1
|
Angulo M, Angulo C. Trained immunity-based vaccines: A vision from the one health initiative. Vaccine 2025; 43:126505. [PMID: 39520776 DOI: 10.1016/j.vaccine.2024.126505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/29/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Trained immunity-based vaccines (TIbV or TRIMbV) represent a novel approach to combating infectious diseases. The innate immune system in animals, including humans, exhibits "memory-like" functions. Remarkably, the immunological mechanisms -both epigenetic and metabolic-) underlying this memory enables immune cells to develop defensive and protective outcomes against unspecific pathogenic infections. Under this context, the One Health initiative promotes integrative efforts to combat zoonotic (and anthropozoonotic) diseases, which is critical because 3 of 4 animal infections are transmitted to humans. Therefore, TIbV constitutes a potential affordable approach to control zoonotic pathologies, especially under pandemic scenarios. This review describes the state-of-the-art TIbV and their hurdles, opportunities, and prospects for the One Health initiative to prevent, control, and treat infectious diseases.
Collapse
Affiliation(s)
- Miriam Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S. 23096, Mexico.; Laboratorio Nacional CONAHCYT de Generación de Vacunas Veterinarias y Servicios de Diagnóstico (LNC-GVD), Centro de Investigaciones Biológicas del Noroeste, S.C., Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C. S., C.P. 23096, Mexico.
| |
Collapse
|
2
|
Teufel LU, Matzaraki V, Folkman L, Ter Horst R, Moorlag SJCFM, Mulders-Manders CM, Netea MG, Krausgruber T, Joosten LAB, Arts RJW. Insights into the multifaceted role of interleukin-37 on human immune cell regulation. Clin Immunol 2024; 268:110368. [PMID: 39307482 DOI: 10.1016/j.clim.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Autoinflammatory diseases, while having a variety of underlying causes, are mediated by dysfunctional innate immune responses. Therefore, standard treatments target innate cytokines or block their receptors. Despite excellent responses in some patients, first-line treatments fail in others, for reasons which remain to be understood. We studied the effects of IL-37, an anti-inflammatory cytokine, on immune cells using multi-omics profiling of 325 healthy adults. Our findings show that IL-37 is associated with inflammation control and generally reduced immune cell activity. Further, genetic variants in IL37 are associated with impaired trained immunity, a memory phenotype of innate immune cells contributing to autoinflammation. To underpin the medical potential of IL-37, an explorative cohort of seven autoinflammatory disorders was built. In vitro stimulation experiments argue for recombinant IL-37 as a potential therapy in IL-6-, and IL-22-driven conditions. Concluding, IL-37 is highlighted as a cytokine with broad anti-inflammatory functions, implicating its potential as therapeutic intervention.
Collapse
Affiliation(s)
- Lisa U Teufel
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lukas Folkman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Austria
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Catharina M Mulders-Manders
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Thomas Krausgruber
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Austria
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Rob J W Arts
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
3
|
Fransson J, Bachelin C, Ichou F, Guillot-Noël L, Ponnaiah M, Gloaguen A, Maillart E, Stankoff B, Tenenhaus A, Fontaine B, Mochel F, Louapre C, Zujovic V. Multiple Sclerosis Patient Macrophages Impaired Metabolism Leads to an Altered Response to Activation Stimuli. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200312. [PMID: 39467238 PMCID: PMC11521098 DOI: 10.1212/nxi.0000000000200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND AND OBJECTIVES In multiple sclerosis (MS), immune cells invade the CNS and destroy myelin. Macrophages contribute to demyelination and myelin repair, and their role in each process depends on their ability to acquire specific phenotypes in response to external signals. In this article, we assess whether defects in MS patient macrophage responses may lead to increased inflammation or lack of neuroregenerative effects. METHODS CD14+CD16- monocytes from patients with MS and healthy controls (HCs) were activated in vitro to obtain homeostatic-like, proinflammatory, and proregenerative macrophages. Macrophage activation profiles were assessed through RNA sequencing and metabolomics. Surface molecule expression of CD14, CD16, and HLA-DR and myelin phagocytic capacity were evaluated with flow cytometry. Macrophage supernatant capacity to influence oligodendrocyte precursor cell differentiation toward an astrocytic or oligodendroglia fate was also tested. RESULTS We observed that MS patient monocytes ex vivo recapitulate their preferential activation toward the CD16+ phenotype, a subset of proinflammatory cells overrepresented in MS lesions. Functionally, MS patient macrophages display a decreased capacity to phagocytose human myelin and a deficit of processing myelin after ingestion. In addition, MS patient macrophage supernatant favors astrocytes over oligodendrocyte differentiation when compared with HC macrophage supernatant. Furthermore, even when exposed to homeostatic or proregenerative stimuli, MS patient macrophages uphold a proinflammatory transcriptomic profile with higher levels of cytokine/chemokine. Of interest, MS patient macrophages exhibit a distinct metabolic signature with a mitochondrial energy metabolism blockage. Transcriptomic data are further substantiated by metabolomics studies that reveal perturbations in the corresponding metabolic pathways. DISCUSSION Our results show an intrinsic defect of MS patient macrophages, reminiscent of innate immune cell memory in MS, lifting macrophage importance in the disease and as potential therapeutic targets.
Collapse
Affiliation(s)
- Jennifer Fransson
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Corinne Bachelin
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Farid Ichou
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Léna Guillot-Noël
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Maharajah Ponnaiah
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Arnaud Gloaguen
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Elisabeth Maillart
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Bruno Stankoff
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Arthur Tenenhaus
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Bertrand Fontaine
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Fanny Mochel
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Celine Louapre
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| | - Violetta Zujovic
- From the Sorbonne Université (J.F., C.B., L.G.-N., E.M., A.T., F.M., C.L., V.Z.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital Pitié Salpétrière Univ. Hosp., DMU Neuroscience 6; Inst. of Cardiometabolism and Nutrition (F.I., M.P.), Sorbonne-universités-Upmc 06, INSERM, CNRS; Laboratoire des Signaux et Systèmes (L2S) (A.G., A.T.), CNRS-CentraleSupélec, Université Paris-Saclay; Sorbonne Université (B.S.), Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital St. Antoine-HUEP; and INSERM (B.F.), SU, AP-HP, Centre de recherche en Myologie-UMR974 and Service of Neuro-Myology, Institute of Myology, University hospital Pitié-Salpêtriere
| |
Collapse
|
4
|
Wang R, Lan C, Benlagha K, Camara NOS, Miller H, Kubo M, Heegaard S, Lee P, Yang L, Forsman H, Li X, Zhai Z, Liu C. The interaction of innate immune and adaptive immune system. MedComm (Beijing) 2024; 5:e714. [PMID: 39286776 PMCID: PMC11401974 DOI: 10.1002/mco2.714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 08/11/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024] Open
Abstract
The innate immune system serves as the body's first line of defense, utilizing pattern recognition receptors like Toll-like receptors to detect pathogens and initiate rapid response mechanisms. Following this initial response, adaptive immunity provides highly specific and sustained killing of pathogens via B cells, T cells, and antibodies. Traditionally, it has been assumed that innate immunity activates adaptive immunity; however, recent studies have revealed more complex interactions. This review provides a detailed dissection of the composition and function of the innate and adaptive immune systems, emphasizing their synergistic roles in physiological and pathological contexts, providing new insights into the link between these two forms of immunity. Precise regulation of both immune systems at the same time is more beneficial in the fight against immune-related diseases, for example, the cGAS-STING pathway has been found to play an important role in infections and cancers. In addition, this paper summarizes the challenges and future directions in the field of immunity, including the latest single-cell sequencing technologies, CAR-T cell therapy, and immune checkpoint inhibitors. By summarizing these developments, this review aims to enhance our understanding of the complexity interactions between innate and adaptive immunity and provides new perspectives in understanding the immune system.
