1
|
Frost ED, Shi SX, Byroju VV, Pitton Rissardo J, Donlon J, Vigilante N, Murray BP, Walker IM, McGarry A, Ferraro TN, Hanafy KA, Echeverria V, Mitrev L, Kling MA, Krishnaiah B, Lovejoy DB, Rahman S, Stone TW, Koola MM. Galantamine-Memantine Combination in the Treatment of Parkinson's Disease Dementia. Brain Sci 2024; 14:1163. [PMID: 39766362 PMCID: PMC11674513 DOI: 10.3390/brainsci14121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain. Due to its limited efficacy and side effect profile, rivastigmine is often not prescribed, leaving patients with no treatment options. PD has several derangements in neurotransmitter pathways (dopaminergic neurons in the nigrostriatal pathway, kynurenine pathway (KP), acetylcholine, α7 nicotinic receptor, and N-methyl-D-aspartate (NMDA) receptors) and rivastigmine is only partially effective as it only targets one pathway. Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, affects the pathophysiology of PDD in multiple ways. Both galantamine (α7 nicotinic receptor) and memantine (antagonist of the NMDA subtype of the glutamate receptor) are KYNA modulators. When used in combination, they target multiple pathways. While randomized controlled trials (RCTs) with each drug alone for PD have failed, the combination of galantamine and memantine has demonstrated a synergistic effect on cognitive enhancement in animal models. It has therapeutic potential that has not been adequately assessed, warranting future randomized controlled trials. In this review, we summarize the KYNA-centric model for PD pathophysiology and discuss how this treatment combination is promising in improving cognitive function in patients with PDD through its action on KYNA.
Collapse
Affiliation(s)
- Emma D. Frost
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | - Swanny X. Shi
- Department of Neurology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Vishnu V. Byroju
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | | | - Jack Donlon
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | | | | | - Ian M. Walker
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Andrew McGarry
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Thomas N. Ferraro
- Department of Biomedical Sciences, Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Khalid A. Hanafy
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Valentina Echeverria
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL 33744, USA
- Medicine Department, Universidad San Sebastián, Concepción 4081339, Bío Bío, Chile
| | - Ludmil Mitrev
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Mitchel A. Kling
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Balaji Krishnaiah
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David B. Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Maju Mathew Koola
- Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA
| |
Collapse
|
2
|
Xu R, He X, Xu J, Yu G, Wu Y. Immunometabolism: signaling pathways, homeostasis, and therapeutic targets. MedComm (Beijing) 2024; 5:e789. [PMID: 39492834 PMCID: PMC11531657 DOI: 10.1002/mco2.789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Immunometabolism plays a central role in sustaining immune system functionality and preserving physiological homeostasis within the organism. During the differentiation and activation, immune cells undergo metabolic reprogramming mediated by complex signaling pathways. Immune cells maintain homeostasis and are influenced by metabolic microenvironmental cues. A series of immunometabolic enzymes modulate immune cell function by metabolizing nutrients and accumulating metabolic products. These enzymes reverse immune cells' differentiation, disrupt intracellular signaling pathways, and regulate immune responses, thereby influencing disease progression. The huge population of immune metabolic enzymes, the ubiquity, and the complexity of metabolic regulation have kept the immune metabolic mechanisms related to many diseases from being discovered, and what has been revealed so far is only the tip of the iceberg. This review comprehensively summarized the immune metabolic enzymes' role in multiple immune cells such as T cells, macrophages, natural killer cells, and dendritic cells. By classifying and dissecting the immunometabolism mechanisms and the implications in diseases, summarizing and analyzing advancements in research and clinical applications of the inhibitors targeting these enzymes, this review is intended to provide a new perspective concerning immune metabolic enzymes for understanding the immune system, and offer novel insight into future therapeutic interventions.
Collapse
Affiliation(s)
- Rongrong Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
- School of Life SciencesFudan UniversityShanghaiChina
| | - Xiaobo He
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Jia Xu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Ganjun Yu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| | - Yanfeng Wu
- National Key Laboratory of Immunity and Inflammation & Institute of ImmunologyCollege of Basic Medical SciencesNaval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Khatri R, Weigmann B, Shahneh F, Sudowe S, Schuppan D, Saloga J, Bellinghausen I. Prevention of allergic airway and gut inflammation in humanized mice by lactobacilli, bifidobacteria, and butyrate. Allergy 2024; 79:3150-3154. [PMID: 38972005 DOI: 10.1111/all.16230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Affiliation(s)
- Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benno Weigmann
- Department of Internal Medicine I, University Hospital Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Chen J, Cheng J, Li F, Deng Y, Li Y, Li H, Zeng J, You Y, Zhou X, Chen Q, Luo R, Lai Y, Zhao X. Gut microbiome and metabolome alterations in traditional Chinese medicine damp-heat constitution following treatment with a Chinese patent medicine and lifestyle intervention. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155787. [PMID: 38851100 DOI: 10.1016/j.phymed.2024.155787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND The gut microbiota is crucial in human health and diseases. Traditional Chinese Medicine Constitution (TCMC) divides people into those with a balanced constitution (Ping-he [PH]) and those with an unbalanced constitution. Dampness-heat constitution (Shi-re [SR]) is a common unbalanced constitution in the Chinese population and is susceptible to diseases. However, unbalanced constitutions can be regulated by Chinese medicine and lifestyle interventions in clinical practice. Ermiao Pill (EMP) is a Chinese medicine known for clearing heat and draining dampness and improving SR. However, the efficacy and mechanism of EMP are unclear. HYPOTHESIS/PURPOSE To determine alterations in the gut microbiota and metabolome in SR and any changes after EMP treatment combined with lifestyle intervention. STUDY DESIGN Randomized clinical trial. METHODS We enrolled 112 healthy SR individuals and evaluated the efficacy of EMP along with lifestyle interventions. We further assessed serum cytokine levels, serum and urinary metabolomes, and the gut microbiota by 16S rRNA gene sequencing analysis before and after the EMP and lifestyle interventions. RESULTS 107 SR individuals (55 in the intervention group and 52 in the control group) completed the 1-month-intervention and 1-year-follow-up. The intervention group significantly improved their health status within 1 month, with a reduced SR symptom score, and the efficacy lasted to the 1-year follow-up. The control group needed a further 6 months to reduce the SR symptom score. The gut microbiota of PH individuals was more diverse and had significantly higher proportions of many bacterial species than the SR. Microbiota co-occurrence network analysis showed that SR enriches metabolites correlating with microbial community structure, consistent with traits of healthy SR-enriched microbiota. CONCLUSION EMP combined with lifestyle intervention produced health benefits in SR individuals. Our study indicates a pivotal role of gut microbiota and metabolome alterations in distinguishing between healthy SR and PH. Furthermore, the study reveals structural changes of gut microbiota and metabolites induced by EMP and lifestyle intervention. The treatment enriched the number of beneficial bacteria, such as Akkermansia muciniphila and Lactobacillus in the gut. Our findings provide a strong indication that several metabolite factors are associated with the gut microbiota. Moreover, the gut microbiome and metabolome might be powerful tools for TCMC diagnosis and personalized therapy.
Collapse
Affiliation(s)
- Jieyu Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jingru Cheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Fei Li
- Oncology Department, People's Hospital of Boluo County, Huizhou, 516100, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yutong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Haipeng Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jingyi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qinghong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Ren Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yigui Lai
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang, 529500, China.
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
5
|
Rueda GH, Causada-Calo N, Borojevic R, Nardelli A, Pinto-Sanchez MI, Constante M, Libertucci J, Mohan V, Langella P, Loonen LMP, Wells JM, Collins SM, Sokol H, Verdu EF, Bercik P. Oral tryptophan activates duodenal aryl hydrocarbon receptor in healthy subjects: a crossover randomized controlled trial. Am J Physiol Gastrointest Liver Physiol 2024; 326:G687-G696. [PMID: 38591144 DOI: 10.1152/ajpgi.00306.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Tryptophan is an essential amino acid transformed by host and gut microbial enzymes into metabolites that regulate mucosal homeostasis through aryl hydrocarbon receptor (AhR) activation. Alteration of tryptophan metabolism has been associated with chronic inflammation; however, whether tryptophan supplementation affects the metabolite repertoire and AhR activation under physiological conditions in humans is unknown. We performed a randomized, double blind, placebo-controlled, crossover study in 20 healthy volunteers. Subjects on a low tryptophan background diet were randomly assigned to a 3-wk l-tryptophan supplementation (3 g/day) or placebo, and after a 2-wk washout switched to opposite interventions. We assessed gastrointestinal and psychological symptoms by validated questionnaires, AhR activation by cell reporter assay, tryptophan metabolites by liquid chromatography and high-resolution mass spectrometry, cytokine production in isolated monocytes by ELISA, and microbiota profile by 16S rRNA Illumina technique. Oral tryptophan supplementation was well tolerated, with no changes in gastrointestinal or psychological scores. Compared with placebo, tryptophan increased AhR activation capacity by duodenal contents, but not by feces. This was paralleled by higher urinary and plasma kynurenine metabolites and indoles. Tryptophan had a modest impact on fecal microbiome profiles and no significant effect on cytokine production. At the doses used in this study, oral tryptophan supplementation in humans induces microbial indole and host kynurenine metabolic pathways in the small intestine, known to be immunomodulatory. The results should prompt tryptophan intervention strategies in inflammatory conditions of the small intestine where the AhR pathway is impaired.NEW & NOTEWORTHY We demonstrate that in healthy subjects, orally administered tryptophan activates microbial indole and host kynurenine pathways in the small intestine, the primary metabolic site for dietary components, and the richest source of immune cells along the gut. This study provides novel insights in how to optimally activate immunomodulatory AhR pathways and indole metabolism in the small intestine, serving as basis for future therapeutic trials using l-tryptophan supplementation in chronic inflammatory conditions affecting the small intestine.
Collapse
Affiliation(s)
- Gaston H Rueda
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Natalia Causada-Calo
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Rajka Borojevic
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Andrea Nardelli
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Maria Ines Pinto-Sanchez
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marco Constante
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Josie Libertucci
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Vidhyalakshmi Mohan
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Linda M P Loonen
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics, Animal Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Stephen M Collins
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Harry Sokol
- Service de Gastroentérologie, Hôpital Saint-Antoine, Centre de Recherche Saint-Antoine, CRSA, INSERM UMRS-938, Sorbonne Université, AP-HP, Paris, France
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Premysl Bercik
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Gonçalves M, Rodrigues-Santos P, Januário C, Cosentino M, Pereira FC. Indoleamine 2,3-dioxygenase (IDO1) - Can dendritic cells and monocytes expressing this moonlight enzyme change the phase of Parkinson's Disease? Int Immunopharmacol 2024; 133:112062. [PMID: 38652967 DOI: 10.1016/j.intimp.2024.112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease where central and peripheral immune dysfunctions have been pointed out as a critical component of susceptibility and progression of this disease. Dendritic cells (DCs) and monocytes are key players in promoting immune response regulation and can induce the enzyme indoleamine 2,3-dioxygenase 1 (IDO1) under pro-inflammatory environments. This enzyme with catalytic and signaling activity supports the axis IDO1-KYN-aryl hydrocarbon receptor (AhR), promoting disease-specific immunomodulatory effects. IDO1 is a rate-limiting enzyme of the kynurenine pathway (KP) that begins tryptophan (Trp) catabolism across this pathway. The immune functions of the pathway, which are extensively described in cancer, have been forgotten so far in neurodegenerative diseases, where a chronic inflammatory environment underlines the progression of the disease. Despite dysfunctions of KP have been described in PD, these are mainly associated with neurotoxic functions. With this review, we aim to focus on the immune properties of IDO1+DCs and IDO1+monocytes as a possible strategy to balance the pro-inflammatory profile described in PD. We also highlight the importance of exploring the role of dopaminergic therapeutics in IDO1 modulation to possibly optimize current PD therapeutic strategies.
