1
|
Butkova TV, Malsagova KA, Nakhod VI, Petrovskiy DV, Izotov AA, Balakin EI, Yurku KA, Umnikov AS, Pustovoyt VI, Kaysheva AL. Candidate Molecular Biomarkers of Traumatic Brain Injury: A Systematic Review. Biomolecules 2024; 14:1283. [PMID: 39456216 PMCID: PMC11506336 DOI: 10.3390/biom14101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and disability among young and middle-aged individuals. Adequate and timely diagnosis of primary brain injuries, as well as the prompt prevention and treatment of secondary injury mechanisms, significantly determine the potential for reducing mortality and severe disabling consequences. Therefore, it is crucial to have objective markers that indicate the severity of the injury. A number of molecular factors-proteins and metabolites-detected in the blood immediately after trauma and associated with the development and severity of TBI can serve in this role. TBI is a heterogeneous condition with respect to its etiology, clinical form, and genesis, being accompanied by brain cell damage and disruption of blood-brain barrier permeability. Two oppositely directed flows of substances and signals are observed: one is the flow of metabolites, proteins, and nucleic acids from damaged brain cells into the bloodstream through the damaged blood-brain barrier; the other is the infiltration of immune cells (neutrophils and macrophages) and serological proteins. Both flows aggravate brain tissue damage after TBI. Therefore, it is extremely important to study the key signaling events that regulate these flows and repair the damaged tissues, as well as to enhance the effectiveness of treatments for patients after TBI.
Collapse
Affiliation(s)
- Tatiana V. Butkova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Kristina A. Malsagova
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Valeriya I. Nakhod
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Denis V. Petrovskiy
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Alexander A. Izotov
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| | - Evgenii I. Balakin
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Ksenia A. Yurku
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Alexey S. Umnikov
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Vasiliy I. Pustovoyt
- State Research Center—Burnasyan Federal Medical Biophysical Center, 123098 Moscow, Russia (K.A.Y.); (A.S.U.); (V.I.P.)
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 109028 Moscow, Russia; (T.V.B.); (V.I.N.); (D.V.P.); (A.A.I.); (A.L.K.)
| |
Collapse
|
2
|
Chen J, Sanchez-Iranzo H, Diotel N, Rastegar S. Comparative insight into the regenerative mechanisms of the adult brain in zebrafish and mouse: highlighting the importance of the immune system and inflammation in successful regeneration. FEBS J 2024; 291:4193-4205. [PMID: 39108082 DOI: 10.1111/febs.17231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024]
Abstract
Regeneration, the complex process of restoring damaged or absent cells, tissues, and organs, varies considerably between species. The zebrafish is a remarkable model organism for its impressive regenerative abilities, particularly in organs such as the heart, fin, retina, spinal cord, and brain. Unlike mammals, zebrafish can regenerate with limited or absent scarring, a phenomenon closely linked to the activation of stem cells and immune cells. This review examines the unique roles played by the immune response and inflammation in zebrafish and mouse during regeneration, highlighting the cellular and molecular mechanisms behind their divergent regenerative capacities. By focusing on zebrafish telencephalic regeneration and comparing it to that of the rodents, this review highlights the importance of a well-controlled, acute, and non-persistent immune response in zebrafish, which promotes an environment conducive to regeneration. The knowledge gained from understanding the mechanisms of zebrafish regeneration holds great promises for the treatment of human neurodegenerative diseases and brain damage (stroke and traumatic brain injuries), as well as for the advancement of regenerative medicine approaches.
Collapse
Affiliation(s)
- Jincan Chen
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Hector Sanchez-Iranzo
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| | - Nicolas Diotel
- Université de La Réunion, INSERM, UMR 1188, Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, La Réunion, France
| | - Sepand Rastegar
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Germany
| |
Collapse
|
3
|
Moody JN, Howard E, Nolan KE, Prieto S, Logue MW, Hayes JP. Traumatic Brain Injury and Genetic Risk for Alzheimer's Disease Impact Cerebrospinal Fluid β-Amyloid Levels in Vietnam War Veterans. Neurotrauma Rep 2024; 5:760-769. [PMID: 39184178 PMCID: PMC11342050 DOI: 10.1089/neur.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Traumatic brain injuries (TBIs) may increase the risk for Alzheimer's disease (AD) and its neuropathological correlates, although the mechanisms of this relationship are unclear. The current study examined the synergistic effects of TBI and genetic risk for AD on β-amyloid (Aβ) levels among Vietnam War Veterans. We hypothesized that the combination of TBI and higher polygenic risk score (PRS) for AD would be associated with lower cerebrospinal fluid (CSF) Aβ42/40. Data were obtained from the Department of Defense Alzheimer's Disease Neuroimaging Initiative. Participants included Vietnam War Veterans without dementia who identified as White non-Hispanic/Latino and had available demographic, clinical assessment, genetic, and CSF biomarker data. Lifetime TBI history was assessed using The Ohio State University TBI Identification Method. Participants were categorized into those with and without TBI. Among those with a prior TBI, injury severity was defined as either mild or moderate/severe. CSF Aβ42/40 ratios were calculated. Genetic propensity for AD was assessed using PRSs. Hierarchical linear regression models examined the interactive effects of TBI and PRS for AD on Aβ42/40. Exploratory analyses examined the interaction between TBI severity and PRS. The final sample included 88 male Vietnam War Veterans who identified as White non-Hispanic/Latino (M age = 68.3 years), 49 of whom reported a prior TBI. There was a significant interaction between TBI and PRS, such that individuals with TBI and higher PRS for AD had lower Aβ42/40 (B = -0.45, 95% CI: -0.86 to -0.05, p = 0.03). This relationship may be stronger with increasing TBI severity (p = 0.05). Overall, TBI was associated with lower Aβ42/40, indicating greater amyloid deposition in the brain, in the context of greater polygenic risk for AD. These findings highlight who may be at increased risk for AD neuropathology following TBI.
Collapse
Affiliation(s)
- Jena N. Moody
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Erica Howard
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Kate E. Nolan
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sarah Prieto
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts, USA
- Psychiatry and Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Jasmeet P. Hayes
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Initiative, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
4
|
Mohan S, Krishnan L, Madhusoodanan N, Sobha A, Babysulochana AD, Vankadari N, Purushothaman J, Somappa SB. Ligand-Based Pharmacophoric Design and Anti-inflammatory Evaluation of Triazole Linked Semisynthetic Labdane Conjugates. ACS Med Chem Lett 2024; 15:1260-1268. [PMID: 39140047 PMCID: PMC11318007 DOI: 10.1021/acsmedchemlett.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
This study employed a ligand-based pharmacophoric approach to design and synthesize 33 novel semisynthetic labdane-appended triazolyl isatins to discover potential anti-inflammatory agents. The anti-inflammatory efficacy of the derivatives was evaluated by their ability to inhibit the production of NO, TNF-α, and IL-6, in lipopolysaccharide-induced RAW264.7 macrophages. The initial screening revealed that compound 7a ((1-(2-(2,3-dioxoindolin-1-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl (E)-3-formyl-5-((1S,4aS,8aS)-5,5,8a-trimethyl-2-methylenedecahydronaphthalen-1-yl)pent-3-enoate) exhibited an anti-inflammatory effect (NO inhibition, IC50 = 3.13 μΜ), surpassing both the positive control indomethacin (NO inhibition, IC50 = 7.31 μΜ) and the parent compound labdane dialdehyde. Notably, 7a reduced the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the levels of the anti-inflammatory cytokine IL-10. Mechanistic studies revealed that 7a downregulated the expression of COX-2 and iNOS by inhibiting the NF-κB signaling pathway. In silico molecular modeling studies on NF-κB proteins support these findings, suggesting that 7a is a promising candidate for developing into a potent anti-inflammatory clinical agent.
Collapse
Affiliation(s)
- Sangeetha Mohan
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lekshmy Krishnan
- Agro
Processing and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
| | - Nithya Madhusoodanan
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Sobha
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Alansheeja D. Babysulochana
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Department
of Chemistry, Government Arts College, Thiruvananthapuram, Kerala 695 014, India
| | - Naveen Vankadari
- Department
of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria VIC 3052, Australia
| | - Jayamurthy Purushothaman
- Agro
Processing and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sasidhar B. Somappa
- Chemical
Sciences and Technology Division, CSIR−National
Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695
019, Kerala India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
5
|
Li R, Ye JJ, Gan L, Zhang M, Sun D, Li Y, Wang T, Chang P. Traumatic inflammatory response: pathophysiological role and clinical value of cytokines. Eur J Trauma Emerg Surg 2024; 50:1313-1330. [PMID: 38151578 PMCID: PMC11458723 DOI: 10.1007/s00068-023-02388-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Abstract
Severe trauma is an intractable problem in healthcare. Patients have a widespread immune system response that is complex and vital to survival. Excessive inflammatory response is the main cause of poor prognosis and poor therapeutic effect of medications in trauma patients. Cytokines are signaling proteins that play critical roles in the body's response to injuries, which could amplify or suppress immune responses. Studies have demonstrated that cytokines are closely related to the severity of injuries and prognosis of trauma patients and help present cytokine-based diagnosis and treatment plans for trauma patients. In this review, we introduce the pathophysiological mechanisms of a traumatic inflammatory response and the role of cytokines in trauma patients. Furthermore, we discuss the potential of cytokine-based diagnosis and therapy for post-traumatic inflammatory response, although further clarification to elucidate the underlying mechanisms of cytokines following trauma is warranted.
Collapse
Affiliation(s)
- Rui Li
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Jing Jing Ye
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Lebin Gan
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Mengwei Zhang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Diya Sun
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China
| | - Yongzheng Li
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, People's Republic of China.
| | - Tianbing Wang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| | - Panpan Chang
- Trauma Medicine Center, Peking University People's Hospital, Beijing, 100044, People's Republic of China.
