1
|
Rados M, Landegger A, Schmutzler L, Rabidou K, Taschner-Mandl S, Fetahu IS. Natural killer cells in neuroblastoma: immunological insights and therapeutic perspectives. Cancer Metastasis Rev 2024; 43:1401-1417. [PMID: 39294470 PMCID: PMC11554946 DOI: 10.1007/s10555-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Natural killer (NK) cells have multifaceted roles within the complex tumor milieu. They are pivotal components of innate immunity and shape the dynamic landscape of tumor-immune cell interactions, and thus can be leveraged for use in therapeutic interventions. NK-based immunotherapies have had remarkable success in hematological malignancies, but these therapies are met with many challenges in solid tumors, including neuroblastoma (NB), a childhood tumor arising from the sympathetic nervous system. With a focus on NB, this review outlines the mechanisms employed by NK cells to recognize and eliminate malignant cells, delving into the dynamic relationship between ligand-receptor interactions, cytokines, and other molecules that facilitate the cross talk between NK and NB cells. We discuss the immunomodulatory functions of NK cells and the mechanisms that contribute to loss of this immunosurveillance in NB, with a focus on how this dynamic has been utilized in recent immunotherapy advancements for NB.
Collapse
Affiliation(s)
- Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Lukas Schmutzler
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Kimberlie Rabidou
- Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, USA
| | | | - Irfete S Fetahu
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Sahoo A, Gozlan EC, Song JJ, Angelakakis G, Yeagley M, Chobrutskiy BI, Huda TI, Blanck G. Survival Distinctions for Cases Representing Immunologically Cold Tumors via Intrinsic Disorder Assessments for Blood-Sourced TRB Variable Regions. Int J Mol Sci 2024; 25:11691. [PMID: 39519243 PMCID: PMC11547141 DOI: 10.3390/ijms252111691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
T cell receptor beta (TRB) sequences were recovered from the Cancer Genome Atlas Uveal Melanoma blood exome files. Intrinsic disorder scores for amino acid (AA) sequences of the entire TRB variable region were obtained and evaluated as potentially representative of overall survival (OS) distinctions, i.e., for cases representing the upper and lower 50th percentiles for intrinsic disorder scores. Analyses using four intrinsic disorder assessment tools indicated that a lower intrinsic disorder of the blood-sourced TRB variable regions, including continuous AA sequences of the V-gene segment, the complementarity-determining region-3, and the J-gene segment, was associated with a better OS probability (with log-rank p-values ranging from 0.002 to 0.014). We further determined that intrinsic disorder assessments could be used for OS stratification for a second, immunologically cold cancer: MYCN amplified neuroblastoma. Thus, intrinsic disorder assessments of blood-sourced, full TRB variable regions may provide a novel patient stratification approach for patients with immunologically cold cancers.
Collapse
Affiliation(s)
- Arpan Sahoo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - Etienne C. Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - Joanna J. Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - George Angelakakis
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - Michelle Yeagley
- University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Boris I. Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University Hospital, Portland, OR 97239, USA
| | - Taha I. Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (A.S.); (T.I.H.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
3
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
4
|
Mao C, Poimenidou M, Craig BT. Current Knowledge and Perspectives of Immunotherapies for Neuroblastoma. Cancers (Basel) 2024; 16:2865. [PMID: 39199637 PMCID: PMC11353182 DOI: 10.3390/cancers16162865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Neuroblastoma (NBL) cells highly express disialoganglioside GD2, which is restricted and weakly expressed in selected healthy cells, making it a desirable target of immunotherapy. Over the past two decades, application of dinutuximab, an anti-GD2 monoclonal antibody (mAb), has been one of the few new therapies to substantially improve outcomes to current levels. Given the persistent challenge of relapse and therapeutic resistance, there is an urgent need for new effective and tolerable treatment options for high-risk NBL. Recent breakthroughs in immune checkpoint inhibitor (ICI) therapeutics have not translated into high-risk NBL, like many other major pediatric solid tumors. Given the suppressed tumor microenvironment (TME), single ICIs like anti-CTLA4 and anti-PD1 have not demonstrated significant antitumor response rates. Meanwhile, emerging studies are reporting novel advancements in GD2-based therapies, targeted therapies, nanomedicines, and other immunotherapies such as adoptive transfer of natural killer (NK) cells and chimeric antigen receptors (CARs), and these hold interesting promise for the future of high-risk NBL patient care. Herein, we summarize the current state of the art in NBL therapeutic options and highlight the unique challenges posed by NBL that have limited the successful adoption of immune-modifying therapies. Through this review, we aim to direct the field's attention to opportunities that may benefit from a combination immunotherapy strategy.
Collapse
Affiliation(s)
- Chenkai Mao
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Maria Poimenidou
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian T. Craig
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Center for Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| |
Collapse
|
5
|
Miranda A, Pattnaik S, Hamilton PT, Fuss MA, Kalaria S, Laumont CM, Smazynski J, Mesa M, Banville A, Jiang X, Jenkins R, Cañadas I, Nelson BH. N-MYC impairs innate immune signaling in high-grade serous ovarian carcinoma. SCIENCE ADVANCES 2024; 10:eadj5428. [PMID: 38748789 PMCID: PMC11095474 DOI: 10.1126/sciadv.adj5428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
High-grade serous ovarian cancer (HGSC) is a challenging disease, especially for patients with immunologically "cold" tumors devoid of tumor-infiltrating lymphocytes (TILs). We found that HGSC exhibits among the highest levels of MYCN expression and transcriptional signature across human cancers, which is strongly linked to diminished features of antitumor immunity. N-MYC repressed basal and induced IFN type I signaling in HGSC cell lines, leading to decreased chemokine expression and T cell chemoattraction. N-MYC inhibited the induction of IFN type I by suppressing tumor cell-intrinsic STING signaling via reduced STING oligomerization, and by blunting RIG-I-like receptor signaling through inhibition of MAVS aggregation and localization in the mitochondria. Single-cell RNA sequencing of human clinical HGSC samples revealed a strong negative association between cancer cell-intrinsic MYCN transcriptional program and type I IFN signaling. Thus, N-MYC inhibits tumor cell-intrinsic innate immune signaling in HGSC, making it a compelling target for immunotherapy of cold tumors.
Collapse
Affiliation(s)
- Alex Miranda
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Swetansu Pattnaik
- The Kinghorn Cancer Centre and Cancer Division, Garvan Institute of Medical Research, 370 Victoria St, Darlinghurst, NSW, Australia
| | - Phineas T. Hamilton
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Shreena Kalaria
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
| | - Céline M. Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Monica Mesa
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| | - Allyson Banville
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xinpei Jiang
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Russell Jenkins
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Israel Cañadas
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brad H. Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada
| |
Collapse
|
6
|
Qin X, Lam A, Zhang X, Sengupta S, Iorgulescu JB, Ni H, Das S, Rager M, Zhou Z, Zuo T, Meara GK, Floru AE, Kemet C, Veerapaneni D, Kashy D, Lin L, Lloyd K, Kwok L, Smith KS, Nagaraju RT, Meijers R, Ceol C, Liu CT, Alexandrescu S, Wu CJ, Keskin DB, George RE, Feng H. CKLF instigates a "cold" microenvironment to promote MYCN-mediated tumor aggressiveness. SCIENCE ADVANCES 2024; 10:eadh9547. [PMID: 38489372 PMCID: PMC10942121 DOI: 10.1126/sciadv.adh9547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Solid tumors, especially those with aberrant MYCN activation, often harbor an immunosuppressive microenvironment to fuel malignant growth and trigger treatment resistance. Despite this knowledge, there are no effective strategies to tackle this problem. We found that chemokine-like factor (CKLF) is highly expressed by various solid tumor cells and transcriptionally up-regulated by MYCN. Using the MYCN-driven high-risk neuroblastoma as a model system, we demonstrated that as early as the premalignant stage, tumor cells secrete CKLF to attract CCR4-expressing CD4+ cells, inducing immunosuppression and tumor aggression. Genetic depletion of CD4+ T regulatory cells abolishes the immunorestrictive and protumorigenic effects of CKLF. Our work supports that disrupting CKLF-mediated cross-talk between tumor and CD4+ suppressor cells represents a promising immunotherapeutic approach to battling MYCN-driven tumors.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Andrew Lam
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Xu Zhang
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Satyaki Sengupta
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J. Bryan Iorgulescu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Molecular Diagnostics Laboratory, Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hongru Ni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Sanjukta Das
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- School of Biotechnology, KIIT University, Bhubanesw, India
| | - Madison Rager
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Tao Zuo
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Grace K. Meara
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alexander E. Floru
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Chinyere Kemet
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Divya Veerapaneni
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Daniel Kashy
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Liang Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Lauren Kwok
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kaylee S. Smith
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Raghavendar T. Nagaraju
- Faculty of Biology, Medicine and Health, Division of Cancer Sciences, University of Manchester, Manchester, UK
- Colorectal and Peritoneal Oncology Centre, The Christie NHS Foundation Trust, Manchester, UK
| | - Rob Meijers
- Institute for Protein Innovation, Boston, MA, USA
| | - Craig Ceol
- Department of Molecular, Cell and Cancer Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Derin B. Keskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Immunogenomics Laboratory, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
- Department of Computer Science, Metropolitan College, Boston University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology, Physiology & Biophysics and Medicine, Section of Hematology and Medical Oncology, Cancer Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Kwon Y, Choi Y, Kim M, Jo H, Jeong MS, Jung HS, Jeoung D. HDAC6-MYCN-CXCL3 axis mediates allergic inflammation and is necessary for allergic inflammation-promoted cellular interactions. Mol Immunol 2024; 166:1-15. [PMID: 38176167 DOI: 10.1016/j.molimm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Histone deacetylase 6 (HDAC6) has been shown to play an important role in allergic inflammation. This study hypothesized that novel downstream targets of HDAC6 would mediate allergic inflammation. Experiments employing HDAC6 knock out C57BL/6 mice showed that HDAC6 mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Antigen stimulation increased expression of N-myc (MYCN) and CXCL3 in an HDAC6-dependent manner in the bone marrow-derived mast cells. MYCN and CXCL3 were necessary for both PCA and PSA. The role of early growth response 3 (EGR3) in the regulation of HDAC6 expression has been reported. ChIP assays showed EGR3 as a direct regulator of MYCN. miR-34a-5p was predicted to be a negative regulator of MYCN. Luciferase activity assays showed miR-34a-5p as a direct regulator of MYCN. miR-34a-5p mimic negatively regulated PCA and PSA. MYCN decreased miR-34a-5p expression in antigen-stimulated rat basophilic leukemia cells (RBL2H3). MYCN was shown to bind to the promoter sequence of CXCL3. In an IgE-independent manner, recombinant CXCL3 protein increased expression of HDAC6, MYCN, and β-hexosaminidase activity in RBL2H3 cells. Mouse recombinant CXCL3 protein enhanced the angiogenic potential of the culture medium of RBL2H3. CXCL3 was necessary for the enhanced angiogenic potential of the culture medium of antigen-stimulated RBL2H3. The culture medium of RBL2H3 was able to induce M2 macrophage polarization in a CXCL3-dependent manner. Recombinant CXCL3 protein also increased the expression of markers of M2 macrophage. Thus, the identification of the novel role of HDAC6-MYCN-CXCL3 axis can help better understand the pathogenesis of anaphylaxis.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Yunji Choi
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Misun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Hyein Jo
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon 24341, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
8
|
Lim WC, Marques Da Costa ME, Godefroy K, Jacquet E, Gragert L, Rondof W, Marchais A, Nhiri N, Dalfovo D, Viard M, Labaied N, Khan AM, Dessen P, Romanel A, Pasqualini C, Schleiermacher G, Carrington M, Zitvogel L, Scoazec JY, Geoerger B, Salmon J. Divergent HLA variations and heterogeneous expression but recurrent HLA loss-of- heterozygosity and common HLA-B and TAP transcriptional silencing across advanced pediatric solid cancers. Front Immunol 2024; 14:1265469. [PMID: 38318504 PMCID: PMC10839790 DOI: 10.3389/fimmu.2023.1265469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.