Collapse
Affiliation(s)
- Milene Gonçalves
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Portugal
| | - Paulo Rodrigues-Santos
- Univ Coimbra, Institute of Immunology, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - Cristina Januário
- Univ Coimbra, CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Marco Cosentino
- Univ Insubria, Center for Research in Medical Pharmacology, Varese, Italy
| | - Frederico C Pereira
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, CIBB - Centre for Innovative Biomedicine and Biotechnology, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
7
|
Rimbi PT, O'Boyle N, Douce GR, Pizza M, Rosini R, Roe AJ. Enhancing a multi-purpose artificial urine for culture and gene expression studies of uropathogenic Escherichia coli strains. J Appl Microbiol 2024; 135:lxae067. [PMID: 38486355 DOI: 10.1093/jambio/lxae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
AIMS The main objective of this study was to modify a recently reported multi-purpose artificial urine (MP-AU) for culture and gene expression studies of uropathogenic Escherichia coli (UPEC) strains. METHODS AND RESULTS We used liquid chromatography mass spectrometry (LC-MS) to identify and adjust the metabolic profile of MP-AU closer to that of pooled human urine (PHU). Modification in this way facilitated growth of UPEC strains with growth rates similar to those obtained in PHU. Transcriptomic analysis of UPEC strains cultured in enhanced artificial urine (enhanced AU) and PHU showed that the gene expression profiles are similar, with <7% of genes differentially expressed between the two conditions. CONCLUSIONS Enhancing an MP-AU with metabolites identified in PHU allows the enhanced AU to be used as a substitute for the culture and in vitro gene expression studies of UPEC strains.
Collapse
Affiliation(s)
- Patricia T Rimbi
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Nicky O'Boyle
- School of Microbiology, University College Cork, National University of Ireland, Cork T12 K8AF, Ireland
- Department of Pathology, School of Medicine, University College Cork, Cork T12 K8AF, Ireland
| | - Gillian R Douce
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Mariagrazia Pizza
- Department of Life Sciences, Centre for Bacterial Resistance Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Andrew J Roe
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, United Kingdom
| |
Collapse
|
8
|
Chen WX, Chen YR, Peng MZ, Liu X, Cai YN, Huang ZF, Yang SY, Huang JY, Wang RH, Yi P, Liu L. Plasma Amino Acid Profile in Children with Autism Spectrum Disorder in Southern China: Analysis of 110 Cases. J Autism Dev Disord 2024; 54:1567-1581. [PMID: 36652126 PMCID: PMC10981617 DOI: 10.1007/s10803-022-05829-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 01/19/2023]
Abstract
To retrospectively explore the characteristics of plasma amino acids (PAAs) in children with autism spectrum disorder and their clinical association via case-control study. A total of 110 autistic and 55 healthy children were recruited from 2014 to 2018. The clinical phenotypes included severity of autism, cognition, adaptability, and regression. Compared with the control group, autistic children had significantly elevated glutamate, γ-Amino-n-butyric acid, glutamine, sarcosine, δ-aminolevulinic acid, glycine and citrulline. In contrast, their plasma level of ethanolamine, phenylalanine, tryptophan, homocysteine, pyroglutamic acid, hydroxyproline, ornithine, histidine, lysine, and glutathione were significantly lower. Elevated neuroactive amino acids (glutamate) and decreased essential amino acids were mostly distinct characteristics of PAAs of autistic children. Increased level of tryptophan might be associated with severity of autism.
Collapse
Affiliation(s)
- Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Yi-Ru Chen
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Min-Zhi Peng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xian Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan-Na Cai
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Fang Huang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Si-Yuan Yang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing-Yu Huang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- The Assessment and Intervention Center for Autistic Children, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ruo-Han Wang
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Yi
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Pamart G, Gosset P, Le Rouzic O, Pichavant M, Poulain-Godefroy O. Kynurenine Pathway in Respiratory Diseases. Int J Tryptophan Res 2024; 17:11786469241232871. [PMID: 38495475 PMCID: PMC10943758 DOI: 10.1177/11786469241232871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 03/19/2024] Open
Abstract
The kynurenine pathway is the primary route for tryptophan catabolism and has received increasing attention as its association with inflammation and the immune system has become more apparent. This review provides a broad overview of the kynurenine pathway in respiratory diseases, from the initial observations to the characterization of the different cell types involved in the synthesis of kynurenine metabolites and the underlying immunoregulatory mechanisms. With a focus on respiratory infections, the various attempts to characterize the kynurenine/tryptophan (K/T) ratio as an inflammatory marker are reviewed. Its implication in chronic lung inflammation and its exacerbation by respiratory pathogens is also discussed. The emergence of preclinical interventional studies targeting the kynurenine pathway opens the way for the future development of new therapies.
Collapse
Affiliation(s)
- Guillaume Pamart
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Philippe Gosset
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Olivier Le Rouzic
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Muriel Pichavant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Odile Poulain-Godefroy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 -CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
10
|
Wilson NG, Hernandez-Leyva A, Schwartz DJ, Bacharier LB, Kau AL. The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma. FEMS MICROBES 2024; 5:xtae010. [PMID: 38560624 PMCID: PMC10981462 DOI: 10.1093/femsmc/xtae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Asthma is a common allergic airway disease that has been associated with the development of the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from a cross-sectional cohort of 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in adults and children 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways, which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. Several differentially abundant ARGs in the asthma cohort encode resistance to macrolide antibiotics, which are often prescribed to patients with asthma. Lastly, we found that ARG and virulence factor (VF) richness in the microbiome were correlated in both cohorts. ARG and VF pairs co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are coselected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.
Collapse
Affiliation(s)
- Naomi G Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| | - Leonard B Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232, United States
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, 660 S Euclid Ave, St. Louis, MO 63110, United States
| |
Collapse
|
11
|
Day DB, LeWinn KZ, Karr CJ, Loftus CT, Carroll KN, Bush NR, Zhao Q, Barrett ES, Swan SH, Nguyen RHN, Trasande L, Moore PE, Adams Ako A, Ji N, Liu C, Szpiro AA, Sathyanarayana S. Subpopulations of children with multiple chronic health outcomes in relation to chemical exposures in the ECHO-PATHWAYS consortium. ENVIRONMENT INTERNATIONAL 2024; 185:108486. [PMID: 38367551 PMCID: PMC10961192 DOI: 10.1016/j.envint.2024.108486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
A multimorbidity-focused approach may reflect common etiologic mechanisms and lead to better targeting of etiologic agents for broadly impactful public health interventions. Our aim was to identify clusters of chronic obesity-related, neurodevelopmental, and respiratory outcomes in children, and to examine associations between cluster membership and widely prevalent chemical exposures to demonstrate our epidemiologic approach. Early to middle childhood outcome data collected 2011-2022 for 1092 children were harmonized across the ECHO-PATHWAYS consortium of 3 prospective pregnancy cohorts in six U.S. cities. 15 outcomes included age 4-9 BMI, cognitive and behavioral assessment scores, speech problems, and learning disabilities, asthma, wheeze, and rhinitis. To form generalizable clusters across study sites, we performed k-means clustering on scaled residuals of each variable regressed on study site. Outcomes and demographic variables were summarized between resulting clusters. Logistic weighted quantile sum regressions with permutation test p-values associated odds of cluster membership with a mixture of 15 prenatal urinary phthalate metabolites in full-sample and sex-stratified models. Three clusters emerged, including a healthier Cluster 1 (n = 734) with low morbidity across outcomes; Cluster 2 (n = 192) with low IQ and higher levels of all outcomes, especially 0.4-1.8-standard deviation higher mean neurobehavioral outcomes; and Cluster 3 (n = 179) with the highest asthma (92 %), wheeze (53 %), and rhinitis (57 %) frequencies. We observed a significant positive, male-specific stratified association (odds ratio = 1.6; p = 0.01) between a phthalate mixture with high weights for MEP and MHPP and odds of membership in Cluster 3 versus Cluster 1. These results identified subpopulations of children with co-occurring elevated levels of BMI, neurodevelopmental, and respiratory outcomes that may reflect shared etiologic pathways. The observed association between phthalates and respiratory outcome cluster membership could inform policy efforts towards children with respiratory disease. Similar cluster-based epidemiology may identify environmental factors that impact multi-outcome prevalence and efficiently direct public policy efforts.
Collapse
Affiliation(s)
- Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, Washington 98101, USA.
| | - Kaja Z LeWinn
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th Street, San Francisco, CA 94143, USA
| | - Catherine J Karr
- Department of Environmental and Occupational Health, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Epidemiology, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Christine T Loftus
- Department of Environmental and Occupational Health, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Kecia N Carroll
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th Street, San Francisco, CA 94143, USA; Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Qi Zhao
- Department of Preventive Medicine, Division of Preventive Medicine, University of Tennessee Health Science Center, 66 North Pauline Street, Memphis, TN 38163, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, Minnesota 55455, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Paul E Moore
- Division of Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232, USA
| | - Ako Adams Ako
- Department of Pediatrics, Children's Hospital at Montefiore, 3415 Bainbridge Avenue, Bronx, NY 10467, USA
| | - Nan Ji
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Chang Liu
- Department of Psychology, Washington State University, Johnson Tower, Pullman, WA 99164, USA
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, 3980 15th Avenue NE, Seattle, WA 98195, USA
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Avenue, Seattle, Washington 98101, USA; Department of Environmental and Occupational Health, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Epidemiology, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, 4245 Roosevelt Way NE, Seattle, WA 98105, USA
| |
Collapse
|
12
|
Bisgaard H, Mikkelsen M, Rasmussen MA, Sevelsted A, Schoos AMM, Brustad N, Eliasen AU, Thorsen J, Chawes B, Gürdeniz G, Morin A, Stark K, Stokholm J, Ober C, Pedersen CET, Bønnelykke K. Atopic and non-atopic effects of fish oil supplementation during pregnancy. Thorax 2023; 78:1168-1174. [PMID: 37696621 PMCID: PMC10777305 DOI: 10.1136/thorax-2022-219725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/15/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND We recently conducted a double-blinded randomised controlled trial showing that fish-oil supplementation during pregnancy reduced the risk of persistent wheeze or asthma in the child by 30%. Here, we explore the mechanisms of the intervention. METHODS 736 pregnant women were given either placebo or n-3 long-chain polyunsaturated fatty acids (LCPUFAs) in the third trimester in a randomised controlled trial. Deep clinical follow-up of the 695 children in the trial was done at 12 visits until age 6 years, including assessment of genotype at the fatty acid desaturase (FADS) locus, plasma fatty acids, airway DNA methylation, gene expression, microbiome and metabolomics. RESULTS Supplementation with n-3 LCPUFA reduced the overall risk of non-atopic asthma by 73% at age 6 (relative risk (RR) 0.27 (95% CI 0.06 to 0.85), p=0.042). In contrast, there was no overall effect on asthma with atopic traits (RR 1.42 (95% CI 0.63 to 3.38), p=0.40), but this was significantly modified by maternal FADS genotype and LCPUFA blood levels (interaction p<0.05), and supplementation did reduce the risk of atopic asthma in the subgroup of mothers with FADS risk variants and/or low blood levels of n-3 LCPUFA before the intervention (RR 0.31 (95% CI 0.11 to 0.75), p=0.016). Furthermore, n-3 LCPUFA significantly reduced the number of infections (croup, gastroenteritis, tonsillitis, otitis media and pneumonia) by 16% (incidence rate ratio 0.84 (95% CI 0.74 to 0.96), p=0.009). CONCLUSIONS n-3 LCPUFA supplementation in pregnancy showed protective effects on non-atopic asthma and infections. Protective effects on atopic asthma depended on maternal FADS genotype and n-3 LCPUFA levels. This indicates that the fatty acid pathway is involved in multiple mechanisms affecting the risk of asthma subtypes and infections. TRIAL REGISTRATION NUMBER NCT00798226.
