1
|
Sasidharan A, Grosche A, Xu X, Kinane TB, Angoli D, Vidyasagar S. Select amino acids recover cytokine-altered ENaC function in human bronchial epithelial cells. PLoS One 2024; 19:e0307809. [PMID: 39052685 PMCID: PMC11271875 DOI: 10.1371/journal.pone.0307809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
The airway epithelium plays a pivotal role in regulating mucosal immunity and inflammation. Epithelial barrier function, homeostasis of luminal fluid, and mucociliary clearance are major components of mucosal defense mechanisms. The epithelial sodium channel (ENaC) is one of the key players in controlling airway fluid volume and composition, and characteristic cytokines cause ENaC and barrier dysfunctions following pulmonary infections or allergic reactions. Given the limited understanding of the requisite duration and magnitude of cytokines to affect ENaC and barrier function, available treatment options for restoring normal ENaC activity are limited. Previous studies have demonstrated that distinct amino acids can modulate epithelial ion channel activities and barrier function in intestines and airways. Here, we have investigated the time- and concentration-dependent effect of representative cytokines for Th1- (IFN-γ and TNF-α), Th2- (IL-4 and IL-13), and Treg-mediated (TGF-β1) immune responses on ENaC activity and barrier function in human bronchial epithelial cells. When cells were exposed to Th1 and Treg cytokines, ENaC activity decreased gradually while barrier function remained largely unaffected. In contrast, Th2 cytokines had an immediate and profound inhibitory effect on ENaC activity that was subsequently followed by epithelial barrier disruption. These functional changes were associated with decreased membrane protein expression of α-, β-, and γ-ENaC, and decreased mRNA levels of β- and γ-ENaC. A proprietary blend of amino acids was developed based on their ability to prevent Th2 cytokine-induced ENaC dysfunction. Exposure to the select amino acids reversed the inhibitory effect of IL-13 on ENaC activity by increasing mRNA levels of β- and γ-ENaC, and protein expression of γ-ENaC. This study indicates the beneficial effect of select amino acids on ENaC activity in an in vitro setting of Th2-mediated inflammation suggesting these amino acids as a novel therapeutic approach for correcting this condition.
Collapse
Affiliation(s)
- Anusree Sasidharan
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Astrid Grosche
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Xiaodong Xu
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - T. Bernard Kinane
- Pediatric Pulmonary Division, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Damiano Angoli
- Pediatric Pulmonary Division, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sadasivan Vidyasagar
- Department of Radiation Oncology, Shands Cancer Center, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Zhou B, Wang L, Yang S, Liang Y, Zhang Y, Liu X, Pan X, Li J. Pyrogallol protects against influenza A virus-triggered lethal lung injury by activating the Nrf2-PPAR-γ-HO-1 signaling axis. MedComm (Beijing) 2024; 5:e531. [PMID: 38617435 PMCID: PMC11014464 DOI: 10.1002/mco2.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Pyrogallol, a natural polyphenol compound (1,2,3-trihydroxybenzene), has shown efficacy in the therapeutic treatment of disorders associated with inflammation. Nevertheless, the mechanisms underlying the protective properties of pyrogallol against influenza A virus infection are not yet established. We established in this study that pyrogallol effectively alleviated H1N1 influenza A virus-induced lung injury and reduced mortality. Treatment with pyrogallol was found to promote the expression and nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Notably, the activation of Nrf2 by pyrogallol was involved in elevating the expression of PPAR-γ, both of which act synergistically to enhance heme oxygenase-1 (HO-1) synthesis. Blocking HO-1 by zinc protoporphyrin (ZnPP) reduced the suppressive impact of pyrogallol on H1N1 virus-mediated aberrant retinoic acid-inducible gene-I-nuclear factor kappa B (RIG-I-NF-κB) signaling, which thus abolished the dampening effects of pyrogallol on excessive proinflammatory mediators and cell death (including apoptosis, necrosis, and ferroptosis). Furthermore, the HO-1-independent inactivation of janus kinase 1/signal transducers and activators of transcription (JAK1/STATs) and the HO-1-dependent RIG-I-augmented STAT1/2 activation were both abrogated by pyrogallol, resulting in suppression of the enhanced transcriptional activity of interferon-stimulated gene factor 3 (ISGF3) complexes, thus prominently inhibiting the amplification of the H1N1 virus-induced proinflammatory reaction and apoptosis in interferon-beta (IFN-β)-sensitized cells. The study provides evidence that pyrogallol alleviates excessive proinflammatory responses and abnormal cell death via HO-1 induction, suggesting it could be a potential agent for treating influenza.
Collapse
Affiliation(s)
- Beixian Zhou
- The People's Hospital of GaozhouGaozhouChina
- Cancer Center, Integrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | | | - Sushan Yang
- The People's Hospital of GaozhouGaozhouChina
| | | | | | - Xuanyu Liu
- The People's Hospital of GaozhouGaozhouChina
| | | | - Jing Li
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center of Respiratory DiseaseGuangzhou Institute of Respiratory HealthInstitute of Chinese Integrative MedicineGuangdong‐Hongkong‐Macao Joint Laboratory of Infectious Respiratory Diseasethe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Megha KB, Reshma S, Amir S, Krishnan MJA, Shimona A, Alka R, Mohanan PV. Comprehensive Risk Assessment of Infection Induced by SARS-CoV-2. Mol Neurobiol 2023:10.1007/s12035-023-03682-4. [PMID: 37817031 DOI: 10.1007/s12035-023-03682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
The pandemic COVID-19 (coronavirus disease 2019) is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), which devastated the global economy and healthcare system. The infection caused an unforeseen rise in COVID-19 patients and increased the mortality rate globally. This study gives an overall idea about host-pathogen interaction, immune responses to COVID-19, recovery status of infection, targeted organs and complications associated, and comparison of post-infection immunity in convalescent subjects and non-infected individuals. The emergence of the variants and episodes of COVID-19 infections made the situation worsen. The timely introduction of vaccines and precautionary measures helped control the infection's severity. Later, the population that recovered from COVID-19 grew significantly. However, understanding the impact of healthcare issues resulting after infection is paramount for improving an individual's health status. It is now recognised that COVID-19 infection affects multiple organs and exhibits a broad range of clinical manifestations. So, post COVID-19 infection creates a high risk in individuals with already prevailing health complications. The identification of post-COVID-19-related health issues and their appropriate management is of greater importance to improving patient's quality of life. The persistence, sequelae and other medical complications that normally last from weeks to months after the recovery of the initial infection are involved with COVID-19. A multi-disciplinary approach is necessary for the development of preventive measures, techniques for rehabilitation and strategies for clinical management when it comes to long-term care.
Collapse
Affiliation(s)
- K B Megha
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - M J Ajai Krishnan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India
| | - A Shimona
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Rao Alka
- CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum, Kerala, 695 012, India.
| |
Collapse
|
4
|
DiGuilio KM, Rybakovsky E, Baek Y, Valenzano MC, Mullin JM. The multiphasic TNF-α-induced compromise of Calu-3 airway epithelial barrier function. Exp Lung Res 2023; 49:72-85. [PMID: 37000123 DOI: 10.1080/01902148.2023.2193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/09/2023] [Indexed: 04/01/2023]
Abstract
Purpose: Airway epithelial barrier leak and the involvement of proinflammatory cytokines play a key role in a variety of diseases. This study evaluates barrier compromise by the inflammatory mediator Tumor Necrosis Factor-α (TNF-α) in the human airway epithelial Calu-3 model. Methods: We examined the effects of TNF-α on barrier function in Calu-3 cell layers using Transepithelial Electrical Resistance (TER) and transepithelial diffusion of radiolabeled probe molecules. Western immunoblot analyses of tight junctional (TJ) proteins in detergent soluble fractions were performed. Results: TNF-α dramatically reduced TER and increased paracellular permeability of both 14C-D-mannitol and the larger 5 kDa probe, 14C-inulin. A time course of the effects shows two separate actions on barrier function. An initial compromise of barrier function occurs 2-4 hours after TNF-α exposure, followed by complete recovery of barrier function by 24 hrs. Beginning 48 hrs. post-exposure, a second more sustained barrier compromise ensues, in which leakiness persists through 144 hrs. There were no changes in TJ proteins observed at 3 hrs. post exposure, but significant increases in claudins-2, -3, -4, and -5, as well as a decrease in occludin were seen at 72 hrs. post TNF-α exposure. Both the 2-4 hr. and the 72 hr. TNF-α induced leaks are shown to be mediated by the ERK signaling pathway. Conclusion: TNF-α induced a multiphasic transepithelial leak in Calu-3 cell layers that was shown to be ERK mediated, as well as involve changes in the TJ complex. The micronutrients, retinoic acid and calcitriol, were effective at reducing this barrier compromise caused by TNF-α. The significance of these results for airway disease and for COVID-19 specifically are discussed.
