - Florin Tripon
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Anca S. Bojan
- Department of Hematology, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania; (A.S.B.); (L.J.)
| | - Adrian P. Trifa
- Department of Medical Genetics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania;
- Department of Genetics, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, 34–36 Republicii Street, 400015 Cluj-Napoca, Romania
| | - Carmen Muntean
- Department of Clinical Science, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - George Andrei Crauciuc
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
| | - Alina Boglis
- Center for Advanced Medical and Pharmaceutical Research, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology, 38, Gheorghe Marinescu Street, 540139 Targu Mures, Romania; (F.T.); (G.A.C.); (A.B.)
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Marcela Candea
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (M.C.); (E.L.)
| | - Erzsebet Lazar
- Department of Internal Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania; (M.C.); (E.L.)
| | - Laura Jimbu
- Department of Hematology, The Oncology Institute “Ion Chiricuta” Cluj-Napoca, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania; (A.S.B.); (L.J.)
| | - Mihaela Iancu
- Department of Medical Informatics and Biostatistics, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8, Victor Babes, Street, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
22
|
Bennett LF, Mumau MD, Li Y, Speck NA. MyD88-dependent TLR signaling oppositely regulates hematopoietic progenitor and stem cell formation in the embryo. Development 2022; 149:274040. [PMID: 35043940 PMCID: PMC8935211 DOI: 10.1242/dev.200025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/07/2022] [Indexed: 11/20/2022]
Abstract
Hemogenic endothelial (HE) cells in the dorsal aorta undergo an endothelial-to-hematopoietic transition (EHT) to form multipotent progenitors, lympho-myeloid biased progenitors (LMPs), pre-hematopoietic stem cells (pre-HSCs) and adult-repopulating HSCs. These briefly accumulate in intra-arterial hematopoietic clusters (IAHCs) before being released into the circulation. It is generally assumed that the number of IAHC cells correlates with the number of HSCs. Here, we show that changes in the number of IAHC cells, LMPs and HSCs can be uncoupled. Mutations impairing MyD88-dependent toll-like receptor (TLR) signaling decreased the number of IAHC cells and LMPs, but increased the number of HSCs in the aorta-gonad-mesonephros region of mouse embryos. TLR4-deficient embryos generated normal numbers of HE cells, but IAHC cell proliferation decreased. Loss of MyD88-dependent TLR signaling in innate immune myeloid cells had no effect on IAHC cell numbers. Instead, TLR4 deletion in endothelial cells (ECs) recapitulated the phenotype observed with germline deletion, demonstrating that MyD88-dependent TLR signaling in ECs and/or in IAHCs regulates the numbers of LMPs and HSCs.
Collapse
Affiliation(s)
- Laura F. Bennett
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Melanie D. Mumau
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yan Li
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Nancy A. Speck
- Abramson Family Cancer Research Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Author for correspondence ()
| |
Collapse
|
23
|
Modeling Down Syndrome Myeloid Leukemia by Sequential Introduction of GATA1 and STAG2 Mutations in Induced Pluripotent Stem Cells with Trisomy 21. Cells 2022; 11:cells11040628. [PMID: 35203280 PMCID: PMC8870267 DOI: 10.3390/cells11040628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
Children with Down syndrome (DS) have a high risk for acute myeloid leukemia (DS-ML). Genomic characterization of DS-ML blasts showed the presence of unique mutations in GATA1, an essential hematopoietic transcription factor, leading to the production of a truncated from of GATA1 (GATA1s). GATA1s, together with trisomy 21, is sufficient to develop a pre-leukemic condition called transient abnormal myelopoiesis (TAM). Approximately 30% of these cases progress into DS-ML by acquisition of additional somatic mutations in a stepwise manner. We previously developed a model for TAM by introducing disease-specific GATA1 mutation in trisomy 21-induced pluripotent stem cells (iPSCs), leading to the production of N-terminally truncated short form of GATA1 (GATA1s). In this model, we used CRISPR/Cas9 to introduce a co-operating mutation in STAG2, a member of the cohesin complex recurrently mutated in DS-ML but not in TAM. Hematopoietic differentiation of GATA1 STAG2 double-mutant iPSC lines confirmed GATA1s expression and the loss of functional STAG2 protein, leading to enhanced production of immature megakaryocytic population compared to GATA1 mutant alone. Megakaryocyte-specific lineage expansion of the double-mutant HSPCs exhibited close resemblance to the DS-ML immunophenotype. Transcriptome analysis showed that GATA1 mutation resulted in downregulation of megakaryocytic and erythrocytic differentiation pathways and interferon α/β signaling, along with an upregulation of pathways promoting myeloid differentiation such as toll-like receptor cascade. The co-occurrence of STAG2 knockout partially reverted the expression of genes involved in myeloid differentiation, likely leading to enhanced self-renewal and promoting leukemogenesis. In conclusion, we developed a DS-ML model via hematopoietic differentiation of gene-targeted iPSCs bearing trisomy 21.
Collapse
|
24
|
Andina N, Bonadies N, Allam R. Inflammasome Activation in Myeloid Malignancies—Friend or Foe? Front Cell Dev Biol 2022; 9:825611. [PMID: 35155452 PMCID: PMC8829542 DOI: 10.3389/fcell.2021.825611] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
Myeloid malignancies including myelodysplastic syndromes, myeloproliferative neoplasms and acute myeloid leukemia are heterogeneous disorders originating from mutated hematopoietic stem and progenitor cells (HSPCs). Genetically, they are very heterogeneous and characterized by uncontrolled proliferation and/or blockage of differentiation of abnormal HSPCs. Recent studies suggest the involvement of inflammasome activation in disease initiation and clonal progression. Inflammasomes are cytosolic innate immune sensors that, upon activation, induce caspase-1 mediated processing of interleukin (IL) -1-cytokine members IL-1β and IL-18, as well as initiation of gasdermin D-dependent pyroptosis. Inflammasome activation leads to a pro-inflammatory microenvironment in the bone marrow, which drives proliferation and may induce clonal selection of mutated HSPCs. However, there are also contradictory data showing that inflammasome activation actually counteracts leukemogenesis. Overall, the beneficial or detrimental effect of inflammasome activation seems to be highly dependent on mutational, environmental, and immunological contexts and an improved understanding is fundamental to advance specific therapeutic targeting strategies. This review summarizes current knowledge about this dichotomous effect of inflammasome activation in myeloid malignancies and provides further perspectives on therapeutic targeting.