Collapse
Affiliation(s)
- Ruyuan Wang
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Caini Lan
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Kamel Benlagha
- Alloimmunity, Autoimmunity and Transplantation Université de Paris, Institut de Recherche Saint-Louis, EMiLy, INSERM U1160 Paris France
| | - Niels Olsen Saraiva Camara
- Department of Immunology Institute of Biomedical Sciences University of São Paulo (USP) São Paulo São Paulo Brazil
| | - Heather Miller
- Coxiella Pathogenesis Section, Laboratory of Bacteriology Rocky Mountain Laboratories National Institute of Allergy and Infectious Diseases, National Institutes of Health Hamilton Montana USA
| | - Masato Kubo
- Division of Molecular Pathology Research Institute for Biomedical Sciences (RIBS) Tokyo University of Science Noda Chiba Japan
| | - Steffen Heegaard
- Department of Ophthalmology Rigshospitalet Hospital Copenhagen University Copenhagen Denmark
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine Li Ka Shing Faculty of Medicine The University of Hong Kong Hong Kong China
| | - Lu Yang
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| | - Huamei Forsman
- Department of Laboratory Medicine Institute of Biomedicine, University of Gothenburg Gothenburg Sweden
| | - Xingrui Li
- Department of Thyroid and Breast Surgery Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan China
| | - Zhimin Zhai
- Department of Hematology The Second Hospital of Anhui Medical University Hefei China
| | - Chaohong Liu
- Department of Pathogen Biology School of Basic Medicine Tongji Medical College and State Key Laboratory for Diagnosis and treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology Wuhan Hubei China
| |
Collapse
|
5
|
Jacobs MME, Maas RJF, Jonkman I, Negishi Y, Tielemans Zamora W, Yanginlar C, van Heck J, Matzaraki V, Martens JHA, Baltissen M, Vermeulen M, Morla-Folch J, Ranzenigo A, Wang W, Umali M, Ochando J, van der Vlag J, Hilbrands LB, Joosten LAB, Netea MG, Mulder WJM, van Leent MMT, Mhlanga MM, Teunissen AJP, Rother N, Duivenvoorden R. Trained immunity is regulated by T cell-induced CD40-TRAF6 signaling. Cell Rep 2024; 43:114664. [PMID: 39178113 PMCID: PMC11536040 DOI: 10.1016/j.celrep.2024.114664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Trained immunity is characterized by histone modifications and metabolic changes in innate immune cells following exposure to inflammatory signals, leading to heightened responsiveness to secondary stimuli. Although our understanding of the molecular regulation of trained immunity has increased, the role of adaptive immune cells herein remains largely unknown. Here, we show that T cells modulate trained immunity via cluster of differentiation 40-tissue necrosis factor receptor-associated factor 6 (CD40-TRAF6) signaling. CD40-TRAF6 inhibition modulates functional, transcriptomic, and metabolic reprogramming and modifies histone 3 lysine 4 trimethylation associated with trained immunity. Besides in vitro studies, we reveal that single-nucleotide polymorphisms in the proximity of CD40 are linked to trained immunity responses in vivo and that combining CD40-TRAF6 inhibition with cytotoxic T lymphocyte antigen 4-immunoglobulin (CTLA4-Ig)-mediated co-stimulatory blockade induces long-term graft acceptance in a murine heart transplantation model. Combined, our results reveal that trained immunity is modulated by CD40-TRAF6 signaling between myeloid and adaptive immune cells and that this can be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Maaike M E Jacobs
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rianne J F Maas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Inge Jonkman
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Yutaka Negishi
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem Tielemans Zamora
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cansu Yanginlar
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Julia van Heck
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Marijke Baltissen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Judit Morla-Folch
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Ranzenigo
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William Wang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Umali
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jordi Ochando
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Johan van der Vlag
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Luuk B Hilbrands
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, University of Medicine and Pharmacy, Iuliu Haţieganu, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Willem J M Mulder
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Musa M Mhlanga
- Department of Cell Biology, Faculty of Science, Radboud University, Nijmegen, the Netherlands; Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nils Rother
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Raphaël Duivenvoorden
- Department of Nephrology, Radboud University Medical Center, Nijmegen, the Netherlands; BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Mansilla FC, Miraglia MC, Maidana SS, Cecilia R, Capozzo AV. Chronic NOD2 stimulation by MDP confers protection against parthanatos through M2b macrophage polarization in RAW264.7 cells. Immunobiology 2024; 229:152833. [PMID: 38963996 DOI: 10.1016/j.imbio.2024.152833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Innate immune cells show enhanced responsiveness to secondary challenges after an initial non-related stimulation (Trained Innate Immunity, TII). Acute NOD2 activation by Muramyl-Dipeptide (MDP) promotes TII inducing the secretion of pro-inflammatory mediators, while a sustained MDP-stimulation down-regulates the inflammatory response, restoring tolerance. Here we characterized in-vitro the response of murine macrophages to lipopolysaccharide (LPS) challenge under NOD2-chronic stimulation. RAW264.7 cells were trained with MDP (1 μg/ml, 48 h) and challenged with LPS (5 μg/ml, 24 h). Trained cells formed multinucleated giant cells with increased phagocytosis rates compared to untrained/challenged cells. They showed a reduced mitochondrial activity and a switch to aerobic glycolysis. TNF-α, ROS and NO were upregulated in both trained and untrained cultures (MDP+, MDP- cells, p > 0.05); while IL-10, IL-6 IL-12 and MHCII were upregulated only in trained cells after LPS challenge (MDP + LPS+, p < 0.05). A slight upregulation in the expression of B7.2 was also observed in this group, although differences were not statistically significant. MDP-training induced resistance to LPS challenge (p < 0.01). The relative expression of PARP-1 was downregulated after the LPS challenge, which may contribute to the regulatory milieu and to the innate memory mechanisms exhibited by MDP-trained cells. Our results demonstrate that a sustained MDP-training polarizes murine macrophages towards a M2b profile, inhibiting parthanatos. These results may impact on the development of strategies to immunomodulate processes in which inflammation should be controlled.
Collapse
Affiliation(s)
- Florencia C Mansilla
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina.
| | - María C Miraglia
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET)
| | - Silvina S Maidana
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET)
| | - Randazzo Cecilia
- Institute of Virology and Technological Innovations, Center for Research in Veterinary and Agronomic Sciences (CICVyA), INTA, Buenos Aires, Argentina
| | - Alejandra V Capozzo
- National Council for Scientific and Technical Research (CONICET); Center for Advanced Studies in Human Sciences and Health (CAECIHS), Interamerican Open University (UAI), Buenos Aires, Argentina
| |
Collapse
|
7
|
Gao Y, Liu ZZ, Zhang JB, Zhou CK, Zhang JG, Lin XQ, Yin Q, Chen W, Yang YJ. Dihydroartemisinin is an inhibitor of trained immunity through Akt/mTOR/HIF1α signaling pathway. Exp Cell Res 2024; 438:114052. [PMID: 38636651 DOI: 10.1016/j.yexcr.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Trained immunity is mechanistically defined as the metabolically and epigenetically mediated long-term functional adaptation of the innate immune system, characterized by a heightened response to a secondary stimulation. Given appropriate activation, trained immunity represents an attractive anti-infective therapeutic target. Nevertheless, excessive immune response and subsequent inflammatory cascades may contribute to pathological tissue damage, indicating that the negative impacts of trained immunity appear to be significant. In this study, we show that innate immune responses such as the production of extracellular traps, pro-inflammatory cytokines, and autophagy-related proteins were markedly augmented in trained BMDMs. Furthermore, heat-killed C. albicans priming promotes the activation of the AIM2 inflammasome, and AIM2-/- mice exhibit impaired memory response induced by heat-killed C. albicans. Therefore, we establish that the AIM2 inflammasome is involved in trained immunity and emerges as a promising therapeutic target for potentially deleterious effects. Dihydroartemisinin can inhibit the memory response induced by heat-killed C. albicans through modulation of mTOR signaling and the AIM2 inflammasome. The findings suggest that dihydroartemisinin can reduce the induction of trained immunity by heat-killed C. albicans in C57BL/6 mice. Dihydroartemisinin is one such therapeutic intervention that has the potential to treat of diseases characterized by excessive trained immunity.
Collapse
Affiliation(s)
- Yu Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhen-Zhen Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jia-Bao Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Cheng-Kai Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jian-Gang Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiao-Qi Lin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qi Yin
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wei Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Yong-Jun Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Vuscan P, Kischkel B, Joosten LAB, Netea MG. Trained immunity: General and emerging concepts. Immunol Rev 2024; 323:164-185. [PMID: 38551324 DOI: 10.1111/imr.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Röring RJ, Li W, Liu R, Bruno M, Zhang B, Debisarun PA, Gaal O, Badii M, Klück V, Moorlag SJ, van de Veerdonk F, Li Y, Joosten LA, Netea MG. Epigenetic, transcriptional, and functional characterization of myeloid cells in familial Mediterranean fever. iScience 2024; 27:109356. [PMID: 38510149 PMCID: PMC10951896 DOI: 10.1016/j.isci.2024.109356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1β dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1β and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.
Collapse
Affiliation(s)
- Rutger J. Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Wenchao Li
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Ruiqi Liu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Priya A. Debisarun
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Orsolya Gaal
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Medeea Badii
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Viola Klück
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Simone J.C.F.M. Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Frank van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj- Napoca, Romania
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud university medical center, Nijmegen, the Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Veyssiere M, Sadat Aghamiri S, Hernandez Cervantes A, Henry T, Soumelis V. A mathematical model of Familial Mediterranean Fever predicts mechanisms controlling inflammation. Clin Immunol 2023; 257:109839. [PMID: 37952562 DOI: 10.1016/j.clim.2023.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Familial Mediterranean Fever (FMF) is a monogenic disease caused by gain-of-function mutations in the MEditerranean FeVer (MEFV) gene. The molecular dysregulations induced by these mutations and the associated causal mechanisms are complex and intricate. OBJECTIVE We sought to provide a computational model capturing the mechanistic details of biological pathways involved in FMF physiopathology and enabling the study of the patient's immune cell dynamics. METHODS We carried out a literature survey to identify experimental studies published from January 2000 to December 2020, and integrated its results into a molecular map and a mathematical model. Then, we studied the network of molecular interactions and the dynamic of monocytes to identify key players for inflammation phenotype in FMF patients. RESULTS We built a molecular map of FMF integrating in a structured manner the current knowledge regarding pathophysiological processes participating in the triggering and perpetuation of the disease flares. The mathematical model derived from the map reproduced patient's monocyte behavior, in particular its proinflammatory role via the Pyrin inflammasome activation. Network analysis and in silico experiments identified NF-κB and JAK1/TYK2 as critical to modulate IL-1β- and IL-18-mediated inflammation. CONCLUSION The in silico model of FMF monocyte proved its ability to reproduce in vitro observations. Considering the difficulties related to experimental settings and financial investments to test combinations of stimuli/perturbation in vitro, this model could be used to test complex hypotheses in silico, thus narrowing down the number of in vitro and ex vivo experiments to perform.
Collapse
Affiliation(s)
| | - Sara Sadat Aghamiri
- Université Paris Cité, INSERM U976, Paris, France; University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon F-69007, France
| | - Vassili Soumelis
- Université Paris Cité, INSERM U976, Paris, France; Owkin, 14 boulevard Poissonniere, Paris 75009, France.
| |
Collapse
|
11
|
Riksen NP, Bekkering S, Mulder WJM, Netea MG. Trained immunity in atherosclerotic cardiovascular disease. Nat Rev Cardiol 2023; 20:799-811. [PMID: 37322182 DOI: 10.1038/s41569-023-00894-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/17/2023]
Abstract
Trained immunity, also known as innate immune memory, is a persistent hyper-responsive functional state of innate immune cells. Accumulating evidence implicates trained immunity as an underlying mechanism of chronic inflammation in atherosclerotic cardiovascular disease. In this context, trained immunity is induced by endogenous atherosclerosis-promoting factors, such as modified lipoproteins or hyperglycaemia, causing broad metabolic and epigenetic reprogramming of the myeloid cell compartment. In addition to traditional cardiovascular risk factors, lifestyle factors, including unhealthy diets, sedentary lifestyle, sleep deprivation and psychosocial stress, as well as inflammatory comorbidities, have been shown to activate trained immunity-like mechanisms in bone marrow haematopoietic stem cells. In this Review, we discuss the molecular and cellular mechanisms of trained immunity, its systemic regulation through haematopoietic progenitor cells in the bone marrow, and the activation of these mechanisms by cardiovascular disease risk factors. We also highlight other trained immunity features that are relevant for atherosclerotic cardiovascular disease, including the diverse cell types that show memory characteristics and transgenerational inheritance of trained immunity traits. Finally, we propose potential strategies for the therapeutic modulation of trained immunity to manage atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Siroon Bekkering
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Genomics and Immunoregulation, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Ziogas A, Bruno M, van der Meel R, Mulder WJM, Netea MG. Trained immunity: Target for prophylaxis and therapy. Cell Host Microbe 2023; 31:1776-1791. [PMID: 37944491 DOI: 10.1016/j.chom.2023.10.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/27/2023] [Accepted: 10/15/2023] [Indexed: 11/12/2023]
Abstract
Trained immunity is a de facto memory for innate immune responses, leading to long-term functional reprogramming of innate immune cells. In physiological conditions, trained immunity leads to adaptive states that enhance resistance against pathogens and contributes to immunosurveillance. Dysregulated trained immunity can however lead either to defective innate immune responses in severe infections or cancer or to inflammatory and autoimmune diseases if trained immunity is inappropriately activated. Here, we review the immunological and molecular mechanisms that mediate trained immunity induction and propose that trained immunity represents an important target for prophylactic and therapeutic approaches in human diseases. On the one hand, we argue that novel approaches that induce trained immunity may enhance vaccine efficacy. On the other hand, induction of trained immunity in cancer, and inhibition of exaggerated induction of trained immunity in inflammatory disorders, are viable targets amenable for new therapeutic approaches.
