1
|
Coombs RS, Overacre-Delgoffe AE, Bhattacharjee A, Hand TW, Boyle JP. Mouse innate resistance to Neospora caninum infection is driven by early production of IFNγ by NK cells in response to parasite ligands. mSphere 2024:e0025524. [PMID: 39445806 DOI: 10.1128/msphere.00255-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 10/25/2024] Open
Abstract
Toxoplasma gondii is capable of being transmitted by nearly all warm-blooded animals, and rodents are a major source of parasite dissemination, yet mechanisms driving its broad host range are poorly understood. Although a phylogenetically close relative of T. gondii, Neospora caninum differs from T. gondii in that it does not infect mice and only infects a small number of ruminant and canine species. We recently showed that T. gondii and N. caninum grow similarly in mice during the first 24 h post-infection, but only N. caninum induces an IFNγ-driven response within hours that controls the infection. The goal of the present study was to understand the cellular basis of this rapid response to N. caninum. To do this, we compared immune cell populations at the site of infection 4 h after T. gondii or N. caninum infection in mice. We found that both parasites induced similar frequencies of peritoneal monocytes, while macrophages and dendritic cell populations were not increased compared to uninfected mice. Through a series of knockout mouse experiments, we show that B, T, and NKT cells are not required for immediate IFNγ production and ultimate control of N. caninum infection, suggesting that natural killer (NK) cells are the primary inducers of immediate IFNγ in response to N. caninum. N. caninum infections exhibited significantly more IFNγ+ NK cells in the peritoneum compared with T. gondii-infected and uninfected mice. Finally, we demonstrate that differences in early IFNγ production during N. caninum and T. gondii infections in mice are at least partly due to differences in soluble antigen(s) produced by tachyzoites. IMPORTANCE Pathogen differences in host range are poorly understood at the molecular level even though even closely related pathogen species can have dramatically distinct host ranges. Here, we study two related parasite species that have a dramatic difference in their ability to infect mice. Here, we show that soluble proteins from these species determine one driver of this difference: induction of interferon gamma by cells of the innate immune system.
Collapse
Affiliation(s)
- R S Coombs
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - A Bhattacharjee
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T W Hand
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - J P Boyle
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Vojdani A, Koksoy S, Vojdani E, Engelman M, Benzvi C, Lerner A. Natural Killer Cells and Cytotoxic T Cells: Complementary Partners against Microorganisms and Cancer. Microorganisms 2024; 12:230. [PMID: 38276215 PMCID: PMC10818828 DOI: 10.3390/microorganisms12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Natural killer (NK) cells and cytotoxic T (CD8+) cells are two of the most important types of immune cells in our body, protecting it from deadly invaders. While the NK cell is part of the innate immune system, the CD8+ cell is one of the major components of adaptive immunity. Still, these two very different types of cells share the most important function of destroying pathogen-infected and tumorous cells by releasing cytotoxic granules that promote proteolytic cleavage of harmful cells, leading to apoptosis. In this review, we look not only at NK and CD8+ T cells but also pay particular attention to their different subpopulations, the immune defenders that include the CD56+CD16dim, CD56dimCD16+, CD57+, and CD57+CD16+ NK cells, the NKT, CD57+CD8+, and KIR+CD8+ T cells, and ILCs. We examine all these cells in relation to their role in the protection of the body against different microorganisms and cancer, with an emphasis on their mechanisms and their clinical importance. Overall, close collaboration between NK cells and CD8+ T cells may play an important role in immune function and disease pathogenesis. The knowledge of how these immune cells interact in defending the body against pathogens and cancers may help us find ways to optimize their defensive and healing capabilities with methods that can be clinically applied.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Laboratory, Inc., Los Angeles, CA 90035, USA
| | - Sadi Koksoy
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | | | - Mark Engelman
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA; (S.K.); (M.E.)
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| | - Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Ramat Gan 52621, Israel; (C.B.); (A.L.)
| |
Collapse
|
3
|
Cuño-Gómiz C, de Gregorio E, Tutusaus A, Rider P, Andrés-Sánchez N, Colell A, Morales A, Marí M. Sex-based differences in natural killer T cell-mediated protection against diet-induced steatohepatitis in Balb/c mice. Biol Sex Differ 2023; 14:85. [PMID: 37964320 PMCID: PMC10644614 DOI: 10.1186/s13293-023-00569-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.
Collapse
Affiliation(s)
- Carlos Cuño-Gómiz
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Patricia Rider
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Nuria Andrés-Sánchez
- Institute of Molecular Genetics of Montpellier (IGMM), University of Montpellier, CNRS, INSERM, 34293, Montpellier, France
| | - Anna Colell
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB, CSIC, IDIBAPS, 08036, Barcelona, Spain.
| |
Collapse
|
4
|
Lee MS, Webb TJ. Novel lipid antigens for NKT cells in cancer. Front Immunol 2023; 14:1173375. [PMID: 37908366 PMCID: PMC10613688 DOI: 10.3389/fimmu.2023.1173375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer immunotherapy aims to unleash the power of the immune system against tumors without the side effects of traditional chemotherapy. Immunotherapeutic methods vary widely, but all follow the same basic principle: overcome the barriers utilized by cancers to avoid immune destruction. These approaches often revolve around classical T cells, such as with CAR T cells and neoantigen vaccines; however, the utility of the innate-like iNKT cell in cancer immunotherapy has gained significant recognition. iNKT cells parallel classic T cell recognition of peptide antigens presented on MHC through their recognition of lipid antigens presented on the MHC I-like molecule CD1d. Altered metabolism and a lipogenic phenotype are essential properties of tumor cells, representing a unique feature that may be exploited by iNKT cells. In this review, we will cover properties of iNKT cells, CD1d, and lipid antigen presentation. Next, we will discuss the cancer lipidome and how it may be exploited by iNKT cells through a window of opportunity. Finally, we will review, in detail, novel lipid antigens for iNKT cells in cancer.
Collapse
Affiliation(s)
- Michael S. Lee
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Tonya J. Webb
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
5
|
Morris I, Croes CA, Boes M, Kalkhoven E. Advanced omics techniques shed light on CD1d-mediated lipid antigen presentation to iNKT cells. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159292. [PMID: 36773690 DOI: 10.1016/j.bbalip.2023.159292] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Invariant natural killer T cells (iNKT cells) can be activated through binding antigenic lipid/CD1d complexes to their TCR. Antigenic lipids are processed, loaded, and displayed in complex with CD1d by lipid antigen presenting cells (LAPCs). The mechanism of lipid antigen presentation via CD1d is highly conserved with recent work showing adipocytes are LAPCs that, besides having a role in lipid storage, can activate iNKT cells and play an important role in systemic metabolic disease. Recent studies shed light on parameters potentially dictating cytokine output and how obesity-associated metabolic disease may affect such parameters. By following a lipid antigen's journey, we identify five key areas which may dictate cytokine skew: co-stimulation, structural properties of the lipid antigen, stability of lipid antigen/CD1d complexes, intracellular and extracellular pH, and intracellular and extracellular lipid environment. Recent publications indicate that the combination of advanced omics-type approaches and machine learning may be a fruitful way to interconnect these 5 areas, with the ultimate goal to provide new insights for therapeutic exploration.
Collapse
Affiliation(s)
- Imogen Morris
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands
| | - Cresci-Anne Croes
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE Wageningen, the Netherlands
| | - Marianne Boes
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands; Department of Paediatric Immunology, University Medical Center Utrecht, Utrecht University, Lundlaan 6, 3584, EA, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584, CG, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Tani S, Okada H, Onodera S, Chijimatsu R, Seki M, Suzuki Y, Xin X, Rowe DW, Saito T, Tanaka S, Chung UI, Ohba S, Hojo H. Stem cell-based modeling and single-cell multiomics reveal gene-regulatory mechanisms underlying human skeletal development. Cell Rep 2023; 42:112276. [PMID: 36965484 DOI: 10.1016/j.celrep.2023.112276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/19/2023] [Accepted: 03/02/2023] [Indexed: 03/27/2023] Open
Abstract
Although the skeleton is essential for locomotion, endocrine functions, and hematopoiesis, the molecular mechanisms of human skeletal development remain to be elucidated. Here, we introduce an integrative method to model human skeletal development by combining in vitro sclerotome induction from human pluripotent stem cells and in vivo endochondral bone formation by implanting the sclerotome beneath the renal capsules of immunodeficient mice. Histological and scRNA-seq analyses reveal that the induced bones recapitulate endochondral ossification and are composed of human skeletal cells and mouse circulatory cells. The skeletal cell types and their trajectories are similar to those of human embryos. Single-cell multiome analysis reveals dynamic changes in chromatin accessibility associated with multiple transcription factors constituting cell-type-specific gene-regulatory networks (GRNs). We further identify ZEB2, which may regulate the GRNs in human osteogenesis. Collectively, these results identify components of GRNs in human skeletal development and provide a valuable model for its investigation.