Collapse
Affiliation(s)
- Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Marianne Mikkelsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Food Science, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Ann-Marie Malby Schoos
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Anders U Eliasen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gözde Gürdeniz
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Andreanne Morin
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Ken Stark
- Department of Kinesiology and Human Health, University of Waterloo, Waterloo, Ontario, Canada
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Pediatrics, Slagelse Sygehus, Slagelse, Denmark
| | - Carole Ober
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA
| | - Casper Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Copenhagen University Hospital - Herlev and Gentofte, Gentofte, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Van NT, Zhang K, Wigmore RM, Kennedy AI, DaSilva CR, Huang J, Ambelil M, Villagomez JH, O'Connor GJ, Longman RS, Cao M, Snook AE, Platten M, Kasenty G, Sigal LJ, Prendergast GC, Kim SV. Dietary L-Tryptophan consumption determines the number of colonic regulatory T cells and susceptibility to colitis via GPR15. Nat Commun 2023; 14:7363. [PMID: 37963876 PMCID: PMC10645889 DOI: 10.1038/s41467-023-43211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Environmental factors are the major contributor to the onset of immunological disorders such as ulcerative colitis. However, their identities remain unclear. Here, we discover that the amount of consumed L-Tryptophan (L-Trp), a ubiquitous dietary component, determines the transcription level of the colonic T cell homing receptor, GPR15, hence affecting the number of colonic FOXP3+ regulatory T (Treg) cells and local immune homeostasis. Ingested L-Trp is converted by host IDO1/2 enzymes, but not by gut microbiota, to compounds that induce GPR15 transcription preferentially in Treg cells via the aryl hydrocarbon receptor. Consequently, two weeks of dietary L-Trp supplementation nearly double the colonic GPR15+ Treg cells via GPR15-mediated homing and substantially reduce the future risk of colitis. In addition, humans consume 3-4 times less L-Trp per kilogram of body weight and have fewer colonic GPR15+ Treg cells than mice. Thus, we uncover a microbiota-independent mechanism linking dietary L-Trp and colonic Treg cells, that may have therapeutic potential.
Collapse
Affiliation(s)
- Nguyen T Van
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Karen Zhang
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Rachel M Wigmore
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Anne I Kennedy
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Carolina R DaSilva
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Jialing Huang
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Anatomic Pathology, Geisinger Medical Center, Danville, PA, USA
| | - Manju Ambelil
- Department of Pathology, Anatomy, & Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose H Villagomez
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Gerald J O'Connor
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - Randy S Longman
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, USA
| | - Miao Cao
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Adam E Snook
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Department of Pharmacology, Physiology, & Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Gerard Kasenty
- Department of Genetics and Development, Irving Medical Center, Columbia University, NY, USA
| | - Luis J Sigal
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
| | - George C Prendergast
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA
- Lankenau Institute of Medical Research, Wynnewood, PA, USA
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Banoei MM, McIntyre LA, Stewart DJ, Mei SHJ, Courtman D, Watpool I, Granton J, Marshall J, dos Santos C, Walley KR, Schlosser K, Fergusson DA, Winston BW. Metabolomics Analysis of Mesenchymal Stem Cell (MSC) Therapy in a Phase I Clinical Trial of Septic Shock: An Exploratory Study. Metabolites 2023; 13:1142. [PMID: 37999238 PMCID: PMC10673547 DOI: 10.3390/metabo13111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
Sepsis is the result of an uncontrolled host inflammatory response to infection that may lead to septic shock with multiorgan failure and a high mortality rate. There is an urgent need to improve early diagnosis and to find markers identifying those who will develop septic shock and certainly a need to develop targeted treatments to prevent septic shock and its high mortality. Herein, we explore metabolic alterations due to mesenchymal stromal cell (MSC) treatment of septic shock. The clinical findings for this study were already reported; MSC therapy was well-tolerated and safe in patients in this phase I clinical trial. In this exploratory metabolomics study, 9 out of 30 patients received an escalating dose of MSC treatment, while 21 patients were without MSC treatment. Serum metabolomics profiling was performed to detect and characterize metabolite changes due to MSC treatment and to help determine the sample size needed for a phase II clinical trial and to define a metabolomic response to MSC treatment. Serum metabolites were measured using 1H-NMR and HILIC-MS at times 0, 24 and 72 h after MSC infusion. The results demonstrated the significant impact of MSC treatment on serum metabolic changes in a dose- and time-dependent manner compared to non-MSC-treated septic shock patients. This study suggests that plasma metabolomics can be used to assess the response to MSC therapy and that treatment-related metabolomics effects can be used to help determine the sample size needed in a phase II trial. As this study was not powered to detect outcome, how the treatment-induced metabolomic changes described in this study of MSC-treated septic shock patients are related to outcomes of septic shock in the short and long term will need to be explored in a larger adequately powered phase II clinical trial.
Collapse
Affiliation(s)
- Mohammad M. Banoei
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
| | - Lauralyn A. McIntyre
- Department of Medicine (Division of Critical Care), University of Ottawa, Ottawa, ON K1H 8L6, Canada;
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Duncan J. Stewart
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Shirley H. J. Mei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - David Courtman
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Irene Watpool
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
| | - John Granton
- Department of Medicine, University of Toronto, Toronto, ON M5G 2N2, Canada;
| | - John Marshall
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, The University of Toronto, Toronto, ON M5B 1W8, Canada; (J.M.); (C.d.S.)
| | - Claudia dos Santos
- Department of Surgery and Critical Care Medicine, Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, The University of Toronto, Toronto, ON M5B 1W8, Canada; (J.M.); (C.d.S.)
| | - Keith R. Walley
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada;
| | - Kenny Schlosser
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Dean A. Fergusson
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8M5, Canada; (D.J.S.); (S.H.J.M.); (D.C.); (I.W.); (K.S.); (D.A.F.)
- Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Brent W. Winston
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada;
- Departments of Medicine and Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | | | | |
Collapse
|
15
|
Hui Y, Zhao J, Yu Z, Wang Y, Qin Y, Zhang Y, Xing Y, Han M, Wang A, Guo S, Yuan J, Zhao Y, Ning X, Sun S. The Role of Tryptophan Metabolism in the Occurrence and Progression of Acute and Chronic Kidney Diseases. Mol Nutr Food Res 2023; 67:e2300218. [PMID: 37691068 DOI: 10.1002/mnfr.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.
Collapse
Affiliation(s)
- Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
16
|
Coles TA, Briggs AM, Hambly MG, Céspedes N, Fellows AM, Kaylor HL, Adams AD, Van Susteren G, Bentil RE, Robert MA, Riffell JA, Lewis EE, Luckhart S. Ingested histamine and serotonin interact to alter Anopheles stephensi feeding and flight behavior and infection with Plasmodium parasites. Front Physiol 2023; 14:1247316. [PMID: 37555020 PMCID: PMC10405175 DOI: 10.3389/fphys.2023.1247316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023] Open
Abstract
Blood levels of histamine and serotonin (5-HT) are altered in human malaria, and, at these levels, we have shown they have broad, independent effects on Anopheles stephensi following ingestion by this invasive mosquito. Given that histamine and 5-HT are ingested together under natural conditions and that histaminergic and serotonergic signaling are networked in other organisms, we examined effects of combinations of these biogenic amines provisioned to A. stephensi at healthy human levels (high 5-HT, low histamine) or levels associated with severe malaria (low 5-HT, high histamine). Treatments were delivered in water (priming) before feeding A. stephensi on Plasmodium yoelii-infected mice or via artificial blood meal. Relative to effects of histamine and 5-HT alone, effects of biogenic amine combinations were complex. Biogenic amine treatments had the greatest impact on the first oviposition cycle, with high histamine moderating low 5-HT effects in combination. In contrast, clutch sizes were similar across combination and individual treatments. While high histamine alone increased uninfected A. stephensi weekly lifetime blood feeding, neither combination altered this tendency relative to controls. The tendency to re-feed 2 weeks after the first blood meal was altered by combination treatments, but this depended on mode of delivery. For blood delivery, malaria-associated treatments yielded higher percentages of fed females relative to healthy-associated treatments, but the converse was true for priming. Female mosquitoes treated with the malaria-associated combination exhibited enhanced flight behavior and object inspection relative to controls and healthy combination treatment. Mosquitoes primed with the malaria-associated combination exhibited higher mean oocysts and sporozoite infection prevalence relative to the healthy combination, with high histamine having a dominant effect on these patterns. Compared with uninfected A. stephensi, the tendency of infected mosquitoes to take a second blood meal revealed an interaction of biogenic amines with infection. We used a mathematical model to project the impacts of different levels of biogenic amines and associated changes on outbreaks in human populations. While not all outbreak parameters were impacted the same, the sum of effects suggests that histamine and 5-HT alter the likelihood of transmission by mosquitoes that feed on hosts with symptomatic malaria versus a healthy host.
Collapse
Affiliation(s)
- Taylor A. Coles
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Anna M. Briggs
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Nora Céspedes
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Abigail M. Fellows
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Hannah L. Kaylor
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Alexandria D. Adams
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Ronald E. Bentil
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Michael A. Robert
- Department of Mathematics, Center for Emerging, Zoonotic, and Arthropod-Borne Pathogens (CeZAP), Virginia Tech, Blacksburg, VA, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology, and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
17
|
Wei Y, Liu C, Li L. Geniposide improves bleomycin-induced pulmonary fibrosis by inhibiting NLRP3 inflammasome activation and modulating metabolism. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
18
|
Pais ML, Martins J, Castelo-Branco M, Gonçalves J. Sex Differences in Tryptophan Metabolism: A Systematic Review Focused on Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:ijms24066010. [PMID: 36983084 PMCID: PMC10057939 DOI: 10.3390/ijms24066010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Tryptophan (Tryp) is an essential amino acid and the precursor of several neuroactive compounds within the central nervous system (CNS). Tryp metabolism, the common denominator linking serotonin (5-HT) dysfunctions and neuroinflammation, is involved in several neuropsychiatric conditions, including neurological, neurodevelopmental, neurodegenerative, and psychiatric diseases. Interestingly, most of those conditions occur and progress in a sex-specific manner. Here, we explore the most relevant observations about the influence of biological sex on Tryp metabolism and its possible relation to neuropsychiatric diseases. Consistent evidence suggests that women have a higher susceptibility than men to suffer serotoninergic alterations due to changes in the levels of its precursor Tryp. Indeed, female sex bias in neuropsychiatric diseases is involved in a reduced availability of this amino acid pool and 5-HT synthesis. These changes in Tryp metabolism could lead to sexual dimorphism on the prevalence and severity of some neuropsychiatric disorders. This review identifies gaps in the current state of the art, thus suggesting future research directions. Specifically, there is a need for further research on the impact of diet and sex steroids, both involved in this molecular mechanism as they have been poorly addressed for this topic.
