1
|
Zhou F, Guo YX, Gao R, Ji XY, Tang YX, Wang LB, Zhang Y, Li X. Quercetin regulates dendritic cell activation by targeting STAT4 in the treatment of experimental autoimmune encephalomyelitis. Toxicol Appl Pharmacol 2024; 488:116980. [PMID: 38823456 DOI: 10.1016/j.taap.2024.116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/13/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Multiple sclerosis (MS) is a class of autoimmune diseases mainly caused by the immune system attacking the myelin sheath of the axons in the nervous system. Although the pathogenesis of MS is complex, studies have shown that dendritic cells (DCs) play a vital role in the pathogenesis of MS. Quercetin (QU) has a unique advantage in clinical application, especially for treating autoimmune diseases. However, the mechanism of QU in the treatment of experimental autoimmune encephalomyelitis (EAE) remains unclear. In this study, we explore the potential role of QU in EAE. Finally, we find that QU has anti-inflammatory activities and neural protective effects in EAE. The experimental results suggest that the cellular basis for QU's function is to inhibit the activation of DCs while modulating the Th17 cell differentiation in the co-culture system. Further, QU may target STAT4 to inhibit its activation in DCs. This work will be of great significance for the future development and utilization of QU.
Collapse
Affiliation(s)
- Fang Zhou
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Xin Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rui Gao
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao-Yu Ji
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Xuan Tang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Li-Bin Wang
- Huazhong University of Science and Technology Union Shenzhen Hospital/Shenzhen Nanshan Hospital, Shenzhen, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry (Shaanxi Normal University), The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
2
|
Arellano G, Acuña E, Loda E, Moore L, Tichauer JE, Castillo C, Vergara F, Burgos PI, Penaloza-MacMaster P, Miller SD, Naves R. Therapeutic role of interferon-γ in experimental autoimmune encephalomyelitis is mediated through a tolerogenic subset of splenic CD11b + myeloid cells. J Neuroinflammation 2024; 21:144. [PMID: 38822334 PMCID: PMC11143617 DOI: 10.1186/s12974-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/05/2024] [Indexed: 06/02/2024] Open
Abstract
Cumulative evidence has established that Interferon (IFN)-γ has both pathogenic and protective roles in Multiple Sclerosis and the animal model, Experimental Autoimmune Encephalomyelitis (EAE). However, the underlying mechanisms to the beneficial effects of IFN-γ are not well understood. In this study, we found that IFN-γ exerts therapeutic effects on chronic, relapsing-remitting, and chronic progressive EAE models. The frequency of regulatory T (Treg) cells in spinal cords from chronic EAE mice treated with IFN-γ was significantly increased with no effect on Th1 and Th17 cells. Consistently, depletion of FOXP3-expressing cells blocked the protective effects of IFN-γ, indicating that the therapeutic effect of IFN-γ depends on the presence of Treg cells. However, IFN-γ did not trigger direct in vitro differentiation of Treg cells. In vivo administration of blocking antibodies against either interleukin (IL)-10, transforming growth factor (TGF)-β or program death (PD)-1, revealed that the protective effects of IFN-γ in EAE were also dependent on TGF-β and PD-1, but not on IL-10, suggesting that IFN-γ might have an indirect role on Treg cells acting through antigen-presenting cells. Indeed, IFN-γ treatment increased the frequency of a subset of splenic CD11b+ myeloid cells expressing TGF-β-Latency Associated Peptide (LAP) and program death ligand 1 (PD-L1) in a signal transducer and activator of transcription (STAT)-1-dependent manner. Furthermore, splenic CD11b+ cells from EAE mice preconditioned in vitro with IFN-γ and myelin oligodendrocyte glycoprotein (MOG) peptide exhibited a tolerogenic phenotype with the capability to induce conversion of naïve CD4+ T cells mediated by secretion of TGF-β. Remarkably, adoptive transfer of splenic CD11b+ cells from IFN-γ-treated EAE mice into untreated recipient mice ameliorated clinical symptoms of EAE and limited central nervous system infiltration of mononuclear cells and effector helper T cells. These results reveal a novel cellular and molecular mechanism whereby IFN-γ promotes beneficial effects in EAE by endowing splenic CD11b+ myeloid cells with tolerogenic and therapeutic activities.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Interferon-gamma/metabolism
- Myeloid Cells/drug effects
- Myeloid Cells/immunology
- Myeloid Cells/metabolism
- Spleen/immunology
- Mice, Inbred C57BL
- CD11b Antigen/metabolism
- Female
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Myelin-Oligodendrocyte Glycoprotein/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/drug effects
- Peptide Fragments/toxicity
- Peptide Fragments/pharmacology
- Transforming Growth Factor beta/metabolism
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/immunology
- Forkhead Transcription Factors/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Gabriel Arellano
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Eric Acuña
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eileah Loda
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Lindsay Moore
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Juan E Tichauer
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Castillo
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fabian Vergara
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paula I Burgos
- Department of Clinical Immunology and Rheumatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, US.
| | - Rodrigo Naves
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Mahla RS. Lymphocytic infiltration in multiple sclerosis. Mult Scler Relat Disord 2024; 85:105533. [PMID: 38479047 DOI: 10.1016/j.msard.2024.105533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/26/2023] [Accepted: 02/29/2024] [Indexed: 05/07/2024]
Affiliation(s)
- Ranjeet Singh Mahla
- Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, OX3 7FY, UK.
| |
Collapse
|
4
|
Arellano G, Loda E, Chen Y, Neef T, Cogswell AC, Primer G, Joy G, Kaschke K, Wills S, Podojil JR, Popko B, Balabanov R, Miller SD. Interferon-γ controls aquaporin 4-specific Th17 and B cells in neuromyelitis optica spectrum disorder. Brain 2024; 147:1344-1361. [PMID: 37931066 PMCID: PMC10994540 DOI: 10.1093/brain/awad373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 09/27/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a CNS autoimmune inflammatory disease mediated by T helper 17 (Th17) and antibody responses to the water channel protein, aquaporin 4 (AQP4), and associated with astrocytopathy, demyelination and axonal loss. Knowledge about disease pathogenesis is limited and the search for new therapies impeded by the absence of a reliable animal model. In our work, we determined that NMOSD is characterized by decreased IFN-γ receptor signalling and that IFN-γ depletion in AQP4201-220-immunized C57BL/6 mice results in severe clinical disease resembling human NMOSD. Pathologically, the disease causes autoimmune astrocytic and CNS injury secondary to cellular and humoral inflammation. Immunologically, the absence of IFN-γ allows for increased expression of IL-6 in B cells and activation of Th17 cells, and generation of a robust autoimmune inflammatory response. Consistent with NMOSD, the experimental disease is exacerbated by administration of IFN-β, whereas repletion of IFN-γ, as well as therapeutic targeting of IL-17A, IL-6R and B cells, ameliorates it. We also demonstrate that immune tolerization with AQP4201-220-coupled poly(lactic-co-glycolic acid) nanoparticles could both prevent and effectively treat the disease. Our findings enhance the understanding of NMOSD pathogenesis and provide a platform for the development of immune tolerance-based therapies, avoiding the limitations of the current immunosuppressive therapies.
Collapse
Affiliation(s)
- Gabriel Arellano
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eileah Loda
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yanan Chen
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Tobias Neef
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Andrew C Cogswell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Grant Primer
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Godwin Joy
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Kevin Kaschke
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Samantha Wills
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- COUR Pharmaceutical Development Company, Inc., Northbrook, IL 60077, USA
| | - Brian Popko
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Roumen Balabanov
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Yang J, Zhang S, Wu Q, Chen P, Dai Y, Long J, Wu Y, Lin Y. T cell-mediated skin-brain axis: Bridging the gap between psoriasis and psychiatric comorbidities. J Autoimmun 2024; 144:103176. [PMID: 38364575 DOI: 10.1016/j.jaut.2024.103176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Psoriasis, a chronic inflammatory skin condition, is often accompanied by psychiatric comorbidities such as anxiety, depression, suicidal ideation, and other mental disorders. Psychological disorders may also play a role in the development and progression of psoriasis. The intricate interplay between the skin diseases and the psychiatric comorbidities is mediated by the 'skin-brain axis'. Understanding the mechanisms underlying psoriasis and psychiatric comorbidities can help improve the efficacy of treatment by breaking the vicious cycle of diseases. T cells and related cytokines play a key role in the pathogenesis of psoriasis and psychiatric diseases, and are crucial components of the 'skin-brain axis'. Apart from damaging the blood-brain barrier (BBB) directly, T cells and secreted cytokines could interact with the hypothalamic-pituitary-adrenal axis (HPA axis) and the sympathetic nervous system (SNS) to exacerbate skin diseases or mental disorders. However, few reviews have systematically summarized the roles and mechanisms of T cells in the interaction between psoriasis and psychiatric comorbidities. In this review, we discussed several key T cells and their roles in the 'skin-brain axis', with a focus on the mechanisms underlying the interplay between psoriasis and mental commodities, to provide data that might help develop effective strategies for the treatment of both psoriasis and psychiatric comorbidities.
Collapse
Affiliation(s)
- Juexi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qixuan Wu
- Mental Health Services, Blacktown Hospital, Blacktow, NSW, 2148, Australia
| | - Pu Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Dai
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Junhao Long
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
6
|
Lazarević M, Stanisavljević S, Nikolovski N, Dimitrijević M, Miljković Đ. Complete Freund's adjuvant as a confounding factor in multiple sclerosis research. Front Immunol 2024; 15:1353865. [PMID: 38426111 PMCID: PMC10902151 DOI: 10.3389/fimmu.2024.1353865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Complete Freund's adjuvant (CFA) is used as a standard adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model in multiple sclerosis studies. Still, CFA induces glial activation and neuroinflammation on its own and provokes pain. In addition, as CFA contains Mycobacteria, an immune response against bacterial antigens is induced in parallel to the response against central nervous system antigens. Thus, CFA can be considered as a confounding factor in multiple sclerosis-related studies performed on EAE. Here, we discuss the effects of CFA in EAE in detail and present EAE variants induced in experimental animals without the use of CFA. We put forward CFA-free EAE variants as valuable tools for studying multiple sclerosis pathogenesis and therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: Exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis (Review). MEDICINE INTERNATIONAL 2023; 3:42. [PMID: 37680650 PMCID: PMC10481116 DOI: 10.3892/mi.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Driven by the limitations and obstacles of the available approaches and medications for multiple sclerosis (MS) that still cannot treat the disease, but only aid in accelerating the recovery from its attacks, the use of naturally occurring molecules as a potentially safe and effective treatment for MS is being explored in model organisms. MS is a devastating disease involving the brain and spinal cord, and its symptoms vary widely. Multiple molecular pathways are involved in the pathogenesis of the disease. The present review showcases the recent advancements in harnessing nature's resources to combat MS. By deciphering the molecular pathways involved in the pathogenesis of the disease, a wealth of potential therapeutic agents is uncovered that may revolutionize the treatment of MS. Thus, a new hope can be envisioned in the future, aiming at paving the way toward identifying novel safe alternatives to improve the lives of patients with MS.