Collapse
Affiliation(s)
- Shoichiro Tani
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan.
| | - Hiroyuki Okada
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Ryota Chijimatsu
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Xiaonan Xin
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - David W Rowe
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Taku Saito
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Sakae Tanaka
- Sensory and Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ung-Il Chung
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shinsuke Ohba
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; Department of Oral Anatomy and Developmental Biology, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.
| | - Hironori Hojo
- Laboratory of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8655, Japan.
| |
Collapse
|
7
|
Joyce S, Okoye GD, Driver JP. Die Kämpfe únd schláchten-the struggles and battles of innate-like effector T lymphocytes with microbes. Front Immunol 2023; 14:1117825. [PMID: 37168859 PMCID: PMC10165076 DOI: 10.3389/fimmu.2023.1117825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/13/2023] Open
Abstract
The large majority of lymphocytes belong to the adaptive immune system, which are made up of B2 B cells and the αβ T cells; these are the effectors in an adaptive immune response. A multitudinous group of lymphoid lineage cells does not fit the conventional lymphocyte paradigm; it is the unconventional lymphocytes. Unconventional lymphocytes-here called innate/innate-like lymphocytes, include those that express rearranged antigen receptor genes and those that do not. Even though the innate/innate-like lymphocytes express rearranged, adaptive antigen-specific receptors, they behave like innate immune cells, which allows them to integrate sensory signals from the innate immune system and relay that umwelt to downstream innate and adaptive effector responses. Here, we review natural killer T cells and mucosal-associated invariant T cells-two prototypic innate-like T lymphocytes, which sense their local environment and relay that umwelt to downstream innate and adaptive effector cells to actuate an appropriate host response that confers immunity to infectious agents.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare Service, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology and Immunology, The Vanderbilt Institute for Infection, Immunology and Inflammation and Vanderbilt Center for Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Wu YC, Kissner M, Momen-Heravi F. A comprehensive multiparameter flow cytometry panel for immune profiling and functional studies of frozen tissue, bone marrow, and spleen. J Immunol Methods 2023; 515:113444. [PMID: 36868498 PMCID: PMC10508641 DOI: 10.1016/j.jim.2023.113444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Flow cytometry (FC) is a highly informative technology that can provide valuable information about immune phenotype monitoring and immune cell states. However, there is a paucity of comprehensive panels developed and validated for use on frozen samples. Here, we developed a 17-plex flow cytometry panel to detect subtypes, frequencies, and functions of different immune cells that can be leveraged to study the different cellular characteristics in different disease models, physiological, and pathological conditions. This panel identifies surface markers to characterize T cells (CD8+, CD4+), natural killer (NK) cells and their subtypes (immature, cytotoxic, exhausted, activated),natural killer T (NKT) cells, neutrophils, macrophages (M1 (pro-inflammatory) and M2 (anti-inflammatory)), monocytes and their subtypes (classical and non-classical), dendritic cells (DC) and their subtypes (DC1, DC2), and eosinophils. The panel was designed to include only surface markers to avoid the necessity for fixation and permeabilization steps. This panel was optimized using cryopreserved cells. Immunophenotyping of spleen and bone marrow using the proposed panel was efficient in correctly differentiating the immune cell subtypes in inflammatory model of ligature-induced periodontitis, in which we found increased percentage of NKT cells, activated and mature/cytotoxic NK cells in the bone marrow of affected mice. This panel enables in-depth immunophenotyping of murine immune cells in bone marrow, spleen, tumors, and other non-immune tissues of mice. It could be a tool for systematic analysis of immune cell profiling in inflammatory conditions, systemic diseases, and tumor microenvironments.
Collapse
Affiliation(s)
- Yi-Chu Wu
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, NY, New York, USA; Cancer Biology and Immunology Laboratory, Columbia University Irving Medical Center, NY, New York, USA
| | - Michael Kissner
- Columbia Stem Cell Initiative Flow Cytometry Core, Columbia University Irving Medical Center, NY, New York, USA
| | - Fatemeh Momen-Heravi
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, NY, New York, USA; Cancer Biology and Immunology Laboratory, Columbia University Irving Medical Center, NY, New York, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, NY, New York, USA.
| |
Collapse
|
9
|
Lopez-Scarim J, Nambiar SM, Billerbeck E. Studying T Cell Responses to Hepatotropic Viruses in the Liver Microenvironment. Vaccines (Basel) 2023; 11:681. [PMID: 36992265 PMCID: PMC10056334 DOI: 10.3390/vaccines11030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
T cells play an important role in the clearance of hepatotropic viruses but may also cause liver injury and contribute to disease progression in chronic hepatitis B and C virus infections which affect millions of people worldwide. The liver provides a unique microenvironment of immunological tolerance and hepatic immune regulation can modulate the functional properties of T cell subsets and influence the outcome of a virus infection. Extensive research over the last years has advanced our understanding of hepatic conventional CD4+ and CD8+ T cells and unconventional T cell subsets and their functions in the liver environment during acute and chronic viral infections. The recent development of new small animal models and technological advances should further increase our knowledge of hepatic immunological mechanisms. Here we provide an overview of the existing models to study hepatic T cells and review the current knowledge about the distinct roles of heterogeneous T cell populations during acute and chronic viral hepatitis.
Collapse
Affiliation(s)
| | | | - Eva Billerbeck
- Division of Hepatology, Department of Medicine and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
10
|
Jeon K, Kim Y, Kang SK, Park U, Kim J, Park N, Koh J, Shim MS, Kim M, Rhee YJ, Jeong H, Lee S, Park D, Lim J, Kim H, Ha NY, Jo HY, Kim SC, Lee JH, Shon J, Kim H, Jeon YK, Choi YS, Kim HY, Lee WW, Choi M, Park HY, Park WY, Kim YS, Cho NH. Elevated IFNA1 and suppressed IL12p40 associated with persistent hyperinflammation in COVID-19 pneumonia. Front Immunol 2023; 14:1101808. [PMID: 36776879 PMCID: PMC9911526 DOI: 10.3389/fimmu.2023.1101808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Despite of massive endeavors to characterize inflammation in COVID-19 patients, the core network of inflammatory mediators responsible for severe pneumonia stillremain remains elusive. Methods Here, we performed quantitative and kinetic analysis of 191 inflammatory factors in 955 plasma samples from 80 normal controls (sample n = 80) and 347 confirmed COVID-19 pneumonia patients (sample n = 875), including 8 deceased patients. Results Differential expression analysis showed that 76% of plasmaproteins (145 factors) were upregulated in severe COVID-19 patients comparedwith moderate patients, confirming overt inflammatory responses in severe COVID-19 pneumonia patients. Global correlation analysis of the plasma factorsrevealed two core inflammatory modules, core I and II, comprising mainly myeloid cell and lymphoid cell compartments, respectively, with enhanced impact in a severity-dependent manner. We observed elevated IFNA1 and suppressed IL12p40, presenting a robust inverse correlation in severe patients, which was strongly associated with persistent hyperinflammation in 8.3% of moderate pneumonia patients and 59.4% of severe patients. Discussion Aberrant persistence of pulmonary and systemic inflammation might be associated with long COVID-19 sequelae. Our comprehensive analysis of inflammatory mediators in plasmarevealed the complexity of pneumonic inflammation in COVID-19 patients anddefined critical modules responsible for severe pneumonic progression.
Collapse
Affiliation(s)
- Kyeongseok Jeon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yuri Kim
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shin Kwang Kang
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Uni Park
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jayoun Kim
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Nanhee Park
- Medical Research Collaborating Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Man-Shik Shim
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Minsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn Ju Rhee
- Department of Thoracic and Cardiovascular Surgery, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Hyeongseok Jeong
- Department of Internal Medicine, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | | | | | - Jinyoung Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Hyunsu Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Na-Young Ha
- Chungnam National University Hospital, Biomedical Research Institute, Deajon, Republic of Korea
| | - Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Ju-Hee Lee
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jiwon Shon
- Department of Biohealth Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Hoon Kim
- Department of Biohealth Regulatory Science, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea.,Biopharmaceutical Convergence Major, School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yoon Kyung Jeon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youn-Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Young Park
- Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Woong-Yang Park
- Geninus Inc., Seoul, Republic of Korea.,Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon-Sook Kim
- Department of Internal Medicine, Chungnam National University School of Medicine, Deajon, Republic of Korea
| | - Nam-Hyuk Cho
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Endemic Diseases, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do, Republic of Korea.,Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, Republic of Korea
| |
Collapse
|
11
|
Tandel N, Negi S, Tyagi RK. NKB cells: A double-edged sword against inflammatory diseases. Front Immunol 2022; 13:972435. [PMID: 36405684 PMCID: PMC9669376 DOI: 10.3389/fimmu.2022.972435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Interferon-γ (IFN-γ)-producing natural killer (NK) cells and innate lymphoid cells (ILCs) activate the adaptive system’s B and T cells in response to pathogenic invasion; however, how these cells are activated during infections is not yet fully understood. In recent years, a new lymphocyte population referred to as “natural killer-like B (NKB) cells”, expressing the characteristic markers of innate NK cells and adaptive B cells, has been identified in both the spleen and mesenteric lymph nodes during infectious and inflammatory pathologies. NKB cells produce IL-18 and IL-12 cytokines during the early phases of microbial infection, differentiating them from conventional NK and B cells. Emerging evidence indicates that NKB cells play key roles in clearing microbial infections. In addition, NKB cells contribute to inflammatory responses during infectious and inflammatory diseases. Hence, the role of NKB cells in disease pathogenesis merits further study. An in-depth understanding of the phenotypic, effector, and functional properties of NKB cells may pave the way for the development of improved vaccines and therapeutics for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Rajeev K. Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, Council of Scientific and Industrial Research (CSIR)-Institute of Microbial Technology (IMTECH), Chandigarh, India