Collapse
Affiliation(s)
- Wan Ching Lim
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | | | - Karine Godefroy
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Windy Rondof
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mathias Viard
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Nizar Labaied
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Asif M. Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | - Philippe Dessen
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Claudia Pasqualini
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Recherche Translationnelle en Oncologie Pédiatrique (RTOP), and SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| | - Mary Carrington
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, United States
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jerome Salmon
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
9
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
10
|
Wang H, Ding H, Xie M, Zhang L, Li T, Qin J, Chen X, He L. Correlations between contrast-enhanced CT-measured extracellular volume fraction, histopathological features, and MYCN amplification status in abdominal neuroblastoma: a retrospective study. Abdom Radiol (NY) 2023; 48:3441-3448. [PMID: 37452211 DOI: 10.1007/s00261-023-03998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
PURPOSE To retrospectively investigate the correlations between contrast-enhanced CT (CECT)-measured extracellular volume fraction (fECV) and histopathological features, as well as MYCN amplification status, in abdominal neuroblastoma. MATERIALS AND METHODS One hundred and forty-one patients with abdominal neuroblastoma who underwent CECT scanning were retrospectively enrolled. Calculation of fECV involved the measurement of CT values within regions of interest located within the neuroblastoma and aorta on both non-contrast-enhanced CT and equilibrium CECT. The correlations between fECV and various factors, including pathological subtype, mitosis karyorrhexis index (MKI), Shimada classification, MYCN amplification status, International Neuroblastoma Risk Group (INRG) stage, and risk group were analyzed using either the Mann-Whitney U test or Kruskal-Wallis test. RESULTS Neuroblastoma and ganglioneuroblastoma exhibited fECV values of 0.349 (0.252, 0.424) and 0.438 (0.327, 0.508), respectively, indicating a statistically significant difference (Z = 2.200, P = 0.028). Additionally, the fECV decreased significantly in neuroblastoma with high MKI (H = 8.314, P = 0.016) or unfavorable histology (Z = 3.880, P < 0.001), as well as in those with MYCN amplification (Z = 5.486, P < 0.001). Notably, a significant variation in fECV was observed among different INRG stages (H = 16.881, P <0.001) and risk groups (H = 29.014, P < 0.001). CONCLUSION CECT-derived fECV is associated with histopathological features, MYCN amplification status, INRG stage, and risk stratification of abdominal neuroblastoma, reflecting a potential correlation between the extracellular matrix and the biological behavior of neuroblastoma.
Collapse
Affiliation(s)
- Haoru Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China
| | - Hao Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China
| | - Mingye Xie
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China
| | - Li Zhang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China
| | - Ting Li
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China
| | - Jinjie Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China
| | - Xin Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China.
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136 Zhongshan Road 2, Yuzhong District, 400014, Chongqing, China.
| |
Collapse
|
11
|
Dabkowski TR, Varkhedi M, Song JJ, Gozlan EC, Blanck G. Neuroblastoma and Glioblastoma Cases With Amplified Oncogenes Have Reduced Numbers of Tumor-Resident Adaptive Immune Receptor Recombinations. JCO Precis Oncol 2023; 7:e2300057. [PMID: 38085056 DOI: 10.1200/po.23.00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 12/18/2023] Open
Abstract
PURPOSE In certain cancers, oncogene amplification is correlated with an immunologically cold or noninflamed, tumor immune microenvironment (TIME) and a worse prognosis, for example, in the case of MYCN-amplified neuroblastoma (NBL). However, for other cancer types, the relationship between oncogene amplification and immune response is more complicated or unresolved. One such cancer is glioblastoma multiforme (GBM), in which the epidermal growth factor receptor (EGFR) oncogene is commonly amplified. Unlike MYCN-amplified NBL, EGFR-amplified GBM has not been shown to correlate with a distinct survival probability. METHODS Given this contrasting state for NBL and GBM, we sought to apply a genomics approach to evaluating the immune response for cases with gene amplification. RESULTS Our results confirmed and added further specificity to the cold TIME of MYCN-amplified NBL. Moreover, we demonstrated a novel state of immunologically cold EGFR-amplified GBM tumors. CONCLUSION This approach to using copy number variation and immune receptor recombination read recovery levels to assess gene amplification and TIME, respectively, may be particularly efficient for the rapid evaluation of many other cancer types.
Collapse
Affiliation(s)
- Toriana R Dabkowski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Mallika Varkhedi
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Joanna J Song
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
12
|
Fetahu IS, Esser-Skala W, Dnyansagar R, Sindelar S, Rifatbegovic F, Bileck A, Skos L, Bozsaky E, Lazic D, Shaw L, Tötzl M, Tarlungeanu D, Bernkopf M, Rados M, Weninger W, Tomazou EM, Bock C, Gerner C, Ladenstein R, Farlik M, Fortelny N, Taschner-Mandl S. Single-cell transcriptomics and epigenomics unravel the role of monocytes in neuroblastoma bone marrow metastasis. Nat Commun 2023; 14:3620. [PMID: 37365178 PMCID: PMC10293285 DOI: 10.1038/s41467-023-39210-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.
Collapse
Affiliation(s)
- Irfete S Fetahu
- St. Anna Children's Cancer Research Institute, Vienna, Austria.
| | - Wolfgang Esser-Skala
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Rohit Dnyansagar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Samuel Sindelar
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Andrea Bileck
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Lukas Skos
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
| | - Eva Bozsaky
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Lisa Shaw
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Marcus Tötzl
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | | | - Marie Bernkopf
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Magdalena Rados
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Wolfgang Weninger
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Christopher Gerner
- University of Vienna, Department of Analytical Chemistry, Faculty of Chemistry, Vienna, Austria
- Joint Metabolomics Facility, University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ruth Ladenstein
- St. Anna Children's Hospital and St. Anna Children's Cancer Research Institute, Department of Studies and Statistics for Integrated Research and Projects, Vienna, Austria
- Medical University of Vienna, Department of Pediatrics, Vienna, Austria
| | - Matthias Farlik
- Medical University of Vienna, Department of Dermatology, Vienna, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria.
| | | |
Collapse
|
13
|
Rivera Z, Escutia C, Madonna MB, Gupta KH. Biological Insight and Recent Advancement in the Treatment of Neuroblastoma. Int J Mol Sci 2023; 24:ijms24108470. [PMID: 37239815 DOI: 10.3390/ijms24108470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the most frequent solid tumors in children is neuroblastoma, which has a variety of clinical behaviors that are mostly influenced by the biology of the tumor. Unique characteristics of neuroblastoma includes its early age of onset, its propensity for spontaneous tumor regression in newborns, and its high prevalence of metastatic disease at diagnosis in individuals older than 1 year of age. Immunotherapeutic techniques have been added to the previously enlisted chemotherapeutic treatments as therapeutic choices. A groundbreaking new treatment for hematological malignancies is adoptive cell therapy, specifically chimeric antigen receptor (CAR) T cell therapy. However, due to the immunosuppressive nature of the tumor microenvironment (TME) of neuroblastoma tumor, this treatment approach faces difficulties. Numerous tumor-associated genes and antigens, including the MYCN proto-oncogene (MYCN) and disialoganglioside (GD2) surface antigen, have been found by the molecular analysis of neuroblastoma cells. The MYCN gene and GD2 are two of the most useful immunotherapy findings for neuroblastoma. The tumor cells devise numerous methods to evade immune identification or modify the activity of immune cells. In addition to addressing the difficulties and potential advancements of immunotherapies for neuroblastoma, this review attempts to identify important immunological actors and biological pathways involved in the dynamic interaction between the TME and immune system.
Collapse
Affiliation(s)
- Zoriamin Rivera
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Carlos Escutia
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mary Beth Madonna
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal H Gupta
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
14
|
Valind A, Verhoeven BM, Enoksson J, Karlsson J, Christensson G, Mañas A, Aaltonen K, Jansson C, Bexell D, Baryawno N, Gisselsson D, Hagerling C. Macrophage infiltration promotes regrowth in MYCN-amplified neuroblastoma after chemotherapy. Oncoimmunology 2023; 12:2184130. [PMID: 36875552 PMCID: PMC9980604 DOI: 10.1080/2162402x.2023.2184130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Despite aggressive treatment, the 5-year event-free survival rate for children with high-risk neuroblastoma is <50%. While most high-risk neuroblastoma patients initially respond to treatment, often with complete clinical remission, many eventually relapse with therapy-resistant tumors. Novel therapeutic alternatives that prevent the recurrence of therapy-resistant tumors are urgently needed. To understand the adaptation of neuroblastoma under therapy, we analyzed the transcriptomic landscape in 46 clinical tumor samples collected before (PRE) or after (POST) treatment from 22 neuroblastoma patients. RNA sequencing revealed that many of the top-upregulated biological processes in POST MYCN amplified (MNA+) tumors compared to PRE MNA+ tumors were immune-related, and there was a significant increase in numerous genes associated with macrophages. The infiltration of macrophages was corroborated by immunohistochemistry and spatial digital protein profiling. Moreover, POST MNA+ tumor cells were more immunogenic compared to PRE MNA+ tumor cells. To find support for the macrophage-induced outgrowth of certain subpopulations of immunogenic tumor cells following treatment, we examined the genetic landscape in multiple clinical PRE and POST tumor samples from nine neuroblastoma patients revealing a significant correlation between an increased amount of copy number aberrations (CNA) and macrophage infiltration in POST MNA+ tumor samples. Using an in vivo neuroblastoma patient-derived xenograft (PDX) chemotherapy model, we further show that inhibition of macrophage recruitment with anti-CSF1R treatment prevents the regrowth of MNA+ tumors following chemotherapy. Taken together, our work supports a therapeutic strategy for fighting the relapse of MNA+ neuroblastoma by targeting the immune microenvironment.
Collapse
Affiliation(s)
- Anders Valind
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden.,Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Healthy, Karolinska Institute, Stockholm, Sweden
| | - Jens Enoksson
- Department of Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Jenny Karlsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden
| | - Gustav Christensson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caroline Jansson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Healthy, Karolinska Institute, Stockholm, Sweden
| | - David Gisselsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden.,Department of Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| | - Catharina Hagerling
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Sweden Karolinska Institute, Lund, Sweden.,Department of Pathology, Laboratory Medicine, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
15
|
Sherif S, Roelands J, Mifsud W, Ahmed EI, Raynaud CM, Rinchai D, Sathappan A, Maaz A, Saleh A, Ozer E, Fakhro KA, Mifsud B, Thorsson V, Bedognetti D, Hendrickx WRL. The immune landscape of solid pediatric tumors. J Exp Clin Cancer Res 2022; 41:199. [PMID: 35690832 PMCID: PMC9188257 DOI: 10.1186/s13046-022-02397-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Large immunogenomic analyses have demonstrated the prognostic role of the functional orientation of the tumor microenvironment in adult solid tumors, this variable has been poorly explored in the pediatric counterpart.
Methods
We performed a systematic analysis of public RNAseq data (TARGET) for five pediatric tumor types (408 patients): Wilms tumor (WLM), neuroblastoma (NBL), osteosarcoma (OS), clear cell sarcoma of the kidney (CCSK) and rhabdoid tumor of the kidney (RT). We assessed the performance of the Immunologic Constant of Rejection (ICR), which captures an active Th1/cytotoxic response. We also performed gene set enrichment analysis (ssGSEA) and clustered more than 100 well characterized immune traits to define immune subtypes and compared their outcome.
Results
A higher ICR score was associated with better survival in OS and high risk NBL without MYCN amplification but with poorer survival in WLM. Clustering of immune traits revealed the same five principal modules previously described in adult tumors (TCGA). These modules divided pediatric patients into six immune subtypes (S1-S6) with distinct survival outcomes. The S2 cluster showed the best overall survival, characterized by low enrichment of the wound healing signature, high Th1, and low Th2 infiltration, while the reverse was observed in S4. Upregulation of the WNT/Beta-catenin pathway was associated with unfavorable outcomes and decreased T-cell infiltration in OS.