Collapse
Affiliation(s)
- Mariana Lapo Pais
- Doctoral Program in Biomedical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Joana Gonçalves
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Activated intestinal microbiome-associated tryptophan metabolism upregulates aryl hydrocarbon receptor to promote osteoarthritis in a rat model. Int Immunopharmacol 2023; 118:110020. [PMID: 36933489 DOI: 10.1016/j.intimp.2023.110020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE To evaluate the role of aryl hydrocarbon receptor in the pathogenesis of osteoarthritis (OA) and its association with intestinal microbiome-related tryptophan metabolism. METHODS Cartilage was isolated from OA patients undergoing total knee arthroplasty and analyzed for expression of aryl hydrocarbon receptor (AhR) and cytochrome P450 of family 1, subfamily A, and polypeptide 1 (CyP1A1). To gain mechanistic insights, OA model was induced in Sprague Dawley rats after antibiotic pretreatment combined with a tryptophan-rich diet (or not). The severity of OA was assessed eight weeks after surgery according to the Osteoarthritis Research Society International grading system. Expression of AhR, CyP1A1 as well as markers of bone and cartilage metabolism, inflammation, and intestinal microbiome-related tryptophan metabolism was assessed. RESULTS Severity of OA in cartilage from patients positively correlated with expression of AhR and CyP1A1 in chondrocytes. In the rat model of OA, antibiotic pretreatment led to lower expression of AhR and CyP1A1 and lower serum levels of lipopolysaccharide (LPS). Conversely, antibiotics upregulated Col2A1 and SOX9 in cartilage, which mitigated the cartilage damage and synovitis, reduced the relative abundance of Lactobacillus. Additional tryptophan supplementation activated intestinal microbiome-related tryptophan metabolism, antagonizing the effects of antibiotics, exacerbating OA synovitis. CONCLUSION Our study established an underlying intestinal microbiome associated tryptophan metabolism-OA connection which sets a new target for exploring OA pathogenesis. The alteration of tryptophan metabolism might prompt the activation and synthesis of AhR, accelerating the development of OA.
Collapse
|
20
|
Xu J, Tang M, Wang D, Zhang X, Yang X, Ma Y, Xu X. Lactocaseibacillus rhamnosus zz-1 Supplementation Mitigates Depression-Like Symptoms in Chronic Stress-Induced Depressed Mice via the Microbiota-Gut-Brain Axis. ACS Chem Neurosci 2023; 14:1095-1106. [PMID: 36812493 DOI: 10.1021/acschemneuro.2c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Accumulating evidence has revealed an association between depression and disordered intestinal microecology. The discovery of psychobiotics has provided a promising perspective for studying the treatment of psychiatric disorders. Here, we aimed to investigate the antidepressant abilities of Lactocaseibacillus rhamnosus zz-1 (LRzz-1) and elucidate the underlying mechanisms. The viable bacteria (2 × 109 CFU/day) were orally supplemented to depressed C57BL/6 mice induced by chronic unpredictable mild stress (CUMS), and the behavioral, neurophysiological, and intestinal microbial effects were assessed, with fluoxetine used as a positive control. The treatment with LRzz-1 effectively mitigated the depression-like behavioral disorders of depressed mice and reduced the expression of inflammatory cytokine mRNA (IL-1β, IL-6, and TNF-α) in the hippocampus. In addition, LRzz-1 treatment also improved tryptophan metabolic disorder in the mouse hippocampus, as well as its peripheral circulation. These benefits are associated with the mediation of microbiome-gut-brain bidirectional communication. CUMS-induced depression impaired the intestinal barrier integrity and microbial homeostasis in mice, neither of which was restored by fluoxetine. LRzz-1 prevented intestinal leakage and significantly ameliorated epithelial barrier permeability by up-regulating tight-junction proteins (including ZO-1, occludin, and claudin-1). In particular, LRzz-1 improved the microecological balance by normalizing the threatened bacteria (e.g., Bacteroides and Desulfovibrio), exerting beneficial regulation (e.g., Ruminiclostridium 6 and Alispites), and modifying short-chain fatty acid metabolism. In summary, LRzz-1 showed considerable antidepressant-like effects and exhibited more comprehensive intestinal microecological regulation than other drugs, which offers novel insights that can facilitate the development of depression therapeutic strategies.
Collapse
Affiliation(s)
- Jinzhao Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Mengqi Tang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Danping Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xuyan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yanshi Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China.,College of Food Science, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
21
|
Ala M, Fallahpour Khoshdel MR, Mohammad Jafari R, Sadrkhanloo M, Goudarzi S, Asl Soleimani M, Dehpour AR. Low-dose sumatriptan improves the outcome of acute mesenteric ischemia in rats via downregulating kynurenine. Pharmacol Rep 2023; 75:623-633. [PMID: 36920684 DOI: 10.1007/s43440-023-00470-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Mesenteric ischemia has remained without effective pharmacological management for many years. Sumatriptan, an abortive medication for migraine and cluster headaches, has potent anti-inflammatory properties and ameliorated organ ischemia in previous animal studies. Similarly, inhibition of the kynurenine pathway ameliorated renal and myocardial ischemia/reperfusion (I/R) in many preclinical studies. Herein, we assessed the effect of sumatriptan on experimental mesenteric I/R and investigated whether kynurenine pathway inhibition is a mechanism underlying its action. METHODS Ischemia was induced by ligating the origin of the superior mesenteric artery (SMA) and its anastomosis with the inferior mesenteric artery (IMA) with bulldog clamps for 30 min. Ischemia was followed by 1 h of reperfusion. Sumatriptan (0.1, 0.3, and 1 mg/kg ip) was injected 5 min before the reperfusion phase, 1-methyltryptophan (1-MT) (100 mg/kg iv) was used to inhibit kynurenine production. At the end of the reperfusion phase, samples were collected from the jejunum of rats for H&E staining and molecular assessments. RESULTS Sumatriptan improved the integrity of intestinal mucosa after I/R, and 0.1 mg/kg was the most effective dose of sumatriptan in this study. Sumatriptan decreased the increased levels of TNF-α, kynurenine, and p-ERK but did not change the decreased levels of NO. Furthermore, sumatriptan significantly increased the decreased ratio of Bcl2/Bax. Similarly, 1-MT significantly decreased TNF-α and kynurenine and protected against mucosal damage. CONCLUSIONS This study demonstrated that sumatriptan has protective effects against mesenteric ischemia and the kynurenine inhibition is potentially involved in this process. Therefore, it can be assumed that sumatriptan has the potential to be repurposed as a treatment for acute mesenteric ischemia.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Mohammad Reza Fallahpour Khoshdel
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran.
| | | | - Sepideh Goudarzi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran
| | - Meisam Asl Soleimani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, 13145-784, 1416753955, Iran. .,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, 13145-784, Iran.
| |
Collapse
|
22
|
Citrulline and kynurenine to tryptophan ratio: potential EED (environmental enteric dysfunction) biomarkers in acute watery diarrhea among children in Bangladesh. Sci Rep 2023; 13:1416. [PMID: 36697429 PMCID: PMC9876903 DOI: 10.1038/s41598-023-28114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Two emerging biomarkers of environmental enteric dysfunction (EED) include plasma citrulline (CIT), and the kynurenine (KYN): tryptophan (TRP)/ (KT) ratio. We sought to investigate the plasma concentration of CIT and KT ratio among the children having dehydrating diarrhea and examine associations between concentrations of CIT and KT ratio with concurrent factors. For this analysis, we used cross-sectional data from a total of 102, 6-36 months old male children who suffered from non-cholera acute watery diarrhea and had some dehydration admitted to an urban diarrheal hospital, in Bangladesh. CIT, TRP, and KYN concentrations were determined at enrollment from plasma samples using ELIZA. At enrollment, the mean plasma CIT concentration was 864.48 ± 388.55 µmol/L. The mean plasma kynurenine, tryptophan concentrations, and the KT ratio (× 1000) were 6.93 ± 3.08 µmol/L, 33.44 ± 16.39 µmol/L, and 12.12 ± 18.10, respectively. With increasing child age, KYN concentration decreased (coefficient: - 0.26; 95%CI: - 0.49, - 0.04; p = 0.021); with increasing lymphocyte count, CIT concentration decreased (coef.: - 0.01; 95% CI: - 0.02,0.001, p = 0.004); the wasted child had decreased KT ratio (coef.: - 0.6; 95% CI: - 1.18, - 0.02; p = 0.042) after adjusting for potential covariates. The CIT concentration was associated with blood neutrophils (coef.: 0.02; 95% CI: 0.01, 0.03; p < 0.001), lymphocytes (coef.: - 0.02; 95% CI: - 0.03, - 0.02; p < 0.001) and monocyte (coef.: 0.06; 95% CI: 0.01, 0.11; p = 0.021); KYN concentration was negatively associated with basophil (coef.: - 0.62; 95% CI: - 1.23, - 0.01; p = 0.048) after adjusting for age. In addition, total stool output (gm) increased (coef.: 793.84; 95% CI: 187.16, 1400.52; p = 0.011) and also increased duration of hospital stay (hour) (coef.: 22.89; 95% CI: 10.24, 35.54; p = 0.001) with increasing CIT concentration. The morphological changes associated with EED may increase the risk of enteric infection and diarrheal disease among children. Further research is critically needed to better understand the complex mechanisms by which EED biomarkers may impact susceptibility to dehydrating diarrhea in children.
Collapse
|
23
|
Wilson NG, Hernandez-Leyva A, Schwartz DJ, Bacharier LB, Kau AL. The gut metagenome harbors metabolic and antibiotic resistance signatures of moderate-to-severe asthma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522677. [PMID: 36711684 PMCID: PMC9882014 DOI: 10.1101/2023.01.03.522677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Asthma is a common allergic airway disease that develops in association with the human microbiome early in life. Both the composition and function of the infant gut microbiota have been linked to asthma risk, but functional alterations in the gut microbiota of older patients with established asthma remain an important knowledge gap. Here, we performed whole metagenomic shotgun sequencing of 95 stool samples from 59 healthy and 36 subjects with moderate-to-severe asthma to characterize the metagenomes of gut microbiota in children and adults 6 years and older. Mapping of functional orthologs revealed that asthma contributes to 2.9% of the variation in metagenomic content even when accounting for other important clinical demographics. Differential abundance analysis showed an enrichment of long-chain fatty acid (LCFA) metabolism pathways which have been previously implicated in airway smooth muscle and immune responses in asthma. We also observed increased richness of antibiotic resistance genes (ARGs) in people with asthma. One differentially abundant ARG was a macrolide resistance marker, ermF, which significantly co-occurred with the Bacteroides fragilis toxin, suggesting a possible relationship between enterotoxigenic B. fragilis, antibiotic resistance, and asthma. Lastly, we found multiple virulence factor (VF) and ARG pairs that co-occurred in both cohorts suggesting that virulence and antibiotic resistance traits are co-selected and maintained in the fecal microbiota of people with asthma. Overall, our results show functional alterations via LCFA biosynthetic genes and increases in antibiotic resistance genes in the gut microbiota of subjects with moderate-to-severe asthma and could have implications for asthma management and treatment.