Collapse
Affiliation(s)
- Nicola Andina
- Department of Hematology and Central Hematology Laboratory, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Nicolas Bonadies
- Department of Hematology and Central Hematology Laboratory, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ramanjaneyulu Allam
- Department of Hematology and Central Hematology Laboratory, Inselspital Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Ramanjaneyulu Allam,
| |
Collapse
|
25
|
Insights into Modern Therapeutic Approaches in Pediatric Acute Leukemias. Cells 2022; 11:cells11010139. [PMID: 35011701 PMCID: PMC8749975 DOI: 10.3390/cells11010139] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 02/01/2023] Open
Abstract
Pediatric cancers predominantly constitute lymphomas and leukemias. Recently, our knowledge and awareness about genetic diversities, and their consequences in these diseases, have greatly expanded. Modern solutions are focused on mobilizing and impacting a patient’s immune system. Strategies to stimulate the immune system, to prime an antitumor response, are of intense interest. Amid those types of therapies are chimeric antigen receptor T (CAR-T) cells, bispecific antibodies, and antibody–drug conjugates (ADC), which have already been approved in the treatment of acute lymphoblastic leukemia (ALL)/acute myeloid leukemia (AML). In addition, immune checkpoint inhibitors (ICIs), the pattern recognition receptors (PRRs), i.e., NOD-like receptors (NLRs), Toll-like receptors (TLRs), and several kinds of therapy antibodies are well on their way to showing significant benefits for patients with these diseases. This review summarizes the current knowledge of modern methods used in selected pediatric malignancies and presents therapies that may hold promise for the future.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Cell intrinsic and extrinsic perturbations to inflammatory signaling pathways are a hallmark of development and progression of hematologic malignancies. The interleukin 1 receptor-associated kinases (IRAKs) are a family of related signaling intermediates (IRAK1, IRAK2, IRAK3, IRAK4) that operate at the nexus of multiple inflammatory pathways implicated in the hematologic malignancies. In this review, we explicate the oncogenic role of these kinases and review recent therapeutic advances in the dawning era of IRAK-targeted therapy. RECENT FINDINGS Emerging evidence places IRAK signaling at the confluence of adaptive resistance and oncogenesis in the hematologic malignancies and solid tissue tumors. Preclinical investigations nominate the IRAK kinases as targetable molecular dependencies in diverse cancers. SUMMARY IRAK-targeted therapies that have matriculated to early phase trials are yielding promising preliminary results. However, studies of IRAK kinase signaling continue to defy conventional signaling models and raise questions as to the design of optimal treatment strategies. Efforts to refine IRAK signaling mechanisms in the malignant context will inspire deliberate IRAK-targeted drug development and informed combination therapy.
Collapse
Affiliation(s)
- Joshua Bennett
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
| | - Daniel T. Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center
- Department of Cancer Biology
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
27
|
Yeast cell wall upregulated cell-mediated immune responses to Newcastle disease virus vaccine. Poult Sci 2022; 101:101712. [PMID: 35123352 PMCID: PMC9023901 DOI: 10.1016/j.psj.2022.101712] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
A recent study has suggested that yeast cell wall product (YP) enhanced serum hemagglutination inhibition (HI) titers and intestinal sIgA responses in chickens immunized with Newcastle disease virus (NDV) vaccine. In the present study, the cell-mediated immune responses elicited by NDV and YP were investigated in commercial broilers. Broilers were fed 0 or 0.1% YP and immunized with a live NDV vaccine via an intraocular-and-intranasal route at 14 and 28 days old. After that, blood samples were collected for determination of HI titer, cytokine content, and blood analysis. Eight chickens were randomly selected from each group and sacrificed. Lymphocytes were harvested from the spleens for lymphocyte proliferation and flow cytometry analysis. Total RNA was extracted from spleen and jejunum for RT-qPCR analysis. The results showed that YP significantly increased serum concentration of IL-4, IL-6, IFN-γ, TNF-β, as well as promoted lymphocytes proliferation in broilers immunized with NDV vaccine. The enhanced cell-mediated immunity is correlated with the upregulated mRNA expression of TGF-β, IL-6, TLR5, GATA-3, and T-bet in the spleen and upregulated mRNA expression of CCR-9, J-chain, pIgR, and TLR3 in the jejunum of chickens. It is noteworthy that no significant side effect was observed after the administration of YP. Therefore, YP could be safely used as potential immunopotentiator assisting NDV vaccine for chickens.
Collapse
|
28
|
Abstract
Purpose of Review Hematopoietic stem cells (HSCs) are formed embryonically during a dynamic developmental process and later reside in adult hematopoietic organs in a quiescent state. In response to their changing environment, HSCs have evolved diverse mechanisms to cope with intrinsic and extrinsic challenges. This review intends to discuss how HSCs and other stem cells co-opted DNA and RNA innate immune pathways to fine-tune developmental processes. Recent Findings Innate immune receptors for nucleic acids like the RIG-I-like family receptors and members of DNA sensing pathways are expressed in HSCs and other stem cells. Even though the “classic” role of these receptors is recognition of foreign DNA or RNA from pathogens, it was recently shown that cellular transposable element (TE) RNA or R-loops activate such receptors, serving as endogenous triggers of inflammatory signaling that can shape HSC formation during development and regeneration. Summary Endogenous TEs and R-loops activate RNA and DNA sensors, which trigger distinct inflammatory signals to fine-tune stem cell decisions. This phenomenon could have broad implications for diverse somatic stem cells, for a variety of diseases and during aging.