Conclusions
We demonstrated that extracranial pediatric tumors could be classified according to their immune disposition, unveiling similarities with adults’ tumors. Immunological parameters might be explored to refine diagnostic and prognostic biomarkers and to identify potential immune-responsive tumors.
Collapse
|
16
|
Du H, Cai W. Opsoclonus-myoclonus syndrome associated with neuroblastoma: Insights into antitumor immunity. Pediatr Blood Cancer 2022; 69:e29949. [PMID: 36094353 DOI: 10.1002/pbc.29949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/08/2022]
Abstract
Opsoclonus-myoclonus syndrome (OMS) is a rare neurological disorder. Half of these cases occur in children with neuroblastoma. Neuroblastoma patients with OMS usually have better oncological outcomes than those without OMS even after stratification by tumor stage and age, indicating that factors mediating OMS may also inhibit tumor cell proliferation. Although the mechanisms underlying OMS remain undefined, the cytokines and lymphocytes alterations in the cerebrospinal fluid support the concept that it is a pattern of neuroinflammation due to an autoimmune effect. The presence of lymphoid follicles consisting of follicular dendritic cells, CD20+ B lymphocytes, CD3+ T lymphocytes, and CD68+ macrophages in the tumor microenvironment in OMS-associated neuroblastoma support the autoimmune nature of this disorder. This review focuses on the clinical and genetic features of OMS-associated neuroblastoma, and we update readers on immune features of neuroblastoma with or without OMS to gain insights into antitumor immunity as it relates to tumor biology and prognosis.
Collapse
Affiliation(s)
- Hongmei Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weisong Cai
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Zhang X, Cui H, Zhang W, Li Z, Gao J. Engineered tumor cell-derived vaccines against cancer: The art of combating poison with poison. Bioact Mater 2022; 22:491-517. [PMID: 36330160 PMCID: PMC9619151 DOI: 10.1016/j.bioactmat.2022.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor vaccination is a promising approach for tumor immunotherapy because it presents high specificity and few side effects. However, tumor vaccines that contain only a single tumor antigen can allow immune system evasion by tumor variants. Tumor antigens are complex and heterogeneous, and identifying a single antigen that is uniformly expressed by tumor cells is challenging. Whole tumor cells can produce comprehensive antigens that trigger extensive tumor-specific immune responses. Therefore, tumor cells are an ideal source of antigens for tumor vaccines. A better understanding of tumor cell-derived vaccines and their characteristics, along with the development of new technologies for antigen delivery, can help improve vaccine design. In this review, we summarize the recent advances in tumor cell-derived vaccines in cancer immunotherapy and highlight the different types of engineered approaches, mechanisms, administration methods, and future perspectives. We discuss tumor cell-derived vaccines, including whole tumor cell components, extracellular vesicles, and cell membrane-encapsulated nanoparticles. Tumor cell-derived vaccines contain multiple tumor antigens and can induce extensive and potent tumor immune responses. However, they should be engineered to overcome limitations such as insufficient immunogenicity and weak targeting. The genetic and chemical engineering of tumor cell-derived vaccines can greatly enhance their targeting, intelligence, and functionality, thereby realizing stronger tumor immunotherapy effects. Further advances in materials science, biomedicine, and oncology can facilitate the clinical translation of tumor cell-derived vaccines.
Collapse
Affiliation(s)
- Xinyi Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China
| | - Zhaoshen Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Corresponding author. Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China,Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China,Corresponding author. Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200444, China.
| |
Collapse
|
18
|
Kacher J, Manches O, Aspord C, Sartelet H, Chaperot L. Impaired Antitumor Immune Response in MYCN-amplified Neuroblastoma Is Associated with Lack of CCL2 Secretion and Poor Dendritic Cell Recruitment. CANCER RESEARCH COMMUNICATIONS 2022; 2:577-589. [PMID: 36923280 PMCID: PMC10010397 DOI: 10.1158/2767-9764.crc-21-0134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
In neuroblastoma, MYCN amplification is associated with sparse immune infiltrate and poor prognosis. Dendritic cells (DC) are crucial immune sentinels but their involvement in neuroblastoma pathogenesis is poorly understood. We observed that the migration of monocytes, myeloid and plasmacytoid DC induced by MYCN-nonamplified neuroblastoma supernatants was abrogated by the addition of anti-CCL2 antibodies, demonstrating the involvement of the CCR2/CCL2 axis in their recruitment by these tumors. Using public RNA sequencing and microarray datasets, we describe lower level of expression of CCL2 in MYCN-amplified neuroblastoma tumors, and we propose a working model for T-cell recruitment in neuroblastoma tumors in which CCL2 produced by neuroblastoma cells initiates the recruitment of monocytes, myeloid and plasmacytoid DCs. Among these cells, the CD1c+ subset may recruit T cells by means of CCL19/CCL22 secretion. In vitro, supernatants from DCs cocultured with neuroblastoma cell lines and activated contain CCL22 and CCL19, and are chemotactic for both CD4+ and CD8+ T cells. We also looked at immunomodulation induced by neuroblastoma cell lines, and found MYCN-nonamplified neuroblastoma cell lines were able to create a microenvironment where DC activation is enhanced. Overall, our findings highlight a major role for CCL2/CCR2 axis in monocytes, myeloid and plasmacytoid cells recruitment toward MYCN-nonamplified neuroblastoma, allowing further immune cell recruitment, and show that these tumors present a microenvironment that can favor DC responses. Significance In MYCN-nonamplified neuroblastoma, CCL2 produced by neuroblastoma cells induces the recruitment of antigen-presenting cells (DCs and monocytes/macrophages), allowing infiltration by T cells, in link with CCL19 and CCL22 production, hence favoring immune responses.
Collapse
Affiliation(s)
- Jamila Kacher
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Olivier Manches
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Caroline Aspord
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| | - Hervé Sartelet
- Laboratoire de Biopathologie, CHRU de Nancy, Nancy, France.,Inserm U1256, Université de Lorraine, Nancy, France
| | - Laurence Chaperot
- Institute for Advanced Biosciences, Inserm U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France.,Etablissement Français du Sang Auvergne-Rhône-Alpes, Grenoble, France
| |
Collapse
|
19
|
Verhoeven BM, Mei S, Olsen TK, Gustafsson K, Valind A, Lindström A, Gisselsson D, Fard SS, Hagerling C, Kharchenko PV, Kogner P, Johnsen JI, Baryawno N. The immune cell atlas of human neuroblastoma. Cell Rep Med 2022; 3:100657. [PMID: 35688160 PMCID: PMC9245004 DOI: 10.1016/j.xcrm.2022.100657] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/26/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022]
Abstract
Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.
Collapse
Affiliation(s)
- Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anders Valind
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden; Department of Pediatrics, Skåne University Hospital, Lund, Sweden
| | - Axel Lindström
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - David Gisselsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - Shahrzad Shirazi Fard
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Catharina Hagerling
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, 221 85 Lund, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
20
|
Tang XX, Shimada H, Ikegaki N. Macrophage-mediated anti-tumor immunity against high-risk neuroblastoma. Genes Immun 2022; 23:129-140. [PMID: 35525858 PMCID: PMC9232393 DOI: 10.1038/s41435-022-00172-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/26/2022]
Abstract
Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy. Neuroblastoma lacks classical HLA Class I expression and exhibits low mutation burden, allowing neuroblastoma cells to evade CD8+ T cell-mediated immunity. Neuroblastoma cells do not express PD-L1, and tumor-associated macrophages are the predominant PD-L1+ cells in the tumor. In this study, we performed gene expression profiling and survival analyses on large neuroblastoma datasets to address the prognostic effect of PD-L1 gene expression and the possible involvement of the SLAMF7 pathway in the anti-neuroblastoma immunity. High-level expression of PD-L1 was found significantly associated with better outcome of high-risk neuroblastoma patients; two populations of PD-1+ PD-L1+ macrophages could be present in high-risk tumors with PD-1/PD-L1 ratios, ≈1 and >1. Patients with the PD-1/PD-L1 ratio >1 tumor showed inferior survival. High-level co-expression of SLAMF7 and SH2D1B was significantly associated with better survival of the high-risk neuroblastoma patients. Together, this study supports the hypothesis that macrophages are important effector cells in the anti-high-risk neuroblastoma immunity, that PD-1 blockade therapy can be beneficial to the high-risk neuroblastoma subset with the PD-1/PD-L1 expression ratio >1, and that SLAMF7 is a new therapeutic target of high-risk neuroblastoma.
Collapse
Affiliation(s)
- Xao X Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
21
|
Abstract
Purpose of Review The evolving information of the initiation, tumor cell heterogeneity, and plasticity of childhood neuroblastoma has opened up new perspectives for developing therapies based on detailed knowledge of the disease. Recent Findings The cellular origin of neuroblastoma has begun to unravel and there have been several reports on tumor cell heterogeneity based on transcriptional core regulatory circuitries that have given us important information on the biology of neuroblastoma as a developmental disease. This together with new insight of the tumor microenvironment which acts as a support for neuroblastoma growth has given us the prospect for designing better treatment approaches for patients with high-risk neuroblastoma. Here, we discuss these new discoveries and highlight some emerging therapeutic options. Summary Neuroblastoma is a disease with multiple facets. Detailed biological and molecular knowledge on neuroblastoma initiation, heterogeneity, and the communications between cells in the tumor microenvironment holds promise for better therapies.
Collapse
|
22
|
The Thermal Dose of Photothermal Therapy Generates Differential Immunogenicity in Human Neuroblastoma Cells. Cancers (Basel) 2022; 14:cancers14061447. [PMID: 35326601 PMCID: PMC8945975 DOI: 10.3390/cancers14061447] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/11/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy (PTT) is an effective method for tumor eradication and has been successfully combined with immunotherapy. However, besides its cytotoxic effects, little is known about the effect of the PTT thermal dose on the immunogenicity of treated tumor cells. Therefore, we administered a range of thermal doses using Prussian blue nanoparticle-based photothermal therapy (PBNP-PTT) and assessed their effects on tumor cell death and concomitant immunogenicity correlates in two human neuroblastoma cell lines: SH-SY5Y (MYCN-non-amplified) and LAN-1 (MYCN-amplified). PBNP-PTT generated thermal dose-dependent tumor cell killing and immunogenic cell death (ICD) in both tumor lines in vitro. However, the effect of the thermal dose on ICD and the expression of costimulatory molecules, immune checkpoint molecules, major histocompatibility complexes, an NK cell-activating ligand, and a neuroblastoma-associated antigen were significantly more pronounced in SH-SY5Y cells compared with LAN-1 cells, consistent with the high-risk phenotype of LAN-1 cells. In functional co-culture studies in vitro, T cells exhibited significantly higher cytotoxicity toward SH-SY5Y cells relative to LAN-1 cells at equivalent thermal doses. This preliminary report suggests the importance of moving past the traditional focus of using PTT solely for tumor eradication to one that considers the immunogenic effects of PTT thermal dose to facilitate its success in cancer immunotherapy.
Collapse
|
23
|
Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A 2022; 119:2102358119. [PMID: 35121657 PMCID: PMC8832972 DOI: 10.1073/pnas.2102358119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment, but many cancers are not impacted by currently available immunotherapeutic strategies. Here, we investigated inflammatory signaling pathways in neuroblastoma, a classically "cold" pediatric cancer. By testing the functional response of a panel of 20 diverse neuroblastoma cell lines to three different inflammatory stimuli, we found that all cell lines have intact interferon signaling, and all but one lack functional cytosolic DNA sensing via cGAS-STING. However, double-stranded RNA (dsRNA) sensing via Toll-like receptor 3 (TLR3) was heterogeneous, as was signaling through other dsRNA sensors and TLRs more broadly. Seven cell lines showed robust response to dsRNA, six of which are in the mesenchymal epigenetic state, while all unresponsive cell lines are in the adrenergic state. Genetically switching adrenergic cell lines toward the mesenchymal state fully restored responsiveness. In responsive cells, dsRNA sensing results in the secretion of proinflammatory cytokines, enrichment of inflammatory transcriptomic signatures, and increased tumor killing by T cells in vitro. Using single-cell RNA sequencing data, we show that human neuroblastoma cells with stronger mesenchymal signatures have a higher basal inflammatory state, demonstrating intratumoral heterogeneity in inflammatory signaling that has significant implications for immunotherapeutic strategies in this aggressive childhood cancer.