- *Correspondence: Rajeev K. Tyagi, ;
| |
Collapse
|
12
|
Li YR, Zeng S, Dunn ZS, Zhou Y, Li Z, Yu J, Wang YC, Ku J, Cook N, Kramer A, Yang L. Off-the-shelf third-party HSC-engineered iNKT cells for ameliorating GvHD while preserving GvL effect in the treatment of blood cancers. iScience 2022; 25:104859. [PMID: 36034226 PMCID: PMC9399487 DOI: 10.1016/j.isci.2022.104859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Allo-HSCT is a curative therapy for hematologic malignancies owing to GvL effect mediated by alloreactive T cells; however, the same T cells also mediate GvHD, a severe side effect limiting the widespread application of allo-HSCT in clinics. Invariant natural killer T (iNKT) cells can ameliorate GvHD while preserving GvL effect, but the clinical application of these cells is restricted by their scarcity. Here, we report the successful generation of third-party HSC-engineered human iNKT (3rdHSC-iNKT) cells using a method combining HSC gene engineering and in vitro HSC differentiation. The 3rdHSC-iNKT cells closely resembled the CD4-CD8-/+ subsets of endogenous human iNKT cells in phenotype and functionality. These cells displayed potent anti-GvHD functions by eliminating antigen-presenting myeloid cells in vitro and in xenograft models without negatively impacting tumor eradication by allogeneic T cells in preclinical models of lymphoma and leukemia, supporting 3rdHSC-iNKT cells as a promising off-the-shelf cell therapy candidate for GvHD prophylaxis.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Zeng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Josh Ku
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Noah Cook
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
Raus S, Lopez-Scarim J, Luthy J, Billerbeck E. Hepatic iNKT cells produce type 2 cytokines and restrain antiviral T cells during acute hepacivirus infection. Front Immunol 2022; 13:953151. [PMID: 36159876 PMCID: PMC9501689 DOI: 10.3389/fimmu.2022.953151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a curable disease, but the absence of a vaccine remains a major problem in infection prevention. The lack of small animal models and limited access to human liver tissue impede the study of hepatic antiviral immunity and the development of new vaccine strategies. We recently developed an immune-competent mouse model using an HCV-related rodent hepacivirus which shares immunological features with human viral hepatitis. In this study, we used this new model to investigate the role of invariant natural killer T (iNKT) cells during hepacivirus infection in vivo. These cells are enriched in the liver, however their role in viral hepatitis is not well defined. Using high-dimensional flow cytometry and NKT cell deficient mice we analyzed a potential role of iNKT cells in mediating viral clearance, liver pathology or immune-regulation during hepacivirus infection. In addition, we identified new immune-dominant MHC class I restricted viral epitopes and analyzed the impact of iNKT cells on virus-specific CD8+ T cells. We found that rodent hepacivirus infection induced the activation of iNKT cell subsets with a mixed NKT1/NKT2 signature and significant production of type 2 cytokines (IL-4 and IL-13) during acute infection. While iNKT cells were dispensable for viral clearance, the lack of these cells caused higher levels of liver injury during infection. In addition, the absence of iNKT cells resulted in increased effector functions of hepatic antiviral T cells. In conclusion, our study reports a regulatory role of hepatic iNKT cells during hepacivirus infection in vivo. Specifically, our data suggest that iNKT cells skewed towards type 2 immunity limit liver injury during acute infection by mechanisms that include the regulation of effector functions of virus-specific T cells.
Collapse
Affiliation(s)
- Svjetlana Raus
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jarrett Lopez-Scarim
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joshua Luthy
- BD Life Sciences - FlowJo, Ashland, OR, United States
| | - Eva Billerbeck
- Department of Medicine, Division of Hepatology, and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Eva Billerbeck,
| |
Collapse
|
14
|
Shinton SA, Brill-Dashoff J, Hayakawa K. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase B1a cells. Sci Rep 2022; 12:14899. [PMID: 36050343 PMCID: PMC9437038 DOI: 10.1038/s41598-022-18876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 11/09/2022] Open
Abstract
Newborns require early generation of effective innate immunity as a primary physiological mechanism for survival. The neonatal Lin28+Let7– developmental pathway allows increased generation of Th2-type cells and B1a (B-1 B) cells compared to adult cells and long-term maintenance of these initially generated innate cells. For initial B1a cell growth from the neonatal to adult stage, Th2-type IL-5 production from ILC2s and NKT2 cells is important to increase B1a cells. The Th17 increase is dependent on extracellular bacteria, and increased bacteria leads to lower Th2-type generation. Secreted group IIA-phospholipase A2 (sPLA2-IIA) from the Pla2g2a gene can bind to gram-positive bacteria and degrade bacterial membranes, controlling microbiota in the intestine. BALB/c mice are Pla2g2a+, and express high numbers of Th2-type cells and B1a cells. C57BL/6 mice are Pla2g2a-deficient and distinct from the SLAM family, and exhibit fewer NKT2 cells and fewer B1a cells from the neonatal to adult stage. We found that loss of Pla2g2a in the BALB/c background decreased IL-5 from Th2-type ILC2s and NKT2s but increased bacterial-reactive NKT17 cells and MAIT cells, and decreased the number of early-generated B1a cells and MZ B cells and the CD4/CD8 T cell ratio. Low IL-5 by decreased Th2-type cells in Pla2g2a loss led to low early-generated B1a cell growth from the neonatal to adult stage. In anti-thymocyte/Thy-1 autoreactive μκ transgenic (ATAμκ Tg) Pla2g2a+ BALB/c background C.B17 mice generated NKT2 cells that continuously control CD1d+ B1 B cells through old aging and lost CD1d in B1 B cells generating strong B1 ATA B cell leukemia/lymphoma. Pla2g2a-deficient ATAμκTg C57BL/6 mice suppressed the initial B1a cell increase, with low/negative spontaneous leukemia/lymphoma generation. These data confirmed that the presence of Pla2g2a to control bacteria is important to allow the neonatal to adult stage. Pla2g2a promotes innate Th2-type immunity lymphocytes to increase early generated B1a cells.
Collapse
Affiliation(s)
- Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | | | - Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| |
Collapse
|
15
|
Zhang H, Zhang F, Modrak S. Effects of TNF-α deletion on iNKT cell development, activation, and maturation in the steady-state and chronic alcohol-consuming mice. J Leukoc Biol 2022; 112:233-241. [PMID: 34766371 PMCID: PMC9095768 DOI: 10.1002/jlb.1a0821-466r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cytokines play critical roles in regulating iNKT cell development, activation, and maturation. TNF-α co-occurs with iNKT cells in steady-state and many disease conditions. How TNF-α affects iNKT cell function has not been thoroughly investigated. It was found that chronic alcohol consumption enhanced iNKT cell activation and maturation. The underlying mechanism is not known. Herein, a TNF-α KO mouse model was used to address these issues. It was found that the depletion of TNF-α mitigated alcohol consumption-enhanced iNKT cell activation and maturation. In steady-state, depletion of TNF-α did not affect the frequency of iNKT cells in the thymus and spleen but decreased iNKT cells in the liver and increased liver iNKT cell apoptosis. The portion of stage-2 immature iNKT cells increased, stage-3 mature iNKT cells decreased in the thymus of TNF-α KO mice, suggesting that depletion of TNF-α impairs iNKT cell development and maturation. The percentage of CD69+ iNKT cells was significantly lower in the thymus, spleen, and liver of TNF-α KO mice compared to their wild-type littermates, suggesting that depletion of TNF-α inhibits iNKT cell activation. Moreover, the percentage of splenic IL-4- and IFN-γ-producing iNKT cells was significantly lower in TNF-α KO mice than in their wild-type littermates. The depletion of TNF-α increased PLZF+ iNKT cells in the thymus and down-regulated the expression of CD122 on iNKT cells. Collectively, these results support that TNF-α plays a vital role in the regulation of iNKT cell development, activation, and maturation, and alcohol consumption enhances iNKT cell activation and maturation through TNF-α.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Samantha Modrak
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
16
|
Torre P, Brescia A, Giurato G, D’Auria R, Rizzo F, Motta BM, Giudice V, Selleri C, Zeppa P, Caputo A, Casolaro V, Persico M. Mucosal-Associated Invariant T Cells in T-Cell Non-Hodgkin Lymphomas: A Case Series. Cancers (Basel) 2022; 14:cancers14122921. [PMID: 35740587 PMCID: PMC9221487 DOI: 10.3390/cancers14122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Mucosal-associated invariant T (MAIT) cells are a subgroup of T lymphocytes whose role has recently been investigated in several types of diseases, including cancer. However, little is known about these cells in lymphomas. In this case series, we investigated the presence of MAIT cells in biopsies obtained from patients diagnosed with T-cell non-Hodgkin lymphomas, uncommon hematological malignancies with often not clearly defined etiopathology. Abstract Background: Mucosal-associated invariant T (MAIT) cells are a subset of unconventional T lymphocytes expressing a semi-invariant α/β T-cell receptor (TCR). The physiological functions of these cells, which are particularly abundant in normal liver and mucosal sites, have become clear only in recent years, but their role in most human diseases is still unknown. Since the cellular origin and etiopathogenesis of most T-lymphomas are still elusive, we decided to explore the presence of MAIT cells in biopsies from these neoplasms. Methods: Sixteen biopsies obtained from patients with a T-cell lymphoma diagnosis were analyzed via immunofluorescence staining using an anti-Vα7.2 antibody and the MR1-antigen tetramer. Positive cases were subjected to a polymerase chain reaction for the detection of Vα7.2–Jα33, Vα7.2–Jα20, or Vα7.2–Jα12 rearrangements, followed by sequencing of the CDR3α region. Results: CD3+/Vα7.2+ and CD3+/MR1-Ag-tetramer+ cells were found in 4 of 16 samples analyzed. The identification of specific TCR rearrangements confirmed the presence of these cells in all four samples. PCR and sequencing results documented the presence of multiple clones of MAIT cells in each positive sample. Conclusions: MAIT cells are frequently found in T-cell lymphomas. More in-depth studies and a larger number of samples are needed to better clarify the contribution of MAIT cells to this rare neoplasm.