- Key Laboratory of Trauma and Neural Regeneration (Peking University) Ministry of Education, Beijing, 100044, People's Republic of China.
- National Center for Trauma Medicine of China, Beijing, 100044, People's Republic of China.
| |
Collapse
|
6
|
Khan T, Thamaraikani T, Vellapandian C. A Review of the Retinal Impact of Traumatic Brain Injury and Alzheimer's Disease: Exploring Inflammasome Complexes and Nerve Fiber Layer Alterations. Cureus 2024; 16:e67093. [PMID: 39286668 PMCID: PMC11405093 DOI: 10.7759/cureus.67093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
A huge number of new cases - around a few million of traumatic brain injury (TBI) - are recorded globally each year, making it a major public health risk. A significant portion of all accident-related deaths are attributable to TBI, a notable mortality rate. There are TBI deaths in every age range. Long-term neurobehavioral impacts, such as altered emotions and personalities, cognitive and mental deficits, and so on, are experienced by the majority of survivors. Our main objective is to understand the possible mechanism of the NLRP3 inflammasome in retinal neurons and enhance precision regarding reducing the burden of retinal neurodegeneration in TBI-induced AD. Both primary and secondary insults initiate the intricate pathophysiology of traumatic brain injury. Primary injuries are caused by mechanical force and occur right after the collision. Long-lasting and delayed secondary injuries follow. Studies demonstrating the continuous nature of research on the relationship between retinal neurons and TBI-induced Alzheimer's disease (AD) include neurodegeneration, retinal changes, and inflammatory response biomarkers. TBI can cause changes that resemble those seen in AD. This includes the accumulation of tau tangles and amyloid-beta plaques, which are also observed in the retina and imply a potential relationship between AD, traumatic brain injury, and retinal health. The linkage between TBI and AD, the effect of the innate immune system in post-TBI AD, the function of immunological moderators, the activation and assembly of inflammasomes in TBI, the pathophysiology of TBI, and the connection between TBI and inflammasome activity were the main topics of discussion in the following discussions. Of particular interest was the potential mechanism by which the NLRP3 inflammasome, in conjunction with SREBP2 and SCAP inflammasome, in retinal neurons in TBI-induced AD. The thinning of RNFL, poor lipid metabolism, and new developments such as drug delivery technologies, lipid metabolism modulation in retinal neurons, and drug-targeting lipid pathways and their mechanisms are then covered in this article.
Collapse
Affiliation(s)
- Tapabrata Khan
- Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Tamilanban Thamaraikani
- Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Chennai, IND
| | - Chitra Vellapandian
- Pharmacy/Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Chengalpattu, IND
| |
Collapse
|
7
|
Banderwal R, Kadian M, Garg S, Kumar A. 'Comprehensive review of emerging drug targets in traumatic brain injury (TBI): challenges and future scope. Inflammopharmacology 2024:10.1007/s10787-024-01524-w. [PMID: 39023681 DOI: 10.1007/s10787-024-01524-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/12/2024] [Indexed: 07/20/2024]
Abstract
Traumatic brain injury (TBI) is a complex brain problem that causes significant morbidity and mortality among people of all age groups. The complex pathophysiology, varied symptoms, and inadequate treatment further precipitate the problem. Further, TBI produces several psychiatric problems and other related complications in post-TBI survival patients, which are often treated symptomatically or inadequately. Several approaches, including neuroprotective agents targeting several pathways of oxidative stress, neuroinflammation, cytokines, immune system GABA, glutamatergic, microglia, and astrocytes, are being tried by researchers to develop effective treatments or magic bullets to manage the condition effectively. The problem of TBI is therefore treated as a challenge among pharmaceutical scientists or researchers to develop drugs for the effective management of this problem. The goal of the present comprehensive review is to provide an overview of the several pharmacological targets, processes, and cellular pathways that researchers are focusing on, along with an update on their current state.
Collapse
Affiliation(s)
- Rittu Banderwal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Monika Kadian
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India
| | - Sukant Garg
- Department of General Pathology, Dr HS Judge Institute of Dental Sciences and Hospital, Panjab University, Chandigarh, 160014, India
| | - Anil Kumar
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), UGC- Centre of Advanced Study (UGC-CAS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
8
|
Boucher ML, Conley G, Morriss NJ, Ospina-Mora S, Qiu J, Mannix R, Meehan WP. Time-Dependent Long-Term Effect of Memantine following Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2024; 41:e1736-e1758. [PMID: 38666723 DOI: 10.1089/neu.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Repetitive mild traumatic brain injury (rmTBI, e.g., sports concussions) may be associated with both acute and chronic symptoms and neurological changes. Despite the common occurrence of these injuries, therapeutic strategies are limited. One potentially promising approach is N-methyl-D-aspartate receptor (NMDAR) blockade to alleviate the effects of post-injury glutamatergic excitotoxicity. Initial pre-clinical work using the NMDAR antagonist, memantine, suggests that immediate treatment following rmTBI improves a variety of acute outcomes. It remains unclear (1) whether acute memantine treatment has long-term benefits and (2) whether delayed treatment following rmTBI is beneficial, which are both clinically relevant concerns. To test this, animals were subjected to rmTBI via a weight drop model with rotational acceleration (five hits in 5 days) and randomized to memantine treatment immediately, 3 months, or 6 months post-injury, with a treatment duration of one month. Behavioral outcomes were assessed at 1, 4, and 7 months post-injury. Neuropathological outcomes were characterized at 7 months post-injury. We observed chronic changes in behavior (anxiety-like behavior, motor coordination, spatial learning, and memory), as well as neuroinflammation (microglia, astrocytes) and tau phosphorylation (T231). Memantine treatment, either immediately or 6 months post-injury, appears to confer greater rescue of neuroinflammatory changes (microglia) than vehicle or treatment at the 3-month time point. Although memantine is already being prescribed chronically to address persistent symptoms associated with rmTBI, this study represents the first evidence of which we are aware to suggest a small but durable effect of memantine treatment in mild, concussive injuries. This effect suggests that memantine, although potentially beneficial, is insufficient to treat all aspects of rmTBI alone and should be combined with other therapeutic agents in a multi-therapy approach, with attention given to the timing of treatment.
Collapse
Affiliation(s)
- Masen L Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Nicholas J Morriss
- University of Rochester School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York, USA
| | | | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Sports Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Waltham, Massachusetts, USA
| |
Collapse
|
9
|
Houle S, Tapp Z, Dobres S, Ahsan S, Reyes Y, Cotter C, Mitsch J, Zimomra Z, Peng J, Rowe RK, Lifshitz J, Sheridan J, Godbout J, Kokiko-Cochran ON. Sleep fragmentation after traumatic brain injury impairs behavior and conveys long-lasting impacts on neuroinflammation. Brain Behav Immun Health 2024; 38:100797. [PMID: 38803369 PMCID: PMC11128763 DOI: 10.1016/j.bbih.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) causes a prolonged inflammatory response in the central nervous system (CNS) driven by microglia. Microglial reactivity is exacerbated by stress, which often provokes sleep disturbances. We have previously shown that sleep fragmentation (SF) stress after experimental TBI increases microglial reactivity and impairs hippocampal function 30 days post-injury (DPI). The neuroimmune response is highly dynamic the first few weeks after TBI, which is also when injury induced sleep-wake deficits are detected. Therefore, we hypothesized that even a few weeks of TBI SF stress would synergize with injury induced sleep-wake deficits to promote neuroinflammation and impair outcome. Here, we investigated the effects of environmental SF in a lateral fluid percussion model of mouse TBI. Half of the mice were undisturbed, and half were exposed to 5 h of SF around the onset of the light cycle, daily, for 14 days. All mice were then undisturbed 15-30 DPI, providing a period for SF stress recovery (SF-R). Mice exposed to SF stress slept more than those in control housing 7-14 DPI and engaged in more total daily sleep bouts during the dark period. However, SF stress did not exacerbate post-TBI sleep deficits. Testing in the Morris water maze revealed sex dependent differences in spatial reference memory 9-14 DPI with males performing worse than females. Post-TBI SF stress suppressed neurogenesis-related gene expression and increased inflammatory signaling in the cortex at 14 DPI. No differences in sleep behavior were detected between groups during the SF stress recovery period 15-30 DPI. Microscopy revealed cortical and hippocampal IBA1 and CD68 percent-area increased in TBI SF-R mice 30 DPI. Additionally, neuroinflammatory gene expression was increased, and synaptogenesis-related gene expression was suppressed in TBI-SF mice 30 DPI. Finally, IPA canonical pathway analysis showed post-TBI SF impaired and delayed activation of synapse-related pathways between 14 and 30 DPI. These data show that transient SF stress after TBI impairs recovery and conveys long-lasting impacts on neuroimmune function independent of continuous sleep deficits. Together, these finding support that even limited exposure to post-TBI SF stress can have lasting impacts on cognitive recovery and regulation of the immune response to trauma.