Collapse
|
24
|
Chung YM, Khan PP, Wang H, Tsai WB, Qiao Y, Yu B, Larrick JW, Hu MCT. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J Immunother Cancer 2021; 9:jitc-2021-002772. [PMID: 34887262 PMCID: PMC8663085 DOI: 10.1136/jitc-2021-002772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Stimulating antitumor immunity by blocking programmed death-1 (PD-1) or its ligand (programmed death-ligand 1 (PD-L1) is a promising antitumor therapy. However, numerous patients respond poorly to PD-1/PD-L1 blockade. Unresponsiveness to immune-checkpoint blockade (ICB) can cast significant challenges to the therapeutic options for patients with hard-to-treat tumors. There is an unmet clinical need to establish new therapeutic approaches for mitigating ICB unresponsiveness in patients. In this study, we investigated the efficacy and role of low-dose antineoplastic agent SN-38 or metformin in sensitizing unresponsive tumors to respond to ICB therapy. METHODS We assessed the significant pathological relationships between PD-L1 and FOXO3 expression and between PD-L1 and c-Myc or STAT3 expression in patients with various tumors. We determined the efficacy of low-dose SN-38 or metformin in sensitizing unresponsive tumors to respond to anti-PD-1 therapy in a syngeneic tumor system. We deciphered novel therapeutic mechanisms underlying the SN-38 and anti-PD-1 therapy-mediated engagement of natural killer (NK) or CD8+ T cells to infiltrate tumors and boost antitumor immunity. RESULTS We showed that PD-L1 protein level was inversely associated with FOXO3 protein level in patients with ovarian, breast, and hepatocellular tumors. Low-dose SN-38 or metformin abrogated PD-L1 protein expression, promoted FOXO3 protein level, and significantly increased the animal survival rate in syngeneic mouse tumor models. SN-38 or metformin sensitized unresponsive tumors responding to anti-PD-1 therapy by engaging NK or CD8+ T cells to infiltrate the tumor microenvironment (TME) and secret interferon-γ and granzyme B to kill tumors. SN-38 suppressed the levels of c-Myc and STAT3 proteins, which controlled PD-L1 expression. FOXO3 was essential for SN38-mediated PD-L1 suppression. The expression of PD-L1 was compellingly linked to that of c-Myc or STAT3 in patients with the indicated tumors. CONCLUSION We show that SN-38 or metformin can boost antitumor immunity in the TME by inhibiting c-Myc and STAT3 through FOXO3 activation. These results may provide novel insight into ameliorating patient response to overarching immunotherapy for tumors.
Collapse
Affiliation(s)
- Young Min Chung
- Panorama Research Institute, Sunnyvale, California, USA.,Panorama Institute of Molecular Medicine, Sunnyvale, California, USA.,Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Pragya P Khan
- Panorama Research Institute, Sunnyvale, California, USA.,Panorama Institute of Molecular Medicine, Sunnyvale, California, USA
| | - Hong Wang
- Panorama Research Institute, Sunnyvale, California, USA
| | - Wen-Bin Tsai
- Panorama Research Institute, Sunnyvale, California, USA.,The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yanli Qiao
- Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Bo Yu
- Panorama Research Institute, Sunnyvale, California, USA
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, California, USA.,Panorama Institute of Molecular Medicine, Sunnyvale, California, USA
| | - Mickey C-T Hu
- Panorama Research Institute, Sunnyvale, California, USA .,Panorama Institute of Molecular Medicine, Sunnyvale, California, USA.,Division of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
25
|
Tsakaneli A, Carregari VC, Morini M, Eva A, Cangemi G, Chayka O, Makarov E, Bibbò S, Capone E, Sala G, De Laurenzi V, Poon E, Chesler L, Pieroni L, Larsen MR, Palmisano G, Sala A. MYC regulates metabolism through vesicular transfer of glycolytic kinases. Open Biol 2021; 11:210276. [PMID: 34847775 PMCID: PMC8633805 DOI: 10.1098/rsob.210276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 01/07/2023] Open
Abstract
Amplification of the proto-oncogene MYCN is a key molecular aberration in high-risk neuroblastoma and predictive of poor outcome in this childhood malignancy. We investigated the role of MYCN in regulating the protein cargo of extracellular vesicles (EVs) secreted by tumour cells that can be internalized by recipient cells with functional consequences. Using a switchable MYCN system coupled to mass spectrometry analysis, we found that MYCN regulates distinct sets of proteins in the EVs secreted by neuroblastoma cells. EVs produced by MYCN-expressing cells or isolated from neuroblastoma patients induced the Warburg effect, proliferation and c-MYC expression in target cells. Mechanistically, we linked the cancer-promoting activity of EVs to the glycolytic kinase pyruvate kinase M2 (PKM2) that was enriched in EVs secreted by MYC-expressing neuroblastoma cells. Importantly, the glycolytic enzymes PKM2 and hexokinase II were detected in the EVs circulating in the bloodstream of neuroblastoma patients, but not in those of non-cancer children. We conclude that MYC-activated cancers might spread oncogenic signals to remote body locations through EVs.
Collapse
Affiliation(s)
- Alexia Tsakaneli
- Institute of Environment, Health and Societies, Department of Life Sciences, Brunel University London, UB8 3PH Uxbridge, UK
| | - Victor Corasolla Carregari
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374 Sao Paulo, Brazil
- Department of Experimental Neuroscience, Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Martina Morini
- Laboratorio di Biologia Molecolare, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - Alessandra Eva
- Laboratorio di Biologia Molecolare, IRCCS Istituto G. Gaslini, Genoa, Italy
| | | | - Olesya Chayka
- Institute of Environment, Health and Societies, Department of Life Sciences, Brunel University London, UB8 3PH Uxbridge, UK
| | - Evgeny Makarov
- Institute of Environment, Health and Societies, Department of Life Sciences, Brunel University London, UB8 3PH Uxbridge, UK
| | - Sandra Bibbò
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Center for Advanced Studies and Technology (CAST) Chieti, Italy
| | - Emily Capone
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Center for Advanced Studies and Technology (CAST) Chieti, Italy
| | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Center for Advanced Studies and Technology (CAST) Chieti, Italy
| | - Vincenzo De Laurenzi
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, Center for Advanced Studies and Technology (CAST) Chieti, Italy
| | - Evon Poon
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Louis Chesler
- Division of Clinical Studies and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Luisa Pieroni
- Department of Experimental Neuroscience, Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374 Sao Paulo, Brazil
- Department of Experimental Neuroscience, Proteomics and Metabonomics Unit, Fondazione Santa Lucia-IRCCS, Rome, Italy
| | - Arturo Sala
- Institute of Environment, Health and Societies, Department of Life Sciences, Brunel University London, UB8 3PH Uxbridge, UK
| |
Collapse
|
26
|
Schaafsma E, Jiang C, Cheng C. B cell infiltration is highly associated with prognosis and an immune-infiltrated tumor microenvironment in neuroblastoma. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34458583 PMCID: PMC8389852 DOI: 10.20517/2394-4722.2021.72] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aim Neuroblastoma is the most common extracranial solid tumor in children. Recent advances in immunotherapy Approaches, including in neuroblastoma, have shown the important role of the immune system in mounting an effective anti-tumor response. In this study, we aimed to provide a comprehensive investigation of immune cell infiltration in neuroblastoma utilizing a large number of gene expression datasets. Methods We inferred immune cell infiltration using an established immune inference method and evaluated the association between immune cell abundance and patient prognosis as well as common chromosomal abnormalities found in neuroblastoma. In addition, we evaluated co-infiltration patterns among distinct immune cell types. Results The infiltration of naïve B cells, NK cells, and CD8+ T cells was associated with improved patient prognosis. Naïve B cells were the most consistent indicator of prognosis and associated with an active immune tumor microenvironment. Patients with high B cell infiltration showed high co-infiltration of other immune cell types and the enrichment of immune-related pathways. The presence of high B cell infiltration was associated with both recurrence-free and overall survival, even after adjusting for clinical variables. Conclusion In this study, we have provided a comprehensive evaluation of immune cell infiltration in neuroblastoma using gene expression data. We propose an important role for B cells in the neuroblastoma tumor microenvironment and suggest that B cells can be used as a prognostic biomarker to predict recurrence-free and overall survival independently of currently utilized prognostic variables.
Collapse
Affiliation(s)
- Evelien Schaafsma
- Department of Molecular and Systems Biology, Dartmouth College, Hanover, NH 03755, USA.,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chao Cheng
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,The Institute for Clinical and Translational Research, Baylor College of Medicine, Houston TX, 77030, USA
| |
Collapse
|
27
|
Shukla A, Cano-Mejia J, Andricovich J, Burga RA, Sweeney EE, Fernandes R. An Engineered Prussian Blue Nanoparticles-based Nanoimmunotherapy Elicits Robust and Persistent Immunological Memory in a TH-MYCN Neuroblastoma Model. ADVANCED NANOBIOMED RESEARCH 2021; 1. [PMID: 34435194 DOI: 10.1002/anbr.202100021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A combination therapy using Prussian blue nanoparticles (PBNP) as photothermal therapy (PTT) agents coated with CpG oligodeoxynucleotides, an immunologic adjuvant, as a nanoimmunotherapy (CpG-PBNP-PTT) for neuroblastoma (NB) is described. NB driven by MYCN amplification confers high risk and correlates with a dismal prognosis, accounting for the majority of NB-related mortality. The efficacy of the CpG-PBNP-PTT nanoimmunotherapy in a clinically relevant, TH-MYCN murine NB model (9464D) overexpressing MYCN is tested. When administered to 9464D NB cells in vitro, CpG-PBNP-PTT triggers thermal dose-dependent immunogenic cell death and tumor cell priming for immune recognition in vitro, measured by the expression of specific costimulatory and antigen-presenting molecules. In vivo, intratumorally administered CpG-PBNP-PTT generates complete tumor regression and significantly higher long-term survival compared to controls. Furthermore, CpG-PBNP-PTT-treated mice reject tumor rechallenge. Ex vivo studies confirm these therapeutic responses result from the generation of robust T cell-mediated immunological memory. Consequently, in a synchronous 9464D tumor model, CpG-PBNP-PTT induces complete tumor regression on the treated flank and significantly slows tumor progression on the untreated flank, improving animal survival. These findings demonstrate that localized administration of the CpG-PBNP-PTT nanoimmunotherapy drives potent systemic T cell responses in solid tumors such as NB and therefore has therapeutic implications for NB.