Collapse
|
29
|
Zhang K, Huang Q, Deng S, Yang Y, Li J, Wang S. Mechanisms of TLR4-Mediated Autophagy and Nitroxidative Stress. Front Cell Infect Microbiol 2021; 11:766590. [PMID: 34746034 PMCID: PMC8570305 DOI: 10.3389/fcimb.2021.766590] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/04/2021] [Indexed: 01/23/2023] Open
Abstract
Pathogenic infections have badly affected public health and the development of the breeding industry. Billions of dollars are spent every year fighting against these pathogens. The immune cells of a host produce reactive oxygen species and reactive nitrogen species which promote the clearance of these microbes. In addition, autophagy, which is considered an effective method to promote the destruction of pathogens, is involved in pathological processes. As research continues, the interplay between autophagy and nitroxidative stress has become apparent. Autophagy is always intertwined with nitroxidative stress. Autophagy regulates nitroxidative stress to maintain homeostasis within an appropriate range. Intracellular oxidation, in turn, is a strong inducer of autophagy. Toll-like receptor 4 (TLR4) is a pattern recognition receptor mainly involved in the regulation of inflammation during infectious diseases. Several studies have suggested that TLR4 is also a key regulator of autophagy and nitroxidative stress. In this review, we describe the role of TLR4 in autophagy and oxidation, and focus on its function in influencing autophagy-nitroxidative stress interactions.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shoulong Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yecheng Yang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding/Guangdong Provincial Research Center of Gene Editing Engineering Technology, Foshan University, Foshan, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
30
|
Chakraborty S, Shapiro LC, de Oliveira S, Rivera-Pena B, Verma A, Shastri A. Therapeutic targeting of the inflammasome in myeloid malignancies. Blood Cancer J 2021; 11:152. [PMID: 34521810 PMCID: PMC8440507 DOI: 10.1038/s41408-021-00547-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022] Open
Abstract
Even though genetic perturbations and mutations are important for the development of myeloid malignancies, the effects of an inflammatory microenvironment are a critical modulator of carcinogenesis. Activation of the innate immune system through various ligands and signaling pathways is an important driver of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). The DAMPs, or alarmins, which activate the inflammasome pathway via the TLR4/NLR signaling cascade causes the lytic cell death of hematopoietic stem and progenitor cells (HSPCs), ineffective hematopoiesis, and β-catenin-induced proliferation of cancer cells, leading to the development of MDS/AML phenotype. It is also associated with other myeloid malignancies and involved in the pathogenesis of associated cytopenias. Ongoing research suggests the interplay of inflammasome mediators with immune modulators and transcription factors to have a significant role in the development of myeloid diseases, and possibly therapy resistance. This review discusses the role and importance of inflammasomes and immune pathways in myeloid malignancies, particularly MDS/AML, to better understand the disease pathophysiology and decipher the scope of therapeutic interventions.
Collapse
Affiliation(s)
- Samarpana Chakraborty
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lauren C Shapiro
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bianca Rivera-Pena
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Amit Verma
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Montefiore Medical Center, Bronx, NY, 10461, USA
| | - Aditi Shastri
- Division of Hemato-Oncology, Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Montefiore Medical Center, Bronx, NY, 10461, USA.
| |
Collapse
|
31
|
Abstract
Acute myeloid leukaemia (AML) is a haematological cancer with poor outcomes due to a lack of efficacious targeted therapies. The Nuclear Factor of Activated T Cells (NFAT) family of transcription factors is well characterised as a regulator of the cell cycle and differentiation in the myeloid lineage. Recent evidence has demonstrated that NFAT family members may have roles in regulating AML leukemogenesis and resistance to targeted therapy in myeloid leukaemia. Furthermore, gene expression data from patient samples show that some NFATs are more highly expressed in poorly differentiated AML and after disease relapse, implying that the NFAT family may have roles in specific types of AML. This review outlines the evidence for the role of NFAT in healthy myeloid tissue and explores how NFAT might regulate AML pathogenesis, highlighting the potential to target specific NFAT proteins therapeutically in AML.
Collapse
|
32
|
Soyfer EM, Fleischman AG. Inflammation in Myeloid Malignancies: From Bench to Bedside. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2021; 4:160-167. [PMID: 35663100 PMCID: PMC9138438 DOI: 10.36401/jipo-21-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/21/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022]
Abstract
Myeloid malignancies, stemming from a somatically mutated hematopoietic clone, can cause a wide variety of clinical consequences, including pancytopenia in myelodysplastic syndrome, overproduction of three myeloid lineages in myeloproliferative neoplasm, and the rapid growth of immature hematopoietic cells in acute myeloid leukemia (AML). It is becoming clear that inflammation is a hallmark feature of clonal myeloid conditions, ranging from clonal hematopoiesis of indeterminate potential to AML. Fundamental findings from laboratory research on inflammation in myeloid malignancies has potential implications for diagnosis, prognostication, and treatment in these diseases. In this review, we highlighted some pertinent basic science findings regarding the role of inflammation in myeloid malignancies and speculated how these findings could impact the clinical care of patients.
Collapse
Affiliation(s)
- Eli M Soyfer
- School of Medicine, University of California, Irvine, CA, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, UC Irvine Health, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, USA
| |
Collapse
|
33
|
Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med 2021; 218:212382. [PMID: 34129017 PMCID: PMC8210621 DOI: 10.1084/jem.20201544] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022] Open
Abstract
With a growing aged population, there is an imminent need to develop new therapeutic strategies to ameliorate disorders of hematopoietic aging, including clonal hematopoiesis and myelodysplastic syndrome (MDS). Cell-intrinsic dysregulation of innate immune- and inflammatory-related pathways as well as systemic inflammation have been implicated in hematopoietic defects associated with aging, clonal hematopoiesis, and MDS. Here, we review and discuss the role of dysregulated innate immune and inflammatory signaling that contribute to the competitive advantage and clonal dominance of preleukemic and MDS-derived hematopoietic cells. We also propose how emerging concepts will further reveal critical biology and novel therapeutic opportunities.
Collapse
Affiliation(s)
| | - Daniel T Starczynowski
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
34
|
Lüke F, Harrer DC, Hahn J, Grube M, Pukrop T, Herr W, Reichle A, Heudobler D. Continuous Complete Remission in Two Patients with Acute Lymphoblastic Leukemia and Severe Fungal Infection Following Short-Term, Dose-Reduced Chemotherapy. Front Pharmacol 2021; 12:599552. [PMID: 34149402 PMCID: PMC8206565 DOI: 10.3389/fphar.2021.599552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/18/2021] [Indexed: 01/16/2023] Open
Abstract
Spontaneous remission in acute lymphoblastic leukemia (ALL) is a rare phenomenon, which typically involves a pattern of feverish or septic disease followed by quick but mostly transient remission. We report on two male patients (46-year-old (pt. 1) and 19-year-old (pt. 2)) with CD20 positive, BCR-ABL negative common B-ALL. Patient 1 had received dexamethasone and cyclophosphamide (1.2 g) as a prephase therapy, followed by rituximab and a cumulative dose of 200 mg daunorubicin combined with 2 mg vincristine as an induction therapy. Patient 2 was treated with a reduced therapy regimen (Vincristine 1 mg, dexamethasone and 80 mg daunorubicin, 12-month mercaptopurine maintenance) due to (alcohol-related) toxic liver failure and pontine myelinolysis. Both patients developed severe septic disease just few days into induction treatment. Patient 1 suffered from pulmonary mycosis, which had to be resected eventually. Histological work-up revealed invasive mucor mycosis. Patient 2 presented with elevated serum aspergillus antigen and radiographic pulmonary lesions, indicative of pulmonary mycosis. In both patients, chemotherapy had to be interrupted and could not be resumed. Both patients recovered under broad antimicrobial, antifungal and prophylactic antiviral therapy and achieved molecular complete remission. At data cut-off remissions had been on-going for 34 months (pt. 1) and 8 years (pt. 2). Short-term, reduced intensity induction chemotherapy accompanied by severe fungal infections was followed by long-lasting continuous complete remissions in ALL. Thus, we hypothesize that infection-associated immunogenic responses may not only prevent early relapse of ALL but could also eradicate minimal residual disease. The effects of combined cytotoxic therapy and severe infection may also be mimicked by biomodulatory treatment strategies aiming at reorganizing pathologically altered cellular signaling networks. This could reduce toxicity and comorbidity in adult patients requiring leukemia treatment. Therefore, these two cases should encourage systematic studies on how leukemia stroma interaction can be harnessed to achieve long lasting control of ALL.