Collapse
Affiliation(s)
- Pietro Torre
- Internal Medicine and Hepatology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy;
| | - Annalisa Brescia
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Raffaella D’Auria
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Valentina Giudice
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (V.G.); (C.S.)
| | - Carmine Selleri
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (V.G.); (C.S.)
| | - Pio Zeppa
- Pathology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (P.Z.); (A.C.)
| | - Alessandro Caputo
- Pathology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy; (P.Z.); (A.C.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (A.B.); (G.G.); (R.D.); (F.R.); (B.M.M.); (V.C.)
| | - Marcello Persico
- Internal Medicine and Hepatology Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, University of Salerno, 84131 Salerno, Italy;
- Correspondence:
| |
Collapse
|
17
|
Lee JM, Chen MH, Chou KY, Chao Y, Chen MH, Tsai CY. Novel immunoprofiling method for diagnosing SLE and evaluating therapeutic response. Lupus Sci Med 2022; 9:9/1/e000693. [PMID: 35738802 PMCID: PMC9226994 DOI: 10.1136/lupus-2022-000693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/11/2022] [Indexed: 11/23/2022]
Abstract
Objective Diagnosis of SLE is based on clinical manifestations but is heterogeneous in early onset. Hence, we aimed to evaluate the feature of the immunoprofiling in patients with SLE and apply it to develop an immune signature algorithm for supporting SLE diagnosis. Methods We enrolled 13 newly diagnosed patients with SLE and 9 healthy controls (HCs) followed by analysing their immunoprofilings within their peripheral blood mononuclear cells (PBMCs) through flow cytometry. The immunoprofiling from the patients with SLE and HCs were ranked and formed an immune signature score. Besides, we enrolled four patients with SLE and monitored the changes in their immunoprofilings after immunosuppressant treatment. Results Among 93 immune cell subsets, 29 differed significantly between patients with SLE and HCs, and lower dendritic and natural killer cell percentages and a higher CD8+ T-cell percentage were identified in patients with SLE. In an investigation of immune-tolerant-related cell subsets, higher concentrations of CD8+ regulatory natural killer T cells, programmed cell death 1 (PD-1)+ T cells, and lower concentrations of programmed cell death ligand 1 (PD-L1)+ PBMCs were observed in the SLE group. The immune signature score from patients with SLE was significantly different from that from the HCs. After treatment, the disease activity of the four patients were tended to stable and percentages of PD-L1+ monocytes, PD-1+ CD4 T and CD8 T cells in patients with SLE exhibited positively and negatively correlation with the SLEDAI-2K (Systemic Lupus Erythematosus Disease Activity Index 2000) score, which might associate with the remission of SLE. Conclusions The comparison of immunprofiling between patients with SLE and HCs exhibited a distinct pattern. This difference and its application to immune signature algorithm shed light on the studies of SLE pathogenesis and immune-based diagnostic tool development in the future.
Collapse
Affiliation(s)
- Jan-Mou Lee
- Department of Advanced Research, FullHope Biomedical Co Ltd, New Taipei City, Taiwan
| | - Ming-Huang Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan
| | - Kai-Yuan Chou
- Department of Advanced Research, FullHope Biomedical Co Ltd, New Taipei City, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Han Chen
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei City, Taiwan .,Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy-Immunology-Rheumatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
18
|
Cutaneous Wound Healing: A Review about Innate Immune Response and Current Therapeutic Applications. Mediators Inflamm 2022; 2022:5344085. [PMID: 35509434 PMCID: PMC9061066 DOI: 10.1155/2022/5344085] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/22/2021] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Skin wounds and compromised wound healing are major concerns for the public. Although skin wound healing has been studied for decades, the molecular and cellular mechanisms behind the process are still not completely clear. The systemic responses to trauma involve the body’s inflammatory and immunomodulatory cellular and humoral networks. Studies over the years provided essential insights into a complex and dynamic immunity during the cutaneous wound healing process. This review will focus on innate cell populations involved in the initial phase of this orchestrated process, including innate cells from both the skin and the immune system.
Collapse
|
19
|
Wu L, Gao A, Li L, Chen J, Li J, Ye J. A Single-Cell Transcriptome Profiling of Anterior Kidney Leukocytes From Nile Tilapia ( Oreochromis niloticus). Front Immunol 2021; 12:783196. [PMID: 35027916 PMCID: PMC8750066 DOI: 10.3389/fimmu.2021.783196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Teleost fish anterior kidney (AK) is an important hematopoietic organ with multifarious immune cells, which have immune functions comparable to mammalian bone marrow. Myeloid and lymphoid cells locate in the AK, but the lack of useful specific gene markers and antibody-based reagents for the cell subsets makes the identification of the different cell types difficult. Single-cell transcriptome sequencing enables single-cell capture and individual library construction, making the study on the immune cell heterogeneity of teleost fish AK possible. In this study, we examined the transcriptional patterns of 11,388 AK leukocytes using 10× Genomics single-cell RNA sequencing (scRNA-seq). A total of 22 clusters corresponding to five distinct immune cell subsets were identified, which included B cells, T cells, granulocytes, macrophages, and dendritic cells (DCs). However, the subsets of myeloid cells (granulocytes, macrophages, and DCs) were not identified in more detail according to the known specific markers, even though significant differences existed among the clusters. Thereafter, we highlighted the B-cell subsets and identified them as pro/pre B cells, immature/mature B cells, activated B/plasmablasts, or plasma cells based on the different expressions of the transcription factors (TFs) and cytokines. Clustering of the differentially modulated genes by pseudo-temporal trajectory analysis of the B-cell subsets showed the distinct kinetics of the responses of TFs to cell conversion. Moreover, we classified the T cells and discovered that CD3+CD4-CD8-, CD3+CD4+CD8+, CD4+CD8-, and CD4-CD8+ T cells existed in AK, but neither CD4+CD8- nor CD4-CD8+ T cells can be further classified into subsets based on the known TFs and cytokines. Pseudotemporal analysis demonstrated that CD4+CD8- and CD4-CD8+ T cells belonged to different states with various TFs that might control their differentiation. The data obtained above provide a valuable and detailed resource for uncovering the leukocyte subsets in Nile tilapia AK, as well as more potential markers for identifying the myeloid and lymphoid cell types.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Along Gao
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lan Li
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jianlin Chen
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
20
|
Migration, Distribution, and Safety Evaluation of Specific Phenotypic and Functional Mouse Spleen-Derived Invariant Natural Killer T2 Cells after Adoptive Infusion. Mediators Inflamm 2021; 2021:5170123. [PMID: 34924812 PMCID: PMC8674077 DOI: 10.1155/2021/5170123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Herein, the migration distribution and safety of specific phenotypic and functionally identified spleen-derived invariant natural killer T2 (iNKT2) cells after adoptive infusion in mice were studied. The proliferation and differentiation of iNKT cells were induced by intraperitoneal injection of α-galactosylceramide (α-GalCer) in vivo. Mouse spleens were isolated in a sterile environment. iNKT cells were isolated by magnetic-activated cell sorting columns (MS columns). Cytometric bead array (CBA) assay was used to detect cytokine secretion in the supernatant stimulated by iNKT cells. The basic life status of the mice was observed, and systematic quantitative scoring was conducted after injecting spleen-derived iNKT cells through the tail vein. An in vivo imaging system was used to trace the migration and distribution of iNKT cells in DBA mice. The percentage of the iNKT2 subgroup was the highest in 3 days after intraperitoneal injection of α-GalCer, and iNKT2 subsets accounted for more than 92% after separation and purification by magnetic-activated cell sorting (MACS). Anti-inflammatory cytokine IL-4 was mainly found in the supernatant of cell cultures. The adoptive infusion of iNKT cells into healthy mice resulted in no significant change in the basic life status of mice compared with the noninjected group. iNKT cells were detected in the lung, spleen, and liver, but no fluorescence was detected in lymph nodes and thymus. After dissecting the mice, it was found that there were no significant abnormalities in the relevant immune organs, brain, heart, kidney, lung, and other organs. Intraperitoneal injection of α-GalCer results in a large number of iNKT2 cells, mainly secreting anti-inflammatory cytokine IL-4, from the spleen of mice. After adoptive infusion, the iNKT2 cells mainly settled in the liver and spleen of mice with a satisfactory safety profile.
Collapse
|
21
|
Dutta A, Venkataganesh H, Love PE. New Insights into Epigenetic Regulation of T Cell Differentiation. Cells 2021; 10:3459. [PMID: 34943965 PMCID: PMC8700096 DOI: 10.3390/cells10123459] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Immature CD4- CD8- thymocytes progress through several developmental steps in the thymus, ultimately emerging as mature CD4+ (helper) or CD8+ (cytotoxic) T cells. Activation of naïve CD4+ and CD8+ T cells in the presence of specific cytokines results in the induction of transcriptional programs that result in their differentiation into effector or memory cells and in the case of CD4+ T cells, the adoption of distinct T-helper fates. Previous studies have shown that histone modification and DNA methylation play important roles in each of these events. More recently, the roles of specific epigenetic regulators in T cell differentiation have been clarified. The identification of the epigenetic modifications and modifiers that control mature T cell differentiation and specification has also provided further insights into how dysregulation of these processes can lead to cancer or autoimmune diseases. In this review, we summarize recent findings that have provided new insights into epigenetic regulation of T cell differentiation in both mice and humans.