Collapse
Affiliation(s)
- Athanasios Ziogas
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Mariolina Bruno
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Willem J M Mulder
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
13
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
14
|
Li Y, Chen Y, Cai G, Ni Q, Geng Y, Wang T, Bao C, Ruan X, Wang H, Sun W. Roles of trained immunity in the pathogenesis of periodontitis. J Periodontal Res 2023; 58:864-873. [PMID: 37424315 DOI: 10.1111/jre.13158] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontitis is a chronic, inflammatory, and destructive disease caused by the imbalance of host immune response and dental biofilm, and has strong epidemiological and pathogenesis correlations with systemic diseases. The immune response in periodontitis involves both innate and adaptive immunity, with numerous immune cells and inflammatory pathways participating in a complex network of interactions. In the past decade, the concept of "trained immunity" has emerged, which highlights the memory characteristics of innate immunity, thus opening up a new avenue of research. There is growing interest in exploring the role of trained immunity in chronic inflammatory and metabolic diseases such as atherosclerosis and diabetes mellitus. Evidence suggests that trained immunity may also regulate the onset and progression of periodontitis, serving as a bridge between periodontitis-related comorbidities. In this review, we summarize concepts related to trained immunity and its development. Furthermore, we present current evidence that endorses the notion of trained immunity in periodontitis and analyze possible roles it may assume regarding periodontitis-associated inflammatory reactions from a cellular perspective. Finally, we discuss various clinical therapeutic strategies for periodontitis and its associated comorbidities that target trained immunity. We hope that more researchers will pay attention to this emerging concept, thereby providing deeper insights into this novel field.
Collapse
Affiliation(s)
- Yingyi Li
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Chen
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guanhui Cai
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Qiaoqi Ni
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ying Geng
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Ting Wang
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chen Bao
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xiaolei Ruan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wen Sun
- Department of Basic Science of Stomatology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
15
|
Al B, Suen TK, Placek K, Netea MG. Innate (learned) memory. J Allergy Clin Immunol 2023; 152:551-566. [PMID: 37385546 DOI: 10.1016/j.jaci.2023.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
With the growing body of evidence, it is now clear that not only adaptive immune cells but also innate immune cells can mount a more rapid and potent nonspecific immune response to subsequent exposures. This process is known as trained immunity or innate (learned) immune memory. This review discusses the different immune and nonimmune cell types of the central and peripheral immune systems that can develop trained immunity. This review highlights the intracellular signaling and metabolic and epigenetic mechanisms underlying the formation of innate immune memory. Finally, this review explores the health implications together with the potential therapeutic interventions harnessing trained immunity.
Collapse
Affiliation(s)
- Burcu Al
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Tsz K Suen
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Katarzyna Placek
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn
| | - Mihai G Netea
- Department of Molecular Immunology and Cell Biology, Life and Medical Sciences Institute, University of Bonn; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen.
| |
Collapse
|
16
|
Post NF, Ginski G, Peters R, Van Uden NOP, Bekkenk MW, Wolkerstorfer A, Netea MG, Luiten RM. Trained immunity in the pathogenesis of vitiligo. Pigment Cell Melanoma Res 2023; 36:348-354. [PMID: 37293969 DOI: 10.1111/pcmr.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/10/2023]
Abstract
Vitiligo is caused by an autoimmune reaction against melanocytes leading to melanocyte loss. The cause of vitiligo is an interaction between genetic susceptibility and environmental factors. Both the adaptive immune system-through cytotoxic CD8+ T cells and melanocyte specific antibodies-and the innate immune system are involved in these immune processes in vitiligo. While recent data stressed the importance of innate immunity in vitiligo, the question remains why vitiligo patients' immune response becomes overly activated. Could a long-term increase in innate memory function, described as trained immunity after vaccination and in other inflammatory diseases, play a role as an enhancer and continuous trigger in the pathogenesis of vitiligo? After exposure to certain stimuli, innate immune system is able to show an enhanced immunological response to a secondary trigger, indicating a memory function of the innate immune system, a concept termed trained immunity. Trained immunity is regulated by epigenetic reprogramming, including histone chemical modifications and changes in chromatin accessibility that cause sustained changes in the transcription of specific genes. In responses to an infection, trained immunity is beneficial. However, there are indications of a pathogenic role of trained immunity in inflammatory and autoimmune diseases, with monocytes presenting features of a trained phenotype, resulting in increased cytokine production, altered cell metabolism through mTOR signaling, and epigenetic modifications. This hypothesis paper focusses on vitiligo studies that have shown these indications, suggesting the involvement of trained immunity in vitiligo. Future studies focusing on metabolic and epigenetic changes in innate immune cell populations in vitiligo could help in elucidating the potential role of trained immunity in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Nicoline F Post
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Greta Ginski
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rens Peters
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Nathalie O P Van Uden
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, VU University, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Albert Wolkerstorfer
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
17
|
Diez AF, Leroux LP, Chagneau S, Plouffe A, Gold M, Chaparro V, Jaramillo M. Toxoplasma gondii inhibits the expression of autophagy-related genes through AKT-dependent inactivation of the transcription factor FOXO3a. mBio 2023; 14:e0079523. [PMID: 37387601 PMCID: PMC10470550 DOI: 10.1128/mbio.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The intracellular parasite Toxoplasma gondii induces host AKT activation to prevent autophagy-mediated clearance; however, the molecular underpinnings are not fully understood. Autophagy can be negatively regulated through AKT-sensitive phosphorylation and nuclear export of the transcription factor Forkhead box O3a (FOXO3a). Using a combination of pharmacological and genetic approaches, herein we investigated whether T. gondii hinders host autophagy through AKT-dependent inactivation of FOXO3a. We found that infection by type I and II strains of T. gondii promotes gradual and sustained AKT-dependent phosphorylation of FOXO3a at residues S253 and T32 in human foreskin fibroblasts (HFF) and murine 3T3 fibroblasts. Mechanistically, AKT-sensitive phosphorylation of FOXO3a by T. gondii required live infection and the activity of PI3K but was independent of the plasma membrane receptor EGFR and the kinase PKCα. Phosphorylation of FOXO3a at AKT-sensitive residues was paralleled by its nuclear exclusion in T. gondii-infected HFF. Importantly, the parasite was unable to drive cytoplasmic localization of FOXO3a upon pharmacological blockade of AKT or overexpression of an AKT-insensitive mutant form of FOXO3a. Transcription of a subset of bona fide autophagy-related targets of FOXO3a was reduced during T. gondii infection in an AKT-dependent fashion. However, parasite-directed repression of autophagy-related genes was AKT-resistant in cells deficient in FOXO3a. Consistent with this, T. gondii failed to inhibit the recruitment of acidic organelles and LC3, an autophagy marker, to the parasitophorous vacuole upon chemically or genetically induced nuclear retention of FOXO3a. In all, we provide evidence that T. gondii suppresses FOXO3a-regulated transcriptional programs to prevent autophagy-mediated killing. IMPORTANCE The parasite Toxoplasma gondii is the etiological agent of toxoplasmosis, an opportunistic infection commonly transmitted by ingestion of contaminated food or water. To date, no effective vaccines in humans have been developed and no promising drugs are available to treat chronic infection or prevent congenital infection. T. gondii targets numerous host cell processes to establish a favorable replicative niche. Of note, T. gondii activates the host AKT signaling pathway to prevent autophagy-mediated killing. Herein, we report that T. gondii inhibits FOXO3a, a transcription factor that regulates the expression of autophagy-related genes, through AKT-dependent phosphorylation. The parasite's ability to block the recruitment of the autophagy machinery to the parasitophorous vacuole is impeded upon pharmacological inhibition of AKT or overexpression of an AKT-insensitive form of FOXO3a. Thus, our study provides greater granularity in the role of FOXO3a during infection and reinforces the potential of targeting autophagy as a therapeutic strategy against T. gondii.
Collapse
Affiliation(s)
- Andres Felipe Diez
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Mackenzie Gold
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)—Centre Armand-Frappier Santé Biotechnologie (AFSB), Laval, Québec, Canada
| |
Collapse
|
18
|
Ashari KA, Hausmann JS, Dedeoglu F. Update on autoinflammatory diseases. Curr Opin Rheumatol 2023:00002281-990000000-00061. [PMID: 37433216 DOI: 10.1097/bor.0000000000000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
PURPOSE OF REVIEW Although the concept of systemic autoinflammatory diseases (SAIDs) is still very young, our knowledge about them is exponentially growing. In the current review, we aim to discuss novel SAIDs and autoinflammatory pathways discovered in the last couple of years. RECENT FINDINGS Advances in immunology and genetics have led to the discovery of new pathways involved in autoinflammation, as well as several new SAIDs, including retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache (ROSAH syndrome), vacuoles, E1 enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome, TBK1 deficiency, NEMO deleted exon 5 autoinflammatory syndrome (NDAS), and disabling pansclerotic morphea. Progress in immunobiology and genetics has also brought forth novel treatments for SAIDs. Personalized medicine has made significant progress in areas such as cytokine-targeted therapies and gene therapies. However, much work remains, especially in measuring and improving the quality of life in patients with SAIDs. SUMMARY In the current review, we discuss the novelties in the world of SAIDs, including mechanistic pathways of autoinflammation, pathogenesis, and treatment. We hope this review helps rheumatologists to gain an updated understanding of SAIDs.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence
- Department of Pediatrics, Tehran University of Medical Sciences
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jonathan S Hausmann
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
- Division of Rheumatology, Dermatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
| |
Collapse
|
19
|
Adams JRG, Mehat J, La Ragione R, Behboudi S. Preventing bacterial disease in poultry in the post-antibiotic era: a case for innate immunity modulation as an alternative to antibiotic use. Front Immunol 2023; 14:1205869. [PMID: 37469519 PMCID: PMC10352996 DOI: 10.3389/fimmu.2023.1205869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
The widespread use of antibiotics in the poultry industry has led to the emergence of antibiotic-resistant bacteria, which pose a significant health risk to humans and animals. These public health concerns, which have led to legislation limiting antibiotic use in animals, drive the need to find alternative strategies for controlling and treating bacterial infections. Modulation of the avian innate immune system using immunostimulatory compounds provides a promising solution to enhance poultry immune responses to a broad range of bacterial infections without the risk of generating antibiotic resistance. An array of immunomodulatory compounds have been investigated for their impact on poultry performance and immune responses. However, further research is required to identify compounds capable of controlling bacterial infections without detrimentally affecting bird performance. It is also crucial to determine the safety and effectiveness of these compounds in conjunction with poultry vaccines. This review provides an overview of the various immune modulators known to enhance innate immunity against avian bacterial pathogens in chickens, and describes the mechanisms involved.