Collapse
Affiliation(s)
- Naomi G. Wilson
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ariel Hernandez-Leyva
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Drew J. Schwartz
- Division of Infectious Diseases, Department of Pediatrics and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Leonard B. Bacharier
- Division of Allergy, Immunology and Pulmonary Medicine, Department of Pediatrics, Monroe Carell Jr Children’s Hospital at Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew L. Kau
- Division of Allergy and Immunology, Department of Medicine and Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
24
|
Gong X, Chang R, Zou J, Tan S, Huang Z. The role and mechanism of tryptophan - kynurenine metabolic pathway in depression. Rev Neurosci 2022; 34:313-324. [PMID: 36054612 DOI: 10.1515/revneuro-2022-0047] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/13/2022] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is a common mental illness characterized by persistent low mood and anhedonia, normally accompanied with cognitive impairment. Due to its rising incidence and high rate of recurrence and disability, MDD poses a substantial threat to patients' physical and mental health, as well as a significant economic cost to society. However, the etiology and pathogenesis of MDD are still unclear. Chronic inflammation may cause indoleamine-2,3-dioxygenase (IDO) to become overactive throughout the body and brain, resulting in excess quinolinic acid (QUIN) and less kynuric acid (KYNA) in the brain. QUIN's neurotoxicity damages glial cells and neurons, accelerates neuronal apoptosis, hinders neuroplasticity, and causes depression due to inflammation. Therefore, abnormal TRP-KYN metabolic pathway and its metabolites have been closely related to MDD, suggesting changes in the TRP-KYN metabolic pathway might contribute to MDD. In addition, targeting TRP-KYN with traditional Chinese medicine showed promising treatment effects for MDD. This review summarizes the recent studies on the TRP-KYN metabolic pathway and its metabolites in depression, which would provide a theoretical basis for exploring the etiology and pathogenesis of depression.
Collapse
Affiliation(s)
- Xiaoli Gong
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China
| | - Rui Chang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| | - Zeyi Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.,Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, University of South China, 28 W. Chang Sheng Road, Hengyang 421001, Hunan, China
| |
Collapse
|
25
|
Luo Z, Ma L, Zhou T, Huang Y, Zhang L, Du Z, Yong K, Yao X, Shen L, Yu S, Shi X, Cao S. Beta-Glucan Alters Gut Microbiota and Plasma Metabolites in Pre-Weaning Dairy Calves. Metabolites 2022; 12:687. [PMID: 35893252 PMCID: PMC9332571 DOI: 10.3390/metabo12080687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The present study aims to evaluate the alterations in gut microbiome and plasma metabolites of dairy calves with β-glucan (BG) supplementation. Fourteen healthy newborn dairy calves with similar body weight were randomly divided into control (n = 7) and BG (n = 7) groups. All the calves were fed on the basal diet, while calves in the BG group were supplemented with oat BG on d 8 for 14 days. Serum markers, fecal microbiome, and plasma metabolites at d 21 were analyzed. The calves were weaned on d 60 and weighed. The mean weaning weight of the BG group was 4.29 kg heavier than that of the control group. Compared with the control group, the levels of serum globulin, albumin, and superoxide dismutase were increased in the BG group. Oat BG intake increased the gut microbiota richness and decreased the Firmicutes-to-Bacteroidetes ratio. Changes in serum markers were found to be correlated with the plasma metabolites, including sphingosine, trehalose, and 3-methoxy-4-hydroxyphenylglycol sulfate, and gut microbiota such as Ruminococcaceae_NK4A214, Alistipes, and Bacteroides. Overall, these results suggest that the BG promotes growth and health of pre-weaning dairy calves by affecting the interaction between the host and gut microbiota.
Collapse
Affiliation(s)
- Zhengzhong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Li Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Tao Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Yixin Huang
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Liben Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Zhenlong Du
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Kang Yong
- Department of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China;
| | - Xueping Yao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Liuhong Shen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Shumin Yu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China;
| | - Suizhong Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (T.Z.); (L.Z.); (Z.D.); (X.Y.); (L.S.); (S.Y.)
| |
Collapse
|
26
|
Fang Z, Pan T, Wang H, Zhu J, Zhang H, Zhao J, Chen W, Lu W. Limosilactobacillus reuteri Attenuates Atopic Dermatitis via Changes in Gut Bacteria and Indole Derivatives from Tryptophan Metabolism. Int J Mol Sci 2022; 23:ijms23147735. [PMID: 35887083 PMCID: PMC9320942 DOI: 10.3390/ijms23147735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/27/2023] Open
Abstract
Gut bacteria are closely associated with the development of atopic dermatitis (AD) due to their immunoregulatory function. Indole derivatives, produced by gut bacteria metabolizing tryptophan, are ligands to activate the aryl hydrocarbon receptor (AHR), which plays a critical role in attenuating AD symptoms. Limosilactobacillus reuteri, a producer of indole derivatives, regulates mucosal immunity via activating the AHR signaling pathway. However, the effective substance and mechanism of L. reuteri in the amelioration of AD remain to be elucidated. In this research, we found that L. reuteri DYNDL22M62 significantly improved AD-like symptoms in mice by suppressing IgE levels and the expressions of thymic stromal lymphopoietin (TSLP), IL-4, and IL-5. L. reuteri DYNDL22M62 induced an increase in the production of indole lactic acid (ILA) and indole propionic acid (IPA) via targeted tryptophan metabolic analysis and the expression of AHR in mice. Furthermore, L. reuteri DYNDL22M62 increased the proportions of Romboutsia and Ruminococcaceae NK4A214 group, which were positively related to ILA, but decreased Dubosiella, which was negatively related to IPA. Collectively, L. reuteri DYNDL22M62 with the role of modulating gut bacteria and the production of indole derivatives may attenuate AD via activating AHR in mice.
Collapse
Affiliation(s)
- Zhifeng Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tong Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinlin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Z.F.); (T.P.); (H.W.); (J.Z.); (H.Z.); (J.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou 225004, China
- Correspondence:
| |
Collapse
|
27
|
Bellinghausen I, Khatri R, Saloga J. Current Strategies to Modulate Regulatory T Cell Activity in Allergic Inflammation. Front Immunol 2022; 13:912529. [PMID: 35720406 PMCID: PMC9205643 DOI: 10.3389/fimmu.2022.912529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in industrialized countries. These diseases are characterized by a dominating type 2 immune response and reduced numbers of allergen-specific regulatory T (Treg) cells. Conventional allergen-specific immunotherapy is able to tip the balance towards immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells did not always lead to convincing beneficial results, partially because of limited stability of their regulatory phenotype activity. Besides genetic predisposition, it has become evident that environmental factors like a westernized lifestyle linked to modern sanitized living, the early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the development of allergic diseases. Epigenetic modification of Treg cells has been described as one important mechanism in this context. In this review, we summarize how environmental factors affect the number and function of Treg cells in allergic inflammation and how this knowledge can be exploited in future allergy prevention strategies as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
28
|
Dai W, Liu J, Qiu Y, Teng Z, Li S, Yuan H, Huang J, Xiang H, Tang H, Wang B, Chen J, Wu H. Gut Microbial Dysbiosis and Cognitive Impairment in Bipolar Disorder: Current Evidence. Front Pharmacol 2022; 13:893567. [PMID: 35677440 PMCID: PMC9168430 DOI: 10.3389/fphar.2022.893567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Recent studies have reported that the gut microbiota influences mood and cognitive function through the gut-brain axis, which is involved in the pathophysiology of neurocognitive and mental disorders, including Parkinson’s disease, Alzheimer’s disease, and schizophrenia. These disorders have similar pathophysiology to that of cognitive dysfunction in bipolar disorder (BD), including neuroinflammation and dysregulation of various neurotransmitters (i.e., serotonin and dopamine). There is also emerging evidence of alterations in the gut microbial composition of patients with BD, suggesting that gut microbial dysbiosis contributes to disease progression and cognitive impairment in BD. Therefore, microbiota-centered treatment might be an effective adjuvant therapy for BD-related cognitive impairment. Given that studies focusing on connections between the gut microbiota and BD-related cognitive impairment are lagging behind those on other neurocognitive disorders, this review sought to explore the potential mechanisms of how gut microbial dysbiosis affects cognitive function in BD and identify potential microbiota-centered treatment.
Collapse
Affiliation(s)
- Wenyu Dai
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Qiu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Sujuan Li
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Yuan
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Xiang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bolun Wang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haishan Wu
- National Clinical Research Center for Mental Disorders, Department of Psychiatry, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
29
|
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 2022; 23:6300. [PMID: 35682980 PMCID: PMC9181223 DOI: 10.3390/ijms23116300] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Amrita Debnath
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Jade V. Wish
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Jason C. Raine
- Quesnel River Research Centre, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Gregg T. Tomy
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| |
Collapse
|
30
|
Transcriptome sequencing of 3,3',4,4',5-Pentachlorobiphenyl (PCB126)-treated human preadipocytes demonstrates progressive changes in pathways associated with inflammation and diabetes. Toxicol In Vitro 2022; 83:105396. [PMID: 35618242 DOI: 10.1016/j.tiv.2022.105396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 12/02/2022]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants that accumulate in adipose tissue and have been associated with cardiometabolic disease. We have previously demonstrated that exposure of human preadipocytes to the dioxin-like PCB126 disrupts adipogenesis via the aryl hydrocarbon receptor (AhR). To further understand how PCB126 disrupts adipose tissue cells, we performed RNAseq analysis of PCB126-treated human preadipocytes over a 3-day time course. The most significant predicted upstream regulator affected by PCB126 exposure at the early time point of 9 h was the AhR. Progressive changes occurred in the number and magnitude of transcript levels of genes associated with inflammation, most closely fitting the pathways of cytokine-cytokine-receptor signaling and the AGE-RAGE diabetic complications pathway. Transcript levels of genes involved in the IL-17A, IL-1β, MAP kinase, and NF-κB signaling pathways were increasingly dysregulated by PCB126 over time. Our results illustrate the progressive time-dependent nature of transcriptional changes caused by toxicants such as PCB126, point to important pathways affected by PCB126 exposure, and provide a rich dataset for further studies to address how PCB126 and other AhR agonists disrupt preadipocyte function. These findings have implications for understanding how dioxin-like PCBs and other dioxin-like compounds are involved in the development of obesity and diabetes.
Collapse
|
31
|
Hu S, Luo L, Bian X, Liu RH, Zhao S, Chen Y, Sun K, Jiang J, Liu Z, Zeng L. Pu-erh Tea Restored Circadian Rhythm Disruption by Regulating Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5610-5623. [PMID: 35475616 DOI: 10.1021/acs.jafc.2c01883] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pu-erh tea is a healthy beverage rich in phytochemicals, and its effect on the risk of inducing circadian rhythm disorders (CRD) is unclear. In this study, healthy mice were given water or 0.25% (w/v) Pu-erh tea for 7 weeks, followed by a 40 day disruption of the light/dark cycle. CRD caused dysregulation of neurotransmitter secretion and clock gene oscillations, intestinal inflammation, and disruption of intestinal microbes and metabolites. Pu-erh tea boosted the indole and 5-hydroxytryptamine pathways of tryptophan metabolism via the gut-liver-brain axis. Furthermore, its metabolites (e.g., IAA, Indole, 5-HT) enhanced hepatic glycolipid metabolism and down-regulated intestinal oxidative stress by improving the brain hormone release. Tryptophan metabolites and bile acids also promoted liver lipid metabolism and inhibited intestinal inflammation (MyD88/NF-κB) via the enterohepatic circulation. Collectively, 0.25% (w/v) Pu-erh tea has the potential to prevent CRD by promoting indole and 5-HT pathways of tryptophan metabolism and signaling interactions in the gut-liver-brain axis.