Collapse
Affiliation(s)
- Florian Lüke
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Dennis C Harrer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Joachim Hahn
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Matthias Grube
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Albrecht Reichle
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| | - Daniel Heudobler
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
| |
Collapse
|
35
|
Khodabandehloo F, Aflatoonian R, Zandieh Z, Rajaei F, Sayahpour FA, Nassiri-Asl M, Baghaban Eslaminejad M. Functional differences of Toll-like receptor 4 in osteogenesis, adipogenesis and chondrogenesis in human bone marrow-derived mesenchymal stem cells. J Cell Mol Med 2021; 25:5138-5149. [PMID: 33939261 PMCID: PMC8178267 DOI: 10.1111/jcmm.16506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Multipotent human bone marrow-derived mesenchymal stem cells (hMSCs) are promising candidates for bone and cartilage regeneration. Toll-like receptor 4 (TLR4) is expressed by hMSCs and is a receptor for both exogenous and endogenous danger signals. TLRs have been shown to possess functional differences based on the species (human or mouse) they are isolated from therefore, the effects of knockdown of TLR4 were evaluated in humans during the differentiation of MSCs into bone, fat and chondrocyte cells in vitro. We investigated the expression profile of TLR4 during the differentiation of hMSCs into three different lineages on days 7, 14 and 21 and assessed the differentiation potential of the cells in the presence of lipopolysaccharide (LPS, as an exogenous agonist) and fibronectin fragment III-1c (FnIII-1c, as an endogenous agonist). TLR4 expression increased following the induction of hMSC differentiation into all three lineages. Alkaline phosphatase activity revealed that FnIII-1c accelerated calcium deposition on day 7, whereas LPS increased calcium deposition on day 14. Chondrogenesis increased in the presence of LPS; however, FnIII-1c acted as a reducer in the late stage. TLR4 silencing led to decreased osteogenesis and increased adipogenesis. Furthermore, Wnt5a expression was inversely related to chondrogenesis during the late stage of differentiation. We suggest that understanding the functionality of TLR4 (in the presence of pathogen or stress signal) during the differentiation of hMSCs into three lineages would be useful for MSC-based treatments.
Collapse
Affiliation(s)
| | - Reza Aflatoonian
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Zahra Zandieh
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Rajaei
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Forugh-Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Nassiri-Asl
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.,Department of Pharmacology and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
36
|
Wei X, Li Y, Zhang G, Wang N, Mi M, Xin Y, Jiang H, Sun C. IL-37 Was Involved in Progress of Acute Myeloid Leukemia Through Regulating IL-6 Expression. Cancer Manag Res 2021; 13:3393-3402. [PMID: 33907463 PMCID: PMC8064683 DOI: 10.2147/cmar.s303017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Interleukin-37, which was discovered in 2000, is a natural suppressor of immune and inflammatory responses. Recent studies reported that IL-37 was abnormally expressed in several tumor patients, including those with hepatocellular carcinoma, gastric cancer, lung cancer, colon cancer, epithelial ovarian cancer, and multiple myeloma. However, the expression and potential function of IL-37 in leukemia remain unknown. Objective The aim of this study was to evaluate IL-37 as a prognostic factor and its possible mechanism of action. Methods Polymerase chain reaction products were analyzed by agarose gel electrophoresis and were purified and subsequently sequenced by a genetic testing laboratory. Human PBMC was purified from whole blood samples by using Ficoll-Paque PLUS. The concentrations of human IL-37 and human IL-6 were measured using enzyme-linked immunosorbent assay (ELISA) kits. Results IL-37, especially isoform b and d, was expressed in the bone marrow of AML, CML, ALL, and CLL. Importantly, IL-37 expression was downregulated in newly diagnosed AML patients and restored in patients in complete remission. Moreover, a significant association was found between IL-37 expression and NPM1 mutation or possible prognosis evaluated by karyotype and gene mutation. Further analysis revealed that IL-37 expression was negatively correlated with IL-6 expression. With regard to the mechanism, recombinant human IL-37 could suppress IL-6 expression stimulated by LPS in PBMC of AML patients. Conclusion Our study suggested that IL-37 may be an important prognostic factor in AML and is involved in AML via the IL-6 signaling pathway, indicating that IL-37 is an innovative research strategy for AML pathogenesis and therapy.
Collapse
Affiliation(s)
- Xiaonan Wei
- Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Yulan Li
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Guili Zhang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Na Wang
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| | - Miaomiao Mi
- School of Medicine, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Yu Xin
- School of Clinical Medical, Binzhou Medical University Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai, Shandong, 264000, People's Republic of China
| | - Huihui Jiang
- School of Medicine, Qingdao University, Qingdao, Shandong, 266000, People's Republic of China
| | - Chengming Sun
- Center for Laboratory Diagnosis, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai Shandong, 264000, People's Republic of China
| |
Collapse
|
37
|
Li S, Yao JC, Li JT, Schmidt AP, Link DC. TLR7/8 agonist treatment induces an increase in bone marrow resident dendritic cells and hematopoietic progenitor expansion and mobilization. Exp Hematol 2021; 96:35-43.e7. [PMID: 33556431 PMCID: PMC9900459 DOI: 10.1016/j.exphem.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 02/08/2023]
Abstract
There is accumulating evidence suggesting that toll-like receptor (TLR) signals play an important role in the regulation of hematopoietic stem/progenitor cells (HSPCs). TLR7/8 stimulation induces the myeloid differentiation of normal HSPCs and acute myeloid leukemia cells. However, the in vivo effect of TLR7/8 agonists on hematopoiesis is largely unknown. Here, we show that, similar to TLR4 and TLR2, treatment with the TLR7/8 agonist R848 induces an expansion of phenotypic hematopoietic stem cells (HSCs) with reduced repopulating potential and HSPC mobilization. In contrast to chronic TLR4 stimulation, treatment with R848 for 5 days did not induce a significant increase in myeloid-biased HSCs. Treatment with R848 results in a significant increase in classic dendritic cells (DCs) in the bone marrow, but a decrease in common dendritic cell progenitors and pre-DCs. Phenotypic analysis of DCs revealed that R848 treatment is associated with altered expression of certain chemokines, activation markers, and migratory receptors. Together, these data indicate that systemic administration of a TLR7/8 agonist has unique effects on hematopoiesis, including the expansion of DCs in the bone marrow, that might have clinical relevance to augment responses to certain immunotherapies, such as cancer vaccines and immune checkpoint blockade.