Collapse
Affiliation(s)
- Sara Fathallah
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Mona Kamal Saadeldin
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
8
|
Lee MJ, Choi JH, Kwon TW, Jo HS, Ha Y, Nah SY, Cho IH. Korean Red Ginseng extract ameliorates demyelination by inhibiting infiltration and activation of immune cells in cuprizone-administrated mice. J Ginseng Res 2023; 47:672-680. [PMID: 37720568 PMCID: PMC10499591 DOI: 10.1016/j.jgr.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Korean Red Ginseng (KRG), the steamed root of Panax ginseng, has pharmacological activities for immunological and neurodegenerative disorders. But, the role of KRGE in multiple sclerosis (MS) remains unclear. Purpose To determine whether KRG extract (KRGE) could inhibit demyelination in corpus callosum (CC) of cuprizone (CPZ)-induced murine model of MS. Methods Male adult mice were fed with a standard chow diet or a chow diet supplemented with 0.2% (w/w) CPZ ad libitum for six weeks to induce demyelination while were simultaneously administered with distilled water (DW) alone or KRGE-DW (0.004%, 0.02 and 0.1% of KRGE) by drinking. Results Administration with KRGE-DW alleviated demyelination and oligodendrocyte degeneration associated with inhibition of infiltration and activation of resident microglia and monocyte-derived macrophages as well as downregulation of proinflammatory mediators in the CC of CPZ-fed mice. KRGE-DW also attenuated the level of infiltration of Th1 and Th17) cells, in line with inhibited mRNA expression of IFN-γ and IL-17, respectively, in the CC. These positive effects of KRGE-DW mitigated behavioral dysfunction based on elevated plus maze and the rotarod tests. Conclusion The results strongly suggest that KRGE-DW may inhibit CPZ-induced demyelination due to its oligodendroglial protective and anti-inflammatory activities by inhibiting infiltration/activation of immune cells. Thus, KRGE might have potential in therapeutic intervention for MS.
Collapse
Affiliation(s)
- Min Jung Lee
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, USA
| | - Jong Hee Choi
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Woo Kwon
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Sung Jo
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yujeong Ha
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Chavarria V, Espinosa-Ramírez G, Sotelo J, Flores-Rivera J, Anguiano O, Hernández AC, Guzmán-Ríos ED, Salazar A, Ordoñez G, Pineda B. Conversion Predictors of Clinically Isolated Syndrome to Multiple Sclerosis in Mexican Patients: A Prospective Study. Arch Med Res 2023:102843. [PMID: 37429750 DOI: 10.1016/j.arcmed.2023.102843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/13/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Clinically Isolated Syndrome (CIS) is the first clinical episode suggestive of Clinical Definite Multiple Sclerosis (CDMS). There are no reports on possible predictors of conversion to CDMS in Mexican mestizo patients. AIM OF THE STUDY To investigate immunological markers, clinical and paraclinical findings, and the presence of herpesvirus DNA to predict the transition from CIS to CDMS in Mexican patients. METHODS A single-center prospective cohort study was conducted with newly diagnosed patients with CIS in Mexico between 2006 and 2010. Clinical information, immunophenotype, serum cytokines, anti-myelin protein immunoglobulins, and herpes viral DNA were determined at the time of diagnosis. RESULTS 273 patients diagnosed with CIS met the enrolment criteria; after 10 years of follow-up, 46% met the 2010 McDonald criteria for CDMS. Baseline parameters associated with conversion to CDMS were motor symptoms, multifocal syndromes, and alterations of somatosensory evoked potentials. The presence of at least one lesion on magnetic resonance imaging was the main factor associated with an increased risk of conversion to CDMS (RR 15.52, 95% CI 3.96-60.79, p = 0.000). Patients who converted to CDMS showed a significantly lower percentage of circulating regulatory T cells, cytotoxic T cells, and B cells, and the conversion to CDMS was associated with the presence of varicella-zoster virus and herpes simplex virus 1 DNA in cerebrospinal fluid and blood. CONCLUSION There is scarce evidence in Mexico regarding the demographic and clinical aspects of CIS and CDMS. This study shows several predictors of conversion to CDMS to be considered in Mexican patients with CIS.
Collapse
Affiliation(s)
- Víctor Chavarria
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Julio Sotelo
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - José Flores-Rivera
- Demyelinating Diseases Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Omar Anguiano
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Ana Campos Hernández
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | | | - Aleli Salazar
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Graciela Ordoñez
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Benjamin Pineda
- Neuroimmunology Unit, National Institute of Neurology and Neurosurgery, Mexico City, Mexico.
| |
Collapse
|
10
|
Angelini G, Bani A, Constantin G, Rossi B. The interplay between T helper cells and brain barriers in the pathogenesis of multiple sclerosis. Front Cell Neurosci 2023; 17:1101379. [PMID: 36874213 PMCID: PMC9975172 DOI: 10.3389/fncel.2023.1101379] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) represent two complex structures protecting the central nervous system (CNS) against potentially harmful agents and circulating immune cells. The immunosurveillance of the CNS is governed by immune cells that constantly patrol the BCSFB, whereas during neuroinflammatory disorders, both BBB and BCSFB undergo morphological and functional alterations, promoting leukocyte intravascular adhesion and transmigration from the blood circulation into the CNS. Multiple sclerosis (MS) is the prototype of neuroinflammatory disorders in which peripheral T helper (Th) lymphocytes, particularly Th1 and Th17 cells, infiltrate the CNS and contribute to demyelination and neurodegeneration. Th1 and Th17 cells are considered key players in the pathogenesis of MS and its animal model, experimental autoimmune encephalomyelitis. They can actively interact with CNS borders by complex adhesion mechanisms and secretion of a variety of molecules contributing to barrier dysfunction. In this review, we describe the molecular basis involved in the interactions between Th cells and CNS barriers and discuss the emerging roles of dura mater and arachnoid layer as neuroimmune interfaces contributing to the development of CNS inflammatory diseases.
Collapse
Affiliation(s)
- Gabriele Angelini
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Alessandro Bani
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.,The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Barbara Rossi
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
11
|
Poonaki E, Kahlert UD, Meuth SG, Gorji A. The role of the ZEB1–neuroinflammation axis in CNS disorders. J Neuroinflammation 2022; 19:275. [PMCID: PMC9675144 DOI: 10.1186/s12974-022-02636-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022] Open
Abstract
Zinc finger E-box binding homeobox 1 (ZEB1) is a master modulator of the epithelial–mesenchymal transition (EMT), a process whereby epithelial cells undergo a series of molecular changes and express certain characteristics of mesenchymal cells. ZEB1, in association with other EMT transcription factors, promotes neuroinflammation through changes in the production of inflammatory mediators, the morphology and function of immune cells, and multiple signaling pathways that mediate the inflammatory response. The ZEB1–neuroinflammation axis plays a pivotal role in the pathogenesis of different CNS disorders, such as brain tumors, multiple sclerosis, cerebrovascular diseases, and neuropathic pain, by promoting tumor cell proliferation and invasiveness, formation of the hostile inflammatory micromilieu surrounding neuronal tissues, dysfunction of microglia and astrocytes, impairment of angiogenesis, and dysfunction of the blood–brain barrier. Future studies are needed to elucidate whether the ZEB1–neuroinflammation axis could serve as a diagnostic, prognostic, and/or therapeutic target for CNS disorders.
Collapse
Affiliation(s)
- Elham Poonaki
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany ,grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany
| | - Ulf Dietrich Kahlert
- grid.5807.a0000 0001 1018 4307Molecular and Experimental Surgery, Faculty of Medicine, University Clinic for General-, Visceral-, Vascular- and Transplantation Surgery, Otto-Von-Guericke-University, Magdeburg, Germany
| | - Sven G. Meuth
- grid.411327.20000 0001 2176 9917Department of Neurology, Faculty of Medicine, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Gorji
- grid.5949.10000 0001 2172 9288Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universität Münster, Domagkstr. 11, 48149 Münster, Germany ,grid.512981.60000 0004 0612 1380Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran ,grid.411583.a0000 0001 2198 6209Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Rostami A, Riahi SM, Mollalo A, Razavian I, Akbari N, Marhoommirzabak E, Mahjour S, Sartip B, Arshadi M, Razavian E, Ardekani A. Does latent Toxoplasma infection have a protective effect against developing multiple sclerosis? Evidence from an updated meta-analysis. Trans R Soc Trop Med Hyg 2022; 116:996-1006. [PMID: 35696089 DOI: 10.1093/trstmh/trac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/14/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
Previous epidemiologic evidence suggests a protective effect of Toxoplasma gondii infection against multiple sclerosis (MS) development; however, inconsistent findings have been reported in this regard. Therefore, we performed an updated meta-analysis of observational studies to investigate the association of To. gondii infection with MS development. We searched all articles published in PubMed, Scopus, Embase and Web of Science databases as of 20 December 2021. A random effects meta-analysis model was used to generate the pooled OR at 95% CIs. The heterogeneity between studies was assessed using I2 and Cochran's Q statistics. Moreover, the likelihood of publication bias was determined by Egger's regression test. A total of 11 studies were eligible for meta-analysis, including 1172 MS cases and 1802 controls. Our findings indicated that 29.8% (95% CI 22.8 to 37.2%) of MS patients were seropositive for To. gondii infection, compared with 34.2% (95% CI 21.9 to 47.6%) of control subjects. The estimated pooled OR was 0.79 (95% CI 0.49 to 1.26), suggesting a non-significant negative association between To. gondii infection and MS development (p>0.05). The current study does not support the significant protective role of To. gondii infection on MS development. Our findings imply that further well-designed epidemiological and mechanistic studies are warranted to ascertain the possible association between To. gondii infection and MS and to exclude the potential confounders.
Collapse
Affiliation(s)
- Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Mohammad Riahi
- Cardiovascular Diseases Research Center, Department of Epidemiology and Biostatistics, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Abolfazl Mollalo
- Department of Public Health and Prevention Science, School of Health Sciences, Baldwin Wallace University, Berea, Ohio, USA
| | - Iman Razavian
- Department of Neurosurgery, Functional Neurosurgery Research Center, Shohada Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nahid Akbari
- Department of Genetic, Faculty of Basic Science, Islamic Azad University, Varamin Pishva Branch, Tehran, Iran
| | - Elika Marhoommirzabak
- Department of Neurology, University of Visayas, Gullas College of Medicine, Cebu city, 600 Cebu, Philippines
| | - Sanaz Mahjour
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Behnam Sartip
- Department of Internal Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahdi Arshadi
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elnaz Razavian
- Department of Neurology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ardekani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Taghizadeh S, Motallebnezhad M, Aghaie T, Azimi M, Aghamajidi A, Salari AA, Bozorgmehr M, Assarezadegan MA, Jazayeri MH. Anti-Caspr-conjugated gold nanoparticles emergence as a novel approach in the treatment of EAE animal model. Metab Brain Dis 2022; 37:2603-2613. [PMID: 35922733 DOI: 10.1007/s11011-022-00981-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 04/04/2022] [Indexed: 10/16/2022]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of central nervous system which is increasing worldwide. Although immunosuppressive agents are used for the treatment of MS disease, nevertheless the lack of non-toxic and efficient therapeutic method is perceptible. Hence, this study aims to evaluate the effect of Contactin-associated protein (Caspr) antibody-, poly ethylene glycol (PEG)- and exosome combined gold nanoparticles (GNPs) in comparison to Glatiramer acetate as a selective treatment of MS disease in the experimental autoimmune encephalomyelitis (EAE) mouse model. EAE was induced in female C57BL/6 mice and 25-day treatment with anti-Caspr-, PEG- and exosome combined GNPs was evaluated. Histopathological examination of spinal cord, regulatory T cells as well as inflammatory pathway including IFN-ɣ and IL-17 and mir-326 were investigated. The results showed the severity of MS symptoms was significantly decreased in all treated groups. Histological examination of the spinal cord indicated the reduced demyelination and immune cell infiltration. Besides, regulatory T cells were significantly increased following all treatments. Remarkably, the cytokine levels of IFN-ɣ and IL-17 as well as mir-326 is altered in treated groups. Taken together, the obtained findings demonstrate that the administration of anti-Caspr-, PEG- and exosome combined GNPs can be considered a potential treatment in MS disease.