Collapse
Affiliation(s)
- James R. G. Adams
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Avian Immunology, The Pirbright Institute, Woking, United Kingdom
| | - Jai Mehat
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Roberto La Ragione
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | |
Collapse
|
20
|
Anis O, Yogev D, Dotan A, Tsur AM, David P, Vishnevskia VD, Laufer M, Dotan Z, Shoenfeld Y. Autoimmune disorders caused by intravesical bacillus Calmette-Guerine treatment: A systemic review. Autoimmun Rev 2023; 22:103329. [PMID: 37061015 DOI: 10.1016/j.autrev.2023.103329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
Intravesical bacillus Calmette-Guérin (BCG) is a common and highly effective treatment for non-muscle invasive urothelial carcinoma of the urinary bladder. BCG may cause an autoimmune reaction in some patients. One hundred and fifty-eight papers were analyzed, for a total of hundred and thirty patients with reactive arthritis, sixty patients with ocular manifestations and eighteen patients with other rheumatologic diseases. Among 130 subjects with reactive arthritis, an autoimmune symptom occurred after 5 instillations of intravesical BCG (IQR 4-6), which represents 5 weeks in most cases. Fifty-one patients had concurrent ocular involvement. The resolution of symptoms was achieved in a median of 32.5 days (IQR 14-90). Forty-two men and twenty women had ocular manifestations, most commonly conjunctivitis. Patients with HLA-B27 typing had earlier presentation of ocular symptoms related to the number of instillations (4.5 vs 6 [p < 0.05]. Resolution of symptoms was achieved at a median of 128 days (IQR 21-150). Among patients treated with NSAIDs (either with or without steroids), the duration of the disease was significantly shorter in both the articular and the ocular groups (28 vs. 120 [p < 0.05] and 30 vs.105 [p < 0.05], respectively). Other autoimmune manifestations included general autoimmune diseases, such as vasculitis, psoriasis and myasthenia gravis.
Collapse
Affiliation(s)
- Omer Anis
- Department of Urology, Chaim Sheba Medical Center, Israel; The Mina & Everard Goodman Faculty of Life Sciences, Bar Ilan University, Israel.
| | - David Yogev
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arad Dotan
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Israel
| | - Avishai M Tsur
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Israel Defence Forces, Medical Corps, Tel HaShomer, Ramat Gan, Israel; Department of Military Medicine, Faculty of Medicine of Hebrew University of Jerusalem, Jerusalem, Israel; Department of Medicine, Chaim Sheba Medical Center, Israel
| | - Paula David
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Medicine, Chaim Sheba Medical Center, Israel; Leeds Institute of Rheumatic and Muskuloskeletal Medicine, University of Leeds, Leeds, UK
| | - Vicktoria Dai Vishnevskia
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Ocular Oncology Service, Department of Ophthalmology, Chaim Sheba Medical Center, Israel
| | - Menachem Laufer
- Department of Urology, Chaim Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zohar Dotan
- Department of Urology, Chaim Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Israel
| |
Collapse
|
21
|
Li D, Li W, Zheng P, Yang Y, Liu Q, Hu Y, He J, Long Q, Ma Y. A "trained immunity" inducer-adjuvanted nanovaccine reverses the growth of established tumors in mice. J Nanobiotechnology 2023; 21:74. [PMID: 36864424 PMCID: PMC9980871 DOI: 10.1186/s12951-023-01832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Innate immune cells are critical in antitumor immune surveillance and the development of antitumor adaptive cellular immunity. Trained innate immune cells demonstrate immune memory-like characteristics, producing more vigorous immune responses to secondary homologous or heterologous stimuli. This study aimed to investigate whether inducing trained immunity is beneficial when using a tumor vaccine to promote antitumor adaptive immune responses. A biphasic delivery system was developed with the trained immunity inducer Muramyl Dipeptide (MDP) and specific tumor antigen human papillomavirus (HPV) E7 peptide encapsulated by poly(lactide-co-glycolide)-acid(PLGA) nanoparticles (NPs), and the NPs along with another trained immunity agonist, β-glucan, were further embedded in a sodium alginate hydrogel. The nanovaccine formulation demonstrated a depot effect for E7 at the injection site and targeted delivery to the lymph nodes and dendritic cells (DCs). The antigen uptake and maturation of DCs were significantly promoted. A trained immunity phenotype, characterized by increased production of IL-1β, IL-6, and TNF-α, was induced in vitro and in vivo in response to secondary homologous or heterologous stimulation. Furthermore, prior innate immune training enhanced the antigen-specific INF-γ-expressing immune cell response elicited by subsequent stimulation with the nanovaccine. Immunization with the nanovaccine completely inhibited the growth of TC-1 tumors and even abolished established tumors in mice. Mechanistically, the inclusion of β-glucan and MDP significantly enhanced the responses of tumor-specific effector adaptive immune cells. The results strongly suggest that the controlled release and targeted delivery of an antigen and trained immunity inducers with an NP/hydrogel biphasic system can elicit robust adaptive immunity, which provides a promising tumor vaccination strategy.
Collapse
Affiliation(s)
- Duo Li
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China ,grid.508395.20000 0004 9404 8936Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Weiran Li
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Peng Zheng
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Ying Yang
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Qingwen Liu
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China ,grid.285847.40000 0000 9588 0960Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Yongmao Hu
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China ,grid.440773.30000 0000 9342 2456School of Life Sciences, Yunnan University, Kunming, China
| | - Jinrong He
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Qiong Long
- grid.506261.60000 0001 0706 7839Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
| |
Collapse
|
22
|
Allen PC, Smith S, Wilson RC, Wirth JR, Wilson NH, Baker Frost D, Flume J, Gilkeson GS, Cunningham MA, Langefeld CD, Absher DM, Ramos PS. Distinct genome-wide DNA methylation and gene expression signatures in classical monocytes from African American patients with systemic sclerosis. Clin Epigenetics 2023; 15:25. [PMID: 36803404 PMCID: PMC9938585 DOI: 10.1186/s13148-023-01445-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a multisystem autoimmune disorder that has an unclear etiology and disproportionately affects women and African Americans. Despite this, African Americans are dramatically underrepresented in SSc research. Additionally, monocytes show heightened activation in SSc and in African Americans relative to European Americans. In this study, we sought to investigate DNA methylation and gene expression patterns in classical monocytes in a health disparity population. METHODS Classical monocytes (CD14+ + CD16-) were FACS-isolated from 34 self-reported African American women. Samples from 12 SSc patients and 12 healthy controls were hybridized on MethylationEPIC BeadChip array, while RNA-seq was performed on 16 SSc patients and 18 healthy controls. Analyses were computed to identify differentially methylated CpGs (DMCs), differentially expressed genes (DEGs), and CpGs associated with changes in gene expression (eQTM analysis). RESULTS We observed modest DNA methylation and gene expression differences between cases and controls. The genes harboring the top DMCs, the top DEGs, as well as the top eQTM loci were enriched for metabolic processes. Genes involved in immune processes and pathways showed a weak upregulation in the transcriptomic analysis. While many genes were newly identified, several other have been previously reported as differentially methylated or expressed in different blood cells from patients with SSc, supporting for their potential dysregulation in SSc. CONCLUSIONS While contrasting with results found in other blood cell types in largely European-descent groups, the results of this study support that variation in DNA methylation and gene expression exists among different cell types and individuals of different genetic, clinical, social, and environmental backgrounds. This finding supports the importance of including diverse, well-characterized patients to understand the different roles of DNA methylation and gene expression variability in the dysregulation of classical monocytes in diverse populations, which might help explaining the health disparities.
Collapse
Affiliation(s)
- Peter C Allen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Sarah Smith
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jena R Wirth
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Nathan H Wilson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - DeAnna Baker Frost
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jonathan Flume
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Gary S Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Melissa A Cunningham
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Paula S Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
23
|
Idowu AO, Omosun YO, Igietseme JU, Azenabor AA. The COVID-19 pandemic in sub-Saharan Africa: The significance of presumed immune sufficiency. Afr J Lab Med 2023; 12:1964. [PMID: 36756213 PMCID: PMC9900247 DOI: 10.4102/ajlm.v12i1.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/24/2022] [Indexed: 02/04/2023] Open
Abstract
A novel coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in China in 2019 and later ignited a global pandemic. Contrary to expectations, the effect of the pandemic was not as devastating to Africa and its young population compared to the rest of the world. To provide insight into the possible reasons for the presumed immune sufficiency to coronavirus disease 2019 (COVID-19) in Africa, this review critically examines literature published from 2020 onwards on the dynamics of COVID-19 infection and immunity and how other prevalent infectious diseases in Africa might have influenced the outcome of COVID-19. Studies characterising the immune response in patients with COVID-19 show that the correlates of protection in infected individuals are T-cell responses against the SARS-CoV-2 spike protein and neutralising titres of immunoglobin G and immunoglobin A antibodies. In some other studies, substantial pre-existing T-cell reactivity to SARS-CoV-2 was detected in many people from diverse geographical locations without a history of exposure. Certain studies also suggest that innate immune memory, which offers protection against reinfection with the same or another pathogen, might influence the severity of COVID-19. In addition, an initial analysis of epidemiological data showed that COVID‑19 cases were not severe in some countries that implemented universal Bacillus Calmette-Guerin (BCG) vaccination policies, thus supporting the potential of BCG vaccination to boost innate immunity. The high burden of infectious diseases and the extensive vaccination campaigns previously conducted in Africa could have induced specific and non-specific protective immunity to infectious pathogens in Africans.