Collapse
Affiliation(s)
- Sidan Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA.,Hematology Oncology Center, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medial University, Beijing, China
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Justin T. Li
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amy P. Schmidt
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
38
|
Liu H, Meng S, Yang N, Chen J, Yao H, Zhang Y, Zhang H, Lei B, Wang X, Chen S, Wang T, Wang Y, Wang J, Zhang W. Identification and functional study of novel oligonucleotides: CpG Seq 13 and CpG Seq 19. Immunotherapy 2021; 13:571-585. [PMID: 33781095 DOI: 10.2217/imt-2019-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: This study explored new immunoadjuvants with stronger immune activity to enhance therapeutic effects against leukemia. Materials & methods: Whole blood and bone marrow of acute myeloid leukemia (AML) patients and healthy volunteers were collected. Isolated mononuclear cells were treated with two newly designed CpG oligodeoxynucleotides, CpG sequence 13 and 19, and known CpG oligodeoxynucleotides and analyzed via flow cytometry. Results: CpG Seq 13 and 19 possess strong immune activation and enhance the proliferation, degranulation and cytotoxicity of T cells. They also inhibit AML cell proliferation. When CpG Seq 13/19 are combined with anti-OX40 antibodies, the cytotoxicity of T cells on AML cells are further enhanced. Conclusion: CpG Seq 13 and 19 are strong immune adjuvant candidates for AML treatment.
Collapse
Affiliation(s)
- Hailing Liu
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Shan Meng
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Nan Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jinqiu Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huan Yao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hui Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Bo Lei
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xugeng Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Sheping Chen
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ting Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yueli Wang
- Department of Hematology, South Hospital, Tongchuan People's Hospital, Tongchuan, 727000, China
| | - Jin Wang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wanggang Zhang
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
39
|
McWhirter SM, Jefferies CA. Nucleic Acid Sensors as Therapeutic Targets for Human Disease. Immunity 2021; 53:78-97. [PMID: 32668230 DOI: 10.1016/j.immuni.2020.04.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
Innate immune sensors that detect nucleic acids are attractive targets for therapeutic intervention because of their diverse roles in many disease processes. In detecting RNA and DNA from either self or non-self, nucleic acid sensors mediate the pathogenesis of many autoimmune and inflammatory conditions. Despite promising pre-clinical data and investigational use in the clinic, relatively few drugs targeting nucleic acid sensors are approved for therapeutic use. Nevertheless, there is growing appreciation for the untapped potential of nucleic acid sensors as therapeutic targets, driven by the need for better therapies for cancer, infectious diseases, and autoimmune disorders. This review highlights the diverse mechanisms by which nucleic acid sensors are activated and exert their biological effects in the context of various disease settings. We discuss current therapeutic strategies utilizing agonists and antagonists targeting nucleic acid sensors to treat infectious disease, cancer, and autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
| | - Caroline A Jefferies
- Department of Biomedical Sciences and Department of Medicine, Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
40
|
Watad A, Kacar M, Bragazzi NL, Zhou Q, Jassam M, Taylor J, Roman E, Smith A, Jones RA, Amital H, Cargo C, McGonagle D, Savic S. Somatic Mutations and the Risk of Undifferentiated Autoinflammatory Disease in MDS: An Under-Recognized but Prognostically Important Complication. Front Immunol 2021; 12:610019. [PMID: 33679746 PMCID: PMC7933213 DOI: 10.3389/fimmu.2021.610019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/25/2021] [Indexed: 01/13/2023] Open
Abstract
Objectives: We theorized that myelodysplastic syndrome (MDS) with somatic mutations and karyotype abnormalities are associated with autoinflammation, and that the presence of autoinflammatory disease affected prognosis in MDS. Methods: One hundred thirty-four MDS patients were assessed for the prevalence of autoinflammatory complications and its link with karyotypes and somatic mutation status. Autoinflammatory complications were described either as well-defined autoinflammatory diseases (AD) or undifferentiated "autoinflammatory disease" (UAD) (defined as CRP over 10.0 mg/L on five consecutive occasions, taken at separate times and not explained by infection). Several patient characteristics including demographic, clinical, laboratory, cytogenetics charts, and outcomes, were compared between different groups. Results: Sixty-two (46.3%) patients had an autoinflammatory complication manifesting as arthralgia (43.5% vs. 23.6%, p = 0.0146), arthritis (30.6% vs. 15.3%, p = 0.0340), skin rash (27.4% vs. 12.5%, p = 0.0301), pleuritis (14.5% vs. 4.2%, p = 0.0371) and unexplained fever (27.4% vs. 0%, p < 0.0001). AD were found in 7.4% of MDS patients (with polymyalgia rheumatic being the most frequently one). Classical autoimmune diseases were found only in 4 MDS patients (3.0%). Transcription factor pathway mutations (RUNX1, BCOR, WTI, TP53) (OR 2.20 [95%CI 1.02-4.75], p = 0.0451) and abnormal karyotypes (OR 2.76 [95%CI 1.22-6.26], p = 0.0153) were associated with autoinflammatory complications. Acute leukaemic transformation was more frequent in MDS patients with autoinflammatory features than those without (27.4% vs. 9.7%, p = 0.0080). Conclusions: Autoinflammatory complications are common in MDS. Somatic mutations of transcription factor pathways and abnormal karyotypes are associated with greater risk of autoinflammatory complications, which are themselves linked to malignant transformation and a worse prognosis.