Collapse
Affiliation(s)
- Anshi Shukla
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Juliana Cano-Mejia
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Jaclyn Andricovich
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA.,The Institute for Biomedical Sciences, The George Washington University,2300 Eye Street NW, Ross Hall Room 561, Washington, DC 20037, USA
| | - Rachel A Burga
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA.,The Institute for Biomedical Sciences, The George Washington University,2300 Eye Street NW, Ross Hall Room 561, Washington, DC 20037, USA
| | - Elizabeth E Sweeney
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| | - Rohan Fernandes
- The George Washington Cancer Center, The George Washington University, 800 22nd St NW, Science and Engineering Hall 8 Floor, Washington, DC 20052, USA
| |
Collapse
|
28
|
Zirngibl F, Ivasko SM, Grunewald L, Klaus A, Schwiebert S, Ruf P, Lindhofer H, Astrahantseff K, Andersch L, Schulte JH, Lode HN, Eggert A, Anders K, Hundsdoerfer P, Künkele A. GD2-directed bispecific trifunctional antibody outperforms dinutuximab beta in a murine model for aggressive metastasized neuroblastoma. J Immunother Cancer 2021; 9:jitc-2021-002923. [PMID: 34285106 PMCID: PMC8292814 DOI: 10.1136/jitc-2021-002923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background Neuroblastoma is the most common extracranial solid tumor of childhood. Patients with high-risk disease undergo extremely aggressive therapy and nonetheless have cure rates below 50%. Treatment with the ch14.18 monoclonal antibody (dinutuximab beta), directed against the GD2 disialoganglioside, improved 5-year event-free survival in high-risk patients when administered in postconsolidation therapy and was recently implemented in standard therapy. Relapse still occurred in 57% of these patients, necessitating new therapeutic options. Bispecific trifunctional antibodies (trAbs) are IgG-like molecules directed against T cells and cancer surface antigens, redirecting T cells (via their CD3 specificity) and accessory immune cells (via their functioning Fc-fragment) toward tumor cells. We sought proof-of-concept for GD2/CD3-directed trAb efficacy against neuroblastoma. Methods We used two GD2-specific trAbs differing only in their CD3-binding specificity: EKTOMUN (GD2/human CD3) and SUREK (GD2/mouse Cd3). This allowed trAb evaluation in human and murine experimental settings. Tumor-blind trAb and the ch14.18 antibody were used as controls. A coculture model of human peripheral blood mononuclear cells (PBMCs) and neuroblastoma cell lines was established to evaluate trAb antitumor efficacy by assessing expression of T-cell surface markers for activation, proinflammatory cytokine release and cytotoxicity assays. Characteristics of tumor-infiltrating T cells and response of neuroblastoma metastases to SUREK treatment were investigated in a syngeneic immunocompetent neuroblastoma mouse model mimicking minimal residual disease. Results We show that EKTOMUN treatment caused effector cell activation and release of proinflammatory cytokines in coculture with neuroblastoma cell lines. Furthermore, EKTOMUN mediated GD2-dependent cytotoxic effects in human neuroblastoma cell lines in coculture with PBMCs, irrespective of the level of target antigen expression. This effect was dependent on the presence of accessory immune cells. Treatment with SUREK reduced the intratumor Cd4/Cd8 ratio and activated tumor infiltrating T cells in vivo. In a minimal residual disease model for neuroblastoma, we demonstrated that single-agent treatment with SUREK strongly reduced or eliminated neuroblastoma metastases in vivo. SUREK as well as EKTOMUN demonstrated superior tumor control compared with the anti-GD2 antibody, ch14.18. Conclusions Here we provide proof-of-concept for EKTOMUN preclinical efficacy against neuroblastoma, presenting this bispecific trAb as a promising new agent to fight neuroblastoma.
Collapse
Affiliation(s)
- Felix Zirngibl
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sara M Ivasko
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Laura Grunewald
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anika Klaus
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silke Schwiebert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Ruf
- Trion Research, Martinsried, Germany
| | | | - Kathy Astrahantseff
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lena Andersch
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H Schulte
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| | - Holger N Lode
- Pediatric Hematology and Oncology, University Medicine Greifswald, Greifswald, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| | - Kathleen Anders
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| | - Patrick Hundsdoerfer
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Pediatrics, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Partner Site Berlin CCCC, German Cancer Consortium, Berlin, Berlin, Germany
| |
Collapse
|
29
|
Chang X, Bakay M, Liu Y, Glessner J, Rathi KS, Hou C, Qu H, Vaksman Z, Nguyen K, Sleiman PMA, Diskin SJ, Maris JM, Hakonarson H. Mitochondrial DNA Haplogroups and Susceptibility to Neuroblastoma. J Natl Cancer Inst 2021; 112:1259-1266. [PMID: 32096864 DOI: 10.1093/jnci/djaa024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Neuroblastoma is a childhood malignancy that arises from the developing sympathetic nervous system. Although mitochondrial dysfunctions have been implicated in the pathophysiology of neuroblastoma, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. METHODS A total of 2404 Caucasian children diagnosed with neuroblastoma and 9310 ancestry-matched controls were recruited at the Children's Hospital of Philadelphia. The mtDNA haplogroups were identified from SNP array data of two independent cohorts. We conducted a case-control study to explore potential associations of mtDNA haplogroups with the susceptibility of neuroblastoma. The genetic effect of neuroblastoma was measured by odds ratios (ORs) of mitochondrial haplogroups. All tests were two-sided. RESULTS Haplogroup K was statistically significantly associated with reduced risk of neuroblastoma in the discovery cohort consisting of 1474 cases and 5699 controls (OR = 0.72, 95% confidence interval [CI] = 0.57 to 0.90; P = 4.8 × 10-3). The association was replicated in an independent cohort (OR = 0.69, 95% CI = 0.53 to 0.92; P = .01) of 930 cases and 3611 controls. Pooled analysis was performed by combining the two data sets. The association remained highly statistically significant after correction for multiple testing (OR = 0.71, 95% CI = 0.59 to 0.84, P = 1.96 × 10-4, Pcorrected = .002). Further analysis focusing on neuroblastoma subtypes indicated haplogroup K was more associated with high-risk neuroblastoma (OR = 0.57, 95% CI = 0.43 to 0.76; P = 1.46 × 10-4) than low-risk and intermediate-risk neuroblastoma. CONCLUSIONS Haplogroup K is an independent genetic factor associated with reduced risk of developing neuroblastoma in European descents. These findings provide new insights into the genetic basis of neuroblastoma, implicating mitochondrial DNA encoded proteins in the etiology of neuroblastoma.
Collapse
Affiliation(s)
- Xiao Chang
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marina Bakay
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Huiqi Qu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sharon J Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
30
|
Tang XX, Shimada H, Ikegaki N. Clinical Relevance of CD4 Cytotoxic T Cells in High-Risk Neuroblastoma. Front Immunol 2021; 12:650427. [PMID: 33968044 PMCID: PMC8101497 DOI: 10.3389/fimmu.2021.650427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023] Open
Abstract
Neuroblastoma is the most common extracranial childhood solid tumor. The majority of high-risk neuroblastoma is resistant/refractory to the current high intensity therapy, and the survival of these patients remains poor for the last three decades. To effectively treat these extremely unfavorable neuroblastomas, innovative immunotherapy approaches would be the most promising. In this article, we discuss the identity of tumor-infiltrating effector cells and immunosuppressive cells in high-risk neuroblastoma. Neuroblastoma is unique in that it expresses little or no classical HLA Class I and II. In contrast, high-risk neuroblastomas express the stress-responsive non-classical Class I, HLA-E molecule. HLA-E is the ligand of activating receptors NKG2C/E that are expressed on memory NK cells, CD8+T cells and CD4 CTLs. By examining a comprehensive RNA-seq gene expression dataset, we detected relatively high levels of CD4 expression in high-risk neuroblastoma tissues. The majority of CD4+ cells were CD3+, and thus they were likely tumor-associated CD4+T cells. In addition, high-level of both CD4 and NKG2C/E expression was associated with prolonged survival of the high-risk neuroblastoma patients, but CD8 levels were not, further suggesting that the CD4+ NKG2C/E+ T cells or CD4 CTL conferred cytotoxicity against the neuroblastoma cells. However, this T cell mediated- "protective effect" declined over time, in part due to the progressive formation of immunosuppressive tumor microenvironment. These observations suggest that to improve survival of high-risk neuroblastoma patients, it is essential to gain insights into how to enhance CD4 CTL cytotoxicity and control the immunosuppressive tumor microenvironment during the course of the disease.
Collapse
Affiliation(s)
- Xao X. Tang
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Hiroyuki Shimada
- Departments of Pathology and Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Naohiko Ikegaki
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Quinn CH, Beierle AM, Beierle EA. Artificial Tumor Microenvironments in Neuroblastoma. Cancers (Basel) 2021; 13:cancers13071629. [PMID: 33915765 PMCID: PMC8037559 DOI: 10.3390/cancers13071629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Children with high-risk neuroblastoma have limited therapeutic options poor survival rates. The neuroblastoma tumor microenvironment contributes the lack of response to many interventions so innovative methods are needed to study the effects of the tumor microenvironment on new therapies. In this manuscript, we review the current literature related to the components of the tumor microenvironment and to the use of three-dimensional printing as modality to study cancer. This review highlights the potential for using three-dimensional printing to create an artificial tumor microenvironment in the presence of neuroblastoma to provide improved preclinical testing of novel therapies. Abstract In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.
Collapse
Affiliation(s)
- Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Andee M. Beierle
- Division of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
- Correspondence:
| |
Collapse
|
32
|
Wu X, Nelson M, Basu M, Srinivasan P, Lazarski C, Zhang P, Zheng P, Sandler AD. MYC oncogene is associated with suppression of tumor immunity and targeting Myc induces tumor cell immunogenicity for therapeutic whole cell vaccination. J Immunother Cancer 2021; 9:jitc-2020-001388. [PMID: 33757986 PMCID: PMC7993333 DOI: 10.1136/jitc-2020-001388] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 02/06/2023] Open
Abstract
Background MYC oncogene is deregulated in 70% of all human cancers and is associated with multiple oncogenic functions including immunosuppression in the tumor microenvironment. The role of MYC in the immune microenvironment of neuroblastoma and melanoma is investigated and the effect of targeting Myc on immunogenicity of cancer cells is evaluated. Methods Immune cell infiltrates and immunogenic pathway signatures in the context of MYCN amplification were analyzed in human neuroblastoma tumors and in metastatic melanoma. Dose response and cell susceptibility to MYC inhibitors (I-BET726 and JQ1) were determined in mouse cell lines. The influence of downregulating Myc in tumor cells was characterized by immunogenic pathway signatures and functional assays. Myc-suppressed tumor cells were used as whole cell vaccines in preclinical neuroblastoma and melanoma models. Results Analysis of immune phenotype in human neuroblastoma and melanoma tumors revealed that MYCN or c-MYC amplified tumors respectively are associated with suppressed immune cell infiltrates and functional pathways. Targeting Myc in cancer cells with I-BET726 and JQ1 results in cell cycle arrest and induces cell immunogenicity. Combining vaccination of Myc-inhibited tumor cells with checkpoint inhibition induced robust antitumor immunity and resulted in therapeutic cancer vaccine therapy in mouse neuroblastoma tumors. Despite vigorous antitumor immunity in the mouse melanoma model, upregulation of immunosuppressive pathways enabled tumor escape. Conclusions This study demonstrates that the Myc oncogene is an appropriate target for inducing tumor cell immunogenicity and suggests that Myc-suppressed whole tumor cells combined with checkpoint therapy could be used for formulating a personalized therapeutic tumor vaccine.
Collapse
Affiliation(s)
- Xiaofang Wu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Marie Nelson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Mousumi Basu
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anthony David Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Childrens Hospital Medical Center, Washington, District of Columbia, USA .,Joseph E. Robert Jr. Center for Surgical Care, Childrens National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
33
|
Zhong X, Tao Y, Chang J, Zhang Y, Zhang H, Wang L, Liu Y. Prognostic Signature of Immune Genes and Immune-Related LncRNAs in Neuroblastoma: A Study Based on GEO and TARGET Datasets. Front Oncol 2021; 11:631546. [PMID: 33767996 PMCID: PMC7985261 DOI: 10.3389/fonc.2021.631546] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background The prognostic value of immune-related genes and lncRNAs in neuroblastoma has not been elucidated, especially in subgroups with different outcomes. This study aimed to explore immune-related prognostic signatures. Materials and Methods Immune-related prognostic genes and lncRNAs were identified by univariate Cox regression analysis in the training set. The top 20 C-index genes and 17 immune-related lncRNAs were included in prognostic model construction, and random forest and the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithms were employed to select features. The risk score model was constructed and assessed using the Kaplan-Meier plot and the receiver operating characteristic curve. Functional enrichment analysis of the immune-related lncRNAs was conducted using the STRING database. Results In GSE49710, five immune genes (CDK4, PIK3R1, THRA, MAP2K2, and ULBP2) were included in the risk score five genes (RS5_G) signature, and eleven immune-related lncRNAs (LINC00260, FAM13A1OS, AGPAT4-IT1, DUBR, MIAT, TSC22D1-AS1, DANCR, MIR137HG, ERC2-IT1, LINC01184, LINC00667) were brought into risk score LncRNAs (RS_Lnc) signature. Patients were divided into high/low-risk score groups by the median. Overall survival and event/progression-free survival time were shortened in patients with high scores, both in training and validation cohorts. The same results were found in subgroups. In grouping ability assessment, the area under the curves (AUCs) in distinguishing different groups ranged from 0.737 to 0.94, better in discriminating MYCN status and high risk in training cohort (higher than 0.9). Multivariate Cox analysis demonstrated that RS5_G and RS_Lnc were the independent risk factors for overall and event/progression-free survival (all p-values <0.001). Correlation analysis showed that RS5_G and RS_Lnc were negatively associated with aDC, CD8+ T cells, but positively correlated with Th2 cells. Functional enrichment analyzes demonstrated that immune-related lncRNAs are mainly enriched in cancer-related pathways and immune-related pathways. Conclusion We identified the immune-related prognostic signature RS5_G and RS_Lnc. The predicting and grouping ability is close to being even better than those reported in other studies, especially in subgroups. This study provided prognostic signatures that may help clinicians to choose optimal treatment strategies and showed a new insight for NB treatment. These results need further biological experiments and clinical validation.