Collapse
Affiliation(s)
- Shirin Taghizadeh
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Morteza Motallebnezhad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Tayebe Aghaie
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Maryam Azimi
- Immunology Research Center, Institute of Immunology an Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
| | - Mahmoud Bozorgmehr
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Ali Assarezadegan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Immunology Research Center, Institute of Immunology an Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Mir Hadi Jazayeri
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Immunology Research Center, Institute of Immunology an Infectious Disease, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Xiong XF, Zhu M, Wu HX, Fan LL, Cheng DY. Immunophenotype in acute exacerbation of chronic obstructive pulmonary disease: a cross-sectional study. Respir Res 2022; 23:137. [PMID: 35643501 PMCID: PMC9145461 DOI: 10.1186/s12931-022-02058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/20/2022] [Indexed: 02/18/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease, and the immune inflammatory response is thought to play an important role in pathogenesis. However, the immunophenotype of patients with COPD is unknown. Herein, we evaluated the immunophenotype of patients with acute exacerbation of COPD (AECOPD). Methods A cross-sectional study was conducted in West China Hospital from September 2018 to October 2019. The proportion of CD4 + T lymphocyte subtypes (Th1, Th2, Th17 and Treg) and levels of serum cytokines in the peripheral blood of patients with AECOPD, stable COPD (SCOPD), healthy smokers (HSs)and healthy controls (HCs) were evaluated. Results A total of 15 HCs, 19 HSs, 42 patients with SCOPD, and 55 patients with AECOPD were included. Compared to patients with SCOPD, Th1 cells, Th17 cells, Treg cell ratio, Th1/Th2 cell ratio, and the levels of C-reactive protein, interleukin (IL)-6, and IL-10 were significantly increased in patients with AECOPD (P < 0.001), while the proportion of Th2 cells was significantly reduced (P < 0.01). The proportion of Th17 cells was positively correlated with COPD Assessment Test score (r = 0.266, P = 0.009), modified Medical Research Council dyspnea score (r = 0.858, P < 0.0001), and Th1 cell ratio (r = 0.403, P < 0.0001) and negatively correlated with forced vital capacity (r = − 0.367, P = 0.009) and proportion of Th2 cells (r = − 0.655, P < 0.0001). Conclusions The immunophenotype of patients with AECOPD shows abnormal activation of Th1, Th17, and Treg cells. There is a correlation between the proportion of Th17 cells and the severity of COPD; therefore, this may represent a novel index for the evaluation of COPD severity. Trial registration: China Clinical Trials Registry, ChiCTR1800018452, registered 19 September 2018, https://www.chictr.org.cn/index.aspx. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02058-x.
Collapse
|
15
|
MacDougall M, El-Hajj Sleiman J, Beauchemin P, Rangachari M. SARS-CoV-2 and Multiple Sclerosis: Potential for Disease Exacerbation. Front Immunol 2022; 13:871276. [PMID: 35572514 PMCID: PMC9102605 DOI: 10.3389/fimmu.2022.871276] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
While the respiratory tract is the primary route of entry for SARS-CoV-2, evidence shows that the virus also impacts the central nervous system. Intriguingly, case reports have documented SARS-CoV-2 patients presenting with demyelinating lesions in the brain, spinal cord, and optic nerve, suggesting possible implications in neuroimmune disorders such as multiple sclerosis (MS) and other related neuroimmune disorders. However, the cellular mechanisms underpinning these observations remain poorly defined. The goal of this paper was to review the literature to date regarding possible links between SARS-CoV-2 infection and neuroimmune demyelinating diseases such as MS and its related disorders, with the aim of positing a hypothesis for disease exacerbation. The literature suggests that SARS-CoV, SARS-CoV-2, and orthologous murine coronaviruses invade the CNS via the olfactory bulb, spreading to connected structures via retrograde transport. We hypothesize that a glial inflammatory response may contribute to damaged oligodendrocytes and blood brain barrier (BBB) breakdown, allowing a second route for CNS invasion and lymphocyte infiltration. Potential for molecular mimicry and the stimulation of autoreactive T cells against myelin is also described. It is imperative that further studies on SARS-CoV-2 neuroinvasion address the adverse effects of the virus on myelin and exacerbation of MS symptoms, as nearly 3 million people suffer from MS worldwide.
Collapse
Affiliation(s)
- Madison MacDougall
- Department of Biological Sciences, Salisbury University, Salisbury, MD, United States
- Department of Psychology, Salisbury University, Salisbury, MD, United States
| | - Jad El-Hajj Sleiman
- Division of Neurology, Department of Medicine, CHU de Québec – Université Laval, Quebec City, QC, Canada
| | - Philippe Beauchemin
- Division of Neurology, Department of Medicine, CHU de Québec – Université Laval, Quebec City, QC, Canada
| | - Manu Rangachari
- Axe Neurosciences, Centre de Recherche du CHU de Québec – Université Laval, Quebec City, QC, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
16
|
Therapeutic Potential of Exosomes Derived from Adipose Tissue-Sourced Mesenchymal Stem Cells in the Treatment of Neural and Retinal Diseases. Int J Mol Sci 2022; 23:ijms23094487. [PMID: 35562878 PMCID: PMC9105552 DOI: 10.3390/ijms23094487] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Therapeutic agents that are able to prevent or attenuate inflammation and ischemia-induced injury of neural and retinal cells could be used for the treatment of neural and retinal diseases. Exosomes derived from adipose tissue-sourced mesenchymal stem cells (AT-MSC-Exos) are extracellular vesicles that contain neurotrophins, immunoregulatory and angio-modulatory factors secreted by their parental cells. AT-MSC-Exos are enriched with bioactive molecules (microRNAs (miRNAs), enzymes, cytokines, chemokines, immunoregulatory, trophic, and growth factors), that alleviate inflammation and promote the survival of injured cells in neural and retinal tissues. Due to the nano-sized dimension and bilayer lipid envelope, AT-MSC-Exos easily bypass blood–brain and blood–retinal barriers and deliver their cargo directly into the target cells. Accordingly, a large number of experimental studies demonstrated the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases. By delivering neurotrophins, AT-MSC-Exos prevent apoptosis of injured neurons and retinal cells and promote neuritogenesis. AT-MSC-Exos alleviate inflammation in the injured brain, spinal cord, and retinas by delivering immunoregulatory factors in immune cells, suppressing their inflammatory properties. AT-MSC-Exos may act as biological mediators that deliver pro-angiogenic miRNAs in endothelial cells, enabling re-vascularization of ischemic neural and retinal tissues. Herewith, we summarized current knowledge about molecular mechanisms which were responsible for the beneficial effects of AT-MSC-Exos in the treatment of neural and retinal diseases, emphasizing their therapeutic potential in neurology and ophthalmology.
Collapse
|
17
|
Borim PA, Mimura LAN, Zorzella-Pezavento SFG, Polonio CM, Peron JPS, Sartori A, Fraga-Silva TFDC. Effect of Rapamycin on MOG-Reactive Immune Cells and Lipopolysaccharide-Activated Microglia: An In Vitro Approach for Screening New Therapies for Multiple Sclerosis. J Interferon Cytokine Res 2022; 42:153-160. [PMID: 35384725 DOI: 10.1089/jir.2021.0206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Rapamycin is an immunomodulatory drug that has been evaluated in preclinical and clinical trials as a disease-modifying therapy for multiple sclerosis (MS). In this study, we evaluated the in vitro effect of rapamycin on immune cells pivotally involved in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), which is an animal model to study MS. Splenocytes and central nervous system (CNS)-mononuclear cells obtained from EAE mice were stimulated with a myelin oligodendrocyte glycoprotein peptide, whereas the microglial BV-2 cell line was activated with LPS. The 3 immune cell types were simultaneously treated with rapamycin, incubated, and then used to analyze cytokines, transcription factors, and activation markers. Rapamycin reduced IL-17 production, TBX21, and RORc expression by splenic and CNS cell cultures. IFN-γ and TNF-α production were also decreased in CNS cultures. This treatment also decreased TNF-α, IL-6, MHC II, CD40, and CD86 expression by BV-2 cells. These results indicated that in vivo immunomodulatory activity of rapamycin in MS and EAE was, in many aspects, reproduced by in vitro assays done with cells derived from the spleen and the CNS of EAE mice. This procedure could constitute a screening strategy for choosing drugs with therapeutic potential for MS.
Collapse
Affiliation(s)
- Patricia Aparecida Borim
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil
| | | | | | | | | | - Alexandrina Sartori
- Graduate Program in Tropical Diseases, Botucatu Medical School, São Paulo State University (UNESP), Botucatu, Brazil.,Institute of Biosciences, São Paulo State University (UNESP), Botucatu, Brazil
| | | |
Collapse
|
18
|
Ansari MA, Nadeem A, Alshammari MA, Attia SM, Bakheet SA, Khan MR, Albekairi TH, Alasmari AF, Alhosaini K, Alqahtani F, Al-Mazroua HA, Ahmad SF. Cathepsin B inhibitor alleviates Th1, Th17, and Th22 transcription factor signaling dysregulation in experimental autoimmune encephalomyelitis. Exp Neurol 2022; 351:113997. [PMID: 35122866 DOI: 10.1016/j.expneurol.2022.113997] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory infiltration in association with demyelination in the central nervous system. Among the factors involved in the immunological mechanisms of MS, Th1, Th17, and Th22 cells play a critical role. In the present study, we investigated the role of CA-074, a potent Cathepsin B inhibitor, in MS progression, using the SJL/J mouse model of experimental autoimmune encephalomyelitis (EAE). Following induction of EAE, mice were administered CA-074 (10 mg/kg) intraperitoneally each day, beginning on day 14 and continuing until day 28, and were evaluated for clinical signs. We further investigated the effect of CA-074 on Th1 (T-bet/STAT4), Th17 (IL-17A/RORγT), Th22 (TNF-α/IL-22), and regulatory T (Treg/Foxp3) cells in the spleen, using flow cytometry. We also analyzed the effect of CA-074 on T-bet, IL-17A, RORγT, IL-22, and mRNA and protein levels using RT-PCR and western blot analysis for brain tissues. Cathepsin B expression were also assessed by western blot in the brain tissues. The severity of clinical scores decreased significantly in CA-074-treated mice compared with that in EAE control mice. Moreover, the percentage of CD4+T-bet+, CXCR5+T-bet+, CD4+STAT4+, CD4+IL-17A+, CXCR5+IL-17A+, CD4+RORγT+, CCR6+RORγT+, CD4+TNF-α+, CD4+IL-22+, and CCR6+IL-22+ cells decreased while CD25+Foxp3+ increased in CA-074-treated EAE mice as compared to vehicle-treated EAE mice. Further, CA-074-treated EAE mice had downregulated Cathepsin B protein expression which was associated with decreased T-bet, IL-17A, RORγT, and IL-22 mRNA/protein expression. These results suggest that Cathepsin B could be a novel therapeutic candidate against for the treatment of MS.