Collapse
Affiliation(s)
| | | | - Yoongyeong Baek
- Department of Chemistry, Drexel University, Philadelphia, PA, USA
| | | | - James M Mullin
- Lankenau Institute for Medical Research, Wynnewood, PA, USA
| |
Collapse
|
5
|
Johnston JG, Welch AK, Cain BD, Sayeski PP, Gumz ML, Wingo CS. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023; 13:4409-4491. [PMID: 36994769 PMCID: PMC11472823 DOI: 10.1002/cphy.c190043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid-base balance in response to changes in dietary sodium (Na+ ) or potassium (K+ ) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine-tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409-4491, 2023.
Collapse
Affiliation(s)
- Jermaine G Johnston
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Amanda K Welch
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Peter P Sayeski
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - Michelle L Gumz
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, Department of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
- Nephrology Section, Veteran Administration Medical Center, North Florida/South Georgia Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, Florida, USA
| |
Collapse
|
6
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
7
|
Dey R, Samadder A, Nandi S. Selected Phytochemicals to Combat Lungs Injury: Natural Care. Comb Chem High Throughput Screen 2022; 25:2398-2412. [PMID: 35293289 DOI: 10.2174/1386207325666220315113121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/27/2023]
Abstract
The human has two lungs responsible for respiration and drug metabolism. Severe lung infection caused by bacteria, mycobacteria, viruses, fungi, and parasites may lead to lungs injury. Smoking and tobacco consumption may also produce lungs injury. Inflammatory and pain mediators are secreted by alveolar macrophages. The inflammatory mediators, such as cytokines, interleukin (IL)-1, IL-6, IL-8, IL-10, and tumor necrosis factor (TNF)-α, neutrophils, and fibroblasts are accumulated in the alveoli sac, which becomes infected. It may lead to hypoxia followed by severe pulmonary congestion and the death of the patient. There is an urgent need for the treatment of artificial respiration and ventilation. However, the situation may be the worst for patients suffering from lung cancer, pulmonary tuberculosis, and acute pneumonia caused by acute respiratory distress syndrome (ARDS). Re-urgency has been happening in the case of coronavirus disease of 2019 (COVID-19) patients. Therefore, it is needed to protect the lungs with the intake of natural phytomedicines. In the present review, several selected phyto components having the potential role in lung injury therapy have been discussed. Regular intake of natural vegetables and fruits bearing these constituents may save the lungs even in the dangerous attack of SARS-CoV-2 in lung cancer, pulmonary TB, and pneumatic patients.
Collapse
Affiliation(s)
- Rishita Dey
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India.,Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| | - Asmita Samadder
- Department of Zoology, Cytogenetics and Molecular Biology Lab., University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur-244713, India
| |
Collapse
|
8
|
Nemeth Z, Hildebrandt E, Parsa N, Fleming AB, Wasson R, Pittman K, Bell X, Granger JP, Ryan MJ, Drummond HA. Epithelial sodium channels in macrophage migration and polarization: role of proinflammatory cytokines TNFα and IFNγ. Am J Physiol Regul Integr Comp Physiol 2022; 323:R763-R775. [PMID: 36189990 PMCID: PMC9639769 DOI: 10.1152/ajpregu.00207.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Migration of monocytes-macrophages plays an important role in phagocytosis of pathogens and cellular debris in a variety of pathophysiological conditions. Although epithelial Na+ channels (ENaCs) are required for normal migratory responses in other cell types, their role in macrophage migration signaling is unknown. To address this possibility, we determined whether ENaC message is present in several peripheral blood monocyte cell populations and tissue-resident macrophages in healthy humans using the Human Protein Atlas database (www.proteinatlas.org) and the mouse monocyte cell line RAW 264.7 using RT-PCR. We then determined that selective ENaC inhibition with amiloride inhibited chemotactic migration (∼50%), but not phagocytosis, of the mouse monocyte-macrophage cell line RAW 264.7. Furthermore, we generated a cell line stably expressing an NH2-terminal truncated αENaC to interrupt normal channel trafficking and found it suppressed migration. Prolonged exposure (48 h) of RAW 264.7 cells to proinflammatory cytokines interferon γ (IFNγ) and/or tumor necrosis factor α (TNFα) inhibited RAW 264.7 migration and abolished the amiloride (1 µM)-sensitive component of migration, a finding consistent with ENaC downregulation. To determine if proinflammatory cytokines regulate αENaC protein expression, cells were exposed to proinflammatory cytokines IFNγ (10 ng/mL, last 48 h) and TNFα (10 ng/mL, last 24 h). By Western blot analysis, we found whole cell αENaC protein is reduced ≥50%. Immunofluorescence demonstrated heterogeneous αENaC inhibition. Finally, we found that overnight exposure to amiloride stimulated morphological changes and increased polarization marker expression. Our findings suggest that ENaC may be a critical molecule in macrophage migration and polarization.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Nicholas Parsa
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam B Fleming
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Robert Wasson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Katarina Pittman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xavier Bell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
9
|
Jiang YX, Huang ZW. Ulinastatin alleviates pulmonary edema by reducing pulmonary permeability and stimulating alveolar fluid clearance in a rat model of acute lung injury. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1002-1008. [PMID: 36159332 PMCID: PMC9464339 DOI: 10.22038/ijbms.2022.64655.14230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/30/2022] [Indexed: 11/04/2022]
Abstract
Objectives Previous studies have shown that ulinastatin (UTI) alleviates pulmonary edema in acute lung injury (ALI) caused by lipopolysaccharide (LPS), although the mechanism behind this action is uncertain. This research aimed to identify the fundamental mechanism by which UTI alleviates pulmonary edema. Materials and Methods We established a model of acute lung injury (ALI) in rats by using LPS as the inciting agent.The control, LPS, and LPS+UTI groups were each comprised of a specific number of randomly selected Wistar rats. We evaluated lung injury and determined pulmonary edema. The concentrations of TNF-α, IL-1β and IL-6 in BALF and the expression levels of α1Na, k-ATPase, β1Na, K-AtPase, α-ENaC, β-ENaC, γ-ENaC, Zonula occludens (ZO)-1, Occludin, Caludin-5, PI3K, Akt, TLR4, MyD88 and NF-ƘBwere identified in lung tissues. Results The presence of UTI was associated with a reduction in lung pathological alterations, lung injury scores, the lung W/D ratio, and MPO activity, in addition to the improved gas exchange (P<0.01). Furthermore, UTI alleviated EB leakage and stimulated AFC (P<0.01). Importantly, UTI increased the expression of ZO-1, Occludin, Caludin-5, α1Na, K-ATPase, β1Na, K-AtPase, α-ENaC, β-ENaC, and γ-ENaC (P<0.01). Furthermore, UTI inhibited the inflammatory response, enhanced the expression of PI3K and Akt and hindered TLR4, MyD88, and NF-ƘB expression (P<0.01) in lung tissues. Conclusion Our results demonstrated that UTI attenuated pulmonary edema by reducing pulmonary permeability and promoting AFC through inhibiting the inflammatory response, and the mechanism is related to promoting PI3K/Akt signaling pathways and suppressing TLR4/MyD88/NF-ƘB signaling pathways.
Collapse
Affiliation(s)
- Yuan-xu Jiang
- Department of Anesthesiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province, 518020, P.R. China,Corresponding author: Yuan-xu Jiang. Shenzhen People’s Hospital , no.1017 Dongmen North Road. Shenzhen,Guangdong Province ,518020, P.R China.Tel: 13613051840;
| | - Ze-wei Huang
- Department of Critical Care Medicine, Shenzhen People’s Hospital, Shenzhen, Guangdong Province, 518020, P.R. China
| |
Collapse
|
10
|
Nemeth Z, Granger JP, Ryan MJ, Drummond HA. Is there a role of proinflammatory cytokines on degenerin-mediated cerebrovascular function in preeclampsia? Physiol Rep 2022; 10:e15376. [PMID: 35831968 PMCID: PMC9279847 DOI: 10.14814/phy2.15376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/25/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023] Open
Abstract
Preeclampsia (PE) is associated with adverse cerebrovascular effects during and following parturition including stroke, small vessel disease, and vascular dementia. A potential contributing factor to the cerebrovascular dysfunction is the loss of cerebral blood flow (CBF) autoregulation. Autoregulation is the maintenance of CBF to meet local demands with changes in perfusion pressure. When perfusion pressure rises, vasoconstriction of cerebral arteries and arterioles maintains flow and prevents the transfer of higher systemic pressure to downstream microvasculature. In the face of concurrent hypertension, loss of autoregulatory control exposes small delicate microvessels to injury from elevated systemic blood pressure. While placental ischemia is considered the initiating event in the preeclamptic cascade, the factor(s) mediating cerebrovascular dysfunction are poorly understood. Elevated plasma proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin-17 (IL-17), are potential mediators of autoregulatory loss. Impaired CBF responses to increases in systemic pressure are attributed to the impaired pressure-induced (myogenic) constriction of small cerebral arteries and arterioles in PE. Myogenic vasoconstriction is initiated by pressure-induced vascular smooth muscle cell (VSMC) stretch. Recent studies from our laboratory group indicate that proinflammatory cytokines impair the myogenic mechanism of CBF autoregulation via inhibition of vascular degenerin proteins, putative mediators of myogenic constriction in VSMCs. This brief review links studies showing the effect of proinflammatory cytokines on degenerin expression and CBF autoregulation to the pathological cerebral consequences of preeclampsia.