Collapse
Affiliation(s)
- Shanshan Hu
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Xintong Bian
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine Chongqing Medical University, Chongqing 400016, China
| | - Rui Hai Liu
- Department of Food Science, Cornell University, Ithaca, New York 14850-7201, United States
| | - Sibo Zhao
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Chen
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Kang Sun
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
| | - Jielin Jiang
- Menghai Tea Factory·TAETEA Group, Xishuangbanna Dai Autonomous Prefecture, Yunnan 666200, China
| | - Zhonghua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha 410128, China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
32
|
Koper J, Troise AD, Loonen LMP, Vitaglione P, Capuano E, Fogliano V, Wells JM. Tryptophan Supplementation Increases the Production of Microbial-Derived AhR Agonists in an In Vitro Simulator of Intestinal Microbial Ecosystem. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3958-3968. [PMID: 35344652 PMCID: PMC8991005 DOI: 10.1021/acs.jafc.1c04145] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The aryl hydrocarbon receptor (AhR) plays an important role in intestinal homeostasis, and some microbial metabolites of tryptophan are known AhR agonists. In this study, we assessed the impact of tryptophan supplementation on the formation of tryptophan metabolites, AhR activation, and microbiota composition in the simulator of the human intestinal microbial ecosystem (SHIME). AhR activation, microbial composition, and tryptophan metabolites were compared during high tryptophan supplementation (4 g/L tryptophan), control, and wash-out periods. During tryptophan supplementation, the concentration of several tryptophan metabolites was increased compared to the control and wash-out period, but AhR activation by fermenter supernatant was significantly decreased. This was due to the higher levels of tryptophan, which was found to be an antagonist of AhR signaling. Tryptophan supplementation induced most microbial changes in the transverse colon including increased relative abundance of lactobacillus. We conclude that tryptophan supplementation leads to increased formation of AhR agonists in the colon.
Collapse
Affiliation(s)
- Jonna
EB Koper
- Department
of Agrotechnology & Food Sciences, Wageningen
University, Wageningen 6708 WE, The Netherlands
- Department
of Animal Sciences, Wageningen University, Wageningen 6708 WD, The Netherlands
| | - Antonio Dario Troise
- Department
of Food Science, University of Naples “Federico
II”, Parco
Gussone 80055, Italy
| | - Linda MP Loonen
- Department
of Animal Sciences, Wageningen University, Wageningen 6708 WD, The Netherlands
| | - Paola Vitaglione
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Parco Gussone 80055, Italy
| | - Edoardo Capuano
- Department
of Agrotechnology & Food Sciences, Wageningen
University, Wageningen 6708 WE, The Netherlands
| | - Vincenzo Fogliano
- Department
of Agrotechnology & Food Sciences, Wageningen
University, Wageningen 6708 WE, The Netherlands
| | - Jerry M Wells
- Department
of Animal Sciences, Wageningen University, Wageningen 6708 WD, The Netherlands
| |
Collapse
|
33
|
Sharma VK, Singh TG, Prabhakar NK, Mannan A. Kynurenine Metabolism and Alzheimer's Disease: The Potential Targets and Approaches. Neurochem Res 2022; 47:1459-1476. [PMID: 35133568 DOI: 10.1007/s11064-022-03546-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
L-tryptophan, an essential amino acid, regulates protein homeostasis and plays a role in neurotransmitter-mediated physiological events. It also influences age-associated neurological alterations and neurodegenerative changes. The metabolism of tryptophan is carried majorly through the kynurenine route, leading to the production of several pharmacologically active enzymes, substrates, and metabolites. These metabolites and enzymes influence a variety of physiological and pathological outcomes of the majority of systems, including endocrine, haemopoietic, gastrointestinal, immunomodulatory, inflammatory, bioenergetic metabolism, and neuronal functions. An extensive literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on the kynurenine metabolites that influence cellular redox potential, immunoregulatory mechanisms, inflammatory pathways, cell survival channels, and cellular communication in close association with several neurodegenerative changes. The imbalanced state of kynurenine pathways has found a close association to several pathological disorders, including HIV infections, cancer, autoimmune disorders, neurodegenerative and neurological disorders including Parkinson's disease, epilepsy and has found special attention in Alzheimer's disease (AD). Kynurenine pathway (KP) is intricately linked to AD pathogenesis owing to the influence of kynurenine metabolites on excitotoxic neurotransmission, oxidative stress, uptake of neurotransmitters, and modulation of neuroinflammation, amyloid aggregation, microtubule disruption, and their ability to induce a state of dysbiosis. Pharmacological modulation of KP pathways has shown encouraging results, indicating that it may be a viable and explorable target for the therapy of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| | | | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
34
|
Emerging effects of tryptophan pathway metabolites and intestinal microbiota on metabolism and intestinal function. Amino Acids 2022; 54:57-70. [PMID: 35038025 DOI: 10.1007/s00726-022-03123-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/03/2022] [Indexed: 12/14/2022]
Abstract
The metabolism of dietary tryptophan occurs locally in the gut primarily via host enzymes, with ~ 5% metabolized by gut microbes. Three major tryptophan metabolic pathways are serotonin (beyond the scope of this review), indole, kynurenine and related derivatives. We introduce the gut microbiome, dietary tryptophan and the potential interplay of host and bacterial enzymes in tryptophan metabolism. Examples of bacterial transformation to indole and its derivative indole-3 propionic acid demonstrate associations with human metabolic disease and gut permeability, although causality remains to be determined. This review will focus on less well-known data, suggestive of local generation and functional significance in the gut, where kynurenine is converted to kynurenic acid and xanthurenic acid via enzymatic action present in both host and bacteria. Our functional data demonstrate a limited effect on intestinal epithelial cell monolayer permeability and on healthy mouse ileum. Other data suggest a modulatory effect on the microbiome, potentially in pathophysiology. Supportive of this, we found that the expression of mRNA for three kynurenine pathway enzymes were increased in colon from high-fat-fed mice, suggesting that this host pathway is perturbed in metabolic disease. These data, along with that from bacterial genomic analysis and germ-free mice, confirms expression and functional machinery of enzymes in this pathway. Therefore, the host and microbiota may play a significant dual role in either the production or regulation of these kynurenine metabolites which, in turn, can influence both host and microbiome, especially in the context of obesity and intestinal permeability.
Collapse
|
35
|
Esmaeili SA, Hajavi J. The role of indoleamine 2,3-dioxygenase in allergic disorders. Mol Biol Rep 2022; 49:3297-3306. [PMID: 35028850 DOI: 10.1007/s11033-021-07067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/08/2021] [Indexed: 01/08/2023]
Abstract
The amino acid tryptophan (TRP) is critical for the expansion and survival of cells. During the past few years, the manipulation of tryptophan metabolism via indoleamine 2,3 dioxygenase (IDO) has been presented as a significant regulatory mechanism for tolerance stimulation and the regulation of immune responses. Currently, a considerable number of studies suggest that the role of IDO in T helper 2 (Th2) cell regulation may be different from that of T helper 1 (Th1) immune responses. IDO acts as an immunosuppressive tolerogenic enzyme to decrease allergic responses through the stimulation of the Kynurenine-IDO pathway, the subsequent reduction of TRP, and the promotion of Kynurenine products. Kynurenine products motivate T-cell apoptosis and anergy, the propagation of Treg and Th17 cells, and the aberration of the Th1/Th2 response. We suggest that the IDO-kynurenine pathway can function as a negative reaction round for Th1 cells; however, it may play a different role in upregulating principal Th2 immune responses. In this review, we intend to integrate novel results on this pathway in correlation with allergic diseases.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jafar Hajavi
- Department of Basic Sciences, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Science, 9691793718, Gonabad, Iran.
| |
Collapse
|
36
|
Blood pressure and urine metabolite changes in spontaneously hypertensive rats treated with leaf extract of Ficus deltoidea var angustifolia. J Pharm Biomed Anal 2022; 210:114579. [PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
Collapse
|
37
|
Fonseca JR, Lucio M, Harir M, Schmitt-Kopplin P. Mining for Active Molecules in Probiotic Supernatant by Combining Non-Targeted Metabolomics and Immunoregulation Testing. Metabolites 2022; 12:metabo12010035. [PMID: 35050158 PMCID: PMC8778235 DOI: 10.3390/metabo12010035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic respiratory diseases such as asthma are highly prevalent in industrialized countries. As cases are expected to rise, there is a growing demand for alternative therapies. Our recent research on the potential benefits of probiotics suggests that they could prevent and reduce the symptoms of many diseases by modulating the host immune system with secreted metabolites. This article presents the first steps of the research that led us to identify the immunoregulatory bioactivity of the amino acid d-Trp reported in our previous study. Here we analyzed the cell culture metabolic footprinting of 25 commercially available probiotic strains to associate metabolic pathway activity information with their respective immune modulatory activity observed in vitro. Crude probiotic supernatant samples were processed in three different ways prior to untargeted analysis in positive and negative ionization mode by direct infusion ESI-FT-ICR-MS: protein precipitation and solid phase extraction (SPE) using HLB and CN-E sorbent cartridges. The data obtained were submitted to multivariate statistical analyses to distinguish supernatant samples into the bioactive and non-bioactive group. Pathway analysis using discriminant molecular features showed an overrepresentation of the tryptophan metabolic pathway for the bioactive supernatant class, suggesting that molecules taking part in that pathway may be involved in the immunomodulatory activity observed in vitro. This work showcases the potential of metabolomics to drive product development and novel bioactive compound discovery out of complex biological samples in a top-down manner.
Collapse
Affiliation(s)
- Juliano Roldan Fonseca
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.R.F.); (M.H.); (P.S.-K.)
| | - Marianna Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.R.F.); (M.H.); (P.S.-K.)
- Correspondence: ; Tel.: +49-89-3187-3775
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.R.F.); (M.H.); (P.S.-K.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (J.R.F.); (M.H.); (P.S.-K.)
- Analytical Food Chemistry, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
38
|
Deng J, Lu C, Zhao Q, Chen K, Ma S, Li Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J Periodontal Res 2021; 57:246-255. [PMID: 34878170 DOI: 10.1111/jre.12958] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Periodontopathic bacteria constantly stimulate the host, which causes an immune response, leading to host-induced periodontal tissue damage. The complex interaction and imbalance between Th17 and Treg cells may be critical in the pathogenesis of periodontitis. Furthermore, the RANKL/RANK/OPG system plays a significant role in periodontitis bone metabolism, and its relationship with the Th17/Treg cell imbalance may be a bridge between periodontal bone metabolism and the immune system. This article reviews the literature related to the Th17/Treg cell imbalance mediated by pathogenic periodontal microbes, and its mechanism involving RANKL/RANK/OPG in periodontitis bone metabolism, in an effort to provide new ideas for the study of the immunopathological mechanism of periodontitis.