Collapse
Affiliation(s)
- Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad R Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Rundquist O, Nestor CE, Jenmalm MC, Hellberg S, Gustafsson M. Progesterone Inhibits the Establishment of Activation-Associated Chromatin During T H1 Differentiation. Front Immunol 2022; 13:835625. [PMID: 35185927 PMCID: PMC8848251 DOI: 10.3389/fimmu.2022.835625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
TH1-mediated diseases such as multiple sclerosis (MS) and rheumatoid arthritis (RA) improve during pregnancy, coinciding with increasing levels of the pregnancy hormone progesterone (P4), highlighting P4 as a potential mediator of this immunomodulation. Here, we performed detailed characterization of how P4 affects the chromatin and transcriptomic landscape during early human TH1 differentiation, utilizing both ATAC-seq and RNA-seq. Time series analysis of the earlier events (0.5-24 hrs) during TH1 differentiation revealed that P4 counteracted many of the changes induced during normal differentiation, mainly by downregulating key regulatory genes and their upstream transcription factors (TFs) involved in the initial T-cell activation. Members of the AP-1 complex such as FOSL1, FOSL2, JUN and JUNB were particularly affected, in both in promoters and in distal regulatory elements. Moreover, the changes induced by P4 were significantly enriched for disease-associated changes related to both MS and RA, revealing several shared upstream TFs, where again JUN was highlighted to be of central importance. Our findings support an immune regulatory role for P4 during pregnancy by impeding T-cell activation, a crucial checkpoint during pregnancy and in T-cell mediated diseases, and a central event prior to T-cell lineage commitment. Indeed, P4 is emerging as a likely candidate involved in disease modulation during pregnancy and further studies evaluating P4 as a potential treatment option are needed.
Collapse
Affiliation(s)
- Olof Rundquist
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Colm E. Nestor
- Crown Princess Victoria Children’s Hospital, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Maria C. Jenmalm
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sandra Hellberg
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Mika Gustafsson
- Bioinformatics, Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| |
Collapse
|
20
|
T-Cell Response against Varicella Zoster Virus in Patients with Multiple Sclerosis during Relapse and Remission. Int J Mol Sci 2021; 23:ijms23010298. [PMID: 35008726 PMCID: PMC8745673 DOI: 10.3390/ijms23010298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
An association between varicella zoster virus (VZV) and multiple sclerosis (MS) has been reported in Mexican populations. The aim of this study was to compare the response of T cells from MS patients, during relapse and remission, to in vitro stimulation with VZV, adenovirus (AV) and Epstein–Barr virus (EBV). Proliferation and cytokine secretion of T cells from 29 relapsing-remitting MS patients and 38 healthy controls (HC) were analyzed by flow cytometry after stimulating with VZV, AV or EBV. IgG and IgM levels against VZV and EBV were quantified using Enzyme-Linked Immunosorbent Assay. Relapsing MS patients showed a higher percentage of responding CD4+ and CD8+ T cells against VZV compared to AV. In HC and remitting MS patients, proliferation of CD4+ T cells was higher when stimulated with VZV as compared to EBV. Moreover, T cells isolated from remitting patients secreted predominantly Th1 cytokines when cell cultures were stimulated with VZV. Finally, high concentration of anti-VZV IgG was found in sera from patients and controls. The results support previous studies of an VZV-MS association in the particular population studied and provide additional information about the possible role of this virus in the pathogenesis of MS.
Collapse
|
21
|
Azari H, Karimi E, Shekari M, Tahmasebi A, Nikpoor AR, Negahi AA, Sanadgol N, Mousavi P. Construction of a lncRNA-miRNA-mRNA network to determine the key regulators of the Th1/Th2 imbalance in multiple sclerosis. Epigenomics 2021; 13:1797-1815. [PMID: 34726075 DOI: 10.2217/epi-2021-0296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The exact epigenetic mechanisms that determine the balance of T helper (Th)1 and Th2 cells and autoimmune responses in multiple sclerosis (MS) remain unclear. We aim to clarify these. Methods: A combination of bioinformatics analysis and molecular evaluations was utilized to identify master hub genes. Results: A competitive endogenous RNA network containing six long noncoding RNAs (lncRNAs), 21 miRNAs and 86 mRNAs was provided through enrichment analysis and a protein-protein interaction network. NEAT1 and MALAT1 were found as differentially expressed lncRNAs using Gene Expression Omnibus (GSE21942). Quantitative real-time PCR results demonstrate dysregulation in the RUNX3 (a regulator of Th1/Th2 balance), GATA3 and TBX21, as well as miR-544a and miR-210-3p (which directly target RUNX3). ELISA also confirmed an imbalance in IFN-γ (Th1)/IL-4 (Th2) in MS patients. Conclusion: Our findings introduce novel biomarkers leading to Th1/Th2 imbalance in MS.
Collapse
Affiliation(s)
- Hanieh Azari
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran
| | - Elham Karimi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran
| | - Mohammad Shekari
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran.,Hormozgan University of Medical Sciences Research Center for Molecular Medicine, Bandar Abbas, 79196-93116, Iran
| | - Ahmad Tahmasebi
- Institute of Biotechnology, Shiraz University, Shiraz, 71441-13131, Iran
| | - Amin Reza Nikpoor
- Hormozgan University of Medical Sciences Research Center for Molecular Medicine, Bandar Abbas, 79196-93116, Iran
| | - Ahmad Agha Negahi
- Department of Internal Medicine, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, 52074, Germany
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, 79196-93116, Iran.,Hormozgan University of Medical Sciences Research Center for Molecular Medicine, Bandar Abbas, 79196-93116, Iran
| |
Collapse
|
22
|
Zečkanović A, Maver A, Ristić S, Čizmarević NS, Peterlin B, Lovrečić L. Potential protective role of a NOD2 polymorphism in the susceptibility to multiple sclerosis is not associated with interferon therapy. Biomed Rep 2021; 15:100. [PMID: 34667597 DOI: 10.3892/br.2021.1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Pattern recognition receptors, such as specific nucleotide-binding oligomerization domain protein 2, and their polymorphisms may be involved in the pathogenesis of multiple sclerosis (MS). They may also play a role in the formation of neutralizing antibodies against interferon-β (INF-β), and may exhibit lowered efficacy. Identification of these polymorphisms may be useful for early identification of potential non-responders and to allow for modification of treatment regimens earlier. The differences in genotype distribution and allele frequency of the rs3135499 and rs2066842 NOD2 polymorphisms between patients with MS and healthy controls were analysed in the present study. The group of patients were divided into responders and non-responders to INF-β therapy to evaluate the association of both polymorphisms with response to therapy. No differences in the genotype frequencies between the responder and non-responder groups were observed. However, a statistically significant difference in genotype frequencies of TT homozygotes for rs2066842 between patients with MS and healthy controls was observed (χ2=11.8; P=0.003). A recessive genotype model and allele distribution in rs2066842 suggest that the genotype TT and allele T itself are protective against MS. The odds ratio of 0.12 represents an 8.33x lower risk for MS if an individual has a TT genotype. The significantly lower incidence of the TT genotype of rs2066842 in patients with MS suggests that the TT genotype and T allele may be a protective genetic factor against MS.
Collapse
Affiliation(s)
- Aida Zečkanović
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Smiljana Ristić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Nada Starčević Čizmarević
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Luca Lovrečić
- Clinical Institute of Medical Genetics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Yeung SSH, Ho YS, Chang RCC. The role of meningeal populations of type II innate lymphoid cells in modulating neuroinflammation in neurodegenerative diseases. Exp Mol Med 2021; 53:1251-1267. [PMID: 34489558 PMCID: PMC8492689 DOI: 10.1038/s12276-021-00660-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Recent research into meningeal lymphatics has revealed a never-before appreciated role of type II innate lymphoid cells (ILC2s) in modulating neuroinflammation in the central nervous system (CNS). To date, the role of ILC2-mediated inflammation in the periphery has been well studied. However, the exact distribution of ILC2s in the CNS and therefore their putative role in modulating neuroinflammation in neurodegenerative diseases such as Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease (PD), and major depressive disorder (MDD) remain highly elusive. Here, we review the current evidence of ILC2-mediated modulation of neuroinflammatory cues (i.e., IL-33, IL-25, IL-5, IL-13, IL-10, TNFα, and CXCL16-CXCR6) within the CNS, highlight the distribution of ILC2s in both the periphery and CNS, and discuss some challenges associated with cell type-specific targeting that are important for therapeutics. A comprehensive understanding of the roles of ILC2s in mediating and responding to inflammatory cues may provide valuable insight into potential therapeutic strategies for many dementia-related disorders.
Collapse
Affiliation(s)
- Sherry Sin-Hang Yeung
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| | - Yuen-Shan Ho
- grid.16890.360000 0004 1764 6123School of Nursing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR China
| | - Raymond Chuen-Chung Chang
- grid.194645.b0000000121742757Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR China ,grid.194645.b0000000121742757State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR China
| |
Collapse
|
24
|
Dopaminergic Receptors as Neuroimmune Mediators in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2021; 58:5971-5985. [PMID: 34432265 DOI: 10.1007/s12035-021-02507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
The dopaminergic system plays an essential role in maintaining homeostasis between the central nervous system (CNS) and the immune system. Previous studies have associated imbalances in the dopaminergic system to the pathogenesis of multiple sclerosis (MS). Here, we examined the protein levels of dopaminergic receptors (D1R and D2R) in different phases of the experimental autoimmune encephalomyelitis (EAE) model. We also investigated if the treatment with pramipexole (PPX)-a dopamine D2/D3 receptor-preferring agonist-would be able to prevent EAE-induced motor and mood dysfunction, as well as its underlying mechanisms of action. We report that D2R immunocontent is upregulated in the spinal cord of EAE mice 14 days post-induction. Moreover, D1R and D2R immunocontents in lymph nodes and the oxidative damage in the spinal cord and striatum of EAE animals were significantly increased during the chronic phase. Also, during the pre-symptomatic phase, axonal damage in the spinal cord of EAE mice could already be found. Surprisingly, therapeutic treatment with PPX failed to inhibit the progression of EAE. Of note, PPX treatment inhibited EAE-induced depressive-like while failed to inhibit anhedonic-like behaviors. We observed that PPX treatment downregulated IL-1β levels and increased BNDF content in the spinal cord after EAE induction. Herein, we show that a D2/D3 receptor-preferred agonist mitigated EAE-induced depressive-like behavior, which could serve as a new possibility for further clinical trials on treating depressive symptoms in MS patients. Thus, we infer that D2R participates in the crosstalk between CNS and immune system during autoimmune and neuroinflammatory response induced by EAE, mainly in the acute and chronic phase of the disease.
Collapse
|
25
|
Th17-Related Cytokines as Potential Discriminatory Markers between Neuromyelitis Optica (Devic's Disease) and Multiple Sclerosis-A Review. Int J Mol Sci 2021; 22:ijms22168946. [PMID: 34445668 PMCID: PMC8396435 DOI: 10.3390/ijms22168946] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) and Devic’s disease (NMO; neuromyelitis optica) are autoimmune, inflammatory diseases of the central nervous system (CNS), the etiology of which remains unclear. It is a serious limitation in the treatment of these diseases. The resemblance of the clinical pictures of these two conditions generates a partial possibility of introducing similar treatment, but on the other hand, a high risk of misdiagnosis. Therefore, a better understanding and comparative characterization of the immunopathogenic mechanisms of each of these diseases are essential to improve their discriminatory diagnosis and more effective treatment. In this review, special attention is given to Th17 cells and Th17-related cytokines in the context of their potential usefulness as discriminatory markers for MS and NMO. The discussed results emphasize the role of Th17 immune response in both MS and NMO pathogenesis, which, however, cannot be considered without taking into account the broader perspective of immune response mechanisms.