Collapse
Affiliation(s)
- Abel O Idowu
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Yusuf O Omosun
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Joseph U Igietseme
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States
- Centers for Disease Control and Prevention (CDC), Atlanta, Georgia, United States
| | - Anthony A Azenabor
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
24
|
Quinteros SL, von Krusenstiern E, Snyder NW, Tanaka A, O’Brien B, Donnelly S. The helminth derived peptide FhHDM-1 redirects macrophage metabolism towards glutaminolysis to regulate the pro-inflammatory response. Front Immunol 2023; 14:1018076. [PMID: 36761766 PMCID: PMC9905698 DOI: 10.3389/fimmu.2023.1018076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
We have previously identified an immune modulating peptide, termed FhHDM-1, within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently potent to prevent the progression of type 1 diabetes and multiple sclerosis in murine models of disease. Here, we have determined that the FhHDM-1 peptide regulates inflammation by reprogramming macrophage metabolism. Specifically, FhHDM-1 switched macrophage metabolism to a dependence on oxidative phosphorylation fuelled by fatty acids and supported by the induction of glutaminolysis. The catabolism of glutamine also resulted in an accumulation of alpha ketoglutarate (α-KG). These changes in metabolic activity were associated with a concomitant reduction in glycolytic flux, and the subsequent decrease in TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated macrophages did not express the characteristic genes of an M2 phenotype, thereby indicating the specific regulation of inflammation, as opposed to the induction of an anti-inflammatory phenotype per se. Use of an inactive derivative of FhHDM-1, which did not modulate macrophage responses, revealed that the regulation of immune responses was dependent on the ability of FhHDM-1 to modulate lysosomal pH. These results identify a novel functional association between the lysosome and mitochondrial metabolism in macrophages, and further highlight the significant therapeutic potential of FhHDM-1 to prevent inflammation.
Collapse
Affiliation(s)
- Susel Loli Quinteros
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Nathaniel W. Snyder
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Akane Tanaka
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bronwyn O’Brien
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia,*Correspondence: Sheila Donnelly,
| |
Collapse
|
25
|
Laupèze B, Doherty TM. Maintaining a 'fit' immune system: the role of vaccines. Expert Rev Vaccines 2023; 22:256-266. [PMID: 36864769 DOI: 10.1080/14760584.2023.2185223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Conventionally, vaccines are thought to induce a specific immune response directed against a target pathogen. Long recognized but poorly understood nonspecific benefits of vaccination, such as reduced susceptibility to unrelated diseases or cancer, are now being investigated and may be due in part to "trained immunity'. AREAS COVERED We discuss 'trained immunity' and whether vaccine-induced 'trained immunity' could be leveraged to prevent morbidity due to a broader range of causes. EXPERT OPINION The prevention of infection i.e. maintaining homeostasis by preventing the primary infection and resulting secondary illnesses, is the pivotal strategy used to direct vaccine design and may have long-term, positive impacts on health at all ages. In the future, we anticipate that vaccine design will change to not only prevent the target infection (or related infections) but to generate positive modifications to the immune response that could prevent a wider range of infections and potentially reduce the impact of immunological changes associated with aging. Despite changing demographics, adult vaccination has not always been prioritized. However, the SARS-CoV-2 pandemic has demonstrated that adult vaccination can flourish given the right circumstances, demonstrating that harnessing the potential benefits of life-course vaccination is achievable for all.
Collapse
|
26
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
27
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
28
|
Kraemer AN, Schäfer AL, Sprenger DTL, Sehnert B, Williams JP, Luo A, Riechert L, Al-Kayyal Q, Dumortier H, Fauny JD, Winter Z, Heim K, Hofmann M, Herrmann M, Heine G, Voll RE, Chevalier N. Impact of dietary vitamin D on immunoregulation and disease pathology in lupus-prone NZB/W F1 mice. Front Immunol 2022; 13:933191. [PMID: 36505422 PMCID: PMC9730823 DOI: 10.3389/fimmu.2022.933191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/17/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D (VD) deficiency is a highly prevalent worldwide phenomenon and is extensively discussed as a risk factor for the development of systemic lupus erythematosus (SLE) and other immune-mediated diseases. In addition, it is now appreciated that VD possesses multiple immunomodulatory effects. This study aims to explore the impact of dietary VD intake on lupus manifestation and pathology in lupus-prone NZB/W F1 mice and identify the underlying immunological mechanisms modulated by VD. Here, we show that low VD intake accelerates lupus progression, reflected in reduced overall survival and an earlier onset of proteinuria, as well higher concentrations of anti-double-stranded DNA autoantibodies. This unfavorable effect gained statistical significance with additional low maternal VD intake during the prenatal period. Among examined immunological effects, we found that low VD intake consistently hampered the adoption of a regulatory phenotype in lymphocytes, significantly reducing both IL-10-expressing and regulatory CD4+ T cells. This goes along with a mildly decreased frequency of IL-10-expressing B cells. We did not observe consistent effects on the phenotype and function of innate immune cells, including cytokine production, costimulatory molecule expression, and phagocytic capacity. Hence, our study reveals that low VD intake promotes lupus pathology, likely via the deviation of adaptive immunity, and suggests that the correction of VD deficiency might not only exert beneficial functions by preventing osteoporosis but also serve as an important module in prophylaxis and as an add-on in the treatment of lupus and possibly other immune-mediated diseases. Further research is required to determine the most appropriate dosage, as too-high VD serum levels may also induce adverse effects, possibly also on lupus pathology.
Collapse
Affiliation(s)
- Antoine N. Kraemer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna-Lena Schäfer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dalina T. L. Sprenger
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bettina Sehnert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna P. Williams
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aileen Luo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Riechert
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Qusai Al-Kayyal
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hélène Dumortier
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Jean-Daniel Fauny
- Centre national de la recherche scientifique (CNRS) UPR3572, Immunology, Immunopathology and Therapeutic Chemistry, Institute of Molecular and Cellular Biology, Strasbourg, France
| | - Zoltan Winter
- Institute of Radiology, Preclinical Imaging Platform Erlangen (PIPE), Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Kathrin Heim
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Herrmann
- Department of Internal Medicine 3, and Deutsches Zentrum Immuntherapie (DZI), University Medical Center Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Guido Heine
- Division of Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Chevalier
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
29
|
Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol 2022; 23:274-288. [PMID: 36257987 PMCID: PMC9579530 DOI: 10.1038/s41577-022-00787-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
Systemic autoimmune diseases are characterized by the failure of the immune system to differentiate self from non-self. These conditions are associated with significant morbidity and mortality, and they can affect many organs and systems, having significant clinical heterogeneity. Recent discoveries have highlighted that neutrophils, and in particular the neutrophil extracellular traps that they can release upon activation, can have central roles in the initiation and perpetuation of systemic autoimmune disorders and orchestrate complex inflammatory responses that lead to organ damage. Dysregulation of neutrophil cell death can lead to the modification of autoantigens and their presentation to the adaptive immune system. Furthermore, subsets of neutrophils that seem to be more prevalent in patients with systemic autoimmune disorders can promote vascular damage and increased oxidative stress. With the emergence of new technologies allowing for improved assessments of neutrophils, the complexity of neutrophil biology and its dysregulation is now starting to be understood. In this Review, we provide an overview of the roles of neutrophils in systemic autoimmune and autoinflammatory diseases and address putative therapeutic targets that may be explored based on this new knowledge.
Collapse
|
30
|
Nica V, Popp RA, Crișan TO, Joosten LAB. The future clinical implications of trained immunity. Expert Rev Clin Immunol 2022; 18:1125-1134. [PMID: 36062825 DOI: 10.1080/1744666x.2022.2120470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trained Immunity (TI) refers to the long-term modulation of the innate immune response, based on previous interactions with microbes, microbial ligands or endogenous substances. Through metabolic and epigenetic reprogramming, monocytes, macrophages and neutrophils develop an enhanced capacity to mount innate immune responses to subsequent stimuli and this is persistent due to alterations at the myeloid progenitor compartment. AREAS COVERED The purpose of this article is to review the current understanding of the TI process and discuss about its potential clinical implications in the near future. We address the evidence of TI involvement in various diseases, the currently developed new therapy, and discuss how TI may lead to new clinical tools to improve existing standards of care. EXPERT OPINION The state of art in this domain has made considerable progress, linking TI-related mechanisms in multiple immune-mediated pathologies, starting with infections to autoimmune disorders and cancers. As a relatively new area of immunology, it has seen fast progress with many of its applications ready to be investigated in clinical settings.
Collapse
Affiliation(s)
- Valentin Nica
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Radu A Popp
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Tania O Crișan
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Medical Genetics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Str. Pasteur nr. 6, 400349, Cluj-Napoca, Romania.,Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein Zuid 28, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Huijser E, van Helden-Meeuwsen CG, Grashof DGB, Tarn JR, Brkic Z, Huisman JMA, Wahadat MJ, van de Werken HJG, Lopes AP, van Roon JAG, van Daele PLA, Kamphuis S, Ng WF, Bekkering S, Joosten LAB, Dik WA, Versnel MA. Trained Immunity in Primary Sjögren's Syndrome: Linking Type I Interferons to a Pro-Atherogenic Phenotype. Front Immunol 2022; 13:840751. [PMID: 35860283 PMCID: PMC9289449 DOI: 10.3389/fimmu.2022.840751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background Trained immunity - or innate immune memory - can be described as the long-term reprogramming of innate immune cells towards a hyperresponsive state which involves intracellular metabolic changes. Trained immunity has been linked to atherosclerosis. A subgroup of patients with primary Sjögren's syndrome (pSS) exhibits systemic type I interferon (IFN) pathway activation, indicating innate immune hyperactivation. Here, we studied the link between type I IFNs and trained immunity in an in vitro monocytic cell model and peripheral blood mononuclear cells (PBMCs) from pSS patients. Methods The training stimuli heat killed Candida albicans, muramyl dipeptide, IFNβ, and patient serum were added to THP-1 cells for 24 hours, after which the cells were washed, rested for 48 hours and subsequently re-stimulated with LPS, Pam3Cys, poly I:C, IFNβ or oxLDL for 4-24 hours. PBMCs from pSS patients and healthy controls were stimulated with LPS, Pam3Cys, poly I:C or IFNβ for 0.5-24 hours. Results Training with IFNβ induced elevated production of pro-atherogenic cytokines IL-6, TNFα and CCL2, differential cholesterol- and glycolysis-related gene expression, and increased glucose consumption and oxLDL uptake upon re-stimulation. Type I IFN production was increased in Candida albicans- and IFNβ-trained cells after LPS re-stimulation, but was reduced after poly I:C re-stimulation. Training with muramyl dipeptide and IFNβ, but not Candida albicans, affected the IFN-stimulated gene expression response to IFNβ re-stimulation. PBMCs from pSS patients consumed more glucose compared with healthy control PBMCs and tended to produce more TNFα and type I IFNs upon LPS stimulation, but less type I IFNs upon poly I:C stimulation. Conclusions Type I IFN is a trainer inducing a trained immunity phenotype with pro-atherogenic properties in monocytes. Conversely, trained immunity also affects the production of type I IFNs and transcriptional response to type I IFN receptor re-stimulation. The phenotype of pSS PBMCs is consistent with trained immunity. This connection between type I IFN, trained immunity and cholesterol metabolism may have important implications for pSS and the pathogenesis of (subclinical) atherosclerosis in these patients.