Collapse
Affiliation(s)
- Samuel Houle
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Zoe Tapp
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
| | - Shannon Dobres
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Sakeef Ahsan
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Yvanna Reyes
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Christopher Cotter
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Jessica Mitsch
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Zachary Zimomra
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
| | - Juan Peng
- Center for Biostatistics, The Ohio State University, 320-55 Lincoln Tower, 1800 Cannon Drive, 43210, Columbus, OH, USA
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jonathan Lifshitz
- Phoenix VA Health Care System and University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - John Sheridan
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 W. 12th Ave, 43210, Columbus, OH, USA
| | - Jonathan Godbout
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, 43210, Columbus, OH, USA
| | - Olga N. Kokiko-Cochran
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, 43210, Columbus, OH, USA
| |
Collapse
|
10
|
Mohan S, Krishnan L, Madhusoodanan N, Sobha A, Jalaja R, Kumaran A, Vankadari N, Purushothaman J, Somappa SB. Linker-Based Pharmacophoric Design and Semisynthesis of Labdane Conjugates Active against Multi-Faceted Inflammatory Targets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6389-6401. [PMID: 38494644 DOI: 10.1021/acs.jafc.3c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Prolonged inflammation leads to the genesis of various inflammatory diseases such as atherosclerosis, cancer, inflammatory bowel disease, Alzheimer's, etc. The uncontrolled inflammatory response is characterized by the excessive release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1alpha (IL-1α), and inflammatory enzymes such as cyclooxygenase-2 (COX-2). Hence, the downregulation of these inflammatory mediators is an active therapy to control aberrant inflammation and tissue damage. To address this, herein, we present the rational design and synthesis of novel phytochemical entities (NPCEs) through strategic linker-based molecular hybridization of aromatic/heteroaromatic fragments with the labdane dialdehyde, isolated from the medicinally and nutritionally significant rhizomes of the plant Curcuma amada. To validate the anti-inflammatory potential, we employed a comprehensive in vitro study assessing its inhibitory effect on the COX-2 enzyme and other inflammatory mediators, viz., NO, TNF-α, IL-6, and IL-1α, in bacterial lipopolysaccharide-stimulated macrophages, as well as in-silico molecular modeling studies targeting the inflammation regulator COX-2 enzyme. Among the synthesized novel compounds, 5f exhibited the highest anti-inflammatory potential by inhibiting the COX-2 enzyme (IC50 = 17.67 ± 0.89 μM), with a 4-fold increased activity relative to the standard drug indomethacin (IC50 = 67.16 ± 0.17 μM). 5f also significantly reduced the levels of LPS-induced NO, TNF-α, IL-6, and IL-1α, much better than the positive control. Molecular mechanistic studies revealed that 5f suppressed the expression of COX-2 and pro-inflammatory cytokine release dose-dependently, which was associated with the inhibition of the NF-κB signaling pathway. This infers that the labdane derivative 5f is a promising lead candidate as an anti-inflammatory agent to further explore its therapeutic landscape.
Collapse
Affiliation(s)
- Sangeetha Mohan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Lekshmy Krishnan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Nithya Madhusoodanan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anjali Sobha
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Renjitha Jalaja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Alaganandam Kumaran
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Institute, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Jayamurthy Purushothaman
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Sasidhar B Somappa
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
11
|
Katchur NJ, Notterman DA. Recent insights from non-mammalian models of brain injuries: an emerging literature. Front Neurol 2024; 15:1378620. [PMID: 38566857 PMCID: PMC10985199 DOI: 10.3389/fneur.2024.1378620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) is a major global health concern and is increasingly recognized as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Repetitive TBIs (rTBIs), commonly observed in contact sports, military service, and intimate partner violence (IPV), pose a significant risk for long-term sequelae. To study the long-term consequences of TBI and rTBI, researchers have typically used mammalian models to recapitulate brain injury and neurodegenerative phenotypes. However, there are several limitations to these models, including: (1) lengthy observation periods, (2) high cost, (3) difficult genetic manipulations, and (4) ethical concerns regarding prolonged and repeated injury of a large number of mammals. Aquatic vertebrate model organisms, including Petromyzon marinus (sea lampreys), zebrafish (Danio rerio), and invertebrates, Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (Drosophila), are emerging as valuable tools for investigating the mechanisms of rTBI and tauopathy. These non-mammalian models offer unique advantages, including genetic tractability, simpler nervous systems, cost-effectiveness, and quick discovery-based approaches and high-throughput screens for therapeutics, which facilitate the study of rTBI-induced neurodegeneration and tau-related pathology. Here, we explore the use of non-vertebrate and aquatic vertebrate models to study TBI and neurodegeneration. Drosophila, in particular, provides an opportunity to explore the longitudinal effects of mild rTBI and its impact on endogenous tau, thereby offering valuable insights into the complex interplay between rTBI, tauopathy, and neurodegeneration. These models provide a platform for mechanistic studies and therapeutic interventions, ultimately advancing our understanding of the long-term consequences associated with rTBI and potential avenues for intervention.
Collapse
Affiliation(s)
- Nicole J. Katchur
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
12
|
Shan J, Shi R, Hazra R, Hu X. Regulatory T lymphocytes in traumatic brain injury. Neurochem Int 2024; 173:105660. [PMID: 38151109 PMCID: PMC10872294 DOI: 10.1016/j.neuint.2023.105660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023]
Abstract
Traumatic brain injury (TBI) presents a significant global health challenge with no effective therapies developed to date. Regulatory T lymphocytes (Tregs) have recently emerged as a potential therapy due to their critical roles in maintaining immune homeostasis, reducing inflammation, and promoting brain repair. Following TBI, fluctuations in Treg populations and shifts in their functionality have been noted. However, the precise impact of Tregs on the pathophysiology of TBI remains unclear. In this review, we discuss recent advances in understanding the intricate roles of Tregs in TBI and other brain diseases. Increased knowledge about Tregs may facilitate their future application as an immunotherapy target for TBI treatment.
Collapse
Affiliation(s)
- Jiajing Shan
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ruyu Shi
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Rimi Hazra
- Department of Medicine, Pittsburgh Heart Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Xiaoming Hu
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15261, USA; Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
13
|
Morris AR, Gudenschwager Basso EK, Gutierrez-Monreal MA, Arja RD, Kobeissy FH, Janus CG, Wang KK, Zhu J, Liu AC. Lifelong Chronic Sleep Disruption in a Mouse Model of Traumatic Brain Injury. Neurotrauma Rep 2024; 5:61-73. [PMID: 38288298 PMCID: PMC10823169 DOI: 10.1089/neur.2023.0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Chronic sleep/wake disturbances (SWDs) are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong SWDs. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in 4-month-old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. Sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at 3 months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Further, TBI mice showed extensive brain tissue loss and increased glial fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 levels in the hypothalamus and vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes post-TBI early in life.
Collapse
Affiliation(s)
- Andrew R. Morris
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Erwin K. Gudenschwager Basso
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Miguel A. Gutierrez-Monreal
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Rawad Daniel Arja
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Firas H. Kobeissy
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Christopher G. Janus
- Center for Translational Research in Neurodegenerative Disease (CTRND), Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Kevin K.W. Wang
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jiepei Zhu
- Center for Neurotrauma, Multiomics & Biomarkers, Department of Neurobiology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| |
Collapse
|
14
|
Ahmed FS, McMillan TM, Guenther BA, Dearborn P. Cognitive Performance following Single- or Multi-Session Exercise Intervention in Middle Age: A Systematic Review. Exp Aging Res 2024; 50:28-64. [PMID: 36384438 DOI: 10.1080/0361073x.2022.2137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Research in modifiable behaviors, like exercise, on risk for dementia is increasing. Although many studies focus on older adults, brain pathology for Alzheimer's Disease can begin in middle age, suggesting an ideal target for intervention. METHODS We conducted a systematic review from exercise intervention studies on cognitive function among healthy, middle-aged participants (45-65). We searched multiple databases (PubMed, PsycINFO, MEDLINE, Cochrane Central Register of Controlled Trials, Google Scholar) for studies using standard, validated, neuropsychological measures following either single- or multi-session interventions in cognitively-unimpaired, middle-aged adults. RESULTS We identified 13 eligible studies. There was notable heterogeneity across studies, with varying design, measures, interventions, and results. Results from single-session studies showed improvement in response inhibition, while results for cognitive flexibility were mixed. No significant changes were found on measures of attention, working memory, or processing speed. Results from multi-session studies were more varied. Verbal memory was found to improve while performance on tests of attention and working memory, processing speed, and executive function were mixed. CONCLUSION Importantly, for both single-session and multi-session studies, there was no standard set of neuropsychological tests administered, making it more difficult to synthesize the findings into a single narrative. We end with a discussion on future directions and implementation.
Collapse
Affiliation(s)
- Fayeza S Ahmed
- Department of Psychology, University of Maine, Orono, Maine, USA
| | | | | | - Peter Dearborn
- Department of Psychology, University of Maine, Orono, Maine, USA
| |
Collapse
|
15
|
Yilmaz A, Liraz-Zaltsman S, Shohami E, Gordevičius J, Kerševičiūtė I, Sherman E, Bahado-Singh RO, Graham SF. The longitudinal biochemical profiling of TBI in a drop weight model of TBI. Sci Rep 2023; 13:22260. [PMID: 38097614 PMCID: PMC10721861 DOI: 10.1038/s41598-023-48539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of mortality and disability worldwide, particularly among individuals under the age of 45. It is a complex, and heterogeneous disease with a multifaceted pathophysiology that remains to be elucidated. Metabolomics has the potential to identify metabolic pathways and unique biochemical profiles associated with TBI. Herein, we employed a longitudinal metabolomics approach to study TBI in a weight drop mouse model to reveal metabolic changes associated with TBI pathogenesis, severity, and secondary injury. Using proton nuclear magnetic resonance (1H NMR) spectroscopy, we biochemically profiled post-mortem brain from mice that suffered mild TBI (N = 25; 13 male and 12 female), severe TBI (N = 24; 11 male and 13 female) and sham controls (N = 16; 11 male and 5 female) at baseline, day 1 and day 7 following the injury. 1H NMR-based metabolomics, in combination with bioinformatic analyses, highlights a few significant metabolites associated with TBI severity and perturbed metabolism related to the injury. We report that the concentrations of taurine, creatinine, adenine, dimethylamine, histidine, N-Acetyl aspartate, and glucose 1-phosphate are all associated with TBI severity. Longitudinal metabolic observation of brain tissue revealed that mild TBI and severe TBI lead distinct metabolic profile changes. A multi-class model was able to classify the severity of injury as well as time after TBI with estimated 86% accuracy. Further, we identified a high degree of correlation between respective hemisphere metabolic profiles (r > 0.84, p < 0.05, Pearson correlation). This study highlights the metabolic changes associated with underlying TBI severity and secondary injury. While comprehensive, future studies should investigate whether: (a) the biochemical pathways highlighted here are recapitulated in the brain of TBI sufferers and (b) if the panel of biomarkers are also as effective in less invasively harvested biomatrices, for objective and rapid identification of TBI severity and prognosis.