Collapse
Affiliation(s)
- Zoltan Nemeth
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
- Institute of Translational MedicineFaculty of Medicine, Semmelweis UniversityBudapestHungary
- Department of Morphology and PhysiologyFaculty of Health Sciences, Semmelweis UniversityBudapestHungary
| | - Joey P. Granger
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Michael J. Ryan
- Department of Pharmacology, Physiology and NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Heather A. Drummond
- Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| |
Collapse
|
11
|
Lysophosphatidylcholine Acyltransferase 1 Deficiency Promotes Pulmonary Emphysema via Apoptosis of Alveolar Epithelial Cells. Inflammation 2022; 45:1765-1779. [PMID: 35338433 DOI: 10.1007/s10753-022-01659-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 11/05/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is primarily caused by inhalation of cigarette smoke and is the third leading cause of death worldwide. Pulmonary surfactant, a complex of phospholipids and proteins, plays an essential role in respiration by reducing the surface tension in the alveoli. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is an enzyme that catalyzes the biosynthesis of surfactant lipids and is expressed in type 2 alveolar epithelial cells. Its dysfunction is suggested to be involved in various lung diseases; however, the relationship between LPCAT1 and COPD remains unclear. To investigate the role of LPCAT1 in the pathology of COPD, we analyzed an elastase-induced emphysema model using Lpcat1 knockout (KO) mice. In Lpcat1 KO mice, elastase-induced emphysema was significantly exacerbated with increased apoptotic cells, which was not ameliorated by supplementation with dipalmitoylphosphatidylcholine, which is a major component of the surfactant synthesized by LPCAT1. We subsequently evaluated the effects of cigarette smoking on primary human type 2 alveolar epithelial cells (hAEC2s) and found that cigarette smoke extract (CSE) downregulated the expression of Lpcat1. Furthermore, RNA sequencing analysis revealed that the apoptosis pathway was significantly enriched in CSE-treated primary hAEC2s. Finally, we downregulated the expression of Lpcat1 using small interfering RNA, which resulted in enhanced CSE-induced apoptosis in A549 cells. Taken together, cigarette smoke-induced downregulation of LPCAT1 can promote the exacerbation of pulmonary emphysema by increasing the susceptibility of alveolar epithelial cells to apoptosis, thereby suggesting that Lpcat1 is a novel therapeutic target for irreversible emphysema.
Collapse
|
12
|
Schmidt H, Gutjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 2022; 322:C591-C604. [PMID: 35196166 PMCID: PMC8977148 DOI: 10.1152/ajpcell.00363.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Cente, Ulm, Germany.,Institute of General Physiology, Ulm University, Ulm, Germany
| | - Lara Gutjahr
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
13
|
Systemic Effects of mitoTEMPO upon Lipopolysaccharide Challenge Are Due to Its Antioxidant Part, While Local Effects in the Lung Are Due to Triphenylphosphonium. Antioxidants (Basel) 2022; 11:antiox11020323. [PMID: 35204206 PMCID: PMC8868379 DOI: 10.3390/antiox11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 01/08/2023] Open
Abstract
Mitochondria-targeted antioxidants (mtAOX) are a promising treatment strategy against reactive oxygen species-induced damage. Reports about harmful effects of mtAOX lead to the question of whether these could be caused by the carrier molecule triphenylphosphonium (TPP). The aim of this study was to investigate the biological effects of the mtAOX mitoTEMPO, and TPP in a rat model of systemic inflammatory response. The inflammatory response was induced by lipopolysaccharide (LPS) injection. We show that mitoTEMPO reduced expression of inducible nitric oxide synthase in the liver, lowered blood levels of tissue damage markers such as liver damage markers (aspartate aminotransferase and alanine aminotransferase), kidney damage markers (urea and creatinine), and the general organ damage marker, lactate dehydrogenase. In contrast, TPP slightly, but not significantly, increased the LPS-induced effects. Surprisingly, both mitoTEMPO and TPP reduced the wet/dry ratio in the lung after 24 h. In the isolated lung, both substances enhanced the increase in pulmonary arterial pressure induced by LPS observed within 3 h after LPS treatments but did not affect edema formation at this time. Our data suggest that beneficial effects of mitoTEMPO in organs are due to its antioxidant moiety (TEMPO), except for the lung where its effects are mediated by TPP.
Collapse
|
14
|
Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, Marconi R, Paladino D, Raoss A, Riedmiller I, Ur Rehman H, Santini A, Succetti V, Volpini L. SARS-CoV-2 and the Host Cell: A Tale of Interactions. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2021.815388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ability of a virus to spread between individuals, its replication capacity and the clinical course of the infection are macroscopic consequences of a multifaceted molecular interaction of viral components with the host cell. The heavy impact of COVID-19 on the world population, economics and sanitary systems calls for therapeutic and prophylactic solutions that require a deep characterization of the interactions occurring between virus and host cells. Unveiling how SARS-CoV-2 engages with host factors throughout its life cycle is therefore fundamental to understand the pathogenic mechanisms underlying the viral infection and to design antiviral therapies and prophylactic strategies. Two years into the SARS-CoV-2 pandemic, this review provides an overview of the interplay between SARS-CoV-2 and the host cell, with focus on the machinery and compartments pivotal for virus replication and the antiviral cellular response. Starting with the interaction with the cell surface, following the virus replicative cycle through the characterization of the entry pathways, the survival and replication in the cytoplasm, to the mechanisms of egress from the infected cell, this review unravels the complex network of interactions between SARS-CoV-2 and the host cell, highlighting the knowledge that has the potential to set the basis for the development of innovative antiviral strategies.
Collapse
|
15
|
Hou Y, Li J, Ding Y, Cui Y, Nie H. Luteolin attenuates lipopolysaccharide-induced acute lung injury/acute respiratory distress syndrome by activating alveolar epithelial sodium channels via cGMP/PI3K pathway. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114654. [PMID: 34537283 DOI: 10.1016/j.jep.2021.114654] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/15/2021] [Indexed: 05/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Luteolin (Lut) was recently identified as the major active ingredient of Mosla scabra, which was a typical representative traditional Chinese medicine and had been used to treat pulmonary diseases for thousands of years. AIM OF THE STUDY This study was to explore the effects and relative mechanisms of Lut in LPS-induced acute lung injury/acute respiratory distress syndrome (ALI/ARDS). The main characteristic of ALI/ARDS is pulmonary edema, and epithelial sodium channel (ENaC) is a key factor in effective removal of excessive alveolar edematous fluid, which is essential for repairing gas exchange and minimizing damage to the peripheral tissues. However, whether the therapeutic effects of Lut on respiratory diseases are relative with ENaC is still unknown. MATERIALS AND METHODS Alveolar fluid clearance was calculated in BALB/c mice and ENaC function was measured in H441 cells. Moreover, ENaC membrane protein and mRNA were detected by Western blot and real-time PCR, respectively. We also studied the involvement of cGMP/PI3K pathway during the regulation of Lut on ENaC during LPS-induced ALI/ARDS by ELISA method and applying cGMP/PI3K inhibitors/siRNA. RESULTS The beneficial effects of Lut in ALI/ARDS were evidenced by the alleviation of pulmonary edema, and enhancement of both amiloride-sensitive alveolar fluid clearance and short-circuit currents. Lut could alleviate the LPS decreased expression levels of ENaC mRNA and membrane protein in H441 cells and mouse lung. In addition, cGMP concentration was increased after the administration of Lut in ALI/ARDS mice, while the inhibition of cGMP/PI3K pathway could abrogate the enhanced AFC and ENaC protein expression of Lut. CONCLUSION These results implied that Lut could attenuate pulmonary edema via enhancing the abundance of membrane ENaC at least partially through the cGMP/PI3K pathway, which could provide a promising therapeutic strategy for treating ALI/ARDS.