Collapse
Affiliation(s)
- Erika Huijser
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | - Dwin G. B. Grashof
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Jessica R. Tarn
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
| | - Zana Brkic
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Josje M. A. Huisman
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - M. Javad Wahadat
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Harmen J. G. van de Werken
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Ana P. Lopes
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joel A. G. van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Paul L. A. van Daele
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Internal Medicine, Division of Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sylvia Kamphuis
- Department of Paediatric Rheumatology, Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Wan-Fai Ng
- Translational and Clinical Research Institute, Newcastle University, Newcastle, United Kingdom
- NIHR Newcastle Biomedical Research Centre, Newcastle, United Kingdom
- NIHR Newcastle Clinical Research Facility, Newcastle, United Kingdom
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, Netherlands
- Radboud Center for Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud Center for Infectious Diseases, Radboud UMC, Nijmegen, Netherlands
- Radboud Center for Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Willem A. Dik
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
32
|
Xu Y, Chen Y, Zhang X, Ma J, Liu Y, Cui L, Wang F. Glycolysis in Innate Immune Cells Contributes to Autoimmunity. Front Immunol 2022; 13:920029. [PMID: 35844594 PMCID: PMC9284233 DOI: 10.3389/fimmu.2022.920029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases (AIDs) refer to connective tissue inflammation caused by aberrant autoantibodies resulting from dysfunctional immune surveillance. Most of the current treatments for AIDs use non-selective immunosuppressive agents. Although these therapies successfully control the disease process, patients experience significant side effects, particularly an increased risk of infection. There is a great need to study the pathogenesis of AIDs to facilitate the development of selective inhibitors for inflammatory signaling to overcome the limitations of traditional therapies. Immune cells alter their predominant metabolic profile from mitochondrial respiration to glycolysis in AIDs. This metabolic reprogramming, known to occur in adaptive immune cells, i.e., B and T lymphocytes, is critical to the pathogenesis of connective tissue inflammation. At the cellular level, this metabolic switch involves multiple signaling molecules, including serine-threonine protein kinase, mammalian target of rapamycin, and phosphoinositide 3-kinase. Although glycolysis is less efficient than mitochondrial respiration in terms of ATP production, immune cells can promote disease progression by enhancing glycolysis to satisfy cellular functions. Recent studies have shown that active glycolytic metabolism may also account for the cellular physiology of innate immune cells in AIDs. However, the mechanism by which glycolysis affects innate immunity and participates in the pathogenesis of AIDs remains to be elucidated. Therefore, we reviewed the molecular mechanisms, including key enzymes, signaling pathways, and inflammatory factors, that could explain the relationship between glycolysis and the pro-inflammatory phenotype of innate immune cells such as neutrophils, macrophages, and dendritic cells. Additionally, we summarize the impact of glycolysis on the pathophysiological processes of AIDs, including systemic lupus erythematosus, rheumatoid arthritis, vasculitis, and ankylosing spondylitis, and discuss potential therapeutic targets. The discovery that immune cell metabolism characterized by glycolysis may regulate inflammation broadens the avenues for treating AIDs by modulating immune cell metabolism.
Collapse
Affiliation(s)
- Yue Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongkang Chen
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Ma
- Center of Biotherapy, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yudong Liu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Fang Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Trained Immunity of IL-12-, IL-15-, and IL-18-Induced CD3+CD56+ NKT-Like Cells. JOURNAL OF ONCOLOGY 2022; 2022:8724933. [PMID: 35783158 PMCID: PMC9246603 DOI: 10.1155/2022/8724933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/14/2022] [Indexed: 11/17/2022]
Abstract
CD3+CD56+ natural killer T (NKT)-like cells have an immune function of T cells and NK cells, which play an important role in antitumor and antiviral immune responses. This study aims to establish a CD3+CD56+ NKT-like cell model by simulating the memory NK effect induced by cytokines IL-12, IL-15, and IL-18 (IL-12/15/18) and explore the formation mechanism. Our study found that the IL-12/15/18 preactivated CD3+CD56+ NKT-like cells exhibited enhanced IFN-γ production in response to restimulation with IL-12/15/18 for 6h on day 7. The intrinsic potential of these trained cells was significantly improved, showing an increase in IFN-γ, TNF-α, and cell proliferation potential. The IFN-γ release, granzyme B level, and proliferation ability significantly increased when stimulated by NK-cell-sensitive K562 tumor cells. Among these cytokines, the combination of IL-12/15/18 was particularly effective. After the preactivation of IL-12/15/18, some cell surface proteins related to function and differentiation, such as CD11b, CD62 L, NKp46, NKG2A, and CD127, showed an evident and consistent change trend. The CDK4/6 inhibitor can effectively weaken this effect, and the expression of cyclin D1, Rb protein phosphorylation, and E2F-1 decreased significantly. Our work revealed that cytokine IL-12/15/18 can induce CD3+CD56+ NKT-like cells to obtain enhanced training immunity, which was a memory-like phenomenon.
Collapse
|
34
|
Gómez-Jaramillo L, Cano-Cano F, González-Montelongo MDC, Campos-Caro A, Aguilar-Diosdado M, Arroba AI. A New Perspective on Huntington's Disease: How a Neurological Disorder Influences the Peripheral Tissues. Int J Mol Sci 2022; 23:6089. [PMID: 35682773 PMCID: PMC9181740 DOI: 10.3390/ijms23116089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a toxic, aggregation-prone expansion of CAG repeats in the HTT gene with an age-dependent progression that leads to behavioral, cognitive and motor symptoms. Principally affecting the frontal cortex and the striatum, mHTT disrupts many cellular functions. In fact, increasing evidence shows that peripheral tissues are affected by neurodegenerative diseases. It establishes an active crosstalk between peripheral tissues and the brain in different neurodegenerative diseases. This review focuses on the current knowledge of peripheral tissue effects in HD animal and cell experimental models and identifies biomarkers and mechanisms involved or affected in the progression of the disease as new therapeutic or early diagnostic options. The particular changes in serum/plasma, blood cells such as lymphocytes, immune blood cells, the pancreas, the heart, the retina, the liver, the kidney and pericytes as a part of the blood-brain barrier are described. It is important to note that several changes in different mouse models of HD present differences between them and between the different ages analyzed. The understanding of the impact of peripheral organ inflammation in HD may open new avenues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Laura Gómez-Jaramillo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Fátima Cano-Cano
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - María del Carmen González-Montelongo
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
| | - Antonio Campos-Caro
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Manuel Aguilar-Diosdado
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Departamento de Endocrinología y Nutrición, Hospital Universitario Puerta del Mar, Universidad de Cádiz, 11002 Cádiz, Spain
| | - Ana I. Arroba
- Undad de Investigación, Instituto de Investigación e Innovación en Ciencias Biomédicas de la Provincia de Cádiz (INiBICA), 11002 Cádiz, Spain; (L.G.-J.); (F.C.-C.); (M.d.C.G.-M.); (A.C.-C.); (M.A.-D.)
- Área de Genética, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, 11002 Cádiz, Spain
| |
Collapse
|
35
|
Piacentini L, Vavassori C, Colombo GI. Trained Immunity in Perivascular Adipose Tissue of Abdominal Aortic Aneurysm—A Novel Concept for a Still Elusive Disease. Front Cell Dev Biol 2022; 10:886086. [PMID: 35693946 PMCID: PMC9174671 DOI: 10.3389/fcell.2022.886086] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic, life-threatening vascular disease whose only therapeutic option is a surgical repair to prevent vessel rupture. The lack of medical therapy results from an inadequate understanding of the etiopathogenesis of AAA. Many studies in animal and human models indicate a ‘short-circuiting’ of the regulation of the inflammatory-immune response as a major player in the AAA chronic process. In this regard, perivascular adipose tissue (PVAT) has received increasing interest because its dysfunction affects large arteries primarily through immune cell infiltration. Consistently, we have recently produced evidence that innate and adaptive immune cells present in the PVAT of AAAs contribute to sustaining a damaging inflammatory loop. However, it is still unclear how the complex crosstalk between adaptive and innate immunity can be self-sustaining. From our perspective, trained immunity may play a role in this crosstalk. Trained immunity is defined as a form of innate immune memory resulting in enhanced responsiveness to repeated triggers. Specific innate stimuli and epigenetic and metabolic reprogramming events induce and shape trained immunity in myeloid progenitor cells improving host defense, but also contributing to the progression of immune-mediated and chronic inflammatory diseases. Here we present this hypothesis with data from the literature and our observations to support it.
Collapse
Affiliation(s)
- Luca Piacentini
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milano, Italy
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, Milano, Italy
- *Correspondence: Luca Piacentini, ; Gualtiero I. Colombo,
| | - Chiara Vavassori
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milano, Italy
- Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milano, Milan, Italy
| | - Gualtiero I. Colombo
- Immunology and Functional Genomics Unit, Centro Cardiologico Monzino IRCCS, Milano, Italy
- *Correspondence: Luca Piacentini, ; Gualtiero I. Colombo,
| |
Collapse
|
36
|
Zhang X, Kracht L, Lerario AM, Dubbelaar ML, Brouwer N, Wesseling EM, Boddeke EWGM, Eggen BJL, Kooistra SM. Epigenetic regulation of innate immune memory in microglia. J Neuroinflammation 2022; 19:111. [PMID: 35568856 PMCID: PMC9107649 DOI: 10.1186/s12974-022-02463-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 04/16/2022] [Indexed: 12/13/2022] Open
Abstract
Background Microglia are the tissue-resident macrophages of the CNS. They originate in the yolk sac, colonize the CNS during embryonic development and form a self-sustaining population with limited turnover. A consequence of their relative slow turnover is that microglia can serve as a long-term memory for inflammatory or neurodegenerative events. Methods Using ATAC-, ChIP- and RNA-sequencing, we characterized the epigenomes and transcriptomes of FACS-purified microglia from mice exposed to different stimuli. A repeated endotoxin challenge (LPS) was used to induce tolerance in microglia, while genotoxic stress (DNA repair deficiency-induced accelerated aging through Ercc1 deficiency) resulted in primed (hypersensitive) microglia. Results Whereas the enrichment of permissive epigenetic marks at enhancer regions could explain training (hyper-responsiveness) of primed microglia to an LPS challenge, the tolerized response of microglia seems to be regulated by loss of permissive epigenetic marks. We identify that inflammatory stimuli and accelerated aging as a result of genotoxic stress activate distinct gene networks. These gene networks and associated biological processes are partially overlapping, which is likely driven by specific transcription factor networks, resulting in altered epigenetic signatures and distinct functional (desensitized vs. primed) microglia phenotypes. Conclusion This study provides insight into epigenetic profiles and transcription factor networks associated with transcriptional signatures of tolerized and trained microglia in vivo, leading to a better understanding of innate immune memory of microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02463-5.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Antonio M Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Marissa L Dubbelaar
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Nieske Brouwer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Evelyn M Wesseling
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands
| | - Erik W G M Boddeke
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Bart J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.