Collapse
Affiliation(s)
- Ali Yilmaz
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA
| | - Sigal Liraz-Zaltsman
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat-Gan, Israel
- Department of Sports Therapy, Institute for Health and Medical Professions, Ono Academic College, Qiryat Ono, Israel
| | - Esther Shohami
- Department of Pharmacology, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Juozas Gordevičius
- VUGENE LLC, 625 EKenmoor Avenue Southeast, Suite 301, PMB 96578, Grand Rapids, MI, 49546, USA
| | - Ieva Kerševičiūtė
- VUGENE LLC, 625 EKenmoor Avenue Southeast, Suite 301, PMB 96578, Grand Rapids, MI, 49546, USA
| | - Eric Sherman
- Wayne State University School of Medicine, Detroit, MI, 48202, USA
| | - Ray O Bahado-Singh
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA
| | - Stewart F Graham
- Metabolomics Department, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA.
- Oakland University-William Beaumont School of Medicine, Rochester, MI, 48073, USA.
| |
Collapse
|
16
|
Morris AR, Gudenschwager Basso EK, Gutierrez-Monreal MA, Arja RD, Kobeissy FH, Janus CG, Wang KKW, Zhu J, Liu AC. Sleep Disruption in a Mouse Model of Chronic Traumatic Brain Injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566553. [PMID: 38014315 PMCID: PMC10680804 DOI: 10.1101/2023.11.10.566553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chronic sleep/wake disturbances are strongly associated with traumatic brain injury (TBI) in patients and are being increasingly recognized. However, the underlying mechanisms are largely understudied and there is an urgent need for animal models of lifelong sleep/wake disturbances. The objective of this study was to develop a chronic TBI rodent model and investigate the lifelong chronic effect of TBI on sleep/wake behavior. We performed repetitive midline fluid percussion injury (rmFPI) in four months old mice and monitored their sleep/wake behavior using the non-invasive PiezoSleep system. The sleep/wake states were recorded before injury (baseline) and then monthly thereafter. We found that TBI mice displayed a significant decrease in sleep duration in both the light and dark phases, beginning at three months post-TBI and continuing throughout the study. Consistent with the sleep phenotype, these TBI mice showed circadian locomotor activity phenotypes and exhibited reduced anxiety-like behavior. TBI mice also gained less weight, and had less lean mass and total body water content, compared to sham controls. Furthermore, TBI mice showed extensive brain tissue loss and increased GFAP and IBA1 levels in the hypothalamus and the vicinity of the injury, indicative of chronic neuropathology. In summary, our study identified a critical time window of TBI pathology and associated circadian and sleep/wake phenotypes. Future studies should leverage this mouse model to investigate the molecular mechanisms underlying the chronic sleep/wake phenotypes following TBI early in life.
Collapse
|
17
|
Du Q, Li Q, Liao G, Li J, Ye P, Zhang Q, Gong X, Yang J, Li K. Emerging trends and focus of research on the relationship between traumatic brain injury and gut microbiota: a visualized study. Front Microbiol 2023; 14:1278438. [PMID: 38029105 PMCID: PMC10654752 DOI: 10.3389/fmicb.2023.1278438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Background Traumatic brain injury (TBI) is one of the most serious types of trauma and imposes a heavy social and economic burden on healthcare systems worldwide. The development of emerging biotechnologies is uncovering the relationship between TBI and gut flora, and gut flora as a potential intervention target is of increasing interest to researchers. Nevertheless, there is a paucity of research employing bibliometric methodologies to scrutinize the interrelation between these two. Therefore, this study visualized the relationship between TBI and gut flora based on bibliometric methods to reveal research trends and hotspots in the field. The ultimate objective is to catalyze progress in the preclinical and clinical evolution of strategies for treating and managing TBI. Methods Terms related to TBI and gut microbiota were combined to search the Scopus database for relevant documents from inception to February 2023. Visual analysis was performed using CiteSpace and VOSviewer. Results From September 1972 to February 2023, 2,957 documents published from 98 countries or regions were analyzed. The number of published studies on the relationship between TBI and gut flora has risen exponentially, with the United States, China, and the United Kingdom being representative of countries publishing in related fields. Research has formed strong collaborations around highly productive authors, but there is a relative lack of international cooperation. Research in this area is mainly published in high-impact journals in the field of neurology. The "intestinal microbiota and its metabolites," "interventions," "mechanism of action" and "other diseases associated with traumatic brain injury" are the most promising and valuable research sites. Targeting the gut flora to elucidate the mechanisms for the development of the course of TBI and to develop precisely targeted interventions and clinical management of TBI comorbidities are of great significant research direction and of interest to researchers. Conclusion The findings suggest that close attention should be paid to the relationship between gut microbiota and TBI, especially the interaction, potential mechanisms, development of emerging interventions, and treatment of TBI comorbidities. Further investigation is needed to understand the causal relationship between gut flora and TBI and its specific mechanisms, especially the "brain-gut microbial axis."
Collapse
Affiliation(s)
- Qiujing Du
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qijie Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiafei Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Peiling Ye
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Qi Zhang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaotong Gong
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiaju Yang
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/ West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
19
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
20
|
Abou-El-Hassan H, Rezende RM, Izzy S, Gabriely G, Yahya T, Tatematsu BK, Habashy KJ, Lopes JR, de Oliveira GLV, Maghzi AH, Yin Z, Cox LM, Krishnan R, Butovsky O, Weiner HL. Vγ1 and Vγ4 gamma-delta T cells play opposing roles in the immunopathology of traumatic brain injury in males. Nat Commun 2023; 14:4286. [PMID: 37463881 DOI: 10.1038/s41467-023-39857-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality. The innate and adaptive immune responses play an important role in the pathogenesis of TBI. Gamma-delta (γδ) T cells have been shown to affect brain immunopathology in multiple different conditions, however, their role in acute and chronic TBI is largely unknown. Here, we show that γδ T cells affect the pathophysiology of TBI as early as one day and up to one year following injury in a mouse model. TCRδ-/- mice are characterized by reduced inflammation in acute TBI and improved neurocognitive functions in chronic TBI. We find that the Vγ1 and Vγ4 γδ T cell subsets play opposing roles in TBI. Vγ4 γδ T cells infiltrate the brain and secrete IFN-γ and IL-17 that activate microglia and induce neuroinflammation. Vγ1 γδ T cells, however, secrete TGF-β that maintains microglial homeostasis and dampens TBI upon infiltrating the brain. These findings provide new insights on the role of different γδ T cell subsets after brain injury and lay down the principles for the development of targeted γδ T-cell-based therapy for TBI.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saef Izzy
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Taha Yahya
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruna K Tatematsu
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Karl J Habashy
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Juliana R Lopes
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gislane L V de Oliveira
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amir-Hadi Maghzi
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Sanchez K, Wu SL, Kakkar R, Darling JS, Harper CS, Fonken LK. Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses. Brain Behav Immun Health 2023; 30:100638. [PMID: 37256192 PMCID: PMC10225896 DOI: 10.1016/j.bbih.2023.100638] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Estrogens are a group of steroid hormones that promote the development and maintenance of the female reproductive system and secondary sex characteristics. Estrogens also modulate immune responses; estrogen loss at menopause increases the risk of inflammatory disorders. Elevated inflammatory responses in the brain can lead to affective behavioral changes, which are characteristic of menopause. Thus, here we examined whether loss of estrogens sensitizes microglia, the primary innate immune cell of the brain, leading to changes in affective behaviors. To test this question, adult C57BL/6 mice underwent an ovariectomy to remove endogenous estrogens and then received estradiol hormone replacement or vehicle. After a one-month recovery, mice received an immune challenge with lipopolysaccharide (LPS) or vehicle control treatment and underwent behavioral testing. Ovariectomized, saline-treated mice exhibited reduced social investigation compared to sham-operated mice. Furthermore, ovariectomized mice that received LPS exhibited an exacerbated decrease in sucrose preference, which was ameliorated by estradiol replacement. These results indicate that ovariectomy modulates affective behaviors at baseline and in response to an inflammatory challenge. Ovariectomy-related behavioral changes were associated with downregulation of Cx3cr1, a microglial receptor that limits activation, suggesting that estrogen loss can disinhibit microglia to immune stimuli. Indeed, estradiol treatment reduced ovariectomy-induced increases in Il1b and Il6 expression after an immune challenge. Changes in microglial reactivity following ovariectomy are likely subtle, as overt changes in microglial morphology (e.g., soma size and branching) were limited. Collectively, these results suggest that a lack of estrogens may allow microglia to confer exaggerated neuroimmune responses, thereby raising vulnerability to adverse affective- and sickness-related behavioral changes.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sienna L. Wu
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey S. Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Claire S. Harper
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
22
|
Johnson NH, Kerr NA, de Rivero Vaccari JP, Bramlett HM, Keane RW, Dietrich WD. Genetic predisposition to Alzheimer's disease alters inflammasome activity after traumatic brain injury. Transl Res 2023; 257:66-77. [PMID: 36758791 PMCID: PMC10192027 DOI: 10.1016/j.trsl.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Traumatic Brain Injury (TBI) is a major cause of death and disability in the US and a recognized risk factor for the development of Alzheimer's disease (AD). The relationship between these conditions is not completely understood, but the conditions may share additive or synergistic pathological hallmarks that may serve as novel therapeutic targets. Heightened inflammasome signaling plays a critical role in the pathogenesis of central nervous system injury (CNS) and the release of apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) speck from neurons and activated microglia contribute significantly to TBI and AD pathology. This study investigated whether inflammasome signaling after TBI was augmented in AD and whether this signaling pathway impacted biochemical and neuropathological outcomes and overall cognitive function. Five-month-old, 3xTg mice and respective wild type controls were randomized and underwent moderate controlled cortical impact (CCI) injury or served as sham/uninjured controls. Animals were sacrificed at 1 hour, 1 day, or 1 week after TBI to assess acute pathology or at 12 weeks after assessing cognitive function. The ipsilateral cerebral cortex was processed for inflammasome protein expression by immunoblotting. Mice were evaluated for behavior by open field (3 days), novel object recognition (2 weeks), and Morris water maze (6 weeks) testing after TBI. There was a statistically significant increase in the expression of inflammasome signaling proteins Caspase-1, Caspase-8, ASC, and interleukin (IL)-1β after TBI in both wild type and 3xTg animals. At 1-day post injury, significant increases in ASC and IL-1β protein expression were measured in AD TBI mice compared to WT TBI. Behavioral testing showed that injured AD mice had altered cognitive function when compared to injured WT mice. Elevated Aβ was seen in the ipsilateral cortex and hippocampus of sham and injured AD when compared to respective groups at 12 weeks post injury. Moreover, treatment of injured AD mice with IC100, an anti-ASC monoclonal antibody, inhibited the inflammasome, as evidenced by IL-1β reduction in the injured cortex at 1-week post injury. These findings show that the inflammasome response is heightened in mice genetically predisposed to AD and suggests that AD may exacerbate TBI pathology. Thus, dampening inflammasome signaling may offer a novel approach for the treatment of AD and TBI.