Collapse
Affiliation(s)
- Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Jun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Yong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
16
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
17
|
Kumar A, Narayan RK, Prasoon P, Kumari C, Kaur G, Kumar S, Kulandhasamy M, Sesham K, Pareek V, Faiq MA, Pandey SN, Singh HN, Kant K, Shekhawat PS, Raza K, Kumar S. Mecanismos del COVID-19 en el cuerpo humano: Lo que sabemos hasta ahora. KOMPASS NEUMOLOGÍA 2022. [PMCID: PMC9059041 DOI: 10.1159/000521507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashutosh Kumar
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Anatomía, (AIIMS), Patna, India
| | - Ravi K. Narayan
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Anatomía, Instituto de Ciencias Médicas de las Islas Andamán y Nicobar, Port Blair, India
| | - Pranav Prasoon
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Centro de Investigación del Dolor de Pittsburgh, Facultad de Medicina, Universidad de Pittsburgh, Pittsburgh, Pennsylvania, Estados Unidos
| | - Chiman Kumari
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Anatomía, Instituto de Posgrado de Educación e Investigación Médica (PGIMER), Chandigarh, India
| | - Gurjot Kaur
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Escuela de Ciencias Farmacéuticas, Universidad Shoolini, Solan, India
| | - Santosh Kumar
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Anestesiología y Medicina Crítica, Escuela de Medicina, Universidad Johns Hopkins, Baltimore, Maryland, Estados Unidos
| | - Maheswari Kulandhasamy
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Bioquímica, Colegio Médico Maulana Azad (MAMC), Nueva Delhi, India
| | - Kishore Sesham
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Anatomía, Instituto de Ciencias Médicas de la India (AIIMS), Mangalagiri, Vijayawada, India
| | - Vikas Pareek
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Centro de Ciencias Cognitivas y del Cerebro, Instituto Indio de Tecnología Gandhinagar, Gandhinagar, Gujarat, India
| | - Muneeb A. Faiq
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Universidad de Nueva York (NYU) Langone Health Center, Escuela de Medicina Robert I. Grossman de la NYU, Nueva York, New York, Estados Unidos
| | - Sada N. Pandey
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Zoología, Universidad Hindú de Banaras (BHU), Varanasi, India
| | - Himanshu N. Singh
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Biología de Sistemas, Centro Médico Irving de la Universidad de Columbia, Nueva York, New York, Estados Unidos
| | - Kamla Kant
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Microbiología, Instituto de Ciencias Médicas de la India (AIIMS), Bathinda, India
| | - Prakash S. Shekhawat
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Hematología Clínica, Instituto Nacional de Ciencias Médicas, Jaipur, India
| | - Khursheed Raza
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Departamento de Anatomía, Instituto de Ciencias Médicas de la India (AIIMS), Deoghar, India
| | - Sujeet Kumar
- Red de Investigación de Trastornos Etiológicamente Elusivos (EEDRN), Nueva Delhi, India
- Centro de Proteómica y Desarrollo de Fármacos, Instituto de Biotecnología Amity, Universidad Amity, Maharashtra, India
| |
Collapse
|
18
|
Yin S, Ding M, Fan L, Yu X, Liang Z, Wu L, Gao Z, Lin L, Chen Y. Inhibition of Inflammation and Regulation of AQPs/ENaCs/Na +-K +-ATPase Mediated Alveolar Fluid Transport by Total Flavonoids Extracted From Nervilia fordii in Lipopolysaccharide-induced Acute Lung Injury. Front Pharmacol 2021; 12:603863. [PMID: 34887746 PMCID: PMC8650715 DOI: 10.3389/fphar.2021.603863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aims: The occurrence of vascular permeability pulmonary edema in acute lung injury (ALI) is related to the imbalance of alveolar fluid transport. Regulating the active transport of alveolar fluid by aquaporins (AQPs), epithelial sodium channels (ENaCs), and Na+-K+-ATPase can effectively reduce the edema fluid in the alveolar cavity and protect against ALI. We evaluated the therapeutic effects of total flavonoids, extracted from Nervilia fordii (TFENF), and investigated its potential mechanisms of alveolar fluid transport in a rat ALI model. Materials and methods: A model of lipopolysaccharide (LPS, 5 mg/kg)-induced ALI was established in Sprague-Dawley (SD) rats through the arteriae dorsalis penis. SD rats were divided into six groups, including the vehicle, LPS model, TFENF (6 mg/kg, 12 mg/kg, 24 mg/kg), and dexamethasone group (DEX group, 5 mg/kg). The wet-to-dry (W/D) lung weight ratio, oxygenation index, and histopathological observation were used to evaluate the therapeutic effect of TFENF. The mRNA expression of AQPs, ENaCs, and pro-inflammatory cytokines was determined using real-time polymerase chain reaction, whereas protein expression was determined using immunohistochemistry. The Na + -K + -ATPase activity was assessed using enzyme-linked immunosorbent assay. Results: LPS significantly stimulated the production of inflammatory mediators including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and disrupted the water transport balance in the alveolar cavity by inhibiting AQPs/ENaCs/Na + -K + -ATPase. Pretreatment with TFENF reduced the pathological damage and W/D ratio of the lungs and ameliorated the arterial blood oxygen partial pressure (PaO2) and oxygenation index. TFENF further decreased the mRNA level of TNF-α and IL-1β; increased the expression of AQP-1, AQP-5, αENaC, and βENaC; and increased Na + -K + -ATPase activity. Moreover, the regulation of AQPs, βENaC, and Na + -K + -ATPase and the inhibition of TNF-α and IL-1β by TFENF were found to be dose dependent. Conclusion: TFENF protects against LPS-induced ALI, at least in part, through the suppression of inflammatory cytokines and regulation of the active transport capacity of AQPs/ENaCs/Na + -K + -ATPase. These findings suggest the therapeutic potential of TFENF as phytomedicine to treat inflammation and pulmonary edema in ALI.
Collapse
Affiliation(s)
- Shuomiao Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meizhu Ding
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Long Fan
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Xuhua Yu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ziyao Liang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Lei Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Zhiling Gao
- Department of Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lin Lin
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Yuanbin Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine and Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| |
Collapse
|
19
|
Xie X, Yu T, Hou Y, Han A, Ding Y, Nie H, Cui Y. Ferulic acid ameliorates lipopolysaccharide-induced tracheal injury via cGMP/PKGII signaling pathway. Respir Res 2021; 22:308. [PMID: 34863181 PMCID: PMC8642995 DOI: 10.1186/s12931-021-01897-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tracheal injury is a common clinical condition that still lacks an effective therapy at present. Stimulation of epithelial sodium channel (ENaC) increases Na+ transport, which is a driving force to keep tracheal mucosa free edema fluid during tracheal injury. Ferulic acid (FA) has been proved to be effective in many respiratory diseases through exerting anti-oxidant, anti-inflammatory, and anti-thrombotic effects. However, these studies rarely involve the level of ion transport, especially ENaC. METHODS C57BL/J male mice were treated intraperitoneally with normal saline or FA (100 mg/kg) 12 h before, and 12 h after intratracheal administration of lipopolysaccharide (LPS, 5 mg/kg), respectively. The effects of FA on tracheal injury were not only assessed through HE staining, immunofluorescence assay, and protein/mRNA expressions of ENaC located on tracheas, but also evaluated by the function of ENaC in mouse tracheal epithelial cells (MTECs). Besides, to explore the detailed mechanism about FA involved in LPS-induced tracheal injury, the content of cyclic guanosine monophosphate (cGMP) was measured, and Rp-cGMP (cGMP inhibitor) or cGMP-dependent protein kinase II (PKGII)-siRNA (siPKGII) were applied in primary MTECs, respectively. RESULTS Histological examination results demonstrated that tracheal injury was obviously attenuated by pretreatment of FA. Meanwhile, FA could reverse LPS-induced reduction of both protein/mRNA expressions and ENaC activity. ELISA assay verified cGMP content was increased by FA, and administration of Rp-cGMP or transfection of siPKGII could reverse the FA up-regulated ENaC protein expression in MTECs. CONCLUSIONS Ferulic acid can attenuate LPS-induced tracheal injury through up-regulation of ENaC at least partially via the cGMP/PKGII pathway, which may provide a promising new direction for preventive and therapeutic strategy in tracheal injury.
Collapse
Affiliation(s)
- Xiaoyong Xie
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, China.,Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Tong Yu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Aixin Han
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, 110122, China.