Collapse
Affiliation(s)
- Jianwen Deng
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Kexiao Chen
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Shuyuan Ma
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Jinan University, Chaozhou, China
| |
Collapse
|
39
|
Hon KW, Zainal Abidin SA, Othman I, Naidu R. The Crosstalk Between Signaling Pathways and Cancer Metabolism in Colorectal Cancer. Front Pharmacol 2021; 12:768861. [PMID: 34887764 PMCID: PMC8650587 DOI: 10.3389/fphar.2021.768861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers worldwide. Metabolic reprogramming represents an important cancer hallmark in CRC. Reprogramming core metabolic pathways in cancer cells, such as glycolysis, glutaminolysis, oxidative phosphorylation, and lipid metabolism, is essential to increase energy production and biosynthesis of precursors required to support tumor initiation and progression. Accumulating evidence demonstrates that activation of oncogenes and loss of tumor suppressor genes regulate metabolic reprogramming through the downstream signaling pathways. Protein kinases, such as AKT and c-MYC, are the integral components that facilitate the crosstalk between signaling pathways and metabolic pathways in CRC. This review provides an insight into the crosstalk between signaling pathways and metabolic reprogramming in CRC. Targeting CRC metabolism could open a new avenue for developing CRC therapy by discovering metabolic inhibitors and repurposing protein kinase inhibitors/monoclonal antibodies.
Collapse
Affiliation(s)
| | | | | | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
40
|
The effect of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase gene overexpression in the kynurenine pathway on the expression levels of indoleamine 2,3-dioxygenase 1 and interferon-γ in inflammatory conditions: an in vitro study. Mol Biol Rep 2021; 49:1103-1111. [PMID: 34775574 DOI: 10.1007/s11033-021-06935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) can be involved in the pathogenesis of neurodegenerative diseases and excessive neurotoxic metabolite production. This study aimed to evaluate the effects of overexpression of murine 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (Acmsd) gene in inflammatory conditions in RAW 264.7 cell line to present more information about the effect of this gene on inflammatory conditions and the KP cycle. METHODS AND RESULTS The coding sequence of the Acmsd gene was cloned into pCMV6-AC-IRES-GFP expression vector with a green fluorescent protein (GFP) marker. To simulate inflammatory conditions, RAW 264.7 macrophage cells were stimulated by Lipopolysaccharide (LPS) 24 h before transfection, and transfected by Polyethyleneimine (PEI) with constructed plasmids expressing the Acmsd gene. The effect of Acmsd gene expression level on murine Interferon-gamma (Ifn-γ) and murine Indoleamine 2,3-dioxygenase 1 (Ido1) gene expression level was investigated by Real-Time PCR. According to the results of this study, good transfection efficiency was observed 72 h after transfection, and Acmsd expression level increased 29-fold (P < 0.001) in transfected LPS-stimulated cells compared to the control group (LPS-stimulated cells that were not transfected). Additionally, increased Acmsd expression level significantly down-regulated Ifn-γ (P < 0.001) and Ido1 (P < 0.01) expression level in transfected LPS-stimulated cells compared to LPS-stimulated cells. CONCLUSIONS Acmsd gene overexpression in inflammatory conditions can reduce the expression levels of the Ido1 gene, and its regulator, Ifn-γ. Consequently, it may be considered as a novel regulatory factor in the KP balance.
Collapse
|
41
|
Effect of microbiota metabolites on the progression of chronic hepatitis B virus infection. Hepatol Int 2021; 15:1053-1067. [PMID: 34596865 DOI: 10.1007/s12072-021-10230-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/01/2021] [Indexed: 02/08/2023]
Abstract
Accumulating evidence shows that the intestinal microbiota is closely related to the pathophysiology and the disease progression of chronic hepatitis B virus (HBV) infection. The intestinal microbiota acts on the host through its metabolites. This review aimed to discuss the effects of gut microbiota metabolites on the disease progression of chronic HBV infection. A literature search on PubMed database and Wiley Online Library with pre-specified criteria yielded 96 unique results. After consensus by all authors, the contents from 86 original publications were extracted and included in this review. In liver disease with HBV infection, the intestinal microbiota changed in different stages and affected the production of bacterial metabolites. The abundance of bacteria producing short-chain fatty acids such as butyrate reduced, which was associated with bacterial translocation and the progression of liver disease. The intestinal microbiota-bile acid-host axis was destroyed, affecting the progression of the disease. Under the control of intestinal microbiota, tryptophan affected the gut-liver axis through three main metabolic pathways, among which the kynurenine pathway was closely related to the immune response of hepatitis B. The level of trimethylamine-N-oxide decreased in liver cancer with HBV infection and were used as a potential biomarker of liver cancer. Vitamin deficiencies, including those of vitamin D and vitamin A related to microbiota, were common and associated with survival. Hydrogen sulfide regulated by the intestinal microbiota was also closely related to the gut-liver axis. In liver disease with hepatitis B infection, the intestinal microbiota is imbalanced, and a variety of intestinal microbiota metabolites participate in the occurrence and development of the disease.
Collapse
|
42
|
Avila-Magaña V, Kamel B, DeSalvo M, Gómez-Campo K, Enríquez S, Kitano H, Rohlfs RV, Iglesias-Prieto R, Medina M. Elucidating gene expression adaptation of phylogenetically divergent coral holobionts under heat stress. Nat Commun 2021; 12:5731. [PMID: 34593802 PMCID: PMC8484447 DOI: 10.1038/s41467-021-25950-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
As coral reefs struggle to survive under climate change, it is crucial to know whether they have the capacity to withstand changing conditions, particularly increasing seawater temperatures. Thermal tolerance requires the integrative response of the different components of the coral holobiont (coral host, algal photosymbiont, and associated microbiome). Here, using a controlled thermal stress experiment across three divergent Caribbean coral species, we attempt to dissect holobiont member metatranscriptome responses from coral taxa with different sensitivities to heat stress and use phylogenetic ANOVA to study the evolution of gene expression adaptation. We show that coral response to heat stress is a complex trait derived from multiple interactions among holobiont members. We identify host and photosymbiont genes that exhibit lineage-specific expression level adaptation and uncover potential roles for bacterial associates in supplementing the metabolic needs of the coral-photosymbiont duo during heat stress. Our results stress the importance of integrative and comparative approaches across a wide range of species to better understand coral survival under the predicted rise in sea surface temperatures.
Collapse
Affiliation(s)
- Viridiana Avila-Magaña
- grid.29857.310000 0001 2097 4281Biology Department, The Pennsylvania State University, University Park, PA USA ,grid.266190.a0000000096214564Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, CO USA
| | - Bishoy Kamel
- grid.266832.b0000 0001 2188 8502Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM USA ,grid.184769.50000 0001 2231 4551Present Address: US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael DeSalvo
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, CA USA ,grid.418190.50000 0001 2187 0556Thermo Fisher Scientific, Carlsbad, CA USA
| | - Kelly Gómez-Campo
- grid.29857.310000 0001 2097 4281Biology Department, The Pennsylvania State University, University Park, PA USA
| | - Susana Enríquez
- grid.9486.30000 0001 2159 0001Unidad Académica de Sistemas Arrecifales Puerto Morelos, ICMyL, Universidad Nacional Autónoma de México, Cancún, Mexico
| | - Hiroaki Kitano
- grid.452864.9The Systems Biology Institute, Tokyo, Japan ,grid.250464.10000 0000 9805 2626Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Rori V. Rohlfs
- grid.263091.f0000000106792318Department of Biology, San Francisco State University, San Francisco, CA USA
| | - Roberto Iglesias-Prieto
- grid.29857.310000 0001 2097 4281Biology Department, The Pennsylvania State University, University Park, PA USA
| | - Mónica Medina
- grid.29857.310000 0001 2097 4281Biology Department, The Pennsylvania State University, University Park, PA USA
| |
Collapse
|
43
|
López-Rodríguez JC, Rodríguez-Coira J, Benedé S, Barbas C, Barber D, Villalba MT, Escribese MM, Villaseñor A, Batanero E. Comparative metabolomics analysis of bronchial epithelium during barrier establishment after allergen exposure. Clin Transl Allergy 2021; 11:e12051. [PMID: 34582104 PMCID: PMC9082991 DOI: 10.1002/clt2.12051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Background Several studies have shown a correlation between an altered metabolome and respiratory allergies. The epithelial barrier hypothesis proposes that an epithelial barrier dysfunction can result in allergic diseases development. Der p 1 allergen from house dust mite is a renowned epithelial barrier disruptor and allergy initiator due to its cysteine‐protease activity. Here, we compared the metabolic profile of the bronchial epithelium exposed or not to Der p 1 during barrier establishment to understand its active role in allergy development. Methods Calu‐3 cells were cultivated in air‐liquid interface cultures and exposed to either Der p 1 or Ole e 1 allergens during barrier establishment. The comparative metabolomics analysis of apical and basolateral media were performed using liquid chromatography and capillary electrophoresis both coupled to mass spectrometry. Results We showed that epithelial barrier disruption by Der p 1 was associated with a specific metabolic profile, which was highly dependent on the state of the epithelium at the time of contact. Moreover, an apical‐basolateral distribution of the metabolites was also observed, indicating a compartmentalization of the response with differential metabolic patterns. A number of metabolites were changed by Der p 1, mainly related to amino acids metabolism, such as L‐arginine, L‐kynurenine and L‐methionine. Conclusion This work is the first report on the metabolic response in human bronchial epithelial cells associated with cysteine‐protease Der p 1 activity, which could contribute to allergy development. Moreover, it supports a reformulated epithelial barrier hypothesis that might help to explain allergies and their increasing prevalence.
Collapse
Affiliation(s)
- Juan Carlos López-Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Rodríguez-Coira
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain.,Instituto de Medicina Molecular Aplicada (IMMA), Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Sara Benedé
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
| | - Domingo Barber
- Instituto de Medicina Molecular Aplicada (IMMA), Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Teresa Villalba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - María Marta Escribese
- Instituto de Medicina Molecular Aplicada (IMMA), Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain.,Instituto de Medicina Molecular Aplicada (IMMA), Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Eva Batanero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
44
|
Hossain FMA, Park SO, Kim HJ, Eo JC, Choi JY, Tanveer M, Uyangaa E, Kim K, Eo SK. Indoleamine 2,3-Dioxygenase in Hematopoietic Stem Cell-Derived Cells Suppresses Rhinovirus-Induced Neutrophilic Airway Inflammation by Regulating Th1- and Th17-Type Responses. Immune Netw 2021; 21:e26. [PMID: 34522439 PMCID: PMC8410990 DOI: 10.4110/in.2021.21.e26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Asthma exacerbations are a major cause of intractable morbidity, increases in health care costs, and a greater progressive loss of lung function. Asthma exacerbations are most commonly triggered by respiratory viral infections, particularly with human rhinovirus (hRV). Respiratory viral infections are believed to affect the expression of indoleamine 2,3-dioxygenase (IDO), a limiting enzyme in tryptophan catabolism, which is presumed to alter asthmatic airway inflammation. Here, we explored the detailed role of IDO in the progression of asthma exacerbations using a mouse model for asthma exacerbation caused by hRV infection. Our results reveal that IDO is required to prevent neutrophilic inflammation in the course of asthma exacerbation caused by an hRV infection, as corroborated by markedly enhanced Th17- and Th1-type neutrophilia in the airways of IDO-deficient mice. This neutrophilia was closely associated with disrupted expression of tight junctions and enhanced expression of inflammasome-related molecules and mucin-inducing genes. In addition, IDO ablation enhanced allergen-specific Th17- and Th1-biased CD4+ T-cell responses following hRV infection. The role of IDO in attenuating Th17- and Th1-type neutrophilic airway inflammation became more apparent in chronic asthma exacerbations after repeated allergen exposures and hRV infections. Furthermore, IDO enzymatic induction in leukocytes derived from the hematopoietic stem cell (HSC) lineage appeared to play a dominant role in attenuating Th17- and Th1-type neutrophilic inflammation in the airway following hRV infection. Therefore, IDO activity in HSC-derived leukocytes is required to regulate Th17- and Th1-type neutrophilic inflammation in the airway during asthma exacerbations caused by hRV infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Hyo Jin Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Jun Cheol Eo
- Division of Biotechnology, College of Environmental & Biosource Science, Jeonbuk National University, Iksan 54596, Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Maryum Tanveer
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Erdenebelig Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea
| |
Collapse
|
45
|
Raybould HE, Zumpano DL. Microbial metabolites and the vagal afferent pathway in the control of food intake. Physiol Behav 2021; 240:113555. [PMID: 34375620 DOI: 10.1016/j.physbeh.2021.113555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is able to influence overall energy balance via effects on both energy intake and expenditure, and is a peripheral target for potential obesity therapies. However, the precise mechanism by which the gut microbiota influences energy intake and body weight regulation is not clear. Microbes use small molecules to communicate with each other; some of these molecules are ligands at mammalian receptors and this may be a mechanism by which microbes communicate with the host. Here we briefly review the literature showing beneficial effects of microbial metabolites on food intake regulation and examine the potential role for vagal afferent neurons, the gut-brain axis.