Collapse
Affiliation(s)
- Nathan H Johnson
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - Nadine A Kerr
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Juan P de Rivero Vaccari
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Helen M Bramlett
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida; Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida
| | - Robert W Keane
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, Florida
| | - W Dalton Dietrich
- Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida.
| |
Collapse
|
23
|
Datta S, Lin F, Jones LD, Pingle SC, Kesari S, Ashili S. Traumatic brain injury and immunological outcomes: the double-edged killer. Future Sci OA 2023; 9:FSO864. [PMID: 37228857 PMCID: PMC10203904 DOI: 10.2144/fsoa-2023-0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality and morbidity worldwide resulting from falls, car accidents, sports, and blast injuries. TBI is characterized by severe, life-threatening consequences due to neuroinflammation in the brain. Contact and collision sports lead to higher disability and death rates among young adults. Unfortunately, no therapy or drug protocol currently addresses the complex pathophysiology of TBI, leading to the long-term chronic neuroinflammatory assaults. However, the immune response plays a crucial role in tissue-level injury repair. This review aims to provide a better understanding of TBI's immunobiology and management protocols from an immunopathological perspective. It further elaborates on the risk factors, disease outcomes, and preclinical studies to design precisely targeted interventions for enhancing TBI outcomes.
Collapse
Affiliation(s)
- Souvik Datta
- Rhenix Lifesciences, 237 Arsha Apartments, Kalyan Nagar, Hyderabad, TG 500038, India
| | - Feng Lin
- CureScience, 5820 Oberlin Drive #202, San Diego, CA 92121, USA
| | | | | | - Santosh Kesari
- Saint John's Cancer Institute, Santa Monica, CA 90404, USA
| | | |
Collapse
|
24
|
Nott A, Holtman IR. Genetic insights into immune mechanisms of Alzheimer's and Parkinson's disease. Front Immunol 2023; 14:1168539. [PMID: 37359515 PMCID: PMC10285485 DOI: 10.3389/fimmu.2023.1168539] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2023] Open
Abstract
Microglia, the macrophages of the brain, are vital for brain homeostasis and have been implicated in a broad range of brain disorders. Neuroinflammation has gained traction as a possible therapeutic target for neurodegeneration, however, the precise function of microglia in specific neurodegenerative disorders is an ongoing area of research. Genetic studies offer valuable insights into understanding causality, rather than merely observing a correlation. Genome-wide association studies (GWAS) have identified many genetic loci that are linked to susceptibility to neurodegenerative disorders. (Post)-GWAS studies have determined that microglia likely play an important role in the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The process of understanding how individual GWAS risk loci affect microglia function and mediate susceptibility is complex. A rapidly growing number of publications with genomic datasets and computational tools have formulated new hypotheses that guide the biological interpretation of AD and PD genetic risk. In this review, we discuss the key concepts and challenges in the post-GWAS interpretation of AD and PD GWAS risk alleles. Post-GWAS challenges include the identification of target cell (sub)type(s), causal variants, and target genes. Crucially, the prediction of GWAS-identified disease-risk cell types, variants and genes require validation and functional testing to understand the biological consequences within the pathology of the disorders. Many AD and PD risk genes are highly pleiotropic and perform multiple important functions that might not be equally relevant for the mechanisms by which GWAS risk alleles exert their effect(s). Ultimately, many GWAS risk alleles exert their effect by changing microglia function, thereby altering the pathophysiology of these disorders, and hence, we believe that modelling this context is crucial for a deepened understanding of these disorders.
Collapse
Affiliation(s)
- Alexi Nott
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Inge R. Holtman
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
25
|
Inflammasome activation in traumatic brain injury and Alzheimer's disease. Transl Res 2023; 254:1-12. [PMID: 36070840 DOI: 10.1016/j.trsl.2022.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Traumatic brain injury (TBI) and Alzheimer's disease (AD) represent 2 of the largest sources of death and disability in the United States. Recent studies have identified TBI as a potential risk factor for AD development, and numerous reports have shown that TBI is linked with AD associated protein expression during the acute phase of injury, suggesting an interplay between the 2 pathologies. The inflammasome is a multi-protein complex that plays a role in both TBI and AD pathologies, and is characterized by inflammatory cytokine release and pyroptotic cell death. Products of inflammasome signaling pathways activate microglia and astrocytes, which attempt to resolve pathological inflammation caused by inflammatory cytokine release and phagocytosis of cellular debris. Although the initial phase of the inflammatory response in the nervous system is beneficial, recent evidence has emerged that the heightened inflammatory response after trauma is self-perpetuating and results in additional damage in the central nervous system. Inflammasome-induced cytokines and inflammasome signaling proteins released from activated microglia interact with AD associated proteins and exacerbate AD pathological progression and cellular damage. Additionally, multiple genetic mutations associated with AD development alter microglia inflammatory activity, increasing and perpetuating inflammatory cell damage. In this review, we discuss the pathologies of TBI and AD and how they are impacted by and potentially interact through inflammasome activity and signaling proteins. We discuss current clinical trials that target the inflammasome to reduce heightened inflammation associated with these disorders.
Collapse
|
26
|
Mollayeva T, Tran A, Hurst M, Escobar M, Colantonio A. The effect of sleep disorders on dementia risk in patients with traumatic brain injury: A large-scale cohort study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12411. [PMID: 37234486 PMCID: PMC10207584 DOI: 10.1002/dad2.12411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/28/2023]
Abstract
Introduction We investigated the association between sleep disorders (SDs) and incident dementia in adults with traumatic brain injury (TBI). Methods Adults with a TBI between 2003 and 2013 were followed until incident dementia. Sleep disorders at TBI were predictors in Cox regression models, controlling for other dementia risks. Results Over 52 months, 4.6% of the 712,708 adults (59% male, median age 44, <1% with SD) developed dementia. An SD was associated with a 26% and a 23% of increased risk of dementia in male and female participants (hazard ratio [HR] 1.26, 95% confidence interval [CI] 1.11-1.42 and HR 1.23, 95% CI 1.09-1.40, respectively). In male participants, SD was associated with a 93% increased risk of early-onset dementia (HR 1.93, 95% CI 1.29-2.87); this did not hold in female participants (HR 1.38, 95% CI 0.78-2.44). Discussion In a province-wide cohort, SDs at TBI were independently associated with incident dementia. Clinical trials testing sex-specific SD care after TBI for dementia prevention are timely. Highlights TBI and sleep disorders are linked to each other, and to dementia.It is unclear if sleep disorders pose a sex-specific dementia risk in brain injury.In this study, presence of a sleep disorder increased dementia risk in both sexes.The risk differed by type of sleep disorder, which differed between the sexes.Sleep disorder awareness and care in persons with brain injury is vital for dementia prevention.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Rehabilitation Sciences InstituteTemerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Andrew Tran
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Mackenzie Hurst
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Michael Escobar
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| | - Angela Colantonio
- KITE‐Toronto Rehabilitation InstituteUniversity Health NetworkTorontoOntarioCanada
- Rehabilitation Sciences InstituteTemerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Dalla Lana School of Public HealthUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
27
|
Sun G, Lin CH, Mei G, Gu J, Fan SF, Liu X, Liu R, Liu XW, Chen XS, Zhou C, Yi X, Jin P, Chang CP, Lin XJ. Recovery of neurosurgical high-frequency electroporation injury in the canine brain can be accelerated by 7,8-dihydroxyflavone. Biomed Pharmacother 2023; 160:114372. [PMID: 36773524 DOI: 10.1016/j.biopha.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Although traumatic brain injury (TBI) occurs in a very short time, the biological consequence of a TBI, such as Alzheimer's disease, may last a lifetime. To date, effective interventions are not available to improve recovery from a TBI. Herein we aimed to ascertain whether recovery of neurosurgical high-frequency irreversible electroporation (HFIRE) injury in brain tissues can be accelerated by 7,8-dihydroxyflavone (7,8-DHF). METHODS The HFIRE injury was induced in the right parietal cortex of 8 adult healthy and neurologically intact male dogs. Two weeks before HFIRE injury, each dog was administered orally with or without 7,8-DHF (30 mg/kg) once daily for consecutive 2 weeks (n = 4 for each group). The values of blood-brain barrier (BBB) disruption, brain edema, and cerebral infarction volumes were measured. The concentrations of beta-amyloid, interleukin-1β, interleukin-6 and tumor necrosis factor-α in the cerebrospinal fluid were measured biochemically. RESULTS The BBB disruption, brain edema, infarction volumes, and maximal cross-section area caused by HFIRE injury in canine brain were significantly attenuated by 7,8-DHF therapy (P < 0.0001). Additionally, 7,8-DHF significantly reduced the HFIRE-induced cerebral overproduction of beta-amyloid and proinflammatory cytokines in the cerebrospinal fluid (P < 0.0001) in dogs with HFIRE. CONCLUSIONS Recovery of neurosurgical HFIRE injury in canine brain tissues can be accelerated by 7,8-DHT via ameliorating BBB disruption as well as cerebral overproduction of both beta-amyloid and proinflammatory cytokines.