| | - Yong Cui
- Department of Anesthesiology, the First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
20
|
Pro-Resolving Mediator Resolvin E1 Restores Alveolar Fluid Clearance In Acute Respiratory Distress Syndrome. Shock 2021; 57:565-575. [DOI: 10.1097/shk.0000000000001865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Kumar A, Narayan RK, Prasoon P, Kumari C, Kaur G, Kumar S, Kulandhasamy M, Sesham K, Pareek V, Faiq MA, Pandey SN, Singh HN, Kant K, Shekhawat PS, Raza K, Kumar S. COVID-19 Mechanisms in the Human Body-What We Know So Far. Front Immunol 2021; 12:693938. [PMID: 34790191 PMCID: PMC8592035 DOI: 10.3389/fimmu.2021.693938] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
More than one and a half years have elapsed since the commencement of the coronavirus disease 2019 (COVID-19) pandemic, and the world is struggling to contain it. Being caused by a previously unknown virus, in the initial period, there had been an extreme paucity of knowledge about the disease mechanisms, which hampered preventive and therapeutic measures against COVID-19. In an endeavor to understand the pathogenic mechanisms, extensive experimental studies have been conducted across the globe involving cell culture-based experiments, human tissue organoids, and animal models, targeted to various aspects of the disease, viz., viral properties, tissue tropism and organ-specific pathogenesis, involvement of physiological systems, and the human immune response against the infection. The vastly accumulated scientific knowledge on all aspects of COVID-19 has currently changed the scenario from great despair to hope. Even though spectacular progress has been made in all of these aspects, multiple knowledge gaps are remaining that need to be addressed in future studies. Moreover, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have emerged across the globe since the onset of the first COVID-19 wave, with seemingly greater transmissibility/virulence and immune escape capabilities than the wild-type strain. In this review, we narrate the progress made since the commencement of the pandemic regarding the knowledge on COVID-19 mechanisms in the human body, including virus-host interactions, pulmonary and other systemic manifestations, immunological dysregulations, complications, host-specific vulnerability, and long-term health consequences in the survivors. Additionally, we provide a brief review of the current evidence explaining molecular mechanisms imparting greater transmissibility and virulence and immune escape capabilities to the emerging SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Ravi K. Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Andaman and Nicobar Islands Institute of Medical Sciences, Port Blair, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Gurjot Kaur
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Santosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Kishore Sesham
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Mangalagiri, Vijayawada, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, India
| | - Muneeb A. Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- New York University (NYU) Langone Health Center, NYU Robert I. Grossman School of Medicine, New York, NY, United States
| | - Sada N. Pandey
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Himanshu N. Singh
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| | - Prakash S. Shekhawat
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Clinical Hematology, National Institute of Medical Sciences, Jaipur, India
| | - Khursheed Raza
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Deoghar, India
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India
- Center for Proteomics and Drug Discovery, Amity Institute of Biotechnology, Amity University, Maharashtra, India
| |
Collapse
|
22
|
Sharma A, Chakraborty A, Jaganathan BG. Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World J Stem Cells 2021; 13:568-593. [PMID: 34249228 PMCID: PMC8246252 DOI: 10.4252/wjsc.v13.i6.568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anuja Chakraborty
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
23
|
Cytokines and Water Distribution in Anorexia Nervosa. Mediators Inflamm 2021; 2021:8811051. [PMID: 33867858 PMCID: PMC8035023 DOI: 10.1155/2021/8811051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/03/2021] [Accepted: 03/27/2021] [Indexed: 01/02/2023] Open
Abstract
In patients with anorexia nervosa (AN), decreased intracellular (ICW), extracellular (ECW), and total body water (TBW) as well as changes in serum cytokine concentrations have been reported. In this exploratory study, we measured body composition and serum cytokine levels in patients with AN (n = 27) and healthy controls (HCs; n = 13). Eating disorder symptom severity was assessed using the Eating Disorder Examination-Questionnaire (EDE-Q). Body composition was determined by bioimpedance analysis (BIA) which provided information on ICW, ECW, and TBW. Following blood collection, 27 cytokines and chemokines were quantified using multiplex ELISA-based technology: Eotaxin, Eotaxin-3, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon- (IFN-) γ, interleukin- (IL-) 1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-12p70, IL-13, IL-15, IL-16, IL-17A, interferon γ-induced protein- (IP-) 10, macrophage inflammatory protein- (MIP-) 1α, MIP-1β, monocyte chemoattractant protein- (MCP-) 1, MCP-4, thymus and activation-regulated chemokine (TARC), TNF-α, and TNF-β. ICW, ECW, and TBW volumes were significantly lower in patients with AN than in HCs. In the whole sample, GM-CSF, MCP-4, and IL-4 were positively, whereas IFN-γ, IL-6, and IL-10 were negatively associated with all three parameters of body water. In AN participants, we found a statistically significant negative correlation of IL-10 with ICW, ECW, and TBW. Our results suggest an interaction between body water and the cytokine system. Underlying mechanisms are unclear but may involve a loss of water from the gut, kidneys, or skin due to AN-associated inflammatory processes.
Collapse
|
24
|
Jiang Y, Xia M, Xu J, Huang Q, Dai Z, Zhang X. Dexmedetomidine alleviates pulmonary edema through the epithelial sodium channel (ENaC) via the PI3K/Akt/Nedd4-2 pathway in LPS-induced acute lung injury. Immunol Res 2021; 69:162-175. [PMID: 33641076 PMCID: PMC8106593 DOI: 10.1007/s12026-021-09176-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/10/2021] [Indexed: 01/11/2023]
Abstract
Dexmedetomidine (Dex), a highly selective α2-adrenergic receptor (α2AR) agonist, has an anti-inflammatory property and can alleviate pulmonary edema in lipopolysaccharide (LPS)-induced acute lung injury (ALI), but the mechanism is still unclear. In this study, we attempted to investigate the effect of Dex on alveolar epithelial sodium channel (ENaC) in the modulation of alveolar fluid clearance (AFC) and the underlying mechanism. Lipopolysaccharide (LPS) was used to induce acute lung injury (ALI) in rats and alveolar epithelial cell injury in A549 cells. In vivo, Dex markedly reduced pulmonary edema induced by LPS through promoting AFC, prevented LPS-induced downregulation of α-, β-, and γ-ENaC expression, attenuated inflammatory cell infiltration in lung tissue, reduced the concentrations of TNF-α, IL-1β, and IL-6, and increased concentrations of IL-10 in bronchoalveolar lavage fluid (BALF). In A549 cells stimulated with LPS, Dex attenuated LPS-mediated cell injury and the downregulation of α-, β-, and γ-ENaC expression. However, all of these effects were blocked by the PI3K inhibitor LY294002, suggesting that the protective role of Dex is PI3K-dependent. Additionally, Dex increased the expression of phosphorylated Akt and reduced the expression of Nedd4-2, while LY294002 reversed the effect of Dex in vivo and in vitro. Furthermore, insulin-like growth factor (IGF)-1, a PI3K agonists, promoted the expression of phosphorylated Akt and reduced the expression of Nedd4-2 in LPS-stimulated A549 cells, indicating that Dex worked through PI3K, and Akt and Nedd4-2 are downstream of PI3K. In conclusion, Dex alleviates pulmonary edema by suppressing inflammatory response in LPS-induced ALI, and the mechanism is partly related to the upregulation of ENaC expression via the PI3K/Akt/Nedd4-2 signaling pathway.
Collapse
Affiliation(s)
- Yuanxu Jiang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China
| | - Mingzhu Xia
- Hubei Community Health Service Center, Luohu Hospital Group, Luohu People's Hospital, Shenzhen, 518020, China
| | - Jing Xu
- Department of Pathology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Qiang Huang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China
| | - Zhongliang Dai
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China.
| | - Xueping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The Fist Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China.
- Shenzhen Anesthesiology Engineering Center, Shenzhen, 518020, China.
| |
Collapse
|
25
|
Fei X, Ziqian Y, Bingwu Y, Min L, Xinmiao X, Zhen M, Lirong G, Song W. Aldosterone alleviates lipopolysaccharide-induced acute lung injury by regulating epithelial sodium channel through PI3K/Akt/SGK1 signaling pathway. Mol Cell Probes 2021; 57:101709. [PMID: 33713776 DOI: 10.1016/j.mcp.2021.101709] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
Reduced alveolar fluid clearance (AFC) is a major pathological feature of acute lung injury (ALI). Epithelial sodium channel (ENaC) plays a key role in regulating the transport of Na+ and clearing alveolar edema fluid effectively. ENaC has been reported to be regulated by aldosterone in the distal collecting tube of the kidney. We hypothesized whether aldosterone regulated ENaC in alveolar epithelium and correspondingly played a role in ALI. In this study we found that the expression of aldosterone synthesis encoding gene, CYP11B2, and ENaC were decreased in the lung tissue of LPS-induced ALI mice. Furthermore, aldosterone alleviated ALI by increasing the expression of ENaC-α and relieving pulmonary edema. Besides, we found that aldosterone upregulated ENaC-α through PI3K/Akt/SGK1 pathway. In conclusion, our study demonstrated that aldosterone attenuated pulmonary edema by upregulating ENaC-α through the PI3K/Akt/SGK1 pathway in LPS-induced ALI, indicating that aldosterone might be a promising adjuvant drug for ALI treatment.
Collapse
Affiliation(s)
- Xiu Fei
- Department of Blood Transfusion, Liaocheng People's Hospital, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Yu Ziqian
- Department of Clinical Laboratory, Liaocheng Veterans Hospital, #2 Gaodong Street, Liaocheng, 252000, China
| | - Yang Bingwu
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Li Min
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Xian Xinmiao
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Meng Zhen
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China
| | - Guo Lirong
- Nursing School of Jilin University, Changchun, Jilin, 130021, China.
| | - Wang Song
- Procesion Biomedical Lab, Liaocheng People's Hospital, Medical College of Liaocheng University, #67 Dongchangxi Road, Liaocheng, 252000, China.
| |
Collapse
|
26
|
Abdel Hameid R, Cormet-Boyaka E, Kuebler WM, Uddin M, Berdiev BK. SARS-CoV-2 may hijack GPCR signaling pathways to dysregulate lung ion and fluid transport. Am J Physiol Lung Cell Mol Physiol 2021; 320:L430-L435. [PMID: 33434105 PMCID: PMC7938641 DOI: 10.1152/ajplung.00499.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The tropism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic, toward the host cells is determined, at least in part, by the expression and distribution of its cell surface receptor, angiotensin-converting enzyme 2 (ACE2). The virus further exploits the host cellular machinery to gain access into the cells; its spike protein is cleaved by a host cell surface transmembrane serine protease 2 (TMPRSS2) shortly after binding ACE2, followed by its proteolytic activation at a furin cleavage site. The virus primarily targets the epithelium of the respiratory tract, which is covered by a tightly regulated airway surface liquid (ASL) layer that serves as a primary defense mechanism against respiratory pathogens. The volume and viscosity of this fluid layer is regulated and maintained by a coordinated function of different transport pathways in the respiratory epithelium. We argue that SARS-CoV-2 may potentially alter evolutionary conserved second-messenger signaling cascades via activation of G protein-coupled receptors (GPCRs) or by directly modulating G protein signaling. Such signaling may in turn adversely modulate transepithelial transport processes, especially those involving cystic fibrosis transmembrane conductance regulator (CFTR) and epithelial Na+ channel (ENaC), thereby shifting the delicate balance between anion secretion and sodium absorption, which controls homeostasis of this fluid layer. As a result, activation of the secretory pathways including CFTR-mediated Cl− transport may overwhelm the absorptive pathways, such as ENaC-dependent Na+ uptake, and initiate a pathophysiological cascade leading to lung edema, one of the most serious and potentially deadly clinical manifestations of COVID-19.