| | - Susanne M Kooistra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Hpc-FB43, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
37
|
Pistorius K, Ly L, Souza PR, Gomez EA, Koenis DS, Rodriguez AR, Foster J, Sosabowski J, Hopkinson M, Rajeeve V, Spur BW, Pitsillides A, Pitzalis C, Dalli J. MCTR3 reprograms arthritic monocytes to upregulate Arginase-1 and exert pro-resolving and tissue-protective functions in experimental arthritis. EBioMedicine 2022; 79:103974. [PMID: 35430453 PMCID: PMC9038546 DOI: 10.1016/j.ebiom.2022.103974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a progressive degenerative disorder that leads to joint destruction. Available treatments only target the inflammatory component with minimal impact on joint repair. We recently uncovered a previously unappreciated family of pro-resolving mediators, the maresin conjugate in tissue regeneration (MCTR), that display both immunoregulatory and tissue-protective activities. Thus, we queried whether the production of these autacoids is disrupted in RA patients and whether they can be useful in treating joint inflammation and promoting joint repair. METHODS Using a highly phenotyped RA cohort we evaluated plasma MCTR concentrations and correlated these to clinical markers of disease activity. To evaluate the immunoregulatory and tissue reparative activities we employed both in vivo models of arthritis and organ culture models. FINDINGS Herein, we observed that plasma MCTR3 concentrations were negatively correlated with joint disease activity and severity in RA patients. Evaluation of the mechanisms engaged by this mediator in arthritic mice demonstrated that MCTR3 reprograms monocytes to confer enduring joint protective properties. Single cell transcriptomic profiling and flow cytometric evaluation of macrophages from mice treated with MCTR3-reprogrammed monocytes revealed a role for Arginase-1 (Arg-1) in mediating their joint reparative and pro-resolving activities. Arg-1 inhibition reversed both the anti-arthritic and tissue reparative actions of MCTR3-reprogrammed monocytes. INTERPRETATION Our findings demonstrate that circulating MCTR3 levels are negatively correlated with disease in RA. When administered to mice in vivo, MCTR3 displayed both anti-inflammatory and joint reparative activities, protecting both cartilage and bone in murine arthritis. These activities were, at least in part, mediated via the reprogramming of mononuclear phagocyte responses. FUNDING This work was supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z).
Collapse
Affiliation(s)
- Kimberly Pistorius
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Lucy Ly
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Patricia R Souza
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Esteban A Gomez
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Duco S Koenis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Ana R Rodriguez
- Rowan University School of Osteopathic Medicine, Department of Cell Biology & Neuroscience, 2 Medical Centre Drive, Stratford NJ 08084, USA
| | - Julie Foster
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jane Sosabowski
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Vinothini Rajeeve
- Mass spectrometry Laboratory, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, United Kingdom
| | - Bernd W Spur
- Rowan University School of Osteopathic Medicine, Department of Cell Biology & Neuroscience, 2 Medical Centre Drive, Stratford NJ 08084, USA
| | - Andrew Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jesmond Dalli
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK.
| |
Collapse
|
38
|
Funes SC, Rios M, Fernández-Fierro A, Di Genaro MS, Kalergis AM. Trained Immunity Contribution to Autoimmune and Inflammatory Disorders. Front Immunol 2022; 13:868343. [PMID: 35464438 PMCID: PMC9028757 DOI: 10.3389/fimmu.2022.868343] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
A dysregulated immune response toward self-antigens characterizes autoimmune and autoinflammatory (AIF) disorders. Autoantibodies or autoreactive T cells contribute to autoimmune diseases, while autoinflammation results from a hyper-functional innate immune system. Aside from their differences, many studies suggest that monocytes and macrophages (Mo/Ma) significantly contribute to the development of both types of disease. Mo/Ma are innate immune cells that promote an immune-modulatory, pro-inflammatory, or repair response depending on the microenvironment. However, understanding the contribution of these cells to different immune disorders has been difficult due to their high functional and phenotypic plasticity. Several factors can influence the function of Mo/Ma under the landscape of autoimmune/autoinflammatory diseases, such as genetic predisposition, epigenetic changes, or infections. For instance, some vaccines and microorganisms can induce epigenetic changes in Mo/Ma, modifying their functional responses. This phenomenon is known as trained immunity. Trained immunity can be mediated by Mo/Ma and NK cells independently of T and B cell function. It is defined as the altered innate immune response to the same or different microorganisms during a second encounter. The improvement in cell function is related to epigenetic and metabolic changes that modify gene expression. Although the benefits of immune training have been highlighted in a vaccination context, the effects of this type of immune response on autoimmunity and chronic inflammation still remain controversial. Induction of trained immunity reprograms cellular metabolism in hematopoietic stem cells (HSCs), transmitting a memory-like phenotype to the cells. Thus, trained Mo/Ma derived from HSCs typically present a metabolic shift toward glycolysis, which leads to the modification of the chromatin architecture. During trained immunity, the epigenetic changes facilitate the specific gene expression after secondary challenge with other stimuli. Consequently, the enhanced pro-inflammatory response could contribute to developing or maintaining autoimmune/autoinflammatory diseases. However, the prediction of the outcome is not simple, and other studies propose that trained immunity can induce a beneficial response both in AIF and autoimmune conditions by inducing anti-inflammatory responses. This article describes the metabolic and epigenetic mechanisms involved in trained immunity that affect Mo/Ma, contraposing the controversial evidence on how it may impact autoimmune/autoinflammation conditions.
Collapse
Affiliation(s)
- Samanta C. Funes
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Mariana Rios
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ayleen Fernández-Fierro
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María S. Di Genaro
- Instituto Multidisciplinario de Investigaciones Biológicas-San Luis (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), San Luis, Argentina
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Alexis M. Kalergis,
| |
Collapse
|
39
|
Trained immunity-related vaccines: innate immune memory and heterologous protection against infections. Trends Mol Med 2022; 28:497-512. [DOI: 10.1016/j.molmed.2022.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/21/2022]
|
40
|
Hajishengallis G, Li X, Divaris K, Chavakis T. Maladaptive trained immunity and clonal hematopoiesis as potential mechanistic links between periodontitis and inflammatory comorbidities. Periodontol 2000 2022; 89:215-230. [PMID: 35244943 DOI: 10.1111/prd.12421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Periodontitis is bidirectionally associated with systemic inflammatory disorders. The prevalence and severity of this oral disease and linked comorbidities increases with aging. Here, we review two newly emerged concepts, trained innate immunity (TII) and clonal hematopoiesis of indeterminate potential (CHIP), which together support a potential hypothesis on how periodontitis affects and is affected by comorbidities and why the susceptibility to periodontitis and comorbidities increases with aging. Given that chronic diseases are largely triggered by the action of inflammatory immune cells, modulation of their bone marrow precursors, the hematopoietic stem and progenitor cells (HSPCs), may affect multiple disorders that emerge as comorbidities. Such alterations in HSPCs can be mediated by TII and/or CHIP, two non-mutually exclusive processes sharing a bias for enhanced myelopoiesis and production of innate immune cells with heightened proinflammatory potential. TII is a state of elevated immune responsiveness based on innate immune (epigenetic) memory. Systemic inflammation can initiate TII in the bone marrow via sustained rewiring of HSPCs, which thereby display a skewing toward the myeloid lineage, resulting in generation of hyper-reactive or "trained" myeloid cells. CHIP arises from aging-related somatic mutations in HSPCs, which confer a survival and proliferation advantage to the mutant HSPCs and give rise to an outsized fraction of hyper-inflammatory mutant myeloid cells in the circulation and tissues. This review discusses emerging evidence that supports the notion that TII and CHIP may underlie a causal and age-related association between periodontitis and comorbidities. A holistic mechanistic understanding of the periodontitis-systemic disease connection may offer novel diagnostic and therapeutic targets for treating inflammatory comorbidities.
Collapse
Affiliation(s)
- George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaofei Li
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimon Divaris
- Division of Pediatrics and Public Health, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC, USA.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
41
|
Corsenac P, Parent MÉ, Wolfson C, Arbour N, Duquette P, Benedetti A, Richard H, Stäger S, Rousseau MC. Bacillus Calmette-Guerin vaccination and multiple sclerosis: a population-based birth cohort study in Quebec, Canada. Eur J Neurol 2022; 29:1791-1804. [PMID: 35165983 DOI: 10.1111/ene.15290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/15/2021] [Accepted: 01/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND The Bacillus Calmette-Guerin (BCG) vaccine could reduce the incidence of multiple sclerosis (MS) through immunomodulation. Previous studies, presenting some limitations, reported no association. We re-examined this association in a large cohort focusing on relapsing-remitting MS (RRMS). METHODS The cohort included 400,563 individuals, and was linked with the Quebec provincial BCG vaccination registry and administrative health data. Individuals were followed-up from 1983 to 2014 and then within period 1 (1983-1996) and period 2 (1997-2014), for the occurrence of MS. Incident MS cases were defined as those with ≥3 hospital or physician claims for MS. Subjects with ≥1 drug reimbursement for MS disease-modifying therapies were classified as RRMS. Cox proportional hazards regression was used to estimate hazard ratios (HR) over the follow-ups, adjusting for potential confounders. Possible effect modification due to sex was assessed. RESULTS A total of 178,335 (46%) individuals were BCG vaccinated. There were 274 (0.06%) incident MS cases identified in 1983-1996, and 1,433 (0.4%) in 1997-2014. No association was found with RRMS, either in period 1 (adjusted HRs= 0.96, 95% confidence interval: 0.63-1.45; 96 cases) or in period 2 (HRadj= 1.02, 0.85-1.23; 480 cases). The remaining MS cases, for whom the phenotype was unknown, were positively associated with BCG over the entire follow-up (HRadj= 1.25, 1.10-1.41; 1,131 cases) and in period 2 (HRadj=1.33, 1.17-1.52; 953 cases). No interaction with sex was found. CONCLUSION Findings suggest that BCG vaccination does not decrease the risk of RRMS, and that future studies should consider phenotypes of MS.