Collapse
Affiliation(s)
- Gang Sun
- Department of Medical Imaging, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China; Key Laboratory of Military Medical Psychology and Stress Biology of PLA, Shandong Province, P.R. China.
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan; Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Guiping Mei
- Guangzhou Huaxia Vocational College, Guangdong Province, P.R. China
| | - Jia Gu
- Suzhou Powersite Electric Co., Ltd, Jiangsu Province, P.R. China
| | - Sheng-Fang Fan
- Suzhou Powersite Electric Co., Ltd, Jiangsu Province, P.R. China
| | - Xiaohong Liu
- Department of Pathology, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China
| | - Ruoxu Liu
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, P.R. China
| | - Xun-Wei Liu
- Department of Medical Imaging, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China
| | - Xiao-Sen Chen
- Department of Pathology, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China
| | - Cheng Zhou
- Department of Pathology, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China
| | - Xueqing Yi
- Department of Medical Imaging, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China
| | - Peng Jin
- Department of Medical Imaging, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan.
| | - Xiao-Jing Lin
- Department of Medical Imaging, The 960(th) Hospital of Joint Logistics Support Force of PLA, Shandong Province, P.R. China; Key Laboratory of Military Medical Psychology and Stress Biology of PLA, Shandong Province, P.R. China.
| |
Collapse
|
28
|
Chemical synthesis of oligosaccharides and their application in new drug research. Eur J Med Chem 2023; 249:115164. [PMID: 36758451 DOI: 10.1016/j.ejmech.2023.115164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Oligosaccharides are the ubiquitous molecules of life. In order to translate human bioglycosylation into clinical applications, homogeneous samples of oligosaccharides and glycoconjugates can be obtained by chemical, enzymatic or other biological methods for systematic studies. However, the structural complexity and diversity of glycans and their conjugates present a major challenge for the synthesis of such molecules. This review summarizes the chemical synthesis methods of oligosaccharides, the application of oligosaccharides in the field of medicinal chemistry according to their related biological activities, and shows the great prospect of oligosaccharides in the field of pharmaceutical chemistry.
Collapse
|
29
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
30
|
Multiparity Differentially Affects Specific Aspects of the Acute Neuroinflammatory Response to Traumatic Brain Injury in Female Mice. Neuroscience 2023; 511:86-99. [PMID: 36535576 DOI: 10.1016/j.neuroscience.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Pregnancy is associated with profound acute and long-term physiological changes, but the effects of such changes on brain injury outcomes are unclear. Here, we examined the effects of previous pregnancy and maternal experience (parity) on acute neuroinflammatory responses to lateral fluid percussion injury (FPI), a well-defined experimental traumatic brain injury (TBI) paradigm. Multiparous (2-3 pregnancies and motherhood experiences) and age-matched nulliparous (no previous pregnancy or motherhood experience) female mice received either FPI or sham injury and were euthanized 3 days post-injury (DPI). Increased cortical Iba1, GFAP, and CD68 immunolabeling was observed following TBI independent of parity and microglia morphology did not differ between TBI groups. However, multiparous females had fewer CD45+ cells near the site of injury compared to nulliparous females, which was associated with preserved aquaporin-4 polarization, suggesting that parity may influence leukocyte recruitment to the site of injury and maintenance of blood brain barrier permeability following TBI. Additionally, relative cortical Il6 gene expression following TBI was dependent on parity such that TBI increased Il6 expression in nulliparous, but not multiparous, mice. Together, this work suggests that reproductive history may influence acute neuroinflammatory outcomes following TBI in females.
Collapse
|
31
|
Gharahi H, Garimella HT, Chen ZJ, Gupta RK, Przekwas A. Mathematical model of mechanobiology of acute and repeated synaptic injury and systemic biomarker kinetics. Front Cell Neurosci 2023; 17:1007062. [PMID: 36814869 PMCID: PMC9939777 DOI: 10.3389/fncel.2023.1007062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/10/2023] [Indexed: 02/09/2023] Open
Abstract
Background Blast induced Traumatic Brain Injury (bTBI) has become a signature casualty of military operations. Recently, military medics observed neurocognitive deficits in servicemen exposed to repeated low level blast (LLB) waves during military heavy weapons training. In spite of significant clinical and preclinical TBI research, current understanding of injury mechanisms and short- and long-term outcomes is limited. Mathematical models of bTBI biomechanics and mechanobiology of sensitive neuro-structures such as synapses may help in better understanding of injury mechanisms and in the development of improved diagnostics and neuroprotective strategies. Methods and results In this work, we formulated a model of a single synaptic structure integrating the dynamics of the synaptic cell adhesion molecules (CAMs) with the deformation mechanics of the synaptic cleft. The model can resolve time scales ranging from milliseconds during the hyperacute phase of mechanical loading to minutes-hours acute/chronic phase of injury progression/repair. The model was used to simulate the synaptic injury responses caused by repeated blast loads. Conclusion Our simulations demonstrated the importance of the number of exposures compared to the duration of recovery period between repeated loads on the synaptic injury responses. The paper recognizes current limitations of the model and identifies potential improvements.
Collapse
Affiliation(s)
- Hamidreza Gharahi
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,Hamidreza Gharahi,
| | - Harsha T. Garimella
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Zhijian J. Chen
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States
| | - Raj K. Gupta
- Department of Defense Blast Injury Research Program Coordinating Office, U.S. Army Medical Research and Development Command, Fort Detrick, MD, United States
| | - Andrzej Przekwas
- Biomedical and Data Sciences Division, CFD Research Corporation, Huntsville, AL, United States,*Correspondence: Andrzej Przekwas,
| |
Collapse
|
32
|
Aychman MM, Goldman DL, Kaplan JS. Cannabidiol's neuroprotective properties and potential treatment of traumatic brain injuries. Front Neurol 2023; 14:1087011. [PMID: 36816569 PMCID: PMC9932048 DOI: 10.3389/fneur.2023.1087011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Cannabidiol (CBD) has numerous pharmacological targets that initiate anti-inflammatory, antioxidative, and antiepileptic properties. These neuroprotective benefits have generated interest in CBD's therapeutic potential against the secondary injury cascade from traumatic brain injury (TBI). There are currently no effective broad treatment strategies for combating the damaging mechanisms that follow the primary injury and lead to lasting neurological consequences or death. However, CBD's effects on different neurotransmitter systems, the blood brain barrier, oxidative stress mechanisms, and the inflammatory response provides mechanistic support for CBD's clinical utility in TBI. This review describes the cascades of damage caused by TBI and CBD's neuroprotective mechanisms to counter them. We also present challenges in the clinical treatment of TBI and discuss important future clinical research directions for integrating CBD in treatment protocols. The mechanistic evidence provided by pre-clinical research shows great potential for CBD as a much-needed improvement in the clinical treatment of TBI. Upcoming clinical trials sponsored by major professional sport leagues are the first attempts to test the efficacy of CBD in head injury treatment protocols and highlight the need for further clinical research.
Collapse
|
33
|
Kattan D, Barsa C, Mekhijian S, Shakkour Z, Jammoul M, Doumit M, Zabala MCP, Darwiche N, Eid AH, Mechref Y, Wang KK, de Rivero Vaccari JP, Munoz Pareja JC, Kobeissy F. Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neurosci Biobehav Rev 2023; 144:104969. [PMID: 36423707 PMCID: PMC9805531 DOI: 10.1016/j.neubiorev.2022.104969] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Given the ambiguity surrounding traumatic brain injury (TBI) pathophysiology and the lack of any Food and Drug Administration (FDA)-approved neurotherapeutic drugs, there is an increasing need to better understand the mechanisms of TBI. Recently, the roles of inflammasomes have been highlighted as both potential therapeutic targets and diagnostic markers in different neurodegenerative disorders. Indeed, inflammasome activation plays a pivotal function in the central nervous system (CNS) response to many neurological conditions, as well as to several neurodegenerative disorders, specifically, TBI. This comprehensive review summarizes and critically discusses the mechanisms that govern the activation and assembly of inflammasome complexes and the major methods used to study inflammasome activation in TBI and its implication for other neurodegenerative disorders. Also, we will review how inflammasome activation is critical in CNS homeostasis and pathogenesis, and how it can impact chronic TBI sequalae and increase the risk of developing neurodegenerative diseases. Additionally, we discuss the recent updates on inflammasome-related biomarkers and the potential to utilize inflammasomes as putative therapeutic targets that hold the potential to better diagnose and treat subjects with TBI.