Collapse
Affiliation(s)
- Reem Abdel Hameid
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammed Uddin
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bakhrom K Berdiev
- Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
27
|
Muhanna D, Arnipalli SR, Kumar SB, Ziouzenkova O. Osmotic Adaptation by Na +-Dependent Transporters and ACE2: Correlation with Hemostatic Crisis in COVID-19. Biomedicines 2020; 8:E460. [PMID: 33142989 PMCID: PMC7693583 DOI: 10.3390/biomedicines8110460] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 symptoms, including hypokalemia, hypoalbuminemia, ageusia, neurological dysfunctions, D-dimer production, and multi-organ microthrombosis reach beyond effects attributed to impaired angiotensin-converting enzyme 2 (ACE2) signaling and elevated concentrations of angiotensin II (Ang II). Although both SARS-CoV (Severe Acute Respiratory Syndrome Coronavirus) and SARS-CoV-2 utilize ACE2 for host entry, distinct COVID-19 pathogenesis coincides with the acquisition of a new sequence, which is homologous to the furin cleavage site of the human epithelial Na+ channel (ENaC). This review provides a comprehensive summary of the role of ACE2 in the assembly of Na+-dependent transporters of glucose, imino and neutral amino acids, as well as the functions of ENaC. Data support an osmotic adaptation mechanism in which osmotic and hemostatic instability induced by Ang II-activated ENaC is counterbalanced by an influx of organic osmolytes and Na+ through the ACE2 complex. We propose a paradigm for the two-site attack of SARS-CoV-2 leading to ENaC hyperactivation and inactivation of the ACE2 complex, which collapses cell osmolality and leads to rupture and/or necrotic death of swollen pulmonary, endothelial, and cardiac cells, thrombosis in infected and non-infected tissues, and aberrant sensory and neurological perception in COVID-19 patients. This dual mechanism employed by SARS-CoV-2 calls for combinatorial treatment strategies to address and prevent severe complications of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (D.M.); (S.R.A.); (S.B.K.)
| |
Collapse
|
28
|
Kumar A, Prasoon P, Sekhawat PS, Pareek V, Faiq MA, Kumari C, Narayan RK, Kulandhasamy M, Kant K. Pathogenesis guided therapeutic management of COVID-19: an immunological perspective. Int Rev Immunol 2020; 40:54-71. [PMID: 33111578 DOI: 10.1080/08830185.2020.1840566] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lack of standardized therapeutic approaches is arguably the significant contributor to the high burden of mortality observed in the ongoing pandemic of the Coronavirus disease, 2019 (COVID-19). Evidence is accumulating on SARS-CoV-2 specific immune cell dysregulation and consequent tissue injury in COVID-19. Currently, no definite drugs or vaccines are available against the disease; however initial results of the ongoing clinical trials have raised some hope. In this article, taking insights from the emerging empirical evidence about host-virus interactions, we deliberate upon plausible pathogenic mechanisms and suitable therapeutic approaches for COVID-19.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Pittsburgh Center for Pain Research, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Prakash S Sekhawat
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Hematology, Nil RatanSircar Medical College and Hospital (NRSMCH), Kolkata, India
| | - Vikas Pareek
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,National Brain Research Center, Manesar, Haryana, India
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,NYU Robert I Grossman School of Medicine, New York University (NYU) Langone Health Center, New York, New York, USA
| | - Chiman Kumari
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Anatomy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Anatomy, All India Institute of Medical Sciences (AIIMS), Patna, India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Biochemistry, Maulana Azad Medical College (MAMC), New Delhi, India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network (EEDRN), New Delhi, India.,Department of Microbiology, All India Institute of Medical Sciences (AIIMS), Bathinda, India
| |
Collapse
|
29
|
Gentzsch M, Rossier BC. A Pathophysiological Model for COVID-19: Critical Importance of Transepithelial Sodium Transport upon Airway Infection. FUNCTION 2020; 1:zqaa024. [PMID: 33201937 PMCID: PMC7662147 DOI: 10.1093/function/zqaa024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic remains a serious public health problem and will continue to be until effective drugs and/or vaccines are available. The rational development of drugs critically depends on our understanding of disease mechanisms, that is, the physiology and pathophysiology underlying the function of the organ targeted by the virus. Since the beginning of the pandemic, tireless efforts around the globe have led to numerous publications on the virus, its receptor, its entry into the cell, its cytopathic effects, and how it triggers innate and native immunity but the role of apical sodium transport mediated by the epithelial sodium channel (ENaC) during the early phases of the infection in the airways has received little attention. We propose a pathophysiological model that defines the possible role of ENaC in this process.
Collapse
Affiliation(s)
- Martina Gentzsch
- Department of Cell Biology and Physiology, Marsico Lung Institute, University of North Carolina, Chapel Hill, USA
- Department of Pediatric Pulmonology, Marsico Lung Institute, University of North Carolina, Chapel Hill, USA
| | - Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Nordihydroguaiaretic acid reduces secondary organ injury in septic rats after cecal ligation and puncture. PLoS One 2020; 15:e0237613. [PMID: 32790786 PMCID: PMC7425931 DOI: 10.1371/journal.pone.0237613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/29/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Nordihydroguaiaretic acid (NDGA) is a plant extract that has been shown to act as a free radical scavenger and pluripotent inhibitor of pro-inflammatory cytokines, two major cellular processes involved in the pathophysiology of sepsis. We investigated whether NDGA would improve markers of organ injury as well as survival in a rodent model of sepsis. METHODS Abdominal sepsis was induced by cecal ligation and double puncture (CLP) in male Sprague-Dawley rats. NDGA was administered either at the time of injury (pre-) or 6 hours later (post-treatment). A sham surgery group and a vehicle only group were also followed as controls. Blood and lung tissue were collected 24 h after CLP. Lung tissue was used for histopathologic analysis and to measure pulmonary edema. Arterial oxygenation was measured directly to generate PaO2/FiO2, and markers of renal injury (blood urea nitrogen), liver injury (alanine aminotransferase), and tissue hypoxia (lactate) were measured. In a separate set of animals consisting of the same treatment groups, animals were followed for up to 36 hours for survival. RESULTS NDGA pre-treatment resulted in improved oxygenation, less lung edema, lower lactate, lower BUN, and reduced histologic lung injury. NDGA post-treatment resulted in less lung edema, lower lactate, lower BUN, and less histologic lung injury, but did not significantly change oxygenation. None of the NDGA treatment groups statistically affected ALT or creatinine. NDGA pre-treatment showed improved survival compared with control CLP animals at 36 hours, while post-treatment did not. CONCLUSIONS NDGA represents a novel pleiotropic anti-inflammatory agent with potential clinical utility for modulation of organ injury secondary to sepsis.
Collapse
|
31
|
Interleukin-17 Reduces βENaC via MAPK Signaling in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21082953. [PMID: 32331392 PMCID: PMC7215799 DOI: 10.3390/ijms21082953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022] Open
Abstract
Degenerin proteins, such as the beta epithelial Na+ channel (βENaC), are essential in the intracellular signaling of pressure-induced constriction, an important vascular smooth muscle cell (VSMC) function. While certain cytokines reduce ENaC protein in epithelial tissue, it is unknown if interleukin-17 (IL-17), a potent pro-inflammatory cytokine, directly mediates changes in membrane-associated βENaC in VSMCs. Therefore, we tested the hypothesis that exposure to IL-17 reduces βENaC in VSMCs through canonical mitogen-activated protein kinase (MAPK) signaling pathways. We treated cultured rat VSMCs (A10 cell line) with IL-17 (1–100 ng/mL) for 15 min to 16 h and measured expression of βENaC, p38MAPK, c-jun kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). IL-17 reduced βENaC protein expression in a concentration-dependent fashion and increased phosphorylation of p38MAPK by 15 min and JNK by 8 h. NFκB was unaffected by IL-17 in VSMCs. IL-17 treatment reduced VSMC viability but had no effect on cell death. To determine the underlying signaling pathway involved in this response, VSMCs were treated before and during IL-17 exposure with p38MAPK or JNK inhibitors. We found that JNK blockade prevented IL-17-mediated βENaC protein suppression. These data demonstrate that the pro-inflammatory cytokine IL-17 regulates VSMC βENaC via canonical MAPK signaling pathways, raising the possibility that βENaC-mediated loss of VSMC function may occur in inflammatory disorders.