Collapse
Affiliation(s)
- Abdulla Watad
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mark Kacar
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Qiao Zhou
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Rheumatology & Immunology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Miriam Jassam
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Jan Taylor
- Department of Haematology, St James's University Hospital, Leeds, United Kingdom
| | - Eve Roman
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Alexandra Smith
- Epidemiology & Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
| | - Richard A. Jones
- HMDS Department, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Howard Amital
- Department of Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Catherine Cargo
- HMDS Department, Leeds Teaching Hospitals, Leeds, United Kingdom
| | - Dennis McGonagle
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
| | - Sinisa Savic
- National Institute for Health Research—Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, St James's University Hospital, Leeds, United Kingdom
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
41
|
Mer AS, Heath EM, Madani Tonekaboni SA, Dogan-Artun N, Nair SK, Murison A, Garcia-Prat L, Shlush L, Hurren R, Voisin V, Bader GD, Nislow C, Rantalainen M, Lehmann S, Gower M, Guidos CJ, Lupien M, Dick JE, Minden MD, Schimmer AD, Haibe-Kains B. Biological and therapeutic implications of a unique subtype of NPM1 mutated AML. Nat Commun 2021; 12:1054. [PMID: 33594052 PMCID: PMC7886883 DOI: 10.1038/s41467-021-21233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/15/2021] [Indexed: 01/29/2023] Open
Abstract
In acute myeloid leukemia (AML), molecular heterogeneity across patients constitutes a major challenge for prognosis and therapy. AML with NPM1 mutation is a distinct genetic entity in the revised World Health Organization classification. However, differing patterns of co-mutation and response to therapy within this group necessitate further stratification. Here we report two distinct subtypes within NPM1 mutated AML patients, which we label as primitive and committed based on the respective presence or absence of a stem cell signature. Using gene expression (RNA-seq), epigenomic (ATAC-seq) and immunophenotyping (CyToF) analysis, we associate each subtype with specific molecular characteristics, disease differentiation state and patient survival. Using ex vivo drug sensitivity profiling, we show a differential drug response of the subtypes to specific kinase inhibitors, irrespective of the FLT3-ITD status. Differential drug responses of the primitive and committed subtype are validated in an independent AML cohort. Our results highlight heterogeneity among NPM1 mutated AML patient samples based on stemness and suggest that the addition of kinase inhibitors to the treatment of cases with the primitive signature, lacking FLT3-ITD, could have therapeutic benefit.
Collapse
Affiliation(s)
- Arvind Singh Mer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Karolinska Institute, Stockholm, Sweden
| | - Emily M Heath
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Seyed Ali Madani Tonekaboni
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nergiz Dogan-Artun
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Alex Murison
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Laura Garcia-Prat
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Liran Shlush
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
| | - Corey Nislow
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, Canada
| | | | | | - Mark Gower
- The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Ontario Institute for Cancer Research, Toronto, ON, Canada.
- Vector Institute, Toronto, ON, Canada.
| |
Collapse
|
42
|
Van Leeuwen-Kerkhoff N, Westers TM, Poddighe PJ, Povoleri GAM, Timms JA, Kordasti S, De Gruijl TD, Van de Loosdrecht AA. Reduced frequencies and functional impairment of dendritic cell subsets and non-classical monocytes in myelodysplastic syndromes. Haematologica 2021; 107:655-667. [PMID: 33567812 PMCID: PMC8883570 DOI: 10.3324/haematol.2020.268136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/09/2022] Open
Abstract
In myelodysplastic syndromes (MDS) the immune system is involved in pathogenesis as well as in disease progression. Dendritic cells (DC) are key players of the immune system by serving as regulators of immune responses. Their function has been scarcely studied in MDS and most of the reported studies didn't investigate naturally occurring DC subsets. Therefore, we here examined the frequency and function of DC subsets and slan+ non-classical monocytes in various MDS risk groups. Frequencies of DC as well as of slan+ monocytes were decreased in MDS bone marrow (BM) compared to normal bone marrow (NBM) samples. Transcriptional profiling revealed down-regulation of transcripts related to pro-inflammatory pathways in MDS-derived cells as compared to NBM. Additionally, their capacity to induce T cell proliferation was impaired. Multidimensional mass cytometry showed that whereas healthy donor-derived slan+ monocytes supported Th1/Th17/Treg differentiation/expansion their MDS-derived counterparts also mediated substantial Th2 expansion. Our findings point to a role for an impaired ability of DC subsets to adequately respond to cellular stress and DNA damage in the immune escape and progression of MDS. As such, it paves the way toward potential novel immunotherapeutic interventions.
Collapse
Affiliation(s)
- Nathalie Van Leeuwen-Kerkhoff
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Theresia M Westers
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Pino J Poddighe
- Department of Clinical Genetics, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam
| | - Giovanni A M Povoleri
- Department Inflammation Biology, King's College London, Centre for Inflammation Biology and Cancer Immunology, London
| | - Jessica A Timms
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London
| | - Shahram Kordasti
- Systems Cancer Immunology Lab, Comprehensive Cancer Center, King's College London, London, United Kingdom; Dipartimento Scienze Cliniche e Molecolari, UNIVPM, Ancona
| | - Tanja D De Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam
| | - Arjan A Van de Loosdrecht
- Department of Hematology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam.
| |
Collapse
|
43
|
Najafi S, Ghanavat M, Shahrabi S, Gatavizadeh Z, Saki N. The effect of inflammatory factors and their inhibitors on the hematopoietic stem cells fate. Cell Biol Int 2021; 45:900-912. [PMID: 33386770 DOI: 10.1002/cbin.11545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/02/2020] [Accepted: 12/25/2020] [Indexed: 11/12/2022]
Abstract
Inflammatory cytokines exert different effects on hematopoietic stem cells (HSCs), lead to the development of various cell lineages in bone marrow (BM) and are thus a differentiation axis for HSCs. The content used in this article has been obtained by searching PubMed database and Google Scholar search engine of English-language articles (1995-2020) using "Hematopoietic stem cell," "Inflammatory cytokine," "Homeostasis," and "Myelopoiesis." Inflammatory cytokines are involved in the differentiation and proliferation of hematopoietic progenitors to compensate for cellular death due to inflammation. Since each of these cytokines differentiates HSCs into a specific cell line, the difference in the effect of these cytokines on the fate of HSC progenitors can be predicted. Inhibitors of these cytokines can also control the inflammatory process as well as the cells involved in leukemic conditions. In general, inflammatory signaling can specify the dominant cell line in BM to counteract inflammation and leukemic condition via stimulating or inhibiting hematopoietic progenitors. Therefore, detection of the effects of inflammatory cytokines on the differentiation of HSCs can be an appropriate approach to check inflammatory and leukemic conditions and the suppression of these cytokines by their inhibitors allows for control of homeostasis in stressful conditions.