Collapse
Affiliation(s)
- Xiaodan Zhong
- College of Computer Science and Technology, Jilin University, Changchun, China.,Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jian Chang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Yutong Zhang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Linyu Wang
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
| |
Collapse
|
34
|
Nawata A, Izumi R, Harada K, Kurisu H, Shimajiri S, Matsuki Y, Nakayama T. An elderly-onset neuroblastoma concomitant with minimal change nephrotic syndrome: the first autopsy case report. CEN Case Rep 2021; 10:414-421. [PMID: 33595829 DOI: 10.1007/s13730-021-00580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/06/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Neuroblastoma is a well-known embryonal cancer; however, adult-onset neuroblastomas are rare. The systemic symptoms are related to catecholamine excretion or intraabdominal mass effects. Only two cases of neuroblastoma with nephrotic syndrome have previously been reported. We herein present the first autopsy case of neuroblastoma in an older individual associated with minimal change nephrotic syndrome. CASE PRESENTATION A 63-year-old man was admitted to our hospital for investigation of general fatigue. His renal function was normal and his urine was negative for protein. A computed tomography scan showed a renal tumor and intraabdominal lymph node swelling. Approximately 4 months after admission, he suddenly developed acute renal failure and severe proteinuria, and hemodialysis was instituted. A computed tomography scan revealed an increase in the size of the renal tumor and lymph nodes. He died 1 month later and an autopsy was performed. The tumor exhibited diffuse proliferation of tumor cells with scant cytoplasm, namely small blue cell tumor with rosette formation. As a result of immunohistochemical study, a neuroblastoma was diagnosed. Despite the patient's severe renal failure, most glomeruli showed no remarkable changes. The tubular epithelium exhibited detachment and vacuolation. Electron microscopic study of the glomeruli showed diffuse effacement of the foot processes. These features indicate a diagnosis of minimal change nephrotic syndrome with acute tubular injury. CONCLUSIONS Minimal change nephrotic syndrome is the most common renal manifestation associated with lymphoproliferative malignancies. We here present an extremely rare case of adult-onset neuroblastoma with minimal change nephrotic syndrome.
Collapse
Affiliation(s)
- Aya Nawata
- The Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan. .,Department of Pathology, Kenwakai Otemachi Hospital, Kitakyushu, Japan.
| | - Ryo Izumi
- Department of Cardiovascular Medicine, Kitakyushu Municipal Medical Center, Kitakyushu, Japan
| | - Kohsuke Harada
- Department of Internal Medicine, Kenwakai Otemachi Hospital, Kitakyushu, Japan
| | - Hiroaki Kurisu
- Department of Urology, Kenwakai Otemachi Hospital, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yasumasa Matsuki
- Department of Pathology, Kenwakai Otemachi Hospital, Kitakyushu, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
35
|
Liao YM, Hung TH, Tung JK, Yu J, Hsu YL, Hung JT, Yu AL. Low Expression of IL-15 and NKT in Tumor Microenvironment Predicts Poor Outcome of MYCN-Non-Amplified Neuroblastoma. J Pers Med 2021; 11:jpm11020122. [PMID: 33668573 PMCID: PMC7918138 DOI: 10.3390/jpm11020122] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
Immune tumor microenvironment (TME) in neuroblastoma (NBL) contributes to tumor behavior and treatment response. T cells and natural killer (NK) cells have been shown to play important roles in the neuroblastoma TME. However, few reports address the clinical relevance of natural killer T cells (NKTs) and interleukin-15 (IL-15), one of the crucial cytokines controlling the activation and expansion of NK/NKT cells, in NBL. In this study, we examined NKT immunoscores and IL-15 expression in both MYCN-amplified and MYCN-non-amplified NBL to correlate with clinical outcomes such as event-free survival (EFS) and overall survival (OS). From Gene Expression Omnibus (GEO) datasets GSE45480 (n = 643) and GSE49711 (n = 493), we found that NKT immunoscore and IL-15 expression were both significantly lower in MYCN-amplified NBL, and similar results were observed using our clinical NBL samples (n = 53). Moreover, NBL patients (GEO dataset GSE49711 and our clinical samples) with both lower NKT immunoscore and IL-15 expression exhibited decreased EFS and OS regardless of MYCN gene amplification status. Multivariate analysis further showed that the combination of low NKT immunoscore and low IL-15 expression level was an independent prognostic factor for poor EFS and OS in our NBL patients. These findings provide the rationale for the development of strategy to incorporate IL-15 and NKT cell therapy into the treatment regimen for neuroblastoma.
Collapse
Affiliation(s)
- Yu-Mei Liao
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-M.L.); (T.-H.H.); (J.K.T.); (J.Y.)
- Program in Translational Medicine, Kaohsiung Medical University, Kaohsiung, and Academia Sinica, Taipei 115, Taiwan
- Division of Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tsai-Hsien Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-M.L.); (T.-H.H.); (J.K.T.); (J.Y.)
| | - John K. Tung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-M.L.); (T.-H.H.); (J.K.T.); (J.Y.)
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-M.L.); (T.-H.H.); (J.K.T.); (J.Y.)
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jung-Tung Hung
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-M.L.); (T.-H.H.); (J.K.T.); (J.Y.)
- Correspondence: (J.-T.H.); (A.L.Y.); Tel.: +886-3328-1200 (ext. 7813) (J.-T.H.); +886-3328-1200 (ext. 7805) (A.L.Y.); Fax: +886-3328-1200 (A.L.Y. & J.-T.H.)
| | - Alice L. Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan; (Y.-M.L.); (T.-H.H.); (J.K.T.); (J.Y.)
- Department of Pediatrics, University of California in San Diego, San Diego, CA 92103, USA
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Correspondence: (J.-T.H.); (A.L.Y.); Tel.: +886-3328-1200 (ext. 7813) (J.-T.H.); +886-3328-1200 (ext. 7805) (A.L.Y.); Fax: +886-3328-1200 (A.L.Y. & J.-T.H.)
| |
Collapse
|
36
|
Coronado E, Yañez Y, Vidal E, Rubio L, Vera-Sempere F, Cañada-Martínez AJ, Panadero J, Cañete A, Ladenstein R, Castel V, Font de Mora J. Intratumoral immunosuppression profiles in 11q-deleted neuroblastomas provide new potential therapeutic targets. Mol Oncol 2021; 15:364-380. [PMID: 33252831 PMCID: PMC7858123 DOI: 10.1002/1878-0261.12868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/13/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
High‐risk neuroblastoma (NB) patients with 11q deletion frequently undergo late but consecutive relapse cycles with fatal outcome. To date, no actionable targets to improve current multimodal treatment have been identified. We analyzed immune microenvironment and genetic profiles of high‐risk NB correlating with 11q immune status. We show in two independent cohorts that 11q‐deleted NB exhibits various immune inhibitory mechanisms, including increased CD4+ resting T cells and M2 macrophages, higher expression of programmed death‐ligand 1, interleukin‐10, transforming growth factor‐beta‐1, and indoleamine 2,3‐dioxygenase 1 (P < 0.05), and also higher chromosomal breakages (P ≤ 0.02) and hemizygosity of immunosuppressive miRNAs than MYCN‐amplified and other 11q‐nondeleted high‐risk NB. We also analyzed benefits of maintenance treatment in 83 high‐risk stage M NB patients focusing on 11q status, either with standard anti‐GD2 immunotherapy (n = 50) or previous retinoic acid‐based therapy alone (n = 33). Immunotherapy associated with higher EFS (50 vs. 30, P = 0.028) and OS (72 vs. 52, P = 0.047) at 3 years in the overall population. Despite benefits from standard anti‐GD2 immunotherapy in high‐risk NB patients, those with 11q deletion still face poor outcome. This NB subgroup displays intratumoral immune suppression profiles, revealing a potential therapeutic strategy with combination immunotherapy to circumvent this immune checkpoint blockade.
Collapse
Affiliation(s)
- Esther Coronado
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain.,Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Yania Yañez
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain.,Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Enrique Vidal
- Roche Diagnostics Information Solutions, Basel, Switzerland
| | - Luis Rubio
- Department of Pathology, La Fe University Hospital, Valencia, Spain
| | - Francisco Vera-Sempere
- Department of Pathology, La Fe University Hospital, Valencia, Spain.,School of Medicine, University of Valencia, Spain
| | | | - Joaquín Panadero
- Genomics Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain.,School of Medicine, University of Valencia, Spain.,Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Ruth Ladenstein
- Department of Paediatrics, St. Anna Children's Hospital and Children's Cancer Research Institute (CCRI), Medical University, Vienna, Austria
| | - Victoria Castel
- School of Medicine, University of Valencia, Spain.,Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain.,Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
37
|
Shirinbak S, Chan RY, Shahani S, Muthugounder S, Kennedy R, Hung LT, Fernandez GE, Hadjidaniel MD, Moghimi B, Sheard MA, Epstein AL, Fabbri M, Shimada H, Asgharzadeh S. Combined immune checkpoint blockade increases CD8+CD28+PD-1+ effector T cells and provides a therapeutic strategy for patients with neuroblastoma. Oncoimmunology 2021; 10:1838140. [PMID: 33489468 PMCID: PMC7801125 DOI: 10.1080/2162402x.2020.1838140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Immune checkpoint therapy has resulted in minimal clinical response in many pediatric cancers. We sought to understand the influence of immune checkpoint inhibition using anti-PD-1 and anti-CTLA-4 antibodies individually, in combination, and after chemotherapy on immune responses in minimal and established murine neuroblastoma models. We also sought to understand the role of the tumor microenvironment (TME) and PD-L1 expression and their alteration post-chemotherapy in our models and human tissues. PD-L1 expression was enriched in human tumor-associated macrophages and up-regulated after chemotherapy. In a murine minimal disease model, single and dual immune checkpoint blockade promoted tumor rejection, improved survival, and established immune memory with long-term anti-tumor immunity against re-challenge. In an established tumor model, only dual immune checkpoint blockade showed efficacy. Interestingly, dual immune checkpoint therapy distinctly influenced adaptive and innate immune responses, with significant increase in CD8+CD28+PD-1+ T cells and inflammatory macrophages (CD11bhiCD11c−F4/80+Ly6Chi) in tumor-draining lymph nodes. Adding chemotherapy before immunotherapy provided significant survival benefit for mice with established tumors receiving anti-PD-1 or dual immune checkpoint blockade. Our findings demonstrate anti-PD-1 and anti-CTLA-4 therapy induces a novel subset of effector T cells, and support administration of induction chemotherapy immediately prior to immune checkpoint blockade in children with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Soheila Shirinbak
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - Randall Y Chan
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA.,Department of Pediatrics, Los Angeles County + University of Southern California Medical Center, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shilpa Shahani
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Sakunthala Muthugounder
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - Rebekah Kennedy
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - Long T Hung
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - G Esteban Fernandez
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - Michael D Hadjidaniel
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - Babak Moghimi
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael A Sheard
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA
| | - Alan L Epstein
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Muller Fabbri
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Hiroyuki Shimada
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shahab Asgharzadeh
- Department of Pediatrics, Children's Hospital Los Angeles and the Saban Research Institute, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
38
|
Wienke J, Dierselhuis MP, Tytgat GAM, Künkele A, Nierkens S, Molenaar JJ. The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology. Eur J Cancer 2020; 144:123-150. [PMID: 33341446 DOI: 10.1016/j.ejca.2020.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space.