Collapse
|
26
|
Bae D, Lee JY, Ha N, Park J, Baek J, Suh D, Lim HS, Ko SM, Kim T, Som Jeong D, Son WC. CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis. Sci Rep 2021; 11:14466. [PMID: 34262061 PMCID: PMC8280216 DOI: 10.1038/s41598-021-93232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite advances in therapeutic strategies for multiple sclerosis (MS), the therapy options remain limited with various adverse effects. Here, the therapeutic potential of CKD-506, a novel HDAC6-selective inhibitor, against MS was evaluated in mice with myelin oligodendrocyte glycoprotein35-55 (MOG35-55)-induced experimental autoimmune encephalitis (EAE) under various treatment regimens. CKD-506 exerted prophylactic and therapeutic effects by regulating peripheral immune responses and maintaining blood-brain barrier (BBB) integrity. In MOG35-55-re-stimulated splenocytes, CKD-506 decreased proliferation and downregulated the expression of IFN-γ and IL-17A. CKD-506 downregulated the levels of pro-inflammatory cytokines in the blood of EAE mice. Additionally, CKD-506 decreased the leakage of intravenously administered Evans blue into the spinal cord; CD4+ T cells and CD4-CD11b+CD45+ macrophage/microglia in the spinal cord was also decreased. Moreover, CKD-506 exhibited therapeutic efficacy against MS, even when drug administration was discontinued from day 15 post-EAE induction. Disease exacerbation was not observed when fingolimod was changed to CKD-506 from day 15 post-EAE induction. CKD-506 alleviated depression-like behavior at the pre-symptomatic stage of EAE. In conclusion, CKD-506 exerts therapeutic effects by regulating T cell- and macrophage-mediated peripheral immune responses and strengthening BBB integrity. Our results suggest that CKD-506 is a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea.
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Hee Seon Lim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Soo Min Ko
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taehee Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
27
|
Turner JA, Padgett C, McDonald S, Ahuja KD, Francis HM, Lim CK, Honan CA. Innate immunity impacts social-cognitive functioning in people with multiple sclerosis and healthy individuals: Implications for IL-1ra and urinary immune markers. Brain Behav Immun Health 2021; 14:100254. [PMID: 34589763 PMCID: PMC8474509 DOI: 10.1016/j.bbih.2021.100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Accepted: 03/21/2021] [Indexed: 11/30/2022] Open
Abstract
Social-cognitive difficulties can negatively impact interpersonal communication, shared social experience, and meaningful relationships. This pilot investigation examined the relationship between social-cognitive functioning and inflammatory markers in people with multiple sclerosis (MS) and demographically-matched healthy individuals. Additionally, we compared the immune marker profile in serum and urine-matched samples. Social cognitive functioning was objectively assessed using The Awareness of Social Inference Test - Short (TASIT-S) and subjectively assessed using self-reports of abilities in emotion recognition, emotional empathy, and cognitive theory of mind. In people with MS and healthy individuals, there were moderate-to-large negative relationships between pro-inflammatory biomarkers (serum IL-1β, IL-17, TNF-α, IP-10, MIP-1α, and urine IP-10, MIP-1β) of the innate immune system and social-cognitive functioning. In MS, a higher serum concentration of the anti-inflammatory marker IL-1ra was associated with better social-cognitive functioning (i.e., self-reported emotional empathy and TASIT-S sarcasm detection performance). However, there were mixed findings for anti-inflammatory serum markers IL-4 and IL-10. Overall, our findings indicate a relationship between pro-inflammatory cytokines and social-cognitive abilities. Future studies may provide greater insight into biologically-derived inflammatory processes, sickness behaviour, and their connection with social cognition.
Collapse
Affiliation(s)
- Jason A. Turner
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| | - Christine Padgett
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| | - Skye McDonald
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Kiran D.K. Ahuja
- School of Health Sciences, University of Tasmania, Launceston, Australia
| | | | - Chai K. Lim
- Department of Biomedical Sciences, Macquarie University, Sydney, Australia
| | - Cynthia A. Honan
- School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart and Launceston, Australia
| |
Collapse
|
28
|
Haque R, Kim Y, Park K, Jang H, Kim SY, Lee H, Kim HJ. Altered distributions in circulating follicular helper and follicular regulatory T cells accountable for imbalanced cytokine production in multiple sclerosis. Clin Exp Immunol 2021; 205:75-88. [PMID: 33759187 PMCID: PMC8209573 DOI: 10.1111/cei.13596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Follicular T helper (Tfh) and regulatory (Tfr) cells are distinct subsets of CD4+ T lymphocytes, regulating humoral immune responses in the germinal center. It is widely accepted that dysregulated Tfh and Tfr cells are associated with autoimmunity. In this study, we evaluated the frequencies of circulating chemokine receptor (CXCR)5+ programmed cell death 1 (PD-1+ ) Tfh (cTfh) and CXCR5+ PD-1+ forkhead box protein 3 (FoxP3+ ) CD25+ Tfr (cTfr) cells, and their corresponding cytokines from the peripheral blood mononuclear cells of 28 patients with relapsing-remitting multiple sclerosis (MS) and 16 age- and sex-matched healthy controls (HC). Subsets of cTfh cells by Th1- and Th17-related surface markers (CXCR3 and CCR6) were also evaluated. We found that the frequency of cTfh cells was significantly higher in MS patients compared to that of HC. Conversely, the frequency of cTfr cells was lower in MS patients than that of HC. Interleukin (IL)-21-producing cTfh cells were significantly increased in MS patients, while IL-10-secreting cTfr cells were lower in MS patients compared to levels in HC. Among cTfh cells, cTfh17.1 cells were the major subtypes that were significantly increased in MS patients compared to HC, with the frequency of IL-21-secreting cells being the highest. These results suggest that an imbalanced distribution of cTfh and cTfr exist in MS patients, which contributes to the reciprocally altered IL-21 and IL-10 production.
Collapse
Affiliation(s)
- R. Haque
- Department of Cancer Biomedical ScienceGraduate School of Cancer Science and PolicyNational Cancer CenterGoyangSouth Korea
- Department of NeurologyNational Cancer CenterGoyangSouth Korea
- Division of Clinical ResearchNational Cancer CenterGoyangSouth Korea
| | - Y. Kim
- Department of NeurologyNational Cancer CenterGoyangSouth Korea
- Division of Clinical ResearchNational Cancer CenterGoyangSouth Korea
| | - K. Park
- Division of Clinical ResearchNational Cancer CenterGoyangSouth Korea
| | - H. Jang
- Department of NeurologyNational Cancer CenterGoyangSouth Korea
| | - S. Y. Kim
- Department of NeurologyNational Cancer CenterGoyangSouth Korea
- Division of Clinical ResearchNational Cancer CenterGoyangSouth Korea
| | - H. Lee
- Department of Cancer Biomedical ScienceGraduate School of Cancer Science and PolicyNational Cancer CenterGoyangSouth Korea
| | - H. J. Kim
- Department of Cancer Biomedical ScienceGraduate School of Cancer Science and PolicyNational Cancer CenterGoyangSouth Korea
- Department of NeurologyNational Cancer CenterGoyangSouth Korea
- Division of Clinical ResearchNational Cancer CenterGoyangSouth Korea
| |
Collapse
|
29
|
Estrada JA, Contreras I. Endocannabinoid Receptors in the CNS: Potential Drug Targets for the Prevention and Treatment of Neurologic and Psychiatric Disorders. Curr Neuropharmacol 2021; 18:769-787. [PMID: 32065105 PMCID: PMC7536826 DOI: 10.2174/1570159x18666200217140255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
The endocannabinoid system participates in the regulation of CNS homeostasis and functions, including neurotransmission, cell signaling, inflammation and oxidative stress, as well as neuronal and glial cell proliferation, differentiation, migration and survival. Endocannabinoids are produced by multiple cell types within the CNS and their main receptors, CB1 and CB2, are expressed in both neurons and glia. Signaling through these receptors is implicated in the modulation of neuronal and glial alterations in neuroinflammatory, neurodegenerative and psychiatric conditions, including Alzheimer’s, Parkinson’s and Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke, epilepsy, anxiety and depression. The therapeutic potential of endocannabinoid receptors in neurological disease has been hindered by unwelcome side effects of current drugs used to target them; however, due to their extensive expression within the CNS and their involvement in physiological and pathological process in nervous tissue, they are attractive targets for drug development. The present review highlights the potential applications of the endocannabinoid system for the prevention and treatment of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- José Antonio Estrada
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Irazú Contreras
- Neurochemistry Laboratory, Faculty of Medicine, Universidad Autónoma del Estado de México, Toluca, Mexico
| |
Collapse
|
30
|
Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediators Inflamm 2021; 2021:9999146. [PMID: 34158806 PMCID: PMC8187052 DOI: 10.1155/2021/9999146] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases, whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.
Collapse
|
31
|
Haase S, Linker RA. Inflammation in multiple sclerosis. Ther Adv Neurol Disord 2021; 14:17562864211007687. [PMID: 33948118 PMCID: PMC8053832 DOI: 10.1177/17562864211007687] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterised pathologically by demyelination, gliosis, neuro-axonal damage and inflammation. Despite intense research, the underlying pathomechanisms driving inflammatory demyelination in MS still remain incompletely understood. It is thought to be caused by an autoimmune response towards CNS self-antigens in genetically susceptible individuals, assuming autoreactive T cells as disease-initiating immune cells. Yet, B cells were recognized as crucial immune cells in disease pathology, including antibody-dependent and independent effects. Moreover, myeloid cells are important contributors to MS pathology, and it is becoming increasingly evident that different cell types act in concert during MS immunopathology. This is supported by the finding that the beneficial effects of actual existing disease-modifying therapies cannot be attributed to one single immune cell-type, but rather involve immunological cooperation. The current strategy of MS therapies thus aims to shift the immune cell repertoire from a pro-inflammatory towards an anti-inflammatory phenotype, involving regulatory T and B cells and anti-inflammatory macrophages. Although no existing therapy actually exists that directly induces an enhanced regulatory immune cell pool, numerous studies identified potential net effects on these cell types. This review gives a conceptual overview on T cells, B cells and myeloid cells in the immunopathology of relapsing-remitting MS and discusses potential contributions of actual disease-modifying therapies on these immune cell phenotypes.
Collapse
Affiliation(s)
- Stefanie Haase
- Neuroimmunologie, Klinik und Poliklinik für Neurologie, Universitätsklinik Regensburg, Franz-Josef-Strauss Allee, Regensburg, 93053, Germany
| | - Ralf A Linker
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
32
|
Teymoori-Rad M, Sahraian MA, Mokhtariazad T, Nejati A, Mozdabadi RSK, Amiri MM, Shokri F, Marashi SM. Illuminating the in vitro effects of Epstein-Barr virus and vitamin D on immune response in multiple sclerosis patients. J Neurovirol 2021; 27:260-271. [PMID: 33666884 DOI: 10.1007/s13365-021-00951-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 11/25/2022]
Abstract
Given the complexity of immune complex diseases including multiple sclerosis (MS) and the plausible interactions between different risk factors, delineating the interplay between them would be imperative. The current study aimed to evaluate the in vitro effects of Epstein-Barr virus (EBV) and vitamin D on immune response in MS patients and healthy controls. The status of vitamin D and EBV load was evaluated using multiple techniques. In vitro EBV-infected peripheral blood mononuclear cells (PBMCs), in the presence or absence of vitamin D, were checked for IL-10, IFN-γ, and vitamin D receptor. MS patients showed significantly higher plasma levels of 1,25-(OH)2D but not 25-OHD, increased EBV load, and lower levels of vitamin D receptor (VDR) expression compared with healthy controls. Interestingly, an inverse correlation was observed between VDR expression and EBV load in PBMCs. Indeed, the levels of IFN-γ and IL-10 production were significantly higher in supernatant collected from in vitro EBV-infected PBMCs in MS patients compared with controls. While all vitamin D-treated PBMCs showed reduced levels of IFN-γ production, in vitro treatment of vitamin D showed no influence in IL-10 production. EBV and vitamin D were found to exert opposite in vitro effects on immune dysregulation in these patients. Our results highlight the complex interactions of different risk factors with immune system.