Collapse
Affiliation(s)
- Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA.
| | - Danielle L Zumpano
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
46
|
Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behav Brain Res 2021; 414:113471. [PMID: 34280459 DOI: 10.1016/j.bbr.2021.113471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/19/2022]
Abstract
The aromatic amino acid tryptophan (Trp) is a precursor for multiple metabolites that can steer proper immune and neurodevelopment as well as social behavior in later life. Dysregulation in the Trp metabolic pathways and abundance of Trp or its derivatives, including indoles, kynurenine (Kyn), and particularly serotonin, has been associated with behavioral deficits and neuropsychiatric disorders including autism spectrum disorders (ASD) and schizophrenia. Previously, we have shown that prenatal stress (PNS) alters placental Trp and serotonin, and reduces Trp-metabolizing members of the maternal colonic microbiota. Given that PNS also results in alterations in offspring neurodevelopment, behavior and immune function, we hypothesized that PNS affects Trp metabolism and transport in both the maternal and fetal compartments, and that these alterations continue into adolescence. We surmised that this is due to reductions in Trp-metabolizing microbes that would otherwise reduce the Trp pool under normal metabolic conditions. To test this, pregnant mice were exposed to a restraint stressor and gene expression of enzymes involved in Trp and serotonin metabolism were measured. Specifically, tryptophan 2,3-dioxygenase, aryl hydrocarbon receptor, and solute carrier proteins, were altered due to PNS both prenatally and postnatally. Additionally, Parasutterella and Bifidobacterium, which metabolize Trp in the gut, were reduced in both the dam and the offspring. Together, the reductions of Trp-associated microbes and concomitant dysregulation in Trp metabolic machinery in dam and offspring suggest that PNS-induced Trp metabolic dysfunction may mediate aberrant fetal neurodevelopment.
Collapse
|
47
|
Wang A, Pi Z, Liu S, Zheng Z, Liu Z, Song F. Mass spectrometry-based urinary metabolomics for exploring the treatment effects of Radix ginseng-Schisandra chinensis herb pair on Alzheimer's disease in rats. J Sep Sci 2021; 44:3158-3166. [PMID: 34110709 DOI: 10.1002/jssc.202100061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/30/2021] [Accepted: 06/08/2021] [Indexed: 11/06/2022]
Abstract
Herb pairs are the unique combinations of two relatively fixed herbs, intrinsically convey the basic idea of traditional Chinese medicine prescriptions. The compatibility of Radix ginseng and Schisandra chinensis has been used in traditional Chinese medicine for treating Alzheimer's disease for many years. However, there are few studies on Radix ginseng-Schisandra chinensis herb pair, and the underlying action mechanism is still unclear. In this study, the mechanism of Radix ginseng-Schisandra chinensis herb pair on Alzheimer's disease was investigated by using the mass spectrometry-based urinary metabolomics method. Sixteen urinary endogenous metabolites were identified as potential biomarkers. Meanwhile, 10 biomarkers were quantified with tandem mass spectrometry. The study result showed that the brain pathologic symptoms of model rats were improved and the potential biomarkers were adjusted backward significantly after the herb pair administration. The metabolic pathways linked to the herb pair-regulated endogenous biomarkers included phenylalanine and tyrosine metabolism, tryptophan metabolism, purine metabolism, and so on. The above metabolic pathways reflected that Radix ginseng-Schisandra chinensis herb pair mainly regulates abnormal energy metabolism, reduces inflammation, and regulates gut microbiota and neurotransmitters in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Aimin Wang
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, P. R. China
| |
Collapse
|
48
|
Nutraceuticals as Potential Targets for the Development of a Functional Beverage for Improving Sleep Quality. BEVERAGES 2021. [DOI: 10.3390/beverages7020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Functional beverages can be a valuable component of the human diet with the ability to not only provide essential hydration but to deliver important bioactive compounds that can contribute to chronic disease treatment and prevention. One area of the functional beverage market that has seen an increase in demand in recent years are beverages that promote relaxation and sleep. Sleep is an essential biological process, with optimal sleep being defined as one of adequate duration, quality and timing. It is regulated by a number of neurotransmitters which are, in turn, regulated by dietary intake of essential bioactive compounds. This narrative review aimed to evaluate the latest evidence of the sleep promoting properties of a selection of bioactive compounds (such as L-theanine and L-tryptophan) for the development of a functional beverage to improve sleep quality; and the effectiveness of traditional sleep promoting beverages (such as milk and chamomile). Overall, the bioactive compounds identified in this review, play essential roles in the synthesis and regulation of important neurotransmitters involved in the sleep-wake cycle. There is also significant potential for their inclusion in a number of functional beverages as the main ingredient on their own or in combination. Future studies should consider dosage; interactions with the beverage matrix, medications and other nutraceuticals; bioavailability during storage and following ingestion; as well as the sensory profile of the developed beverages, among others, when determining their effectiveness in a functional beverage to improve sleep quality.
Collapse
|
49
|
Lau HX, El-Heis S, Yap QV, Chan YH, Tan CPT, Karnani N, Tan KML, Tham EH, Goh AEN, Teoh OH, Tan KH, Eriksson JG, Chong YS, Chong MFF, Van Bever H, Lee BW, Shek LP, Godfrey KM, Loo EXL. Role of maternal tryptophan metabolism in allergic diseases in the offspring. Clin Exp Allergy 2021; 51:1346-1360. [PMID: 34033173 DOI: 10.1111/cea.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Nicotinamide (vitamin B3) is a metabolite of tryptophan and dietary precursor of enzymes involved in many regulatory processes, which may influence fetal immune development. OBJECTIVE We examined whether maternal plasma concentrations of nicotinamide, tryptophan or nine related tryptophan metabolites during pregnancy were associated with the risk of development of infant eczema, wheeze, rhinitis or allergic sensitization. METHODS In the Growing Up in Singapore Towards Healthy Outcomes (GUSTO) study, we analysed the associations between maternal plasma levels of nicotinamide, tryptophan and tryptophan metabolites at 26-28 weeks of gestation and allergic outcomes collected through interviewer-administered questionnaires at multiple time-points and skin prick testing to egg, milk, peanut and mites at age 18 months. Multivariate analysis was undertaken adjusting for all metabolites measured and separately adjusting for relevant demographic and environmental exposures. Analyses were also adjusted for multiple comparisons using the false discovery method. RESULTS Tryptophan metabolites were evaluated in 976/1247 (78%) women enrolled in GUSTO. In multivariate analysis including all metabolites, maternal plasma 3-hydrokynurenine was associated with increased allergic sensitization at 18 months (AdjRR 2.6, 95% CI 1.3-5.2 for highest quartile) but the association with nicotinamide was not significant (AdjRR 1.8, 95% CI 0.9-3.6). In analysis adjusting for other exposures, both 3-hydrokynurenine and nicotinamide were associated with increased allergic sensitization (AdjRR 2.0, 95% CI 1.1-3.6 for both metabolites). High maternal plasma nicotinamide was associated with increased infant eczema diagnosis by 6 and 12 months, which was not significant when adjusting for all metabolites measured, but was significant when adjusting for relevant environmental and demographic exposures. Other metabolites measured were not associated with allergic sensitization or eczema, and maternal tryptophan metabolites were not associated with offspring rhinitis and wheeze. CONCLUSIONS AND CLINICAL RELEVANCE Maternal tryptophan metabolism during pregnancy may influence the development of allergic sensitization and eczema in infants.
Collapse
Affiliation(s)
- Hui Xing Lau
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Sarah El-Heis
- Medical Research Council Lifecourse Epidemiology Unit, Southampton, UK
| | - Qai Ven Yap
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Cheryl Pei Ting Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Karen Mei Ling Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Elizabeth Huiwen Tham
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore City, Singapore
| | - Anne Eng Neo Goh
- Allergy Service, Department of Paediatrics, KK Women's and Children's Hospital (KKWCH), Singapore City, Singapore
| | - Oon Hoe Teoh
- Respiratory Service, Department of Paediatrics, KK Women's and Children's Hospital (KKWCH), Singapore City, Singapore
| | - Kok Hian Tan
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital (KKWCH), Singapore City, Singapore
| | - Johan Gunnar Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City, Singapore.,Folkhälsan Research Center, Helsinki, Finland.,Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Department of Obstetrics & Gynaecology and Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore City, Singapore
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore City, Singapore
| | - Hugo Van Bever
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore City, Singapore
| | - Bee Wah Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Lynette P Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Keith M Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Evelyn Xiu Ling Loo
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| |
Collapse
|
50
|
Danilovich ME, Alberto MR, Juárez Tomás MS. Microbial production of beneficial indoleamines (serotonin and melatonin) with potential application to biotechnological products for human health. J Appl Microbiol 2021; 131:1668-1682. [PMID: 33484616 DOI: 10.1111/jam.15012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Micro-organisms have showed the ability to produce biologically active compounds associated with neurotransmission in higher organisms. In particular, serotonin- and melatonin-producing microbes are valuable sources for the development of eco-friendly bioproducts. Serotonin and melatonin are indoleamines that have received special attention due to their positive effects on human health. These biomolecules exert a critical role in several physiological or pathological processes, including some mental and neurological disorders. This article includes a review of the microbial production of serotonin and melatonin, their functions in micro-organisms and their potential uses as therapeutic and/or preventive agents to improve human health. A description of the quantification methods employed to detect indoleamines and the evidence found concerning their microbial production at laboratory and industrial scale-for application in biotechnological products-is also provided. The microbial ability to synthesize beneficial indoleamines should be further studied and harnessed, to allow the development of sustainable bioprocesses to produce foods and pharmaceuticals for human health.
Collapse
Affiliation(s)
- M E Danilovich
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)-CONICET, Tucumán, Argentina
| | - M R Alberto
- Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL)-CONICET, Tucumán, Argentina
| | - M S Juárez Tomás
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI)-CONICET, Tucumán, Argentina
| |
Collapse
|