Collapse
Affiliation(s)
- P Corsenac
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - M É Parent
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - Christina Wolfson
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, QC, Canada
| | - Nathalie Arbour
- Centre de recherche du CHUM, Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Pierre Duquette
- Centre de recherche du CHUM, Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - A Benedetti
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, Montreal, QC, Canada.,Respiratory Epidemiology and Clinical Research Unit, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - H Richard
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - S Stäger
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| | - M C Rousseau
- Epidemiology and Biostatistics Unit, Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), Laval, Canada
| |
Collapse
|
42
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
43
|
Badii M, Gaal O, Popp RA, Crisan TO, Joosten LAB. Trained immunity and inflammation in rheumatic diseases. Joint Bone Spine 2022; 89:105364. [DOI: 10.1016/j.jbspin.2022.105364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022]
|
44
|
Tools for optimizing risk assessment in hematopoietic cell transplant - What can we get away with? Hum Immunol 2022; 83:704-711. [PMID: 35120770 DOI: 10.1016/j.humimm.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022]
Abstract
Unrelated allogeneic hematopoietic cell transplant (HCT) is a critical modality to treat hematologic malignancies. The current objective of donor selection is to match donor and recipient at the HLA (human leukocyte antigen) peptide-binding region which should lower the risk of graft-versus-host disease. However, depending on the patient's ethnicity/race, finding a matched donor is challenging, especially for HLA-DPB1 which is due to the weak linkage disequilibrium between HLA-DPB1 and the other HLA class II loci. Recent evidence, on the molecular level, has shown that certain HLA mismatches carry lower clinical risk. More specifically, there is an increasing understanding of polymorphisms of the innate and adaptive immune systems and their impact on transplant outcomes, allowing us to expand our "toolkit" for optimization of donor selection in HCT. Therefore, in this review we discuss matching strategies based on comparing donor and recipient polymorphisms that may influence innate and adaptive immune response genes in allorecognition and the role of single nucleotide polymorphisms in non-HLA genes that have the potential for providing additional tools to refine risk stratification.
Collapse
|
45
|
Su H, Huang J, Weng S, Zhang B, Zhang T, Xu Y. Glutathione synthesis primes monocytes metabolic and epigenetic pathway for β-glucan-trained immunity. Redox Biol 2021; 48:102206. [PMID: 34894475 PMCID: PMC8669111 DOI: 10.1016/j.redox.2021.102206] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
Trained monocytes and macrophages produce reactive oxygen species (ROS), which trigger antioxidative glutathione (GSH) response to buffer the rising ROS. However, whether and how the trained immunity is shaped by GSH synthesis remains unknown. Here, we report that β-glucan-trained macrophages from mice harboring a myeloid-specific deletion of the catalytic subunit of glutamate-cysteine ligase (Gclc) showed impaired GSH synthesis and decreased proinflammatory cytokine production in response to lipopolysaccharide challenge. Gclc deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of c-Myc transcription factors, abrogating the energy utilization and the metabolic reprogramming that allows β-glucan-trained macrophages to switch to glycolysis and glutaminolysis. Furthermore, Gclc deletion repressed effective H3K27me3 demethylation in the promoters of immunometabolic genes, such as Gls, Hk2, and Glut1, in β-glucan-trained macrophages by promoting the methyltransferase enhancer of zeste homolog 2 (EZH2). In vivo, myeloid-specific ablation of Gclc decreased the secretion of proinflammatory cytokines upon rechallenge with Candida albicans and these animals were less protected against the infection, compared with control littermates. Moreover, pharmacological inhibition of EZH2 enhanced the trained immunity response against Candida infection in Gclc-deficient mouse and human peripheral blood mononuclear cells treated with GCLC inhibitor buthionine sulfoximine (BSO). Thus, antioxidative GSH synthesis supports an environment conducive to β-glucan-induced metabolic and epigenetic reprogramming in trained immunity, allowing exploration of its functional consequences in autoimmune or inflammatory disease.
Collapse
Affiliation(s)
- Haibo Su
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China.
| | - Jiaxin Huang
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China
| | - Shufeng Weng
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Baoying Zhang
- GMU-GIBH Joint School of Life Science, Guangzhou Medical University, No. 195 Dongfengxi Road, Guangzhou, 510000, China
| | - Tianran Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
46
|
IL-1 family cytokines as drivers and inhibitors of trained immunity. Cytokine 2021; 150:155773. [PMID: 34844039 DOI: 10.1016/j.cyto.2021.155773] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Trained immunity is the long-term memory of innate immune cells, characterised by increased pro-inflammatory responses towards homo- and heterologous secondary stimuli. Interleukin (IL)-1 signalling plays an essential role in the induction of trained immunity, also called innate immune memory. As such, certain anti-inflammatory members of the IL-1 family of cytokines (IL-1F) which interfere with the inflammatory process have the potential to regulate the induction of a trained phenotype. The aim of this review is to provide an update on the role of IL-1F members in the context of trained immunity, emphasising the role of anti-inflammatory cytokines from the IL-1F to inhibit the induction of trained immunity, and touching upon their potential as therapeutics in IL-1-driven inflammatory disorders.
Collapse
|
47
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Swartzwelter BJ, Michelini S, Frauenlob T, Barbero F, Verde A, De Luca AC, Puntes V, Duschl A, Horejs-Hoeck J, Italiani P, Boraschi D. Innate Memory Reprogramming by Gold Nanoparticles Depends on the Microbial Agents That Induce Memory. Front Immunol 2021; 12:751683. [PMID: 34804037 PMCID: PMC8600232 DOI: 10.3389/fimmu.2021.751683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/14/2021] [Indexed: 01/14/2023] Open
Abstract
Innate immune memory, the ability of innate cells to react in a more protective way to secondary challenges, is induced by exposure to infectious and other exogeous and endogenous agents. Engineered nanoparticles are particulate exogenous agents that, as such, could trigger an inflammatory reaction in monocytes and macrophages and could therefore be also able to induce innate memory. Here, we have evaluated the capacity of engineered gold nanoparticles (AuNPs) to induce a memory response or to modulate the memory responses induced by microbial agents. Microbial agents used were in soluble vs. particulate form (MDP and the gram-positive bacteria Staphylococcus aureus; β-glucan and the β-glucan-producing fungi C. albicans), and as whole microrganisms that were either killed (S. aureus, C. albicans) or viable (the gram-negative bacteria Helicobacter pylori). The memory response was assessed in vitro, by exposing human primary monocytes from 2-7 individual donors to microbial agents with or without AuNPs (primary response), then resting them for 6 days to allow return to baseline, and eventually challenging them with LPS (secondary memory response). Primary and memory responses were tested as production of the innate/inflammatory cytokine TNFα and other inflammatory and anti-inflammatory factors. While inactive on the response induced by soluble microbial stimuli (muramyl dipeptide -MDP-, β-glucan), AuNPs partially reduced the primary response induced by whole microorganisms. AuNPs were also unable to directly induce a memory response but could modulate stimulus-induced memory in a circumscribed fashion, limited to some agents and some cytokines. Thus, the MDP-induced tolerance in terms of TNFα production was further exacerbated by co-priming with AuNPs, resulting in a less inflammatory memory response. Conversely, the H. pylori-induced tolerance was downregulated by AuNPs only relative to the anti-inflammatory cytokine IL-10, which would lead to an overall more inflammatory memory response. These effects of AuNPs may depend on a differential interaction/association between the reactive particle surfaces and the microbial components and agents, which may lead to a change in the exposure profiles. As a general observation, however, the donor-to-donor variability in memory response profiles and reactivity to AuNPs was substantial, suggesting that innate memory depends on the individual history of exposures.
Collapse
Affiliation(s)
- Benjamin J. Swartzwelter
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Sara Michelini
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Tobias Frauenlob
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Francesco Barbero
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Verde
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Anna Chiara De Luca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Victor Puntes
- Institut Català de Nanociència i Nanotecnologia (ICN2), Consejo Superior de Investigaciones Científicas (CSIC) and The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Albert Duschl
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department Biosciences, Paris Lodron University of Salzburg (PLUS), Salzburg, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
49
|
Wolyncewicz B, Major TJ, Delahunt B, Thunders M. The epigenome: key to understanding and predicting gout flares. Pathology 2021; 53:824-829. [PMID: 34657735 DOI: 10.1016/j.pathol.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Gout is a form of arthritis, resulting from an inflammatory reaction to the deposition of monosodium urate (MSU) crystals in the synovial fluid of the joint space. It is characterised by periods of acute inflammation in the affected joint, or joints (known as gout flares), separated by asymptomatic periods. There seems to be substantial overlap between environmental triggers of gout flares and common environmental modifiers (diet, pharmaceuticals, and stress) of epigenetic markers (DNA methylation, histone modifications, and ncRNA). Very few studies have looked at whether environment is influencing gout through epigenetic mechanisms. The pathogenesis of gouty inflammation is well understood but understanding the variation of response to hyperuricaemia in terms of gout flare initiation is less well known. In this review, we will examine the potential of epigenomics in understanding how gout flares may occur, both in terms of development of hyperuricaemia and the inflammatory response. Looking at the epigenome and its intersection with lifestyle could help identify new targets and strategies for effective management of gout flares.
Collapse
Affiliation(s)
- Ben Wolyncewicz
- Otago Medical School, Division of Health Sciences, University of Otago, Dunedin, New Zealand
| | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Brett Delahunt
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand
| | - Michelle Thunders
- Department of Pathology and Molecular Medicine, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand.
| |
Collapse
|
50
|
Abstract
Toll like receptors (TLRs) are the most studied pattern recognition receptors (PRRs) as they connect the innate to the acquired immune response. To date, there are ten human TLRs which are expressed either on the plasma membrane or on the endosomes. TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are plasma membrane TLRs that recognise extracellular components of pathogens, whereas TLR3, TLR7, TLR8 and TLR9 are located on endosomes where they recognise foreign nucleic acids. Of these TLRs, TLR10 is the latest human TLR to be discovered and its function and ligands are still unclear. TLR10 is the only known member of TLR family that can elicit anti-inflammatory effect. TLR10 can inhibit other TLRs by competing with stimulatory TLRs, dimerising with TLR1, TLR2 and TLR6, and by inducing PI3K/Akt to produce IL-1Ra. There is controversy on the function of TLR10 as an anti-inflammatory TLR as initial studies on TLR10 revealed it to promote inflammation. Herein, we review the detailed functions of TLR10 in immunity and give an account of how and when TLR10 can act on both sides of the inflammatory spectrum.
Collapse
|