Collapse
Affiliation(s)
- Dania Kattan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Sarin Mekhijian
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Program for Interdisciplinary Neuroscience, Department of Child Health, School of Medicine, University of Missouri, USA
| | - Maya Jammoul
- Department of Anatomy, Cell Biology, and Physiology, American University of Beirut, Beirut, Lebanon
| | - Mark Doumit
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maria Camila Pareja Zabala
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K Wang
- Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer C Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA.
| |
Collapse
|
34
|
Zhang C, Chen S. Role of TREM2 in the Development of Neurodegenerative Diseases After Traumatic Brain Injury. Mol Neurobiol 2022; 60:342-354. [PMID: 36264434 DOI: 10.1007/s12035-022-03094-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/14/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) has been found as the primary cause of morbidity and disability worldwide, which has posed a significant social and economic burden. The first stage of TBI produces brain edema, axonal damage, and hypoxia, thus having an effect on the blood-brain barrier function, promoting inflammatory responses, and increasing oxidative stress. Patients with TBI are more likely to develop post-traumatic epilepsy, behavioral issues, as well as mental illnesses. The long-term effects arising from TBI have aroused rising attention over the past few years. Microglia in the brain can express the triggering receptor expressed on myeloid cells 2 (TREM2), which is a single transmembrane receptor pertaining to the immunoglobulin superfamily. The receptor has been correlated with a number of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, and other relevant diseases. In this review, it is demonstrated that TREM2 is promising to serve as a neuroprotective factor for neurodegenerative disorders following TBI by modulating the function of microglial cells. Accordingly, it has potential avenues for TREM2-related therapies to improve long-term recovery after TBI.
Collapse
Affiliation(s)
- Chunhao Zhang
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
35
|
Cheng X, Wei Y, Qian Z, Han L. Autophagy Balances Neuroinflammation in Alzheimer's Disease. Cell Mol Neurobiol 2022; 43:1537-1549. [PMID: 35960407 DOI: 10.1007/s10571-022-01269-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/29/2022] [Indexed: 01/20/2023]
Abstract
Autophagy is a highly evolutionary conserved process that degrades cytosolic macromolecules or damaged organelles (e.g., mitochondria), as well as intracellular pathogens for energy and survival. Dysfunction of autophagy has been associated with the pathologies of Alzheimer's disease (AD), including Aβ plaques and neurofibrillary tangles. Recently, the presence of sustained immune response in the brain has been considered a new core pathology in AD. Accumulating evidence suggests that autophagy activation may suppress inflammation response through degrading inflammasomes or pro-inflammatory cytokines and improving immune system function in both clinical trials and preclinical studies. This review provides an overview of updated information on autophagy and inflammation and their potential mediators in AD. In summary, we believe that understanding the relationship between autophagy and inflammation will provide insightful knowledge for future therapeutic implications in AD.
Collapse
Affiliation(s)
- Xuehua Cheng
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China
| | - Yong Wei
- GeneScience Pharmaceuticals CoLtd., Changchun, 130012, People's Republic of China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, 200071, People's Republic of China
| | - Li Han
- Department of TCM Geriatrics, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, People's Republic of China.
| |
Collapse
|
36
|
Mann G, Chauhan K, Kumar V, Daksh S, Kumar N, Thirumal M, Datta A. Bio-Evaluation of 99mTc-Labeled Homodimeric Chalcone Derivative as Amyloid-β-Targeting Probe. Front Med (Lausanne) 2022; 9:813465. [PMID: 35783620 PMCID: PMC9249127 DOI: 10.3389/fmed.2022.813465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Chalcone derivatives have been successfully utilized for a range of biological applications and can cross the blood–brain barrier easily. β-amyloid-specific bis-chalcone derivative, 6,9-bis(carboxymethyl)-14-(4-[(E)-3-(4-(dimethylamino)phenyl)acryloyl]phenoxy)-3-(2-[(2-(4-[(E)-3-(4-(dimethylamino)phenyl)acryloyl]phenoxy)ethyl)amino]-2-oxoethyl)-11-oxo-3,6,9,12-tetraazatetradecanoic acid, DT(Ch)2, was analyzed using molecular modeling to explain the binding modes of the ligand with amyloid fibril and monomer followed by 99mTc-complexation in 95% yield and 98.7% efficiency. High-binding specificity of the radiocomplex was established following in vitro evaluation against 100-fold excess of DT(Ch)2. 99mTc–DT(Ch)2 exhibited <3% trans-complexation in human serum after 24 h, indicating high stability. A fast clearance rate in pharmacokinetics studies displayed a biphasic pattern with t1/2(F) = 30 min ± 0.09 and t1/2(S) = 4 h 20 min ± 0.06. In vivo single-photon emission computed tomography (SPECT) imaging in rabbits reiterated the pharmacokinetics data with initially high brain uptake followed by rapid washout. Biodistribution studies confirmed the initial brain uptake as 1.16 ± 0.02% ID/g after 2 min and the brain2min/brain30min ratio was 3.74. Radioactivity distribution in the brain was >40% in the cingulate cortex followed by >25% in the hippocampus, a distribution pattern aligned to Alzheimer’s affected brain regions. Radiocomplex also displayed rapid plasma clearance followed by hepatobolic and renal modes of excretion.
Collapse
Affiliation(s)
- Garima Mann
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Kanchan Chauhan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Mexico
| | - Vikas Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
| | - M. Thirumal
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, New Delhi, India
- *Correspondence: Anupama Datta, ;
| |
Collapse
|
37
|
Bray CE, Witcher KG, Adekunle-Adegbite D, Ouvina M, Witzel M, Hans E, Tapp ZM, Packer J, Goodman E, Zhao F, Chunchai T, O'Neil S, Chattipakorn SC, Sheridan J, Kokiko-Cochran ON, Askwith C, Godbout JP. Chronic Cortical Inflammation, Cognitive Impairment, and Immune Reactivity Associated with Diffuse Brain Injury Are Ameliorated by Forced Turnover of Microglia. J Neurosci 2022; 42:4215-4228. [PMID: 35440489 PMCID: PMC9121837 DOI: 10.1523/jneurosci.1910-21.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with an increased risk of cognitive, psychiatric, and neurodegenerative complications that may develop after injury. Increased microglial reactivity following TBI may underlie chronic neuroinflammation, neuropathology, and exaggerated responses to immune challenges. Therefore, the goal of this study was to force turnover of trauma-associated microglia that develop after diffuse TBI and determine whether this alleviated chronic inflammation, improved functional recovery and attenuated reduced immune reactivity to lipopolysaccharide (LPS) challenge. Male mice received a midline fluid percussion injury (mFPI) and 7 d later were subjected to a forced microglia turnover paradigm using CSF1R antagonism (PLX5622). At 30 d postinjury (dpi), cortical gene expression, dendritic complexity, myelin content, neuronal connectivity, cognition, and immune reactivity were assessed. Myriad neuropathology-related genes were increased 30 dpi in the cortex, and 90% of these gene changes were reversed by microglial turnover. Reduced neuronal connectivity was evident 30 dpi and these deficits were attenuated by microglial turnover. TBI-associated dendritic remodeling and myelin alterations, however, remained 30 dpi independent of microglial turnover. In assessments of functional recovery, increased depressive-like behavior, and cognitive impairment 30 dpi were ameliorated by microglia turnover. To investigate microglial priming and reactivity 30 dpi, mice were injected intraperitoneally with LPS. This immune challenge caused prolonged lethargy, sickness behavior, and microglial reactivity in the TBI mice. These extended complications with LPS in TBI mice were prevented by microglia turnover. Collectively, microglial turnover 7 dpi alleviated behavioral and cognitive impairments associated with microglial priming and immune reactivity 30 dpi.SIGNIFICANCE STATEMENT A striking feature of traumatic brain injury (TBI), even mild injuries, is that over 70% of individuals have long-term neuropsychiatric complications. Chronic inflammatory processes are implicated in the pathology of these complications and these issues can be exaggerated by immune challenge. Therefore, our goal was to force the turnover of microglia 7 d after TBI. This subacute 7 d postinjury (dpi) time point is a critical transitional period in the shift toward chronic inflammatory processes and microglia priming. This forced microglia turnover intervention in mice attenuated the deficits in behavior and cognition 30 dpi. Moreover, microglia priming and immune reactivity after TBI were also reduced with microglia turnover. Therefore, microglia represent therapeutic targets after TBI to reduce persistent neuroinflammation and improve recovery.
Collapse
Affiliation(s)
- Chelsea E Bray
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Kristina G Witcher
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | | | - Michelle Ouvina
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Mollie Witzel
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emma Hans
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Zoe M Tapp
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Jonathan Packer
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Ethan Goodman
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Fangli Zhao
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Titikorn Chunchai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Shane O'Neil
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Siriporn C Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - John Sheridan
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| | - Jonathan P Godbout
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
38
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
39
|
Kempuraj D, Mohan RR. Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines 2022; 10:biomedicines10020339. [PMID: 35203548 PMCID: PMC8961790 DOI: 10.3390/biomedicines10020339] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy is a robust cellular mechanism for disposing of harmful molecules or recycling them to cells, which also regulates physiopathological processes in cornea. Dysregulated autophagy causes inefficient clearance of unwanted proteins and cellular debris, mitochondrial disorganization, defective inflammation, organ dysfunctions, cell death, and diseases. The cornea accounts for two-thirds of the refraction of light that occurs in the eyes, but is prone to trauma/injury and infection. The extracellular matrix (ECM) is a noncellular dynamic macromolecular network in corneal tissues comprised of collagens, proteoglycans, elastin, fibronectin, laminins, hyaluronan, and glycoproteins. The ECM undergoes remodeling by matrix-degrading enzymes and maintains corneal transparency. Autophagy plays an important role in the ECM and wound healing maintenance. Delayed/dysregulated autophagy impacts the ECM and wound healing, and can lead to corneal dysfunction. Stromal wound healing involves responses from the corneal epithelium, basement membrane, keratocytes, the ECM, and many cytokines and chemokines, including transforming growth factor beta-1 and platelet-derived growth factor. Mild corneal injuries self-repair, but greater injuries lead to corneal haze/scars/fibrosis and vision loss due to disruptions in the ECM, autophagy, and normal wound healing processes. Presently, the precise role of autophagy and ECM remodeling in corneal wound healing is elusive. This review discusses recent trends in autophagy and ECM modulation in the context of corneal wound healing and homeostasis.