Collapse
Affiliation(s)
- Sahar Najafi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Ghanavat
- Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saied Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
44
|
Hill CN, Hernández-Cáceres MP, Asencio C, Torres B, Solis B, Owen GI. Deciphering the Role of the Coagulation Cascade and Autophagy in Cancer-Related Thrombosis and Metastasis. Front Oncol 2020; 10:605314. [PMID: 33365273 PMCID: PMC7750537 DOI: 10.3389/fonc.2020.605314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/29/2020] [Indexed: 01/10/2023] Open
Abstract
Thrombotic complications are the second leading cause of death among oncology patients worldwide. Enhanced thrombogenesis has multiple origins and may result from a deregulation of megakaryocyte platelet production in the bone marrow, the synthesis of coagulation factors in the liver, and coagulation factor signaling upon cancer and the tumor microenvironment (TME). While a hypercoagulable state has been attributed to factors such as thrombocytosis, enhanced platelet aggregation and Tissue Factor (TF) expression on cancer cells, further reports have suggested that coagulation factors can enhance metastasis through increased endothelial-cancer cell adhesion and enhanced endothelial cell activation. Autophagy is highly associated with cancer survival as a double-edged sword, as can both inhibit and promote cancer progression. In this review, we shall dissect the crosstalk between the coagulation cascade and autophagic pathway and its possible role in metastasis and cancer-associated thrombosis formation. The signaling of the coagulation cascade through the autophagic pathway within the hematopoietic stem cells, the endothelial cell and the cancer cell are discussed. Relevant to the coagulation cascade, we also examine the role of autophagy-related pathways in cancer treatment. In this review, we aim to bring to light possible new areas of cancer investigation and elucidate strategies for future therapeutic intervention.
Collapse
Affiliation(s)
- Charlotte Nicole Hill
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Catalina Asencio
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Begoña Torres
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Benjamin Solis
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Sezaki M, Hayashi Y, Wang Y, Johansson A, Umemoto T, Takizawa H. Immuno-Modulation of Hematopoietic Stem and Progenitor Cells in Inflammation. Front Immunol 2020; 11:585367. [PMID: 33329562 PMCID: PMC7732516 DOI: 10.3389/fimmu.2020.585367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Lifelong blood production is maintained by bone marrow (BM)-residing hematopoietic stem cells (HSCs) that are defined by two special properties: multipotency and self-renewal. Since dysregulation of either may lead to a differentiation block or extensive proliferation causing dysplasia or neoplasia, the genomic integrity and cellular function of HSCs must be tightly controlled and preserved by cell-intrinsic programs and cell-extrinsic environmental factors of the BM. The BM had been long regarded an immune-privileged organ shielded from immune insults and inflammation, and was thereby assumed to provide HSCs and immune cells with a protective environment to ensure blood and immune homeostasis. Recently, accumulating evidence suggests that hemato-immune challenges such as autoimmunity, inflammation or infection elicit a broad spectrum of immunological reactions in the BM, and in turn, influence the function of HSCs and BM environmental cells. Moreover, in analogy with the emerging concept of “trained immunity”, certain infection-associated stimuli are able to train HSCs and progenitors to produce mature immune cells with enhanced responsiveness to subsequent challenges, and in some cases, form an inflammatory or infectious memory in HSCs themselves. In this review, we will introduce recent findings on HSC and hematopoietic regulation upon exposure to various hemato-immune stimuli and discuss how these challenges can elicit either beneficial or detrimental outcomes on HSCs and the hemato-immune system, as well as their relevance to aging and hematologic malignancies.
Collapse
Affiliation(s)
- Maiko Sezaki
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Hayashi
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
| | - Yuxin Wang
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Alban Johansson
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan.,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
46
|
Osorio EY, Medina-Colorado AA, Travi BL, Melby PC. In-situ proliferation contributes to the accumulation of myeloid cells in the spleen during progressive experimental visceral leishmaniasis. PLoS One 2020; 15:e0242337. [PMID: 33180876 PMCID: PMC7660562 DOI: 10.1371/journal.pone.0242337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
Visceral leishmaniasis (VL) is characterized by expansion of myeloid cells in the liver and spleen, which leads to a severe splenomegaly associated with higher risk of mortality. This increased cellularity is thought to be a consequence of recruitment of cells to the viscera. We studied whether the local proliferation of splenic myeloid cells contributes to increased splenic cellularity. We found that a monocyte-like population of adherent splenic cells from Leishmania donovani-infected hamsters had enhanced replicative capacity ex vivo and in vivo (BrdU incorporation, p<0.0001). In vitro assays demonstrated that proliferation was more pronounced in the proinflammatory M1 environment and that intracellular infection prevented proliferation. Secondary analysis of the published splenic transcriptome in the hamster model of progressive VL revealed a gene expression signature that included division of tumoral cells (Z = 2.0), cell cycle progression (Z = 2.3), hematopoiesis (Z = 2.8), proliferation of stem cells (Z = 2.5) and overexpression of proto-oncogenes. Regulators of myeloid cell proliferation were predicted in-silico (CSF2, TLR4, IFNG, IL-6, IL-4, RTK signaling, and STAT3). The in-silico prediction was confirmed with chemical inhibitors of PI3K/AKT, MAPK and STAT3 which decreased splenic myeloid cell division ex vivo. Hamsters infected with L. donovani treated with a STAT3 inhibitor had reduced in situ splenic myeloid proliferation (p = 0.03) and parasite burden. We conclude that monocyte-like myeloid cells have increased STAT3-dependent proliferation in the spleen of hamsters with visceral leishmaniasis and that inhibition of STAT3 reduces myeloid cell proliferation and parasite burden.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Audrie A. Medina-Colorado
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
47
|
Liu Y, Ju Y, Liu J, Chen Y, Huo X, Liu L. Inhibition of proliferation and migration and induction of apoptosis in glioma cells by silencing TLR4 expression levels via RNA interference. Oncol Lett 2020; 21:13. [PMID: 33240419 PMCID: PMC7681233 DOI: 10.3892/ol.2020.12274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study was to investigate the expression levels of toll-like receptor 4 (TLR4) in glioma cells and the mechanisms underlying its regulatory effects on proliferation, migration and apoptosis of glioma cells. A total of three TLR4 silencing short hairpin (sh)RNA plasmids were established, and Lipofectamine® was used to the transfect the human glioma cell line U-87MG. Transfection efficiency was measured via flow cytometry. The interference plasmid exhibiting the largest silencing effect on TLR4 was screened for subsequent experiments using puromycin. Reverse transcription-quantitative PCR and western blot analysis were used to detect the TLR4 gene and protein expression levels, respectively, in stably transfected cells. Flow cytometry measured cell cycle and apoptosis and a wound healing assay was employed to assess the migration ability of transfected cells. The proliferation of transfected cells was detected using Cell Counting Kit-8 assay. TLR4-sh2 exhibited the highest transfection efficiency. Following transfection of U-87MG cells with TLR4-sh2 and negative control (NC) plasmids for 48 h and screening by puromycin, stable transfected cells were named U-87MG-Sh and U-87MG-NC cells respectively. The TLR4 gene and protein expression levels in the U-87MG-Sh cells were significantly lower than in U-87MG and U-87MG-NC cells. The apoptosis rate and the percentage of G0/1 cells were significantly higher, whereas the cell proliferation rate was notably lower, in U-87MG-Sh cells than in the U-87MG-NC and U-87MG cells. The proliferation rate and the cell migration ability of U-87MG-Sh cells were significantly lower than those of U-87MG-NC and U-87MG cells. TLR4 is associated with the proliferation of glioma cells. Inhibition of TLR4 expression levels significantly inhibited proliferation of glioma cells and induced apoptosis. The present study provided insights into the mechanisms associated with the development, progression and invasion ability of glioma cells.