Collapse
Affiliation(s)
- Avik Dutta
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
| | - Harini Venkataganesh
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA; (A.D.); (H.V.)
| |
Collapse
|
22
|
Repeated α-GalCer Administration Induces a Type 2 Cytokine-Biased iNKT Cell Response and Exacerbates Atopic Skin Inflammation in Vα14 Tg NC/Nga Mice. Biomedicines 2021; 9:biomedicines9111619. [PMID: 34829848 PMCID: PMC8615984 DOI: 10.3390/biomedicines9111619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 01/05/2023] Open
Abstract
We have previously shown that Vα14 TCR Tg (Vα14Tg) NC/Nga (NC) mice contain increased numbers of double-negative (DN) invariant natural killer T (iNKT) cells that protect against spontaneous development of atopic dermatitis (AD). iNKT cells can regulate immune responses by producing various cytokines such as IFNγ and IL4 rapidly upon stimulation with α-galactosylceramide (α-GalCer), a prototypical iNKT cell agonist. However, the precise role of α-GalCer-activated iNKT cells in AD development remains unclear. Therefore, we examined whether repeated activation of iNKT cells with α-GalCer can regulate the pathogenesis of AD in Vα14Tg NC mice. We found that Vα14Tg NC mice injected repeatedly with α-GalCer display exacerbated AD symptoms (e.g., a higher clinical score, IgE hyperproduction, and increased numbers of splenic mast cells and neutrophils) compared with vehicle-injected Vα14Tg NC mice. Moreover, the severity of AD pathogenesis in α-GalCer-injected Vα14Tg NC mice correlated with increased Th2 cells but reduced Th1 and Foxp3+ Treg cells. Furthermore, the resulting alterations in the Th1/Th2 and Treg/Th2 balance were strongly associated with a biased expansion of type 2 cytokine-deviated iNKT cells in α-GalCer-treated Vα14Tg NC mice. Collectively, our results have demonstrated the adverse effect of repeated α-GalCer treatment on skin inflammation mediated by type 2 immunity.
Collapse
|
23
|
Hu T, Dong Y, Yang C, Zhao M, He Q. Pathogenesis of Children's Allergic Diseases: Refocusing the Role of the Gut Microbiota. Front Physiol 2021; 12:749544. [PMID: 34721073 PMCID: PMC8551706 DOI: 10.3389/fphys.2021.749544] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Allergic diseases comprise a genetically heterogeneous cluster of immunologically mediated diseases, including asthma, food allergy (FA), allergic rhinitis (AR) and eczema, that have become major worldwide health problems. Over the past few decades, the spread of allergic diseases has displayed an increasing trend, and it has been reported that 22% of 1.39 billion people in 30 countries have a type of allergic disease. Undoubtedly, allergic diseases, which can be chronic, with significant morbidity, mortality and dynamic progression, impose major economic burdens on society and families; thus, exploring the cause of allergic diseases and reducing their prevalence is a top priority. Recently, it has been reported that the gastrointestinal (GI) microbiota can provide vital signals for the development, function, and regulation of the immune system, and the above-mentioned contributions make the GI microbiota a key player in allergic diseases. Notably, the GI microbiota is highly influenced by the mode of delivery, infant diet, environment, antibiotic use and so on. Specifically, changes in the environment can result in the dysbiosis of the GI microbiota. The proper function of the GI microbiota depends on a stable cellular composition which in the case of the human microbiota consists mainly of bacteria. Large shifts in the ratio between these phyla or the expansion of new bacterial groups lead to a disease-promoting imbalance, which is often referred to as dysbiosis. And the dysbiosis can lead to alterations of the composition of the microbiota and subsequent changes in metabolism. Further, the GI microbiota can affect the physiological characteristics of the human host and modulate the immune response of the host. The objectives of this review are to evaluate the development of the GI microbiota, the main drivers of the colonization of the GI tract, and the potential role of the GI microbiota in allergic diseases and provide a theoretical basis as well as molecular strategies for clinical practice.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yinmiao Dong
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chenghao Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Fukaya-Shiba A, Otsuka K, Sasaki H, Shikano M, Wakao R. Identification of Novel Modalities Through Bibliometric Analysis for Timely Development of Regulatory Guidance: A Case Study of T Cell Immunity. Front Med (Lausanne) 2021; 8:756870. [PMID: 34708061 PMCID: PMC8544749 DOI: 10.3389/fmed.2021.756870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background: The mission of medicines regulatory agencies is to ensure the timely access of innovative products for patients to improve public health. Thus, regulators should foresee evolving technologies and build expertise prior to reviewing innovative products. Novel modalities and new classes of therapeutics in biological or cell-based products represent a regulatory challenge because of knowledge gaps, as exemplified by the unexpected cytokine release syndrome in the first-in-human clinical trial of the CD28 super-agonist. Meanwhile, recent treatments harnessing T cell co-signaling pathways provide an opportunity for investigation. Therefore, this study aimed to systematically identify and evaluate novel modalities for T cell immunity to assess the need for regulatory guidance. Methods: A PubMed search was carried out using the query, "immun* AND t lymph*" to select publications. Subsequently, a citation network was created, followed by clustering and text mining to identify the modalities and classes of therapeutics under development. Results and Discussion: Analysis of the top 20 clusters revealed research domains characterized by keywords such as immune checkpoint antibody, chimeric antigen receptor (CAR)-T cells, microbiota, exosome, regulatory T cells, unconventional T cells, and vaccines. After reviewing the pharmacological concepts, clinical trial information, and available guidance, we presented a perspective on the future development of guidance for these domains. Conclusion: Bibliometric analyses identified a set of innovative modalities targeted for drug development with which regulatory guidance is going to catch up. This strategy could help in the successful development of upcoming modalities to ensure readiness for clinical application as part of horizon scanning.
Collapse
Affiliation(s)
- Ai Fukaya-Shiba
- Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Kouhei Otsuka
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Hajime Sasaki
- Institute for Future Initiatives, The University of Tokyo, Tokyo, Japan
| | - Mayumi Shikano
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Rika Wakao
- Center for Regulatory Science, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| |
Collapse
|
25
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|
26
|
Xu Y, Ma J, Luo H, Shi Y, Liu H, Sun A, Xu C, Ji H, Liu X. Chromatin assembly factor 1B critically controls the early development but not function acquisition of invariant natural killer T cells in mice. Eur J Immunol 2021; 51:1698-1714. [PMID: 33949677 DOI: 10.1002/eji.202049074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Indexed: 11/09/2022]
Abstract
CD4+ CD8+ double-positive thymocytes give rise to both conventional TCRαβ+ T cells and invariant natural killer T cells (iNKT cells), but these two kinds of cells display different characteristics. The molecular mechanism underlying iNKT cell lineage development and function acquisition remain to be elucidated. We show that the loss of chromatin assembly factor 1B (CHAF1b) maintains the normal development of conventional TCRαβ+ T cells but severely impairs early development of iNKT cells. This dysregulation is accompanied by the impairment in chromatin activation and gene transcription at Vα14-Jα18 locus. Notably, ectopic expression of a Vα14-Jα18 TCR rescues Chaf1b-deficient iNKT cell developmental defects. Moreover, cytokine secretion and antitumor activity are substantially maintained in Vα14-Jα18 TCR transgene-rescued Chaf1b-deficient iNKT cells. Our study identifies CHAF1b as a critical factor that controls the early development but not function acquisition of iNKT cells via lineage- and stage-specific regulation.
Collapse
Affiliation(s)
- Yu Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Junwei Ma
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Haorui Luo
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, P. R. China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, P. R. China.,School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, P. R. China
| |
Collapse
|
27
|
Chao HC, McLuckey SA. In-Depth Structural Characterization and Quantification of Cerebrosides and Glycosphingosines with Gas-Phase Ion Chemistry. Anal Chem 2021; 93:7332-7340. [PMID: 33957046 DOI: 10.1021/acs.analchem.1c01021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cerebrosides (n-HexCer) and glycosphingosines (n-HexSph) constitute two sphingolipid subclasses. Both are comprised of a monosaccharide headgroup (glucose or galactose in mammalian cells) linked via either an α- or β-glycosidic linkage to the sphingoid backbone (n = α or β, depending upon the nature of the linkage to the anomeric carbon of the sugar). Cerebrosides have an additional amide-bonded fatty acyl chain linked to the sphingoid backbone. While differentiating the multiple isomers (i.e. glucose vs galactose, α- vs β-linkage) is difficult, it is crucial for understanding their specific biological roles in health and disease states. Shotgun tandem mass spectrometry has been a powerful tool in both lipidomics and glycomics analysis but is often limited in its ability to distinguish isomeric species. This work describes a new strategy combining shotgun tandem mass spectrometry with gas-phase ion chemistry to achieve both differentiation and quantification of isomeric cerebrosides and glycosphingosines. Briefly, deprotonated cerebrosides, [n-HexCer-H]-, or glycosphingosines, [n-HexSph-H]-, are reacted with terpyridine (Terpy) magnesium complex dications, [Mg(Terpy)2]2+, in the gas phase to produce a charge-inverted complex cation, [n-HexCer-H+MgTerpy]+ or [n-HexSph-H+MgTerpy]+. The collision-induced dissociation (CID) of the charge-inverted complex cations leads to significant spectral differences between the two groups of isomers, α-GalCer, β-GlcCer, and β-GalCer for cerebrosides and α-GlcSph, α-GalSph, β-GlcSph, and β-GalSph for glycosphingosines, which allows for isomer distinction. Moreover, we describe a quantification strategy with the normalized percent area extracted from selected diagnostic ions that quantify either three isomeric cerebroside or four isomeric glycosphingosine mixtures. The analytical performance was also evaluated in terms of accuracy, repeatability, and interday precision. Furthermore, CID of the product ions resulting from 443 Da loss from the charge-inverted complex cations ([n-HexCer-H+MgTerpy]+) has been performed and demonstrated for localization of the double-bond position on the amide-bonded monounsaturated fatty acyl chain in the cerebroside structure. The proposed strategy was successfully applied to the analysis of total cerebroside extracts from the porcine brain, providing in-depth structural information on cerebrosides from a biological mixture.