Collapse
Affiliation(s)
- Judith Wienke
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | | | | | - Annette Künkele
- Department of Pediatric Oncology and Hematology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
39
|
Blavier L, Yang RM, DeClerck YA. The Tumor Microenvironment in Neuroblastoma: New Players, New Mechanisms of Interaction and New Perspectives. Cancers (Basel) 2020; 12:E2912. [PMID: 33050533 PMCID: PMC7599920 DOI: 10.3390/cancers12102912] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/08/2023] Open
Abstract
The contribution of the tumor microenvironment (TME) to cancer progression has been well recognized in recent decades. As cancer therapeutic strategies are increasingly precise and include immunotherapies, knowledge of the nature and function of the TME in a tumor becomes essential. Our understanding of the TME in neuroblastoma (NB), the second most common solid tumor in children, has significantly progressed from an initial focus on its Schwannian component to a better awareness of its complex nature, which includes not only immune but also non-immune cells such as cancer-associated fibroblasts (CAFs), the contribution of which to inflammation and interaction with tumor-associated macrophages (TAMs) is now recognized. Recent studies on the TME landscape of NB tumors also suggest significant differences between MYCN-amplified (MYCN-A) and non-amplified (MYCN-NA) tumors, in their content in stromal and inflammatory cells and their immunosuppressive activity. Extracellular vesicles (EVs) released by cells in the TME and microRNAs (miRs) present in their cargo could play important roles in the communication between NB cells and the TME. This review article discusses these new aspects of the TME in NB and the impact that information on the TME landscape in NB will have in the design of precise, biomarker-integrated clinical trials.
Collapse
Affiliation(s)
- Laurence Blavier
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.B.); (R.-M.Y.)
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ren-Ming Yang
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.B.); (R.-M.Y.)
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yves A. DeClerck
- The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (L.B.); (R.-M.Y.)
- Division of Hematology, Oncology and Blood and Bone Marrow Transplantation, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
40
|
Aravindan N, Somasundaram DB, Herman TS, Aravindan S. Significance of hematopoietic surface antigen CD34 in neuroblastoma prognosis and the genetic landscape of CD34-expressing neuroblastoma CSCs. Cell Biol Toxicol 2020; 37:461-478. [PMID: 32979173 DOI: 10.1007/s10565-020-09557-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
High-risk neuroblastoma (HR-NB) is branded with hematogenous metastasis, relapses, and dismal long-term survival. Intensification of consolidation therapy with tandem/triple autologous stem cell (SC) rescue (with bone marrow [BM]/peripheral blood [PB] CD34+ selection) after myeloablative chemotherapy has improved long-term survival. However, the benefit is limited by the indication of NB cells in CD34+ PBSCs, CD34 expression in NB cells, and the risk of reinfusing NB cancer stem cells (NB CSCs) that could lead to post-transplant relapse. We investigated the association of CD34 surface expression (92 patients) with NB evolution/clinical outcomes. CD34 gene-level status in NB was assessed through RNA-Seq data mining (18 cohorts, n, 3324). Genetic landscape of CD34-expressing NB CSCs (CD133+CD34+) was compared with CD34- CSCs (CD133+CD34-). RNA-seq data revealed equivocal association patterns of CD34 expression with patient survival. Our immunohistochemistry data revealed definite, but rare (mean, 0.73%; range 0.00-7.87%; median, 0.20%) CD34 positivity in NB. CD34+ significantly associated with MYCN amplification (p, 0.003), advanced disease stage (p, 0.016), and progressive disease (PD, p < 0.0009) after clinical therapy. A general high-is-worse tendency was observed in patients with relapsed disease. High CD34+ correlated with poor survival in patients with N-MYC-amplified HR-NB. Gene expression analysis of CD34+-NB CSCs identified significant up (4631) and downmodulation (4678) of genes compared with NB CSCs that lack CD34. IPA recognized the modulation of crucial signaling elements (EMT, stemness maintenance, differentiation, inflammation, clonal expansion, drug resistance, metastasis) that orchestrate NB disease evolution in CD34+ CSCs compared with CD34- CSCs. While the function of CD34 in NB evolution requires further in-depth investigation, careful consideration should be exercised for autologous stem cell rescue with CD34+ selection in NB patients. Graphical abstract.
Collapse
Affiliation(s)
- Natarajan Aravindan
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA. .,Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Anesthesiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA
| | - Terence S Herman
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, BMSB 737, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.,Stephenson Cancer Center, Oklahoma City, OK, 73104, USA
| | | |
Collapse
|
41
|
Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y, Leger P, Hiatt JB, Eastwood EC, Thomas R, Ibrahim AH, Jia D, Basom R, Eaton KD, Martins R, Houghton AM, MacPherson D. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev 2020; 34:1210-1226. [PMID: 32820040 PMCID: PMC7462062 DOI: 10.1101/gad.340133.120] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive neuroendocrine cancer characterized by initial chemosensitivity followed by emergence of chemoresistant disease. To study roles for MYCN amplification in SCLC progression and chemoresistance, we developed a genetically engineered mouse model of MYCN-overexpressing SCLC. In treatment-naïve mice, MYCN overexpression promoted cell cycle progression, suppressed infiltration of cytotoxic T cells, and accelerated SCLC. MYCN overexpression also suppressed response to cisplatin-etoposide chemotherapy, with similar findings made upon MYCL overexpression. We extended these data to genetically perturb chemosensitive patient-derived xenograft (PDX) models of SCLC. In chemosensitive PDX models, overexpression of either MYCN or MYCL also conferred a switch to chemoresistance. To identify therapeutic strategies for MYCN-overexpressing SCLC, we performed a genome-scale CRISPR-Cas9 sgRNA screen. We identified the deubiquitinase USP7 as a MYCN-associated synthetic vulnerability. Pharmacological inhibition of USP7 resensitized chemoresistant MYCN-overexpressing PDX models to chemotherapy in vivo. Our findings show that MYCN overexpression drives SCLC chemoresistance and provide a therapeutic strategy to restore chemosensitivity.
Collapse
Affiliation(s)
- Eli Grunblatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Nan Wu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Huajia Zhang
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Xiaoli Liu
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou City, Henan Province 450008, China
| | - Justin P Norton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Yamini Ohol
- RAPT Therapeutics, Inc., South San Francisco, California 94080, USA
| | - Paul Leger
- RAPT Therapeutics, Inc., South San Francisco, California 94080, USA
| | - Joseph B Hiatt
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily C Eastwood
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Rhiana Thomas
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ali H Ibrahim
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Deshui Jia
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ryan Basom
- Genomics and Bioinformatics Shared Resource, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Keith D Eaton
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - Renato Martins
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | - A McGarry Houghton
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - David MacPherson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
42
|
Zhang P, Liu M, Cui Y, Zheng P, Liu Y. Microsatellite instability status differentially associates with intratumoral immune microenvironment in human cancers. Brief Bioinform 2020; 22:5895437. [PMID: 32823273 DOI: 10.1093/bib/bbaa180] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Based on clinical outcomes in colorectal cancer, high microsatellite instability (MSI-H) has recently been approved by the Food and Drug Administration (FDA) as a genetic test to select patients for immunotherapy targeting PD-1 and/or CTLA-4 without limitation to cancer type. However, it is unclear whether the MSI-H would broadly alter the tumor microenvironment to confer the therapeutic response of different cancer types to immunotherapy. To fill in this gap, we performed an in silico analysis of tumor immunity among different MSI statuses in five cancer types. We found that consistent with clinical responses to immunotherapy, MSI-H and non-MSI-H samples from colorectal cancer (COAD-READ) exhibited distinct infiltration levels and immune phenotypes. Surprisingly, the immunological difference between MSI-H and non-MSI-H samples was diminished in stomach adenocarcinoma and esophageal carcinoma (STAD-ESCA) and completely disappeared in uterine corpus endometrial carcinoma (UCEC). Regardless of cancer types, the abundance of tumor-infiltrating immune cells, rather than MSI status, strongly associated with the clinical outcome. Since preexisting antitumor immune response in the tumor (hot cancer) is accepted as a prerequisite to the therapeutic response to anti-PD-1/CTLA-4 immunotherapy, our data demonstrate that the impact of MSI varied on immune contexture will lead to the further evaluation of predictive immunotherapy responsiveness based on the universal biomarker of MSI status.
Collapse
Affiliation(s)
- Peng Zhang
- Division of Immunotherapy and the Director of Bioinformatics Core at the Institute of Human Virology, University of Maryland School of Medicine, MD, USA
| | - Mingyue Liu
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, MD, USA
| | - Ya Cui
- University of Chinese Academy of Sciences, Beijing, China
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, MD, USA and OncoImmune, Inc. Rockville, MD 20852, USA
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, University of Maryland School of Medicine, MD, USA and OncoImmune, Inc. Rockville, MD 20852, USA
| |
Collapse
|
43
|
5-aza-2'-Deoxycytidine Induces a RIG-I-Related Innate Immune Response by Modulating Mitochondria Stress in Neuroblastoma. Cells 2020; 9:cells9091920. [PMID: 32824929 PMCID: PMC7564572 DOI: 10.3390/cells9091920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Neuroblastoma (NB) is one of the most common malignant solid tumors to occur in children, characterized by a wide range of genetic and epigenetic aberrations. We studied whether modifications of the latter with a 5-aza-2′-deoxycytidine (decitabine, Dac) DNA methyltransferase inhibitor can provide a therapeutic advantage in NB. Methods: NB cells with or without MYCN amplification were treated with Dac. We used flow cytometry to measure cell apoptosis and death and mitochondrial reactive oxygen species (mtROS), microarray to analyze gene expression profile and bisulfite pyrosequencing to determine the methylation level of the DDX58/RIG-I promoter. Western blot was used to detect markers related to innate immune response and apoptotic signaling, while immunofluorescent imaging was used to determine dsRNA. We generated mtDNA depleted ρ0 cells using long-term exposure to low-dose ethidium bromide. Results: Dac preferentially induced a RIG-I-predominant innate immune response and cell apoptosis in SK-N-AS NB cells, significantly reduced the methylation level of the DDX58/RIG-I promoter and increased dsRNA accumulation in the cytosol. Dac down regulated mitochondrial genes related to redox homeostasis, but augmented mtROS production. ρ0 cells demonstrated a blunted response in innate immune response and apoptotic cell death, as well as greatly diminished dsRNA. The response of NB cells to CDDP and poly(I:C) was potentiated by Dac in association with increased mtROS, which was blunted in ρ0 cells. Conclusions: This study indicates that Dac effectively induces a RIG-I-related innate immune response and apoptotic signaling primarily in SK-N-AS NB cells by hypomethylating DDX58/RIG-I promoter, elevated mtROS and increased dsRNA. Dac can potentiate the cytotoxic effects of CDDP and poly(I:C) in NB cells.