Collapse
Affiliation(s)
- Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Centre, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtariazad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahdi Marashi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Mimura LAN, Fraga-Silva TFDC, de Oliveira LRC, Ishikawa LLW, Borim PA, Machado CDM, Júnior JDADCEH, da Fonseca DM, Sartori A. Preclinical Therapy with Vitamin D3 in Experimental Encephalomyelitis: Efficacy and Comparison with Paricalcitol. Int J Mol Sci 2021; 22:ijms22041914. [PMID: 33671896 PMCID: PMC7918993 DOI: 10.3390/ijms22041914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS). MS and its animal model called experimental autoimmune encephalomyelitis (EAE) immunopathogenesis involve a plethora of immune cells whose activation releases a variety of proinflammatory mediators and free radicals. Vitamin D3 (VitD) is endowed with immunomodulatory and antioxidant properties that we demonstrated to control EAE development. However, this protective effect triggered hypercalcemia. As such, we compared the therapeutic potential of VitD and paricalcitol (Pari), which is a non-hypercalcemic vitamin D analog, to control EAE. From the seventh day on after EAE induction, mice were injected with VitD or Pari every other day. VitD, but not Pari, displayed downmodulatory ability being able to reduce the recruitment of inflammatory cells, the mRNA expression of inflammatory parameters, and demyelination at the CNS. Lower production of proinflammatory cytokines by lymph node-derived cells and IL-17 by gut explants, and reduced intestinal inflammation were detected in the EAE/VitD group compared to the EAE untreated or Pari groups. Dendritic cells (DCs) differentiated in the presence of VitD developed a more tolerogenic phenotype than in the presence of Pari. These findings suggest that VitD, but not Pari, has the potential to be used as a preventive therapy to control MS severity.
Collapse
Affiliation(s)
- Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
- Correspondence:
| | - Thais Fernanda de Campos Fraga-Silva
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| | - Larissa Ragozzo Cardoso de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| | - Larissa Lumi Watanabe Ishikawa
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| | - Patrícia Aparecida Borim
- Botucatu Medical School, Department of Tropical Diseases and Image Diagnosis, São Paulo State University (UNESP), Botucatu 18618-687, Brazil;
| | - Carla de Moraes Machado
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (C.d.M.M.); (J.d.A.d.C.eH.J.)
| | - José de Anchieta de Castro e Horta Júnior
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (C.d.M.M.); (J.d.A.d.C.eH.J.)
| | - Denise Morais da Fonseca
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (USP), São Paulo 05508-000, Brazil;
| | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (T.F.d.C.F.-S.); (L.R.C.d.O.); (L.L.W.I.); (A.S.)
| |
Collapse
|
34
|
Moosavi E, Rafiei A, Yazdani Y, Eslami M, Saeedi M. Association of serum levels and receptor genes BsmI, TaqI and FokI polymorphisms of vitamin D with the severity of multiple sclerosis. J Clin Neurosci 2021; 84:75-81. [PMID: 33485603 DOI: 10.1016/j.jocn.2020.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease. Vitamin D has a major role in preventing inflammatory disorders. Therefore, any alteration in vitamin D receptor (VDR) might be a genetic risk factor for MS development. This study aimed to evaluate the effect of serum levels and VDR FokI, BsmI, and TaqI gene polymorphisms on the severity of MS. METHODS This case-control study recruited 160 MS patients (71.9% females, mean age of 34.3 ± 8.3 years) and 162 (66.7% females, mean age 35.4 ± 7.9 year) age, sex, and ethnicity matched healthy controls. FokI (rs2228570), BsmI (rs1544410), and TaqI (rs731236) polymorphisms were carried out using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Demographic, clinical parameters, and the levels of vitamin D were compared between groups. RESULTS We found that the frequency of FokI and TaqI polymorphisms significantly differed between the patients and the controls (p = 0.0127 and p = 0.0236, respectively). The MS patients had low levels of vitamin D compared to the controls (p = 0.011). In addition, TaqI T/C polymorphism significantly decreased the levels of vitamin D in the MS patients (p = 0.002). However, there was no significant association between FokI or BsmI SNPs and the levels of vitamin D in MS patients (p > 0.5). CONCLUSION Our results suggest that FokI and TaqI polymorphisms of VDR are associated with MS risk and TaqI polymorphism is associated with Vitamin D levels in MS patients. Meanwhile, no difference was observed between VDR gene polymorphisms and any types of MS.
Collapse
Affiliation(s)
- Ensieh Moosavi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Rafiei
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Yaghoub Yazdani
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mina Eslami
- Department of Immunology, Molecular and Cell Biology Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran; Department of Immunology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
35
|
Mehra V, Rhone E, Widya S, Zuckerman M, Potter V, Raj K, Kulasekararaj A, McLornan D, de Lavallade H, Benson-Quarm N, Lim C, Ware S, Sudhanva M, Malik O, Nicholas R, Muraro PA, Marsh J, Mufti GJ, Silber E, Pagliuca A, Kazmi MA. Epstein-Barr Virus and Monoclonal Gammopathy of Clinical Significance in Autologous Stem Cell Transplantation for Multiple Sclerosis. Clin Infect Dis 2020; 69:1757-1763. [PMID: 30980715 DOI: 10.1093/cid/ciz047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 01/14/2019] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Autologous hematopoietic stem cell transplantation (AHSCT) with anti-thymocyte globulin (ATG) conditioning as treatment of active multiple sclerosis (MS) is rapidly increasing across Europe (EBMT registry data 2017). Clinically significant Epstein-Barr virus reactivation (EBV-R) following AHSCT with ATG for severe autoimmune conditions is an underrecognized complication relative to T-cell deplete transplants performed for hematological diseases. This retrospective study reports EBV-R associated significant clinical sequelae in MS patients undergoing AHSCT with rabbit ATG. METHODS Retrospective data were analyzed for 36 consecutive MS-AHSCT patients at Kings College Hospital, London. All patients routinely underwent weekly EBV DNA polymerase chain reaction monitoring and serum electrophoresis for monoclonal gammopathy (MG or M-protein). EBV-R with rising Epstein-Barr viral load, M-protein, and associated clinical sequelae were captured from clinical records. RESULTS All patients had evidence of rising EBV DNA-emia, including 7 who were lost to long-term follow-up, with a number of them developing high EBV viral load and associated lymphoproliferative disorder (LPD). Nearly 72% (n = 18/29) developed de novo MG, some with significant neurological consequences with high M-protein and EBV-R. Six patients required anti-CD20 therapy (rituximab) with complete resolution of EBV related symptoms. Receiver operating characteristics estimated a peak EBV viremia of >500 000 DNA copies/mL correlated with high sensitivity (85.5%) and specificity (82.5%) (area under the curve: 0.87; P = .004) in predicting EBV-R related significant clinical events. CONCLUSION Symptomatic EBV reactivation increases risk of neurological sequelae and LPD in MS-AHSCT. We recommend regular monitoring for EBV and serum electrophoresis for MG in MS patients in the first 3 months post-AHSCT.
Collapse
Affiliation(s)
- Varun Mehra
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Elijah Rhone
- Department of Neurology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Stefani Widya
- GKT School of Medical Education, Kings College London University
| | - Mark Zuckerman
- Department of Virology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Victoria Potter
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Kavita Raj
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill.,Department of Hematology, Guy's and St. Thomas' NHS Foundation Trust
| | - Austin Kulasekararaj
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Donal McLornan
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill.,Department of Hematology, Guy's and St. Thomas' NHS Foundation Trust
| | - Hugues de Lavallade
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Nana Benson-Quarm
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Christina Lim
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Sarah Ware
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Malur Sudhanva
- Department of Virology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Omar Malik
- Department of Neurology, Imperial College Healthcare, United Kingdom
| | - Richard Nicholas
- Department of Neurology, Imperial College Healthcare, United Kingdom
| | - Paolo A Muraro
- Department of Neurology, Imperial College Healthcare, United Kingdom.,Department of Neuroimmunology, Imperial College London, United Kingdom
| | - Judith Marsh
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Ghulam J Mufti
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Eli Silber
- Department of Neurology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Antonio Pagliuca
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill
| | - Majid A Kazmi
- Department of Hematology, King's College Hospital NHS Foundation Trust, Denmark Hill.,Department of Hematology, Guy's and St. Thomas' NHS Foundation Trust
| |
Collapse
|
36
|
Wagner CA, Roqué PJ, Goverman JM. Pathogenic T cell cytokines in multiple sclerosis. J Exp Med 2020; 217:jem.20190460. [PMID: 31611252 PMCID: PMC7037255 DOI: 10.1084/jem.20190460] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 09/11/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system that is believed to have an autoimmune etiology. As MS is the most common nontraumatic disease that causes disability in young adults, extensive research has been devoted to identifying therapeutic targets. In this review, we discuss the current understanding derived from studies of patients with MS and animal models of how specific cytokines produced by autoreactive CD4 T cells contribute to the pathogenesis of MS. Defining the roles of these cytokines will lead to a better understanding of the potential of cytokine-based therapies for patients with MS.
Collapse
Affiliation(s)
| | - Pamela J Roqué
- Department of Immunology, University of Washington, Seattle, WA
| | - Joan M Goverman
- Department of Immunology, University of Washington, Seattle, WA
| |
Collapse
|
37
|
Zhao Z, Bao XQ, Zhang Z, Li F, Liu H, Zhang D. Novel phloroglucinol derivative Compound 21 protects experimental autoimmune encephalomyelitis rats via inhibiting Th1/Th17 cell infiltration. Brain Behav Immun 2020; 87:751-764. [PMID: 32173452 DOI: 10.1016/j.bbi.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/27/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammatory infiltration and demyelination in the central nervous system (CNS). Among the factors involved in the immunological mechanisms of MS, T helper 1 (Th1) cells and T helper 17 (Th17) cells play a critical role. Compound 21, a novel phloroglucinol derivative, significantly protected myelin from damage in our previous study. However, it remains unclear whether this compound affects MS. In this study, the experimental autoimmune encephalomyelitis (EAE) rat model was established to mimic the pathological process of MS and evaluate the neuroprotective effect of Compound 21. The results illustrated that Compound 21 treatment notably attenuates neurological deficits, immune infiltration, and demyelination in EAE rats. Our mechanistic investigation revealed that Compound 21 treatment reduces the population of Th1/Th17 cells and inhibits their infiltration into the CNS. Furthermore, we found that the inhibition of Th1/Th17 cell infiltration is related to the direct suppression of Th1/Th17 cell differentiation and the inhibition of proinflammatory microglial cells. Collectively, these results confirm that Compound 21 suppresses infiltrated Th1/Th17 cells to alleviate demyelination in EAE rats, suggesting its potential role as a novel candidate for MS treatment.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Xiu-Qi Bao
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Zihong Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Fangyuan Li
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hui Liu
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substrate and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
38
|
Balasa R, Barcutean L, Balasa A, Motataianu A, Roman-Filip C, Manu D. The action of TH17 cells on blood brain barrier in multiple sclerosis and experimental autoimmune encephalomyelitis. Hum Immunol 2020; 81:237-243. [PMID: 32122685 DOI: 10.1016/j.humimm.2020.02.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/05/2020] [Accepted: 02/20/2020] [Indexed: 01/02/2023]
Abstract
Th17 cells, known as a highly pro-inflammatory subtype of Th cells, are involved very early in numerous aspects of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) neuropathology. A crucial event for the formation and accumulation of MS lesions is represented by the disruption of the blood brain barrier (BBB) in relapsing-remitting MS. Th17 cells also contribute to the progression of MS/EAE. These events will allow for the passage of inflammatory cells into the brain. Secondary to this, increased recruitment of neutrophils occurs, followed by increased protease activity that will continue to attract macrophages and monocytes, leading to brain inflammation with sustained myelin and axon damage. This review focuses mainly on the role of Th17 cells in penetrating the BBB and on their important effects on BBB disruption via their main secretion products, IL-17 and IL-22. We present the morphological aspects of Th17 cells that allow for intercellular contacts with BBB endothelial cells and the functional/secretory particularities of Th17 cells that allow for intercellular communications that enhance Th17 entry into the CNS. The cytokines and chemokines involved in these processes are described. In conclusion, Th17 cells can efficiently cross the BBB using pathways distinct from those used by Th1 cells, leading to BBB disruption, the activation of other inflammatory cells and neurodegeneration in MS patients.