Collapse
Affiliation(s)
- Hsi-Chun Chao
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| | - Scott A McLuckey
- Department of Chemistry Purdue University 560 Oval Drive West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Joyce S, Okoye GD, Van Kaer L. Natural Killer T Lymphocytes Integrate Innate Sensory Information and Relay Context to Effector Immune Responses. Crit Rev Immunol 2021; 41:55-88. [PMID: 35381143 PMCID: PMC11078124 DOI: 10.1615/critrevimmunol.2021040076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is now appreciated that a group of lymphoid lineage cells, collectively called innate-like effector lymphocytes, have evolved to integrate information relayed by the innate sensory immune system about the state of the local tissue environment and to pass on this context to downstream effector innate and adaptive immune responses. Thereby, innate functions engrained into such innate-like lymphoid lineage cells during development can control the quality and magnitude of an immune response to a tissue-altering pathogen and facilitate the formation of memory engrams within the immune system. These goals are accomplished by the innate lymphoid cells that lack antigen-specific receptors, γδ T cell receptor (TCR)-expressing T cells, and several αβ TCR-expressing T cell subsets-such as natural killer T cells, mucosal-associated invariant T cells, et cetera. Whilst we briefly consider the commonalities in the origins and functions of these diverse lymphoid subsets to provide context, the primary topic of this review is to discuss how the semi-invariant natural killer T cells got this way in evolution through lineage commitment and onward ontogeny. What emerges from this discourse is the question: Has a "limbic immune system" emerged (screaming quietly in plain sight!) out of what has been dubbed "in-betweeners"?
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Gosife Donald Okoye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
29
|
Anderson CK, Reilly SP, Brossay L. The Invariant NKT Cell Response Has Differential Signaling Requirements during Antigen-Dependent and Antigen-Independent Activation. THE JOURNAL OF IMMUNOLOGY 2020; 206:132-140. [PMID: 33229442 DOI: 10.4049/jimmunol.2000870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
Invariant NKT (iNKT) cells are an innate-like population characterized by their recognition of glycolipid Ags and rapid cytokine production upon activation. Unlike conventional T cells, which require TCR ligation, iNKT cells can also be stimulated independently of their TCR. This feature allows iNKT cells to respond even in the absence of glycolipid Ags, for example, during viral infections. Although the TCR-dependent and -independent activation of iNKT cells have been relatively well established, the exact contributions of IL-12, IL-18, and TLRs remain unclear for these two activation pathways. To definitively investigate how these components affect the direct and indirect stimulation of iNKT cells, we used mice deficient for either MyD88 or the IL-12Rβ2 in the T cell lineage. Using these tools, we demonstrate that IL-12, IL-18, and TLRs are completely dispensable for the TCR activation pathway when a strong agonist is used. In contrast, during murine CMV infection, when the TCR is not engaged, IL-12 signaling is essential, and TLR signaling is expendable. Importantly, to our knowledge, we discovered an intrinsic requirement for IL-18 signaling by splenic iNKT cells but not liver iNKT cells, suggesting that there might be diversity, even within the NKT1 population.
Collapse
Affiliation(s)
- Courtney K Anderson
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Division of Biology and Medicine, Brown University, Providence, RI 02906
| |
Collapse
|
30
|
Abstract
The cytokine interleukin-1β (IL-1β) is critical for antimicrobial defenses; the inflammasome pathway typically controls IL-1β release, but pathogens often evade this pathway. In this issue Donado et al. (2020) describe an alternative, two-cell model, to instruct inflammasome-independent IL-1β release.
Collapse
Affiliation(s)
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232, USA; Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Centre, Nashville, TN 37232, USA.
| |
Collapse
|
31
|
Kumar A, Hill TM, Gordy LE, Suryadevara N, Wu L, Flyak AI, Bezbradica JS, Van Kaer L, Joyce S. Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells. Proc Natl Acad Sci U S A 2020; 117:17156-17165. [PMID: 32611812 PMCID: PMC7382224 DOI: 10.1073/pnas.2001665117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Immune Tolerance/genetics
- Immune Tolerance/immunology
- Mice
- Mice, Knockout
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/immunology
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell
- Thymocytes
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Timothy M Hill
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Chemistry and Life Science, US Military Academy, West Point, NY 10996
| | - Laura E Gordy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lan Wu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Andrew I Flyak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Biology, Caltech, Pasadena, CA 91125
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX1 2JD, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37232;
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
32
|
Sharma M, Zhang S, Niu L, Lewinsohn DM, Zhang X, Huang S. Mucosal-Associated Invariant T Cells Develop an Innate-Like Transcriptomic Program in Anti-mycobacterial Responses. Front Immunol 2020; 11:1136. [PMID: 32582206 PMCID: PMC7295940 DOI: 10.3389/fimmu.2020.01136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Conventional T cells exhibit a delayed response to the initial priming of peptide antigens presented by major histocompatibility complex (MHC) proteins. Unlike conventional T cells, mucosal-associated invariant T (MAIT) cells quickly respond to non-peptidic metabolite antigens presented by MHC-related protein 1 (MR1). To elucidate the MR1-dependent activation program of MAIT cells in response to mycobacterial infections, we determined the surface markers, transcriptomic profiles, and effector responses of activated human MAIT cells. Results revealed that mycobacterial-incubated antigen-presenting cells stimulated abundant human CD8+ MAIT cells to upregulate the co-expression of CD69 and CD26, as a combinatorial activation marker. Further transcriptomic analyses demonstrated that CD69+CD26++ CD8+MAIT cells highly expressed numerous genes for mediating anti-mycobacterial immune responses, including pro-inflammatory cytokines, cytolytic molecules, NK cell receptors, and transcription factors, in contrast to inactivated counterparts CD69+/−CD26+/− CD8+MAIT cells. Gene co-expression, enrichment, and pathway analyses yielded high statistical significance to strongly support that activated CD8+ MAIT cells shared gene expression and numerous pathways with NK and CD8+ T cells in activation, cytokine production, cytokine signaling, and effector functions. Flow cytometry detected that activated CD8+MAIT cells produced TNFα, IFNγ, and granulysin to inhibit mycobacterial growth and fight mycobacterial infection. Together, results strongly support that the combinatorial activation marker CD69+CD26++ labels the activated CD8+MAIT cells that develop an innate-like activation program in anti-mycobacterial immune responses. We speculate that the rapid production of anti-mycobacterial effector molecules facilitates MAIT cells to fight early mycobacterial infection in humans.
Collapse
Affiliation(s)
- Manju Sharma
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shuangmin Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David M Lewinsohn
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shouxiong Huang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunobiology Graduate Program, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
33
|
Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular Aspects and Future Perspectives of Cytokine-Based Anti-cancer Immunotherapy. Front Cell Dev Biol 2020; 8:402. [PMID: 32582698 PMCID: PMC7283917 DOI: 10.3389/fcell.2020.00402] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/01/2020] [Indexed: 12/11/2022] Open
Abstract
Cytokine-based immunotherapy is a promising field in the cancer treatment, since cytokines, as proteins of the immune system, are able to modulate the host immune response toward cancer cell, as well as directly induce tumor cell death. Since a low dose monotherapy with some cytokines has no significant therapeutic results and a high dose treatment leads to a number of side effects caused by the pleiotropic effect of cytokines, the problem of understanding the influence of cytokines on the immune cells involved in the pro- and anti-tumor immune response remains a pressing one. Immune system cells carry CD makers on their surface which can be used to identify various populations of cells of the immune system that play different roles in pro- and anti-tumor immune responses. This review discusses the functions and specific CD markers of various immune cell populations which are reported to participate in the regulation of the immune response against the tumor. The results of research studies and clinical trials investigating the effect of cytokine therapy on the regulation of immune cell populations and their surface markers are also discussed. Current trends in the development of cancer immunotherapy, as well as the role of cytokines in combination with other therapeutic agents, are also discussed.
Collapse
Affiliation(s)
- Daria S Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kristina V Kitaeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, Nottingham, United Kingdom
| | - Valeriya V Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
34
|
Aerts JMFG, Artola M, van Eijk M, Ferraz MJ, Boot RG. Glycosphingolipids and Infection. Potential New Therapeutic Avenues. Front Cell Dev Biol 2019; 7:324. [PMID: 31867330 PMCID: PMC6908816 DOI: 10.3389/fcell.2019.00324] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
Glycosphingolipids (GSLs), the main topic of this review, are a subclass of sphingolipids. With their glycans exposed to the extracellular space, glycosphingolipids are ubiquitous components of the plasma membrane of cells. GSLs are implicated in a variety of biological processes including specific infections. Several pathogens use GSLs at the surface of host cells as binding receptors. In addition, lipid-rafts in the plasma membrane of host cells may act as platform for signaling the presence of pathogens. Relatively common in man are inherited deficiencies in lysosomal glycosidases involved in the turnover of GSLs. The associated storage disorders (glycosphingolipidoses) show lysosomal accumulation of substrate(s) of the deficient enzyme. In recent years compounds have been identified that allow modulation of GSLs levels in cells. Some of these agents are well tolerated and already used to treat lysosomal glycosphingolipidoses. This review summarizes present knowledge on the role of GSLs in infection and subsequent immune response. It concludes with the thought to apply glycosphingolipid-lowering agents to prevent and/or combat infections.