Collapse
Affiliation(s)
- Yingzi Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yingchao Ju
- Animal Experimental Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianghui Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuetong Chen
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiangran Huo
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW The innate immune system is essential in the protection against microbial infection and facilitating tissue repair mechanisms. During these stresses, the maintenance of innate immune cell numbers through stress-induced or emergency hematopoiesis is key for our survival. One major mechanism to recognize danger signals is through the activation of Toll-like receptors (TLRs) on the surface of hematopoietic cells, including hematopoietic stem cell (HSC) and hematopoietic progenitor cell (HPC), and nonhematopoietic cells, which recognize pathogen-derived or damaged-induced compounds and can influence the emergency hematopoietic response. This review explores how direct pathogen-sensing by HSC/HPC regulates hematopoiesis, and the positive and negative consequences of these signals. RECENT FINDINGS Recent studies have highlighted new roles for TLRs in regulating HSC and HPC differentiation to innate immune cells of both myeloid and lymphoid origin and augmenting HSC and HPC migration capabilities. Most interestingly, new insights as to how acute versus chronic stimulation of TLR signaling regulates HSC and HPC function has been explored. SUMMARY Recent evidence suggests that TLRs may play an important role in many inflammation-associated diseases. This suggests a possible use for TLR agonists or antagonists as potential therapeutics. Understanding the direct effects of TLR signaling by HSC and HPC may help regulate inflammatory/danger signal-driven emergency hematopoiesis.
Collapse
|
49
|
TLR2/6 signaling promotes the expansion of premalignant hematopoietic stem and progenitor cells in the NUP98-HOXD13 mouse model of MDS. Exp Hematol 2020; 88:42-55. [PMID: 32652111 PMCID: PMC7673652 DOI: 10.1016/j.exphem.2020.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Toll-like receptor 2 (TLR2) expression is increased on hematopoietic stem and progenitor cells (HSPCs) of patients with myelodysplastic syndromes (MDS), and enhanced TLR2 signaling is thought to contribute to MDS pathogenesis. Notably, TLR2 heterodimerizes with TLR1 or TLR6, and while high TLR2 is associated with lower-risk disease, high TLR6, but not TLR1, correlates with higher-risk disease. This raises the possibility of heterodimer-specific effects of TLR2 signaling in MDS, and in the work described here, we tested the effects of specific modulation of TLR1/2 versus TLR2/6 signaling on premalignant HSPCs. Indeed, chronic stimulation of TLR2/6, but not TLR1/2, accelerates leukemic transformation in the NHD13 mouse model of MDS, and conversely, loss of TLR6, but not TLR1, slows this process. TLR2/6 stimulation expands premalignant HSPCs, and chimeric mouse studies revealed that cell-autonomous signaling contributes to this expansion. Finally, TLR2/6 stimulation is associated with an enrichment of Myc and mTORC1 activities. While Myc inhibition partially suppressed the TLR2/6 agonist-mediated expansion of premalignant HSPCs, inhibition of mTORC1 exacerbated it, suggesting that these pathways play opposite roles in regulating the effects of TLR2/6 ligation on HSPCs. Together, these data reveal heterodimer-specific effects of TLR2 signaling on premalignant HSPCs, with TLR2/6 signaling promoting their expansion and leukemic transformation.
Collapse
|
50
|
An B, Zhu S, Li T, Wu J, Zang G, Lv X, Qiao Y, Huang J, Shao Y, Cui J, Liu YJ, Chen J. A Dual TLR7/TLR9 Inhibitor HJ901 Inhibits ABC-DLBCL Expressing the MyD88 L265P Mutation. Front Cell Dev Biol 2020; 8:262. [PMID: 32391356 PMCID: PMC7188833 DOI: 10.3389/fcell.2020.00262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/27/2020] [Indexed: 01/03/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is associated with aggressive clinical cases and poor prognosis despite recent advances in disease treatment. In activated B-cell-like (ABC)-DLBCL, the most severe damaged signaling pathways converge to aberrantly activate the Toll-like receptor (TLR) 7/9/MyD88 pathways, leading to the avoidance of cell death and resistance to chemotherapy. A gain of function mutation in MyD88 (MyD88 L265P) enhanced the NF-κB and JAK-STAT signaling pathways and was associated with dysregulation of TLR signaling in the pathogenesis of ABC-DLBCL. Therefore, inhibition of the TLR signaling network may improve clinical outcomes. In this study, we designed a de novo synthesized oligodeoxynucleotide-based antagonist of TLR7 and TLR9, referred to as HJ901, which competitively binds to TLR7/9. We profiled HJ901 inhibition in various DLBCL cell lines and verified tumor suppression in a xenograft mouse model. We found that HJ901 treatment significantly reduced TLR7- and TLR9-mediated cell proliferation and cytokine production in a time- and dose-dependent manner in various DLBCL cell lines expressing the MyD88 L265P mutation. Moreover, HJ901 prevented tumor growth and downregulated the NF-κB and JAK2-STAT3 signaling pathways in a DLBCL xenograft mouse model with the MyD88 L265P mutation. These results reveal that the anti-tumor effects of the synthesized oligodeoxynucleotide-based antagonist, HJ901, which competitively binds to TLR7/9, may be associated with the downregulation of the NF-κB and JAK2-STAT3 signaling pathways and provide rationale for treating ABC-DLBCL patients with the MyD88 L265P mutation.
Collapse
Affiliation(s)
- Beiying An
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinping Lv
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yuan Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yan Shao
- Changchun Huapu Biotechnology Co., Ltd., Changchun, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|