Collapse
|
32
|
Duncan JW, Younes ST, Hildebrandt E, Ryan MJ, Granger JP, Drummond HA. Tumor necrosis factor-α impairs cerebral blood flow in pregnant rats: role of vascular β-epithelial Na + channel. Am J Physiol Heart Circ Physiol 2020; 318:H1018-H1027. [PMID: 32167780 DOI: 10.1152/ajpheart.00744.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Preeclampsia is a pregnancy-related disorder characterized by hypertension, vascular dysfunction and an increase in circulating inflammatory factors including the cytokine, tumor necrosis factor-α (TNF-α). Studies have shown that placental ischemia is associated with 1) increased circulating TNF-α, 2) attenuated pressure-induced cerebral vascular tone, and 3) suppression of β-epithelial Na+ channel (βENaC) protein in cerebral vessels. In addition to its role in epithelial Na+ and water transport, βENaC is an essential signaling element in transduction of pressure-induced (aka "myogenic") constriction, a critical mechanism of blood flow autoregulation. While cytokines inhibit expression of certain ENaC proteins in epithelial tissue, it is unknown if the increased circulating TNF-α associated with placental ischemia mediates the loss of cerebrovascular βENaC and cerebral blood flow regulation. Therefore, the purpose of this study was to test the hypothesis that increasing plasma TNF-α in normal pregnant rats reduces cerebrovascular βENaC expression and impairs cerebral blood flow (CBF) regulation. In vivo TNF-α infusion (200 ng/day, 5 days) inhibited cerebrovascular expression of βENaC and impaired CBF regulation in pregnant rats. To determine the direct effects of TNF-α and underlying pathways mediating vascular smooth muscle cell βENaC reduction, we exposed cultured VSMCs (A10 cell line) to TNF-α (1-100 ng/mL) for 16-24 h. TNF-α reduced βENaC protein expression in a concentration-dependent fashion from 0.1 to 100 ng/mL, without affecting cell death. To assess the role of canonical MAPK signaling in this response, VSMCs were treated with p38MAPK or c-Jun kinase (JNK) inhibitors in the presence of TNF-α. We found that both p38MAPK and JNK blockade prevented TNF-α-mediated βENaC protein suppression. These data provide evidence that disorders associated with increased circulating TNF-α could lead to impaired cerebrovascular regulation, possibly due to reduced βENaC-mediated vascular function.NEW & NOTEWORTHY This manuscript identifies TNF-α as a possible placental-derived cytokine that could be involved in declining cerebrovascular health observed in preeclampsia. We found that infusion of TNF-α during pregnancy impaired cerebral blood flow control in rats at high arterial pressures. We further discovered that cerebrovascular β-epithelial sodium channel (βENaC) protein, a degenerin protein involved in mechanotransduction, was reduced by TNF-α in pregnant rats, indicating a potential link between impaired blood flow and this myogenic player. We next examined this effect in vitro using a rat vascular smooth muscle cell line. TNF-α reduced βENaC through canonical MAPK-signaling pathways and was not dependent on cell death. This study demonstrates the pejorative effects of TNF-α on cerebrovascular function during pregnancy and warrants future investigations to study the role of cytokines on vascular function during pregnancy.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Subhi Talal Younes
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
33
|
Kyrilli S, Henry T, Wilschanski M, Fajac I, Davies JC, Jais JP, Sermet-Gaudelus I. Insights into the variability of nasal potential difference, a biomarker of CFTR activity. J Cyst Fibros 2019; 19:620-626. [PMID: 31699569 DOI: 10.1016/j.jcf.2019.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/07/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Nasal potential difference (NPD) is used to evaluate CFTR function in vivo. We aimed to evaluate the intrasubject and intersubject variability of NPD measurements. METHODS We reviewed NPD tracings of 116 patients with CF enrolled in the placebo arm of a multicenter study. Patients carried at least one nonsense mutation and underwent repeated NPD tests every 16 weeks. NPD parameters included basal potential difference (basal PD), inhibition of sodium absorption by amiloride (Δ Amiloride), chloride (Cl-) transport in response to a Cl--free solution (Δ Low Cl-), isoproterenol (Δ Isoproterenol), the sum of Δ Low Cl- and Δ Isoproterenol (Δ Low Cl--Isoproterenol) and ATP (Δ ATP). RESULTS Basal PD and Δ Amiloride displayed the highest variabilities, mainly stemming from intercenter and intrasubject effect. Δ Low Cl-, Δ Isoproterenol and Δ Low Cl--Isoproterenol demonstrated a large intrasubject variability but a smaller intersubject variability. The intrasubject measurement variability for Δ Low Cl--Isoproterenol, was within ± 7.2 mV with 95% probability. It was greater in patients reporting ongoing pulmonary exacerbations. CONCLUSIONS The large intercenter variability of basal PD and Δ Amiloride highlights the operator-dependent aspect of these measurements. A difference greater than 7.2 mV in Δ Low Cl--Isoproterenol in a given patient on CFTR modulator can be attributed, with 95% probability, to a treatment effect rather than to the variability inherent in the measurement.
Collapse
Affiliation(s)
- Spyridoula Kyrilli
- Centre Maladies Rares Mucoviscidose, Hôpital Universitaire Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, Paris, France
| | - Theophraste Henry
- Bio-statistics Department, Hôpital Universitaire Necker-Enfants Malades, Paris, France
| | | | - Isabelle Fajac
- AP-HP, Hopital Cochin, Physiology Department, Paris, France; UPRES EA 2511, Paris, France; Université Paris Sorbonne, Paris, France
| | - Jane C Davies
- CF and Chronic Lung Infection, National Heart and Lung Institute, Imperial College London, UK; Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Jean-Philippe Jais
- Bio-statistics Department, Hôpital Universitaire Necker-Enfants Malades, Paris, France; Université Paris Sorbonne, Paris, France
| | - Isabelle Sermet-Gaudelus
- Centre Maladies Rares Mucoviscidose, Hôpital Universitaire Necker-Enfants Malades, Assistance-Publique Hôpitaux de Paris, Paris, France; Université Paris Sorbonne, Paris, France; Institut Necker-Enfants Malades. INSERM U1151, Paris, France.
| |
Collapse
|
34
|
Ding XF, Li JB, Liang HY, Wang ZY, Jiao TT, Liu Z, Yi L, Bian WS, Wang SP, Zhu X, Sun TW. Predictive model for acute respiratory distress syndrome events in ICU patients in China using machine learning algorithms: a secondary analysis of a cohort study. J Transl Med 2019; 17:326. [PMID: 31570096 PMCID: PMC6771100 DOI: 10.1186/s12967-019-2075-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/18/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND To develop a machine learning model for predicting acute respiratory distress syndrome (ARDS) events through commonly available parameters, including baseline characteristics and clinical and laboratory parameters. METHODS A secondary analysis of a multi-centre prospective observational cohort study from five hospitals in Beijing, China, was conducted from January 1, 2011, to August 31, 2014. A total of 296 patients at risk for developing ARDS admitted to medical intensive care units (ICUs) were included. We applied a random forest approach to identify the best set of predictors out of 42 variables measured on day 1 of admission. RESULTS All patients were randomly divided into training (80%) and testing (20%) sets. Additionally, these patients were followed daily and assessed according to the Berlin definition. The model obtained an average area under the receiver operating characteristic (ROC) curve (AUC) of 0.82 and yielded a predictive accuracy of 83%. For the first time, four new biomarkers were included in the model: decreased minimum haematocrit, glucose, and sodium and increased minimum white blood cell (WBC) count. CONCLUSIONS This newly established machine learning-based model shows good predictive ability in Chinese patients with ARDS. External validation studies are necessary to confirm the generalisability of our approach across populations and treatment practices.