Collapse
Affiliation(s)
- Rodica Balasa
- Neurology 1 Clinic, Emergency Clinical County Hospital Tirgu Mures, Romania; Neurology Department, University of Medicine, Pharmacy, Science and Technology Tirgu Mures, Romania
| | - Laura Barcutean
- Neurology 1 Clinic, Emergency Clinical County Hospital Tirgu Mures, Romania; Neurology Department, University of Medicine, Pharmacy, Science and Technology Tirgu Mures, Romania
| | - Adrian Balasa
- Neurosurgery Clinic, Emergency Clinical County Hospital Tirgu Mures, Romania
| | - Anca Motataianu
- Neurology 1 Clinic, Emergency Clinical County Hospital Tirgu Mures, Romania; Neurology Department, University of Medicine, Pharmacy, Science and Technology Tirgu Mures, Romania.
| | | | - Doina Manu
- Centre for Advanced Medical and Pharmaceutical Research, University of Medicine, Pharmacy, Science and Technology, Tirgu Mures, Romania
| |
Collapse
|
39
|
Toh YL, Wang C, Ho HK, Chan A. Distinct cytokine profiles across trajectories of self-perceived cognitive impairment among early-stage breast cancer survivors. J Neuroimmunol 2020; 342:577196. [PMID: 32146169 DOI: 10.1016/j.jneuroim.2020.577196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022]
Abstract
The aim of the current study is to identify distinct cytokine profiles in relation to self-perceived cognitive trajectories. In our study cohort (n = 128), early-stage breast cancer patients were categorized into no impairment reported, acute, delayed, persistent and intermittent cognitive decline respectively. Pro-inflammatory cytokines were elevated compared to baseline; with TNF-α implicated in the acute cognitive trajectory while IL-6 and IL-8 were involved in the persistent cognitive trajectory. Our findings help to further our understanding of cytokine profiles implicated in cancer-related cognitive impairment (CRCI) and support the use of cytokine levels as biomarkers of cognitive decline over time.
Collapse
Affiliation(s)
- Yi Long Toh
- Department of Pharmacy, National University of Singapore, Singapore
| | - Claire Wang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, National University of Singapore, Singapore
| | - Alexandre Chan
- Department of Pharmacy, National University of Singapore, Singapore; Department of Pharmacy, National Cancer Centre Singapore, Singapore; Department of Clinical Pharmacy Practice, University of California, Irvine, USA.
| |
Collapse
|
40
|
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells 2020; 9:cells9020482. [PMID: 32093011 PMCID: PMC7072830 DOI: 10.3390/cells9020482] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Simone Frascolla
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
41
|
The direct deleterious effect of Th17 cells in the nervous system compartment in multiple sclerosis and experimental autoimmune encephalomyelitis: one possible link between neuroinflammation and neurodegeneration. REV ROMANA MED LAB 2020. [DOI: 10.2478/rrlm-2020-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Abstract
The processes of demyelination and neurodegeneration in the central nervous system (CNS) of multiple sclerosis (MS) patients and experimental autoimmune encephalomyelitis (EAE) are secondary to numerous pathophysiological mechanisms. One of the main cellular players is the Th17 lymphocyte. One of the major functions described for Th17 cells is the upregulation of pro-inflammatory cytokines, such as IL-17 at the level of peripheral and CNS inflammation. This review will focus on the newly described and unexpected, direct role played by the Th17 cells in the CNS of MS patients and EAE models. Th17 and their main cytokine, IL-17, are actively involved in the onset and maintenance of the immune cascade in the CNS compartment as Th17 were found to achieve brain-homing potential. Direct interaction of myelin oligodendrocyte glycoprotein - specific Th17 with the neuronal cells firstly induces demyelination and secondly, extensive axonal damage. The Th17 cells promote an inflammatory B cell response beyond the BBB through the presence of infiltrating Th follicles. Due to their role in preventing remyelination and direct neurotoxic effect, Th17 cells might stand for an important connection between neuroinflammation and neurodegeneration in a devastating disease like MS. The Th17 cell populations have different mechanisms of provoking an autoimmune attack not only in the periphery but also in the CNS of MS patients.
Collapse
|
42
|
Abarca-Zabalía J, García MI, Lozano Ros A, Marín-Jiménez I, Martínez-Ginés ML, López-Cauce B, Martín-Barbero ML, Salvador-Martín S, Sanjurjo-Saez M, García-Domínguez JM, López Fernández LA. Differential Expression of SMAD Genes and S1PR1 on Circulating CD4+ T Cells in Multiple Sclerosis and Crohn's Disease. Int J Mol Sci 2020; 21:ijms21020676. [PMID: 31968593 PMCID: PMC7014376 DOI: 10.3390/ijms21020676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/12/2020] [Accepted: 01/16/2020] [Indexed: 01/13/2023] Open
Abstract
The Th17 immune response plays a key role in autoimmune diseases such as multiple sclerosis (MS) and inflammatory bowel disease (IBD). Expression of Th17-related genes in inflamed tissues has been reported in autoimmune diseases. However, values are frequently obtained using invasive methods. We aimed to identify biomarkers of MS in an accessible sample, such as blood, by quantifying the relative expression of 91 Th17-related genes in CD4+ T lymphocytes from patients with MS during a relapse or during a remitting phase. We also compared our findings with those of healthy controls. After confirmation in a validation cohort, expression of SMAD7 and S1PR1 mRNAs was decreased in remitting disease (-2.3-fold and -1.3-fold, respectively) and relapsing disease (-2.2-fold and -1.3-fold, respectively). No differential expression was observed for other SMAD7-related genes, namely, SMAD2, SMAD3, and SMAD4. Under-regulation of SMAD7 and S1PR1 was also observed in another autoimmune disease, Crohn's disease (CD) (-4.6-fold, -1.6-fold, respectively), suggesting the presence of common markers for autoimmune diseases. In addition, expression of TNF, SMAD2, SMAD3, and SMAD4 were also decreased in CD (-2.2-fold, -1.4-fold, -1.6-fold, and -1.6-fold, respectively). Our study suggests that expression of SMAD7 and S1PR1 mRNA in blood samples are markers for MS and CD, and TNF, SMAD2, SMAD3, and SMAD4 for CD. These genes could prove useful as markers of autoimmune diseases, thus obviating the need for invasive methods.
Collapse
Affiliation(s)
- Judith Abarca-Zabalía
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Ma Isabel García
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Alberto Lozano Ros
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.L.R.); (M.L.M.-G.)
| | - Ignacio Marín-Jiménez
- Unidad de Enfermedad Inflamatoria Intestinal, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (I.M.-J.); (B.L.-C.)
| | - Maria L. Martínez-Ginés
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.L.R.); (M.L.M.-G.)
| | - Beatriz López-Cauce
- Unidad de Enfermedad Inflamatoria Intestinal, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (I.M.-J.); (B.L.-C.)
| | - María L. Martín-Barbero
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Sara Salvador-Martín
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - María Sanjurjo-Saez
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
| | - Jose M. García-Domínguez
- Servicio de Neurología, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (A.L.R.); (M.L.M.-G.)
- Correspondence: (J.M.G.-D.); (L.A.L.F.)
| | - Luis A. López Fernández
- Servicio de Farmacia, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain; (J.A.-Z.); (M.L.M.-B.); (S.S.-M.); (M.S.-S.)
- Correspondence: (J.M.G.-D.); (L.A.L.F.)
| |
Collapse
|
43
|
Sylvestre DA, Slupsky CM, Aviv RI, Swardfager W, Taha AY. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res 2019; 1732:146589. [PMID: 31816317 DOI: 10.1016/j.brainres.2019.146589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Changes in peripheral blood amino acids have been noted in Relapse Remitting Multiple Sclerosis (RRMS), suggesting their potential diagnostic value in anticipating disease progression. OBJECTIVE The present study sought to comprehensively assess the plasma metabolome, including amino acids, of RRMS patient and unaffected controls, to identify potential biomarkers of RRMS disease pathogenesis. METHODS Untargeted NMR metabolomics was performed on plasma from 28 RRMS patients and 18 unaffected controls to test the hypothesis that metabolomic markers are altered in RRMS patients in association with lesion load, brain atrophy and cognitive performance. RESULTS There were no significant differences between RRMS and controls in age, sex and total brain volume. Brain fractional volumes of gray matter, white matter, thalamus and parenchyma as well as multiple neurocognitive scores were significantly lower in RRMS patients compared to unaffected controls. Concentrations of nine plasma metabolites (arginine, isoleucine, citrate, serine, phenylalanine, methionine, asparagine, histidine, myo-inositol) were significantly lower in RRMS patients compared to controls. Plasma arginine concentrations were positively correlated with T1 holes and white matter lesions, and plasma methionine concentrations were positively correlated with T1 holes, but not white matter lesions. Serine was negatively correlated with performance on the Brief Visuospatial Memory Test in controls but not RRMS patients. CONCLUSIONS The identified disturbances in metabolite concentrations might be developed as new markers of neuroanatomical vulnerability in RRMS, should the findings be reproduced in larger cohort studies.
Collapse
Affiliation(s)
- Duncan A Sylvestre
- Department of Food Science and Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, USA
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, Davis, USA; Department of Nutrition, University of California, Davis, USA
| | - Richard I Aviv
- Department of Radiology, Ottawa University, Division of Neuroradiology, The Ottawa Hospital, Ottawa, ON, K1H8L6, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada; University Health Network Toronto Rehabilitation Institute, Toronto, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California, Davis, USA.
| |
Collapse
|
44
|
Murphy KA, Bhamidipati K, Rubin SJS, Kipp L, Robinson WH, Lanz TV. Immunomodulatory receptors are differentially expressed in B and T cell subsets relevant to autoimmune disease. Clin Immunol 2019; 209:108276. [PMID: 31669582 DOI: 10.1016/j.clim.2019.108276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022]
Abstract
Inhibitory cell-surface receptors on lymphocytes, often called immune checkpoints, are powerful targets for cancer therapy. Despite their direct involvement in autoimmune pathology, they are currently not exploited therapeutically for autoimmune diseases. Understanding the expression pattern of these receptors in health and disease is essential for targeted drug design. Here, we designed three 23-colour flow cytometry panels for peripheral-blood T cells, including 15 lineage-defining markers and 21 immunomodulatory cell-surface receptors, and a 22-marker panel for B cells. Blood samples from healthy individuals, multiple sclerosis (MS), and lupus (SLE) patients were included in the study. Several receptors show differential expression on regulatory T cells (Treg) compared to T helper (Th) 1 and Th17 cells, and functional relevance of this difference could be shown for BTLA and CD5. Unbiased multiparametric analysis revealed a subset of activated CD8+ T cells and a subset of unswitched memory B cells that are diminished in MS and SLE, respectively.