Collapse
|
44
|
Jin W, Zhang Y, Liu Z, Che Z, Gao M, Peng H. Exploration of the molecular characteristics of the tumor-immune interaction and the development of an individualized immune prognostic signature for neuroblastoma. J Cell Physiol 2020; 236:294-308. [PMID: 32510620 DOI: 10.1002/jcp.29842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma (NBL) exists in a complex tumor-immune microenvironment. Immune cell infiltration and tumor-immune molecules play a critical role in tumor development and significantly impact the prognosis of patients. However, the molecular characteristics describing the NBL-immune interaction and their prognostic potential have yet to be investigated systematically. We first employed multiple machine learning algorithms, such as Gene Sets Enrichment Analysis and cell type identification by estimating relative subsets of RNA transcripts, to identify immunophenotypes and immunological characteristics in NBL patient data from public databases and then investigated the prognostic potential and regulatory networks of identified immune-related genes involved in the NBL-immune interaction. The immunity signature combining nine immunity genes was confirmed as more effective for individual risk stratification and survival outcome prediction in NBL patients than common clinical characteristics (area under the curve [AUC] = 0.819, C-index = 0.718, p < .001). A mechanistic exploration revealed the regulatory network of molecules involved in the NBL-immune interaction. These immune molecules were also discovered to possess a significant correlation with plasma cell infiltration, MYCN status, and the level of chemokines and macrophage-related molecules (p < .001). A nomogram was constructed based on the immune signature and clinical characteristics, which showed high potential for prognosis prediction (AUC = 0.856, C-index = 0.755, p < .001). We systematically elucidated the complex regulatory mechanisms and characteristics of the molecules involved in the NBL-immune interaction and their prognostic potential, which may have important implications for further understanding the molecular mechanism of the NBL-immune interaction and identifying high-risk NBL patients to guide clinical treatment.
Collapse
Affiliation(s)
- Wenyi Jin
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Yubiao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Zilin Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Zhifei Che
- Department of Urology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Mingyong Gao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China
| | - Hao Peng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuchang, Wuhan, China
| |
Collapse
|
45
|
Cohen MA, Zhang S, Sengupta S, Ma H, Bell GW, Horton B, Sharma B, George RE, Spranger S, Jaenisch R. Formation of Human Neuroblastoma in Mouse-Human Neural Crest Chimeras. Cell Stem Cell 2020; 26:579-592.e6. [PMID: 32142683 DOI: 10.1016/j.stem.2020.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/04/2019] [Accepted: 02/03/2020] [Indexed: 12/15/2022]
Abstract
Neuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here, we establish a platform that allows the study of human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that resembled that seen in primary NBs of patients but were significantly different from homogeneous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells, reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune-suppressive molecules similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows the study of human tumor initiation, progression, manifestation, and tumor-immune-system interactions in an animal model system.
Collapse
Affiliation(s)
- Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Shupei Zhang
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Satyaki Sengupta
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Haiting Ma
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - George W Bell
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brendan Horton
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Bandana Sharma
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Rani E George
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
46
|
Monitoring Immune Responses in Neuroblastoma Patients during Therapy. Cancers (Basel) 2020; 12:cancers12020519. [PMID: 32102342 PMCID: PMC7072382 DOI: 10.3390/cancers12020519] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Neuroblastoma (NBL) is the most common extracranial solid tumor in childhood. Despite intense treatment, children with this high-risk disease have a poor prognosis. Immunotherapy showed a significant improvement in event-free survival in high-risk NBL patients receiving chimeric anti-GD2 in combination with cytokines and isotretinoin after myeloablative consolidation therapy. However, response to immunotherapy varies widely, and often therapy is stopped due to severe toxicities. Objective markers that help to predict which patients will respond or develop toxicity to a certain treatment are lacking. Immunotherapy guided via immune monitoring protocols will help to identify responders as early as possible, to decipher the immune response at play, and to adjust or develop new treatment strategies. In this review, we summarize recent studies investigating frequency and phenotype of immune cells in NBL patients prior and during current treatment protocols and highlight how these findings are related to clinical outcome. In addition, we discuss potential targets to improve immunogenicity and strategies that may help to improve therapy efficacy. We conclude that immune monitoring during therapy of NBL patients is essential to identify predictive biomarkers to guide patients towards effective treatment, with limited toxicities and optimal quality of life.
Collapse
|
47
|
Zhong X, Zhang Y, Wang L, Zhang H, Liu H, Liu Y. Cellular components in tumor microenvironment of neuroblastoma and the prognostic value. PeerJ 2019; 7:e8017. [PMID: 31844563 PMCID: PMC6910112 DOI: 10.7717/peerj.8017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Tumor microenvironment (TME) contributes to tumor development, progression, and treatment response. In this study, we detailed the cell composition of the TME in neuroblastoma (NB) and constructed a cell risk score model to predict the prognosis of NB. Methods xCell score was calculated through transcriptomic data from the datasets GSE49711 and GSE45480 based on the xCell algorithm. The random forest method was employed to select important features and the coefficient was obtained via multivariate cox regression analysis to construct a prognostic model, and the performance was validated in another two independent datasets, GSE16476 and TARGET-NBL. Results We found that both immune and non-immune cells varies significantly in different prognostic groups, and were correlated with survival time. The proposed prognostic cell risk score (pCRS) model we constructed can be an independent prognostic indicator for overall survival (OS) and event-free survival (EFS) (training: OS, HR 1.579, EFS, HR 1.563; validation: OS, HR 1.665, 3.848, EFS, HR 2.203, all p-values < 0.01) and only independent prognostic factor in International Neuroblastoma Risk Group high risk patients (HR 1.339, 3.631; p-value 1.76e–2, 3.71e–5), rather than MYCN amplification. Besides, pCRS model showed good performance in grouping, in discriminating MYCN status, the area under the curve (AUC) was 0.889, 0.933, and 0.861 in GSE49711, GSE45480, and GSE16476, respectively. In separating high risk groups, the AUC was 0.904 in GSE49711. Conclusion This study details the cellular components in the TME of NB through gene expression data, the proposed pCRS model might provide a basis for treatment selection of high risk patients or targeting cellular components of TME in NB.
Collapse
Affiliation(s)
- Xiaodan Zhong
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yutong Zhang
- Department of Pediatric Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Linyu Wang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Haiming Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.,Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
48
|
Huang X, Zhao J, Zhu J, Chen S, Fu W, Tian X, Lou S, Ruan J, He J, Zhou H. MYCN gene polymorphisms and Wilms tumor susceptibility in Chinese children. J Clin Lab Anal 2019; 33:e22988. [PMID: 31343784 PMCID: PMC7938399 DOI: 10.1002/jcla.22988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Wilms tumor, derived from embryonic cells, accounts for a large proportion of pediatric renal tumors. MYCN encoded by MYCN proto-oncogene, a member of the MYC family, is a BHLH transcription factor. It plays a critical role in tumorigenesis and predicts poor clinical outcomes in various types of cancer. However, the role of MYCN remained unclarified in Wilms tumor. In this study, we investigated the association between MYCN gene polymorphisms and Wilms tumor susceptibility. METHODS Four MYCN gene polymorphisms (rs57961569 G > A, rs9653226 T > C, rs13034994 A > G, and rs60226897 G > A) were genotyped in 183 cases and 603 controls. Adjusted odds ratios (AORs) and 95% confidence intervals (CIs) were calculated to evaluate the association between MYCN gene polymorphisms and Wilms tumor susceptibility. RESULTS Overall, no significant association was found for any of the four MYCN gene polymorphisms. Interestingly, in the stratification analysis, the rs57961569 was found to be associated with decreased Wilms tumor susceptibility in the children older than 18 months (AOR = 0.65, 95% CI = 0.42-1.00, P = .050). Moreover, older children carrying 2-4 risk genotypes were at increased risk of Wilms tumor (OR = 1.55, 95% CI = 1.001-2.40, P = .0497). Haplotype GCAA was shown to significantly increased Wilms tumor risk (AOR = 2.40, 95% CI = 1.12-5.14, P = .024). CONCLUSION Our study demonstrated that these MYCN gene polymorphisms might be low penetrant variants in Wilms tumor.
Collapse
Affiliation(s)
- Xiaokai Huang
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jie Zhao
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jinhong Zhu
- Department of Clinical LaboratoryBiobankHarbin Medical University Cancer HospitalHarbinChina
| | - Shanshan Chen
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wen Fu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Xiaoqian Tian
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Susu Lou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jichen Ruan
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jing He
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Haixia Zhou
- Department of HematologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
49
|
Nguyen R, Moustaki A, Norrie JL, Brown S, Akers WJ, Shirinifard A, Dyer MA. Interleukin-15 Enhances Anti-GD2 Antibody-Mediated Cytotoxicity in an Orthotopic PDX Model of Neuroblastoma. Clin Cancer Res 2019; 25:7554-7564. [PMID: 31455682 PMCID: PMC6911623 DOI: 10.1158/1078-0432.ccr-19-1045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/26/2019] [Accepted: 08/21/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE Immunotherapy with IL2, GM-CSF, and an anti-disialoganglioside (GD2) antibody significantly increases event-free survival in children with high-risk neuroblastoma. However, therapy failure in one third of these patients and IL2-related toxicities pose a major challenge. We compared the immunoadjuvant effects of IL15 with those of IL2 for enhancing antibody-dependent cell-mediated cytotoxicity (ADCC) in neuroblastoma. EXPERIMENTAL DESIGN We tested ADCC against neuroblastoma patient-derived xenografts (PDX) in vitro and in vivo and examined the functional and migratory properties of NK cells activated with IL2 and IL15. RESULTS In cell culture, IL15-activated NK cells induced higher ADCC against two GD+ neuroblastoma PDXs than did IL2-activated NK cells (P < 0.001). This effect was dose-dependent (P < 0.001) and was maintained across several effector-to-tumor ratios. As compared with IL2, IL15 also improved chemotaxis of NK cells, leading to higher numbers of tumorsphere-infiltrating NK cells in vitro (P = 0.002). In an orthotopic PDX model, animals receiving chemoimmunotherapy with an anti-GD2 antibody, GM-CSF, and a soluble IL15/IL15Rα complex had greater tumor regression than did those receiving chemotherapy alone (P = 0.012) or combined with anti-GD2 antibody and GM-CSF with (P = 0.016) or without IL2 (P = 0.035). This was most likely due to lower numbers of immature tumor-infiltrating NK cells (DX5+CD27+) after IL15/IL15Rα administration (P = 0.029) and transcriptional upregulation of Gzmd. CONCLUSIONS The substitution of IL15 for IL2 leads to significant tumor regression in vitro and in vivo and supports clinical testing of IL15 for immunotherapy in pediatric neuroblastoma.
Collapse
Affiliation(s)
- Rosa Nguyen
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Ardiana Moustaki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jacqueline L Norrie
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shantel Brown
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Walter J Akers
- Center for In Vivo Imaging and Therapeutics (CIVIT), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Abbas Shirinifard
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael A Dyer
- Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| |
Collapse
|
50
|
Rombaut D, Chiu HS, Decaesteker B, Everaert C, Yigit N, Peltier A, Janoueix-Lerosey I, Bartenhagen C, Fischer M, Roberts S, D'Haene N, De Preter K, Speleman F, Denecker G, Sumazin P, Vandesompele J, Lefever S, Mestdagh P. Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes. Sci Rep 2019; 9:5685. [PMID: 30952905 PMCID: PMC6451017 DOI: 10.1038/s41598-019-42107-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/20/2019] [Indexed: 12/13/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs.
Collapse
Affiliation(s)
- Dries Rombaut
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Hua-Sheng Chiu
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bieke Decaesteker
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Celine Everaert
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Nurten Yigit
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Agathe Peltier
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée contre le Cancer, F-75005, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, F-75005, Paris, France
| | - Isabelle Janoueix-Lerosey
- Institut Curie, PSL Research University, Inserm U830, Equipe Labellisée contre le Cancer, F-75005, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, F-75005, Paris, France
| | - Christoph Bartenhagen
- Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, University of Cologne, 50937, Cologne, Germany
| | - Matthias Fischer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.,Department of Experimental Pediatric Oncology, University Children's Hospital of Cologne, Medical Faculty, University of Cologne, 50937, Cologne, Germany
| | - Stephen Roberts
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicky D'Haene
- Hôpital Erasme, Cliniques Universitaires de Bruxelles, Bruxelles, 1070, Belgium
| | - Katleen De Preter
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Geertrui Denecker
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Pavel Sumazin
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Steve Lefever
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium.,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics, Ghent University, Ghent, 9000, Belgium. .,Cancer Research Institute Ghent (CRIG), Ghent, 9000, Belgium.
| |
Collapse
|