Collapse
Affiliation(s)
- Xian-Fei Ding
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jin-Bo Li
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, 1 Jianshe East Road, Zhengzhou, 450052, China.,Department of Electrical & Computer Engineering, University of Alberta, Edmonton, Canada
| | - Huo-Yan Liang
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Zong-Yu Wang
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Ting-Ting Jiao
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Zhuang Liu
- Intensive Care Unit, Beijing Friendship Hospital Affiliated with Capital Medical University, Beijing, China
| | - Liang Yi
- Intensive Care Unit, Xiyuan Hospital Affiliated with the China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-Shuai Bian
- Intensive Care Unit, Beijing Shijitan Hospital Affiliated with Capital Medical University, Beijing, China
| | - Shu-Peng Wang
- Intensive Care Unit, China-Japan Friendship Hospital, Beijing, China
| | - Xi Zhu
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China.
| | - Tong-Wen Sun
- Department of General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
35
|
Dong Y, Zhang L, Jiang Y, Dai J, Tang L, Liu G. Emodin reactivated autophagy and alleviated inflammatory lung injury in mice with lethal endotoxemia. Exp Anim 2019; 68:559-568. [PMID: 31292306 PMCID: PMC6842802 DOI: 10.1538/expanim.19-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An uncontrolled inflammation induced critical health problems with serious morbidity and
death, which namely acute lung injury (ALI). Recently researchs have found the
anti-inflammatory effects of emodin. Here, we investigated the potential effects of emodin
on a mouse model with a lethal dose of the potential mechanisms and lipopolysaccharide
(LPS)-induced inflammatory lung injury in mice. The pulmonary histological abnormalities,
the Evans blue’s leakage, the myeloperoxidase (MPO) activity, the grades of TNF-α, IL-6,
nitric oxide (NO), lactic acid (LA) in lung tissues were determined 18 h post exposure of
LPS. Based on the expression of LC3-II with BECN1 was determined using Western blotting.
Besides, the LPS-exposed mice for survival rate was monitored. The results indicated that
intervention with emodin was important for mitigating LPS-induced pulmonary histological
change and LPS-induced leakage of Evans blue, which were associated with suppressed
elevation of MPO activity and inhibited up-regulation of TNF-α, IL-6, NO with LA in lung
tissues. Moreover, intervention with emodin enhanced the survival rate of LPS-exposed
mice. Finally, therapy with emodin increased the LC3 and BECN1 in lungs of LPS-exposed
mice. Treatment with 3-MA (the autophagy inhibitor) reversed the beneficial effects of
emodin. In conclusion, emodin might provide pharmacological benefits in LPS-induced
inflammatory lung injury, and the mechanisms might be related to the restoration of
autophagy.
Collapse
Affiliation(s)
- Yan Dong
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, 1 Yixueyuan Road, Chongqing 400016, China
| | - Yu Jiang
- Department of Respiratory, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan District, Chongqing 402160, China
| | - Ling Tang
- Department of Neurology, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| | - Gang Liu
- Department of Emergency, University-Town Hospital of Chongqing Medical University, 55 Middle Road, University City, Shapingba District, Chongqing 401331, China
| |
Collapse
|
36
|
Zhang JZ, Liu ZL, Zhang YX, Lin HJ, Zhang ZJ. Lipoxin A4 Ameliorates Lipopolysaccharide-Induced A549 Cell Injury through Upregulation of N-myc Downstream-Regulated Gene-1. Chin Med J (Engl) 2018; 131:1342-1348. [PMID: 29786049 PMCID: PMC5987507 DOI: 10.4103/0366-6999.232788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Lipoxin A4 (LXA4) can alleviate lipopolysaccharide (LPS)-induced acute lung injury (ALI) and acute respiratory distress syndrome through promoting epithelial sodium channel (ENaC) expression in lung epithelial cells. However, how LXA4 promote ENaC expression is still largely elusive. The present study aimed to explore genes and signaling pathway involved in regulating ENaC expression induced by LXA4. Methods: A549 cells were incubated with LPS and LXA4, or in combination, and analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) of ENaC-α/γ. Candidate genes affected by LXA4 were explored by transcriptome sequencing of A549 cells. The critical candidate gene was validated by qRT-PCR and Western blot analysis of A549 cells treated with LPS and LXA4 at different concentrations and time intervals. LXA4 receptor (ALX) inhibitor BOC-2 was used to test induction of candidate gene by LXA4. Candidate gene siRNA was adopted to analyze its influence on A549 viability and ENaC-α expression. Phosphoinositide 3-kinase (PI3K) inhibitor LY294002 was utilized to probe whether the PI3K signaling pathway was involved in LXA4 induction of candidate gene expression. Results: The A549 cell models of ALI were constructed and subjected to transcriptome sequencing. Among candidate genes, N-myc downstream-regulated gene-1 (NDRG1) was validated by real-time-PCR and Western blot. NDRG1 mRNA was elevated in a dose-dependent manner of LXA4, whereas BOC-2 antagonized NDRG1 expression induced by LXA4. NDRG1 siRNA suppressed viability of LPS-treated A549 cells (treatment vs. control, 0.605 ± 0.063 vs. 0.878 ± 0.083, P = 0.040) and ENaC-α expression (treatment vs. control, 0.458 ± 0.038 vs. 0.711 ± 0.035, P = 0.008). LY294002 inhibited NDRG1 (treatment vs. control, 0.459 ± 0.023 vs. 0.726 ± 0.020, P = 0.001) and ENaC-α (treatment vs. control, 0.236 ± 0.021 vs. 0.814 ± 0.025, P < 0.001) expressions and serum- and glucocorticoid-inducible kinase 1 phosphorylation (treatment vs. control, 0.442 ± 0.024 vs. 1.046 ± 0.082, P = 0.002), indicating the PI3K signaling pathway was involved in regulating NDRG1 expression induced by LXA4. Conclusion: Our research uncovered a critical role of NDRG1 in LXA4 alleviation of LPS-induced A549 cell injury through mediating PI3K signaling to restore ENaC expression.
Collapse
Affiliation(s)
- Jun-Zhi Zhang
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Zhan-Li Liu
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Yao-Xian Zhang
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| | - Hai-Jiu Lin
- Research and Development Department, Shenzhen Acen Regenerative Medicine, Shenzhen, Guangdong 518122, China
| | - Zhong-Jun Zhang
- Department of Anesthesiology, 2nd Clinical Medical College of Jinan University; Department of Anesthesiology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
37
|
Kaur R, Mehan S, Singh S. Understanding multifactorial architecture of Parkinson's disease: pathophysiology to management. Neurol Sci 2018; 40:13-23. [PMID: 30267336 DOI: 10.1007/s10072-018-3585-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/18/2018] [Indexed: 02/03/2023]
Abstract
Parkinson's disease (PD) is the second most common multifactorial neurodegenerative disorder affecting 3% of population during elder age. The loss of substantia nigra, pars compacta (SNpc) neurons and deficiency of striatal dopaminergic neurons produces stables motor deficient. Further, increase alpha-synuclein accumulation, mitochondrial dysfunction, oxidative stress, excitotoxicity, and neuroinflammation plays a crucial role in the pathogenesis of PD. Alpha-synuclein protein encodes for SNCA gene and disturbs the normal physiological neuronal signaling via altering mitochondrial homeostasis. The level of α-synuclein is increased in both normal aging and PD brain to a greater extent and secondly reduced clearance results in accumulation of Lewy bodies (LB). Emerging evidences indicate that mitochondrial dysfunction might be a common cause but pathological insult through protein misfolding, aggregation, and accumulation leads to neuronal apoptosis. The observation supporting that expression of DJ-1, LLRK2, PARKIN, PINK1, and excessive excitotoxicity mediated by dysbalance between GABA and glutamate reduced mitochondrial functioning and increased neurotoxicity. Therefore, the present review summarizes the various pathological mechanisms and also explores the therapeutic strategies which could be useful to ameliorate movement disorder like Parkinsonism.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Neuroscience Division, Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuroscience Division, Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | - Shamsher Singh
- Neuroscience Division, Department of Pharmacology, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
38
|
Candidate Genes as Biomarkers in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome Based on mRNA Expression Profile by Next-Generation RNA-Seq Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4384797. [PMID: 29850515 PMCID: PMC5911337 DOI: 10.1155/2018/4384797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/09/2018] [Accepted: 01/22/2018] [Indexed: 01/04/2023]
Abstract
Up until now, the regulation mechanism at the level of gene during lipopolysaccharide- (LPS-) induced acute respiratory distress syndrome (ARDS) remains unclear. The discovery of differentially expressed genes (DEGs) between LPS-induced ARDS rats and normal rats by next-generation RNA sequencing analysis is of particular interest for the current study. These DEGs may help clinical diagnosis of ARDS and facilitate the selection of the optimal treatment strategy. Randomly, 20 rats were equally divided into 2 groups, the control group and the LPS group. Three rats from each group were selected at random for RNA sequencing analysis. Sequence reads were obtained from Illumina HiSeq4000 and mapped onto the rat reference genome RN6 using Hisat2. We identified 5244 DEGs (Fold_Change > 1.5, and P < 0.05) in the lung tissues from LPS-treated rats compared with normal rats, including 1413 upregulated and 3831 downregulated expressed genes. Lots of chemokine family members were among the most upregulated genes in LPS group. Gene ontology (GO) analysis revealed that almost all of the most enriched and meaningful biological process terms were mainly involved in the functions like immune-inflammation response and the pathways like cytokine-cytokine receptor interaction. We also found that, as for GO molecular function terms, the enriched terms were mainly related to chemokines and cytokines. DEGs with fold change over 100 were verified by quantitative real-time polymerase chain reaction and reanalyzed by gene-gene coexpression network, and the results elucidated central roles of chemokines in LPS-induced ARDS. Our results revealed some new biomarkers for uncovering mechanisms and processes of ARDS.
Collapse
|