Collapse
Affiliation(s)
| | - M Artola
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M van Eijk
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - M J Ferraz
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| | - R G Boot
- Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
35
|
Abstract
Over the last few decades, advances in our understanding of microbial ecology have allowed us to appreciate the important role of microbial communities in maintaining human health. While much of this research has focused on gut microbes, microbial communities in other body sites and from the environment are increasingly recognized in human disease. Here, we discuss recent advances in our understanding of host-microbiota interactions in the development and manifestation of asthma focusing on three distinct microbial compartments. First, environmental microbes originating from house dust, pets, and farm animals have been linked to asthma pathogenesis, which is often connected to their production of bioactive molecules such as lipopolysaccharide. Second, respiratory microbial communities, including newly appreciated populations of microbes in the lung have been associated with allergic airway inflammation. Current evidence suggests that the presence of particular microbes, especially Streptococcus, Haemophilus, and Morexella species within the airway may shape local immune responses and alter the severity and manifestations of airway inflammation. Third, the gut microbiota has been implicated in both experimental models and clinical studies in predisposing to asthma. There appears to be a "critical window" of colonization that occurs during early infancy in which gut microbial communities shape immune maturation and confer susceptibility to allergic airway inflammation. The mechanisms by which gut microbial communities influence lung immune responses and physiology, the "gut-lung axis," are still being defined but include the altered differentiation of immune cell populations important in asthma and the local production of metabolites that affect distal sites. Together, these findings suggest an intimate association of microbial communities with host immune development and the development of allergic airway inflammation. Improved understanding of these relationships raises the possibility of microbiota-directed therapies to improve or prevent asthma.
Collapse
Affiliation(s)
- Aaron Ver Heul
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Planer
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew L Kau
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
36
|
Key features and homing properties of NK cells in the liver are shaped by activated iNKT cells. Sci Rep 2019; 9:16362. [PMID: 31704965 PMCID: PMC6841958 DOI: 10.1038/s41598-019-52666-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 10/16/2019] [Indexed: 11/16/2022] Open
Abstract
The contribution of natural killer (NK) cells to the clearance of hepatic viral infections is well recognized. The recently discovered heterogeneity of NK cell populations renders them interesting targets for immune interventions. Invariant natural killer T (iNKT) cells represent a key interaction partner for hepatic NK cells. The present study addressed whether characteristics of NK cells in the liver can be shaped by targeting iNKT cells. For this, the CD1d-binding pegylated glycolipid αGalCerMPEG was assessed for its ability to modulate the features of NK cells permanently or transiently residing in the liver. In vivo administration resulted in enhanced functionality of educated and highly differentiated CD27+ Mac-1+ NK cells accompanied by an increased proliferation. Improved liver homing was supported by serum-derived and cellular factors. Reduced viral loads in a mCMV infection model confirmed the beneficial effect of NK cells located in the liver upon stimulation with αGalCerMPEG. Thus, targeting iNKT cell-mediated NK cell activation in the liver represents a promising approach for the establishment of liver-directed immune interventions.
Collapse
|
37
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
38
|
von Gerichten J, Lamprecht D, Opálka L, Soulard D, Marsching C, Pilz R, Sencio V, Herzer S, Galy B, Nordström V, Hopf C, Gröne HJ, Trottein F, Sandhoff R. Bacterial immunogenic α-galactosylceramide identified in the murine large intestine: dependency on diet and inflammation. J Lipid Res 2019; 60:1892-1904. [PMID: 31484693 DOI: 10.1194/jlr.ra119000236] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/22/2019] [Indexed: 12/22/2022] Open
Abstract
The glycosphingolipid, α-galactosylceramide (αGalCer), when presented by CD1d on antigen-presenting cells, efficiently activates invariant natural killer T (iNKT) cells. Thereby, it modulates immune responses against tumors, microbial and viral infections, and autoimmune diseases. Recently, the production of αGalCer by Bacteroidetes from the human gut microbiome was elucidated. Using hydrophilic interaction chromatography coupled to MS2, we screened murine intestinal tracts to identify and quantify αGalCers, and we investigated the αGalCer response to different dietary and physiologic conditions. In both the cecum and the colon of mice, we found 1-15 pmol of αGalCer per milligram of protein; in contrast, mice lacking microbiota (germ-free mice) and fed identical diet did not harbor αGalCer. The identified αGalCer contained a β(R)-hydroxylated hexadecanoyl chain N-linked to C18-sphinganine, which differed from what has been reported with Bacteroides fragilis Unlike β-anomeric structures, but similar to αGalCers from B. fragilis, the synthetic form of the murine αGalCer induced iNKT cell activation in vitro. Last, we observed a decrease in αGalCer production in mice exposed to conditions that alter the composition of the gut microbiota, including Western type diet, colitis, and influenza A virus infection. Collectively, this study suggests that αGalCer is produced by commensals in the mouse intestine and reveals that stressful conditions causing dysbiosis alter its synthesis. The consequences of this altered production on iNKT cell-mediated local and systemic immune responses are worthy of future studies.
Collapse
Affiliation(s)
- Johanna von Gerichten
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Dominic Lamprecht
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Lukáš Opálka
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Skin Barrier Research Group, Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Christian Marsching
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Robert Pilz
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Valentin Sencio
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Silke Herzer
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Viola Nordström
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Mannheim, Germany
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany.,Institute of Pharmacology, University of Marburg, Marburg, Germany
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Roger Sandhoff
- Lipid Pathobiochemistry Group, Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
39
|
Abstract
Invariant natural killer T cells (iNKT cells) are an innate-like T cell subset that expresses an invariant T cell receptor (TCR) α-chain and recognizes lipids presented on CD1d. They secrete diverse cytokines and can influence many types of immune responses. Despite having highly similar TCR specificities, iNKT cells differentiate in the thymus into distinct subsets that are analogous to T helper 1 (TH1), TH2 and TH17 cell subsets. Additional iNKT cell subsets that may require peripheral activation have also been described, including one that produces IL-10. In general, iNKT cells are non-circulating, tissue-resident lymphocytes, but the prevalence of different iNKT cell subsets differs markedly between tissues. Here, we summarize the functions of iNKT cells in four tissues in which they are prevalent, namely, the liver, the lungs, adipose tissue and the intestine. Importantly, we explain how local iNKT cell responses at each site contribute to tissue homeostasis and protection from infection but can also contribute to tissue inflammation and damage.
Collapse
|
40
|
Iwabuchi K, Van Kaer L. Editorial: Role of CD1- and MR1-Restricted T Cells in Immunity and Disease. Front Immunol 2019; 10:1837. [PMID: 31447847 PMCID: PMC6691045 DOI: 10.3389/fimmu.2019.01837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Kazuya Iwabuchi
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
41
|
Chen D, Gao X, Wang J, Zhao H, Liu H, Chen S, Zhang J, Meng M. Activation of hepatic iNKT2 cells by α-GalCer ameliorates hepatic steatosis induced by high-fat diet in C57BL/6J mice. Int Immunopharmacol 2019; 74:105727. [PMID: 31284229 DOI: 10.1016/j.intimp.2019.105727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022]
Abstract
The existence of association between the subpopulation of iNKT cells with different functions and nonalcoholic fatty liver disease has not been confirmed. To investigative the role of iNKT cells in the pathogenesis of nonalcoholic fatty liver disease, we established a non-alcoholic fatty liver model by feeding C57BL/6J mice for 12 weeks with a high-fat diet and injecting α-GalCer through different routes to activate hepatic iNKT cells. The liver of the mice fed a high-fat diet (HFD) had severe hepatic steatosis appearance, elevated pro-inflammatory cytokines and reduced anti-inflammatory cytokines in the liver, and high serum levels of TC, LDL, HDL, and ALT. Our results showed that the percentage of iNKT cells in the liver of the HFD-fed mice was lower than that of the control mice. The expression levels of the related transcription factor of T-bet increased but that of GATA-3 decreased in the HFD-fed mice. The administration of α-GalCer by intraperitoneal injection resulted in increasing of hepatic iNKT and iNKT2 cells but decreasing of hepatic iNKT1 cells, and the expression of GATA-3 and anti-inflammatory cytokine (IL-4) was increased in the liver, and hepatic steatosis was ameliorated in the HFD-fed mice. The administration of α-GalCer by subcutaneous injection resulted in a decrease in hepatic iNKT and iNKT2 and an augmentation of hepatic iNKT1 cells. However, hepatic steatosis was not significantly improved. We concluded that the intraperitoneal injection with α-GalCer effectively improved hepatic steatosis, according to increasing the number of hepatic iNKT2 cells. The precise mechanism requires further exploration.