Collapse
Affiliation(s)
- Katherine A Murphy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Kartik Bhamidipati
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Samuel J S Rubin
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Lucas Kipp
- Division of Neuroimmunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - William H Robinson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Tobias V Lanz
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States; Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
45
|
Khoury O, Atala A, Murphy SV. Stromal cells from perinatal and adult sources modulate the inflammatory immune response in vitro by decreasing Th1 cell proliferation and cytokine secretion. Stem Cells Transl Med 2019; 9:61-73. [PMID: 31638323 PMCID: PMC6954711 DOI: 10.1002/sctm.19-0123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Many immune-mediated conditions are associated with a dysregulated imbalance toward a Th1 response leading to disease onset, severity, and damage. Many of the therapies such as immunomodulators or anti-TNF-α antibodies often fall short in preventing disease progression and ameliorating disease conditions. Thus, new therapies that can target inflammatory environments would have a major impact in preventing the progression of inflammatory diseases. We investigated the role of human stromal cells derived from the amniotic fluid (AFSCs), the placenta (PLSCs), and bone marrow-derived mesenchymal stromal cells (BM-MSCs) in modulating the inflammatory response of in vitro-stimulated circulating blood-derived immune cells. Immune cells were isolated from the blood of healthy individuals and stimulated in vitro with antigens to activate inflammatory responses to stimuli. AFSC, BM-MSCs, and PLSCs were cocultured with stimulated leukocytes, neutrophils, or lymphocytes. Inflammatory cytokine production, neutrophil migration, enzymatic degranulation, T cell proliferation, and subsets were evaluated. Coculture of all three stromal cell types decreased the gene expression of inflammatory cytokines and enzymes such as IL-1β, IFN-γ, TNF-α, neutrophil elastase, and the transcription factor NF-κB in lipopolysaccharide-stimulated leukocytes. With isolated phytohemagglutinin-stimulated peripheral blood mononuclear cells, cells coculture leads to a decrease in lymphocyte proliferation. This effect correlated with decreased numbers of Th1 lymphocytes and decreased secreted levels of IFN-γ.
Collapse
Affiliation(s)
- Oula Khoury
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Sean V Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
46
|
Zhang F, Zhang Y, Yang T, Ye ZQ, Tian J, Fang HR, Han JJ, Wang ZZ, Li X. Scopoletin Suppresses Activation of Dendritic Cells and Pathogenesis of Experimental Autoimmune Encephalomyelitis by Inhibiting NF-κB Signaling. Front Pharmacol 2019; 10:863. [PMID: 31427972 PMCID: PMC6688631 DOI: 10.3389/fphar.2019.00863] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Scopoletin, a phenolic coumarin derived from many medical or edible plants, is involved in various pharmacological functions. In the present study, we showed that Scopoletin effectively ameliorated experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), through novel regulatory mechanisms involving inhibition of NF-κB activity in dendritic cells (DCs). Scopoletin treatment significantly improved the severity of the disease and prominently decreased inflammation and demyelination of central nervous system (CNS) in EAE mice. Disease alleviation correlated with the downregulation of major histocompatibility complex (MHC) class II, CD80 and CD86, expressed on DCs of CNS or spleens, and the infiltration and polarization of encephalitogenic Th1/Th17 cells. Consistent with the in vivo data, Scopoletin-treated, bone marrow-derived dendritic cells (BM-DCs) exhibited reduced expression of MHC class II and costimulatory molecules (e.g., CD80 and CD86) and reduced NF-κB phosphorylation. These findings, for the first time, demonstrated the ability of Scopoletin to impair DC activation, downregulating pathogenic Th1/Th17 inflammatory cell responses and, eventually, reducing EAE severity. Our study demonstrates new evidence that natural products derived from medical or edible plants, such as Scopoletin, will be valuable in developing a novel therapeutic agent for MS in the future.
Collapse
Affiliation(s)
- Fei Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ting Yang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ze-Qing Ye
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jing Tian
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Hai-Rong Fang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe-Zhi Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
47
|
Gliotoxin Aggravates Experimental Autoimmune Encephalomyelitis by Triggering Neuroinflammation. Toxins (Basel) 2019; 11:toxins11080443. [PMID: 31357414 PMCID: PMC6722733 DOI: 10.3390/toxins11080443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
Gliotoxin (GTX) is the major and the most potent mycotoxin that is secreted by Aspergillus fumigatus, which is capable of injuring and killing microglial cells, astrocytes, and oligodendrocytes. During the last years, studies with patients and experimental models of multiple sclerosis (MS), which is an autoimmune disease of the central nervous system (CNS), suggested that fungal infections are among the possible initiators or aggravators of this pathology. The deleterious effect can occur through a direct interaction of the fungus with the CNS or by the toxin release from a non-neurological site. In the present work, we investigated the effect of GTX on experimental autoimmune encephalomyelitis (EAE) development. Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein and then intraperitoneally injected with three doses of GTX (1 mg/kg b.w., each) on days 4, 7, and 10. GTX aggravated clinical symptoms of the disease in a dose-dependent way and this outcome was concomitant with an increased neuroinflammation. CNS analyses revealed that GTX locally increased the relative expression of inflammatory genes and the cytokine production. Our results indicate that GTX administered in a non-neuronal site was able to increase neuroinflammation in EAE. Other mycotoxins could also be deleterious to many neurological diseases by similar mechanisms.
Collapse
|
48
|
Heinrich MJ, Purcell CA, Pruijssers AJ, Zhao Y, Spurlock CF, Sriram S, Ogden KM, Dermody TS, Scholz MB, Crooke PS, Karijolich J, Aune TM. Endogenous double-stranded Alu RNA elements stimulate IFN-responses in relapsing remitting multiple sclerosis. J Autoimmun 2019; 100:40-51. [PMID: 30826177 DOI: 10.1016/j.jaut.2019.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 12/22/2022]
Abstract
Various sensors that detect double-stranded RNA, presumably of viral origin, exist in eukaryotic cells and induce IFN-responses. Ongoing IFN-responses have also been documented in a variety of human autoimmune diseases including relapsing-remitting multiple sclerosis (RRMS) but their origins remain obscure. We find increased IFN-responses in leukocytes in relapsing-remitting multiple sclerosis at distinct stages of disease. Moreover, endogenous RNAs isolated from blood cells of these same patients recapitulate this IFN-response if transfected into naïve cells. These endogenous RNAs are double-stranded RNAs, contain Alu and Line elements and are transcribed from leukocyte transcriptional enhancers. Thus, transcribed endogenous retrotransposon elements can co-opt pattern recognition sensors to induce IFN-responses in RRMS.
Collapse
Affiliation(s)
- Maxwell J Heinrich
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Caroline A Purcell
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Andrea J Pruijssers
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Yang Zhao
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Charles F Spurlock
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Subramaniam Sriram
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Kristen M Ogden
- Departments of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Terence S Dermody
- Departments of Pediatrics and of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew B Scholz
- Vanderbilt Technologies for Advanced Genomics, Vanderbilt University Medical Center, Nashville, TN, 37212, USA
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN, 37212, USA
| | - John Karijolich
- Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Thomas M Aune
- Departments of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
49
|
Yan BY, Garcet S, Gulati N, Kiecker F, Fuentes-Duculan J, Gilleaudeau P, Sullivan-Whalen M, Shemer A, Mitsui H, Krueger JG. Novel immune signatures associated with dysplastic naevi and primary cutaneous melanoma in human skin. Exp Dermatol 2019; 28:35-44. [PMID: 30326165 PMCID: PMC6333525 DOI: 10.1111/exd.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/25/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Dysplastic naevi (DN) are benign lesions with atypical features intermediate between that of common melanocytic naevi (CMN) and malignant melanoma (MM). Debate remains over whether DN represent progressive lesions from CMN. Through gene expression profiling and analysis of molecular gene signatures, our study revealed progressive increases in immune activation and regulation, along with pathways implicated in melanomagenesis, from CMN to DN to MM. Using criteria of 1.5-fold change and false discovery rate ≤0.05, we found differential expression of 7186 probes (6370 unique genes) with the largest difference detected between DN and MM from the standpoint of genomic melanoma progression. Despite progressive increases in the T-helper type 1 (Th1)-inducing gene (IL-12), RT-PCR indicated impaired Th1 or cytotoxic T-cell response (decreased IFN-γ) in MM. Concordantly, our results indicated progressive increases in molecular markers associated with regulatory T cells, exhausted T cells and tolerogenic dendritic cells, including detection of increased expression of suppressor of cytokine signalling 3 (SOCS3) in dendritic cells associated with MM. All together, our findings suggest that the increased immunosuppressive microenvironment of melanoma may contribute to unhampered proliferation of neoplastic cells. In addition, the detection of increased markers associated with tolerogenic dendritic cells in MM suggests that targeting these suppressive immune cell types may represent an alternative avenue for future immunotherapy.
Collapse
Affiliation(s)
- Bernice Y. Yan
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Sandra Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Nicholas Gulati
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Felix Kiecker
- Department of Dermatology, Allergy, Skin Cancer Center, Charité Universitätsmedizin Berlin, Berlin, Germany0020
| | | | - Patricia Gilleaudeau
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Mary Sullivan-Whalen
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
| | - Avner Shemer
- Department of Dermatology, Tel-Hashomer Medical Center, Ramat Gan, Israel
| | - Hiroshi Mitsui
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
- Authors share senior authorship
| | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, N0059
- Authors share senior authorship
| |
Collapse
|
50
|
Abreu CM, Soares-Dos-Reis R, Melo PN, Relvas JB, Guimarães J, Sá MJ, Cruz AP, Mendes Pinto I. Emerging Biosensing Technologies for Neuroinflammatory and Neurodegenerative Disease Diagnostics. Front Mol Neurosci 2018; 11:164. [PMID: 29867354 PMCID: PMC5964192 DOI: 10.3389/fnmol.2018.00164] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023] Open
Abstract
Neuroinflammation plays a critical role in the onset and progression of many neurological disorders, including Multiple Sclerosis, Alzheimer's and Parkinson's diseases. In these clinical conditions the underlying neuroinflammatory processes are significantly heterogeneous. Nevertheless, a common link is the chronic activation of innate immune responses and imbalanced secretion of pro and anti-inflammatory mediators. In light of this, the discovery of robust biomarkers is crucial for screening, early diagnosis, and monitoring of neurological diseases. However, the difficulty to investigate biochemical processes directly in the central nervous system (CNS) is challenging. In recent years, biomarkers of CNS inflammatory responses have been identified in different body fluids, such as blood, cerebrospinal fluid, and tears. In addition, progress in micro and nanotechnology has enabled the development of biosensing platforms capable of detecting in real-time, multiple biomarkers in clinically relevant samples. Biosensing technologies are approaching maturity where they will become deployed in community settings, at which point screening programs and personalized medicine will become a reality. In this multidisciplinary review, our goal is to highlight both clinical and recent technological advances toward the development of multiplex-based solutions for effective neuroinflammatory and neurodegenerative disease diagnostics and monitoring.
Collapse
Affiliation(s)
- Catarina M Abreu
- International Iberian Nanotechnology Laboratory, Braga, Portugal.,Medical School, Swansea University, Swansea, United Kingdom
| | - Ricardo Soares-Dos-Reis
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Pedro N Melo
- Graduate Programme in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - João B Relvas
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Department of Clinical Neurosciences and Mental Health, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Center for Drug Discovery and Innovative Medicines (MedInUP), Universidade do Porto, Porto, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar de São João, Porto, Portugal.,Energy, Environment and Health Research Unit (FP-ENAS), University Fernando Pessoa, Porto, Portugal.,Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Andrea P Cruz
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | | |
Collapse
|