Collapse
Affiliation(s)
- Dongzhi Chen
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Xiang Gao
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Jianguo Wang
- Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Huijuan Zhao
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Huifang Liu
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Shengde Chen
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Jingnan Zhang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China
| | - Ming Meng
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-autoimmune Diseases in Hebei Province, Baoding, PR China; Department of Immunology, School of Medicine, Hebei University, Baoding, 071000, Hebei Province, PR China.
| |
Collapse
|
42
|
Wang Q, Wu H. T Cells in Adipose Tissue: Critical Players in Immunometabolism. Front Immunol 2018; 9:2509. [PMID: 30459770 PMCID: PMC6232870 DOI: 10.3389/fimmu.2018.02509] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
Adipose tissue performs immunoregulatory functions in addition to fat storage. Various T cells in different fat depots either help maintain metabolic homeostasis under healthy conditions or contribute to metabolic disorders in pathological conditions such as obesity, diabetes, cardiovascular diseases, or even cancer. These T cells play critical roles in immunometabolism, which refers to the intersection of immunity and metabolism. Numerous studies have examined the presence and changes of different T cell subsets, including helper T cells, regulatory T cells, cytotoxic T cells, and natural killer T cells, in adipose depots in health and diseases. In this review, we will discuss the adipose tissue niches that influence the patterns and functions of T cell subsets and in turn the impact of these T cells on cell- or body-based immunometabolism accounting for health and obesity.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Huaizhu Wu
- Department of Medicine and Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
43
|
Nakayama H, Nagafuku M, Suzuki A, Iwabuchi K, Inokuchi JI. The regulatory roles of glycosphingolipid-enriched lipid rafts in immune systems. FEBS Lett 2018; 592:3921-3942. [PMID: 30320884 DOI: 10.1002/1873-3468.13275] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/04/2023]
Abstract
Lipid rafts formed by glycosphingolipids (GSLs) on cellular membranes play important roles in innate and adaptive immunity. Lactosylceramide (LacCer) forms lipid rafts on plasma and granular membranes of human neutrophils. These LacCer-enriched lipid rafts bind directly to pathogenic components, such as pathogenic fungi-derived β-glucan and Mycobacteria-derived lipoarabinomannan via carbohydrate-carbohydrate interactions, and mediate innate immune responses to these pathogens. In contrast, a-series and o-series gangliosides form distinct rafts on CD4+ and CD8+ T cell subsets, respectively, contributing to the respective functions of these cells and stimulating adaptive immune responses through T cell receptors. These findings suggest that gangliosides play indispensable roles in T cell selection and activation. This Review introduces the involvement of GSL-enriched lipid rafts in innate and adaptive immunity.
Collapse
Affiliation(s)
- Hitoshi Nakayama
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan
| | - Masakazu Nagafuku
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akemi Suzuki
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Kazuhisa Iwabuchi
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Japan.,Institute for Environmental and Gender-specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Japan.,Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
44
|
Regulation of the terminal maturation of iNKT cells by mediator complex subunit 23. Nat Commun 2018; 9:3875. [PMID: 30250136 PMCID: PMC6155209 DOI: 10.1038/s41467-018-06372-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
Invariant natural killer T cells (iNKT cells) are a specific subset of T cells that recognize glycolipid antigens and upon activation rapidly exert effector functions. This unique function is established during iNKT cell development; the detailed mechanisms of this process, however, remain to be elucidated. Here the authors show that deletion of the mediator subunit Med23 in CD4+CD8+ double positive (DP) thymocytes completely blocks iNKT cell development at stage 2. This dysregulation is accompanied by a bias in the expression of genes related to the regulation of transcription and metabolism, and functional impairment of the cells including the loss of NK cell characteristics, reduced ability to secrete cytokines and attenuated recruitment capacity upon activation. Moreover, Med23-deficient iNKT cells exhibit impaired anti-tumor activity. Our study identifies Med23 as an essential transcriptional regulator that controls iNKT cell differentiation and terminal maturation. Invariant Natural Killer T cells (iNKT) rapidly exert effector functions upon activation, but the mechanisms of their functional maturation remain to be determined. Here, Xu and colleagues show that the mediator subunit Med23 is a transcriptional regulator controlling iNKT cell terminal maturation.
Collapse
|
45
|
Lezmi G, Leite-de-Moraes M. Invariant Natural Killer T and Mucosal-Associated Invariant T Cells in Asthmatic Patients. Front Immunol 2018; 9:1766. [PMID: 30105031 PMCID: PMC6077286 DOI: 10.3389/fimmu.2018.01766] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022] Open
Abstract
Recent studies have highlighted the heterogeneity of asthma. Distinct patient phenotypes (symptoms, age at onset, atopy, and lung function) may result from different pathogenic mechanisms, including airway inflammation, remodeling, and immune and metabolic pathways in a specific microbial environment. These features, which define the asthma endotype, may have significant consequences for the development and progression of the disease. Asthma is generally associated with Th2 cells, which produce a panel of cytokines (IL-4, IL-5, IL-13) that act in synergy to drive lung inflammatory responses, mucus secretion, IgE production, and fibrosis, causing the characteristic symptoms of asthma. In addition to conventional CD4+ T lymphocytes, other T-cell types can produce Th2 or Th17 cytokines rapidly. Promising candidate cells for studies of the mechanisms underlying the pathophysiology of asthma are unconventional T lymphocytes, such as invariant natural killer T (iNKT) and mucosal-associated invariant T (MAIT) cells. This review provides an overview of our current understanding of the impact of iNKT and MAIT cells on asthmatic inflammation, focusing particularly on pediatric asthma.
Collapse
Affiliation(s)
- Guillaume Lezmi
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et d'Allergologie Pédiatriques, Paris, France.,Université Paris Descartes, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Descartes, Paris, France.,Laboratory of Immunoregulation and Immunopathology, INEM (Institut Necker-Enfants Malades), CNRS UMR8253 and INSERM UMR1151, Paris, France
| |
Collapse
|
46
|
Liu KE. Rethinking Causation in Cancer with Evolutionary Developmental Biology. BIOLOGICAL THEORY 2018; 13:228-242. [PMID: 30546273 PMCID: PMC6267418 DOI: 10.1007/s13752-018-0303-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
Despite the productivity of basic cancer research, cancer continues to be a health burden to society because this research has not yielded corresponding clinical applications. Many proposed solutions to this dilemma have revolved around implementing organizational and policy changes related to cancer research. Here I argue for a different solution: a new conceptualization of causation in cancer. Neither the standard molecular biomarker approaches nor evolutionary biology approaches to cancer fully capture its complex causal dynamics, even when considered jointly. These approaches map on to Ernst Mayr's proximate-ultimate distinction, which is an inadequate conceptualization of causation in biological systems and makes it difficult to connect developmental and evolutionary viewpoints. I propose looking to evolutionary developmental biology (EvoDevo) to overcome the distinction and integrate the proximate and ultimate causal frameworks. I use the concepts of modularity and evolvability to show how an EvoDevo perspective can be manifested in cancer translational research. This perspective on causation in cancer is better suited for integrating the complexity of current empirical results and can facilitate novel developments in the investigation and clinical treatment of cancer.
Collapse
Affiliation(s)
- Katherine E. Liu
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN USA
| |
Collapse
|
47
|
King LA, Lameris R, de Gruijl TD, van der Vliet HJ. CD1d-Invariant Natural Killer T Cell-Based Cancer Immunotherapy: α-Galactosylceramide and Beyond. Front Immunol 2018; 9:1519. [PMID: 30013569 PMCID: PMC6036112 DOI: 10.3389/fimmu.2018.01519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022] Open
Abstract
CD1d-restricted invariant natural killer T (iNKT) cells are considered an attractive target for cancer immunotherapy. Upon their activation by glycolipid antigen and/or cytokines, iNKT cells can induce direct lysis of tumor cells but can also induce an antitumor immune response via their rapid production of proinflammatory cytokines that trigger the cytotoxic machinery of other components of the innate and adaptive immune system. Here, we provide an overview of various therapeutic approaches that have been evaluated or that are currently being developed and/or explored. These include administration of α-GalCer or alternative (glyco) lipid antigens, glycolipid-loaded antigen-presenting cells and liposomes, strategies that enhance CD1d expression levels or are based on ligation of CD1d, adoptive transfer of iNKT cells or chimeric antigen receptor iNKT cells, and tumor targeting of iNKT cells.
Collapse
Affiliation(s)
- Lisa A King
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Roeland Lameris
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, VU University Medical Center and Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
48
|
Abstract
Type I or invariant natural killer T cells belong to a unique lineage of innate T cells, which express markers of both T lymphocytes and NK cells, namely T cell receptor (TCR) and NK1.1 (CD161C), respectively. Thus, apart from direct killing of target cells like NK cells, and they also produce a myriad of cytokines which modulate the adaptive immune responses. Unlike traditional T cells which carry a conventional αβ TCR, NKT cells express semi-invariant TCR - Vα14-Jα18, coupled with Vβ8, Vβ7 and Vβ2 in mice. In humans, the invariant TCR is composed of Vα24-Jα18, coupled with Vβ11.
Collapse
Affiliation(s)
- Kalyani Pyaram
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
| | - Viveka Nand Yadav
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
49
|
Van Kaer L, Wu L. Therapeutic Potential of Invariant Natural Killer T Cells in Autoimmunity. Front Immunol 2018; 9:519. [PMID: 29593743 PMCID: PMC5859017 DOI: 10.3389/fimmu.2018.00519] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
Tolerance against self-antigens is regulated by a variety of cell types with immunoregulatory properties, such as CD1d-restricted invariant natural killer T (iNKT) cells. In many experimental models of autoimmunity, iNKT cells promote self-tolerance and protect against autoimmunity. These findings are supported by studies with patients suffering from autoimmune diseases. Based on these studies, the therapeutic potential of iNKT cells in autoimmunity has been explored. Many of these studies have been performed with the potent iNKT cell agonist KRN7000 or its structural variants. These findings have generated promising results in several autoimmune diseases, although mechanisms by which iNKT cells modulate autoimmunity remain incompletely understood. Here, we will review these preclinical studies and discuss the prospects for translating their findings to patients suffering from autoimmune diseases.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|