Collapse
Affiliation(s)
- Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA;
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA;
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
- Correspondence:
| |
Collapse
|
40
|
Walker A, Chapin B, Abisambra J, DeKosky ST. Association between single moderate to severe traumatic brain injury and long-term tauopathy in humans and preclinical animal models: a systematic narrative review of the literature. Acta Neuropathol Commun 2022; 10:13. [PMID: 35101132 PMCID: PMC8805270 DOI: 10.1186/s40478-022-01311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The initiation, anatomic pattern, and extent of tau spread in traumatic brain injury (TBI), and the mechanism by which TBI leads to long-term tau pathology, remain controversial. Some studies suggest that moderate to severe TBI is sufficient to promote tau pathology; however, others suggest that it is simply a consequence of aging. We therefore conducted a systematic narrative review of the literature addressing whether a single moderate to severe head injury leads to long-term development of tauopathy in both humans and animal models. METHODS Studies considered for inclusion in this review assessed a single moderate to severe TBI, assessed tau pathology at long-term timepoints post-injury, comprised experimental or observational studies, and were peer-reviewed and published in English. Databases searched included: PUBMED, NCBI-PMC, EMBASE, Web of Science, Academic Search Premiere, and APA Psychnet. Search results were uploaded to Covidence®, duplicates were removed, and articles underwent an abstract and full-text screening process. Data were then extracted and articles assessed for risk of bias. FINDINGS Of 4,150 studies screened, 26 were eligible for inclusion, of which 17 were human studies, 8 were preclinical animal studies, and 1 included both human and preclinical animal studies. Most studies had low to moderate risk of bias. Most human and animal studies (n = 12 and 9, respectively) suggested that a single moderate to severe TBI resulted in greater development of long-term tauopathy compared to no history of head injury. This conclusion should be interpreted with caution, however, due to several limitations: small sample sizes; inconsistencies in controlling for confounding factors that may have affected tau pathology (e.g., family history of dementia or neurological illnesses, apolipoprotein E genotype, etc.), inclusion of mostly males, and variation in reporting injury parameters. INTERPRETATION Results indicate that a single moderate to severe TBI leads to greater chronic development of tauopathy compared to no history of head injury. This implies that tau pathology induced may not be transient, but can progressively develop over time in both humans and animal models. Targeting these tau changes for therapeutic intervention should be further explored to elucidate if disease progression can be reversed or mitigated.
Collapse
Affiliation(s)
- Ariel Walker
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Ben Chapin
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA
| | - Jose Abisambra
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Steven T DeKosky
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neuroscience, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Brain Injury, Rehabilitation, and Neuroresilience (BRAIN) Center, University of Florida, Gainesville, FL, 32610, USA.
- Department of Neurology, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
41
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
42
|
Boucher ML, Conley G, Nowlin J, Qiu J, Kawata K, Bazarian JJ, Meehan WP, Mannix R. Titrating the Translational Relevance of a Low-Level Repetitive Head Impact Model. Front Neurol 2022; 13:857654. [PMID: 35785366 PMCID: PMC9246060 DOI: 10.3389/fneur.2022.857654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been increased attention in the scientific community to the phenomenon of sub-concussive impacts, those hits to the head that do not cause the signs and symptoms of a concussion. Some authors suggest that sub-concussive impacts may alter behavior and cognition, if sustained repetitively, but the mechanisms underlying these changes are not well-defined. Here, we adapt our well-established weight drop model of repetitive mild traumatic brain injury (rmTBI) to attempt to produce a model of low-level repetitive head impacts (RHI). The model was modified to eliminate differences in latency to right following impact and gross behavioral changes after a single cluster of hits. Further, we varied our model in terms of repetition of impact over a 4-h span to mimic the repeated sub-concussive impacts that may be experienced by an athlete within a single day of play. To understand the effects of a single cluster of RHIs, as well as the effect of an increased impact frequency within the cluster, we evaluated classical behavioral measures, serum biomarkers, cortical protein quantification, and immunohistochemistry both acutely and sub-acutely following the impacts. In the absence of gross behavioral changes, the impact protocol did generate pathology, in a dose-dependent fashion, in the brain. Evaluation of serum biomarkers revealed limited changes in GFAP and NF-L, which suggests that their diagnostic utility may not emerge until the exposure to low-level head impacts reaches a certain threshold. Robust decreases in both IL-1β and IL-6 were observed in the serum and the cortex, indicating downregulation of inflammatory pathways. These experiments yield initial data on pathology and biomarkers in a mouse model of low-level RHIs, with relevance to sports settings, providing a starting point for further exploration of the potential role of anti-inflammatory processes in low-level RHI outcomes, and how these markers may evolve with repeated exposure.
Collapse
Affiliation(s)
- Masen L Boucher
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Grace Conley
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jordan Nowlin
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Jianhua Qiu
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Keisuke Kawata
- Department of Kinesiology, Indiana University, Bloomington, IN, United States
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States
| | - William P Meehan
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States.,Harvard Medical School, Division of Sports Medicine, Boston Children's Hospital, Boston, MA, United States.,The Micheli Center for Sports Injury Prevention, Waltham, MA, United States
| | - Rebekah Mannix
- Harvard Medical School, Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
43
|
Cheng KC, Cheung CHA, Chiang HC. Early Aβ42 Exposure Causes Learning Impairment in Later Life. Aging Dis 2022; 13:868-883. [PMID: 35656119 PMCID: PMC9116909 DOI: 10.14336/ad.2021.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
Amyloid cascade hypothesis proposes that amyloid β (Aβ) accumulation is the initiator and major contributor to the development of Alzheimer’s disease (AD). However, this hypothesis has recently been challenged by clinical studies showing that reduction of Aβ accumulation in the brain does not accompany with cognitive improvement, suggesting that therapeutically targeting Aβ in the brain may not be sufficient for restoring cognitive function. Since the molecular mechanism underlying the progressive development of cognitive impairment after Aβ clearance is largely unknown, the reason of why there is no behavioral improvement after Aβ clearance remains elusive. In the current study, we demonstrated that transient Aβ expression caused learning deficit in later life, despite the accumulated Aβ was soon being removed after the expression. Early Aβ exposure decreased the cellular expression of XBP1 and both the antioxidants, catalase, and dPrx5, which made cells more vulnerable to oxidative stress in later life. Early induction of XBP1, catalase, and dPrx5 prevented the overproduction of ROS, improved the learning performance, and preserved the viability of cells in the later life with the early Aβ induction. Treating the early Aβ exposed flies with antioxidants such as vitamin E, melatonin and lipoic acid, after the removal of Aβ also preserved the learning ability in later life. Taken together, we demonstrated that early and transient Aβ exposure can have a profound impact on animal behavior in later life and also revealed the cellular and molecular mechanism underlying the development of learning impairment by the early and transient Aβ exposure.
Collapse
Affiliation(s)
- Kuan-Chung Cheng
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chun Hei Antonio Cheung
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Hsueh-Cheng Chiang
- Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
- Correspondence should be addressed to: Dr. Hsueh-Cheng Chiang, Department of Pharmacology, National Cheng-Kung University, Tainan, Taiwan. E-mail: .
| |
Collapse
|
44
|
Jung H, Jeong JG, Cheong YS, Nam TW, Kim JH, Park CH, Park E, Jung TD. The Effectiveness of Computer-Assisted Cognitive Rehabilitation and the Degree of Recovery in Patients with Traumatic Brain Injury and Stroke. J Clin Med 2021; 10:jcm10245728. [PMID: 34945019 PMCID: PMC8709361 DOI: 10.3390/jcm10245728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives: To determine the effectiveness of computer-assisted cognitive rehabilitation and compare the patterns of cognitive function recovery occurring in both traumatic brain injury (TBI) and stroke. Methods: A total of 62 patients were finally enrolled, consisting of 30 with TBI and 32 with stroke. The patients received 30 sessions of computer-assisted cognitive rehabilitation (Comcog) five times per week. Each session lasted for 30 min. Before and immediately after cognitive rehabilitation, all patients were evaluated by computerized neuropsychological test (CNT), Mini-Mental State Examination (MMSE), and modified Barthel index (MBI). Results: We analyzed the differences between pre- and post-cognitive rehabilitation in each TBI and stroke group. Significant differences were observed in MMSE, MBI, and some CNT contents, including digit span forward, verbal learning, verbal learning delayed recall, visual span forward, visual span backward, visual learning, trail making test A and B, and intelligence quotient (IQ) in the TBI group (p < 0.05). In the stroke group, in addition to significant differences that appeared in the TBI group, additional significant differences in the digit span backward, visual learning delayed recall, auditory continuous performance test (CPT), visual CPT, and card sorting test. We compared the difference values at pre- and post-cognitive rehabilitation for cognitive recovery between the TBI and stroke groups. All contents, except the digital span forward, visual learning, word-color test, and MMSE, had greater mean values in the stroke group; and thus, statistically significant higher values were observed in the visual span forward and card sorting test (p < 0.05). Conclusion: Most evaluation results showed improvement and the evaluation between the TBI and stroke groups also showed significant differences in cognitive functions in addition to more CNT contents, which significantly change in the stroke group. The stroke group showed a high difference value in most CNT contents. Therefore, those with stroke in the focal brain region tend to have better cognitive function recovery after a computer-assisted cognitive rehabilitation than those with TBI, which could cause diffuse brain damage and post-injury inflammation.
Collapse
Affiliation(s)
- Hyunwoo Jung
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (H.J.); (J.-G.J.); (Y.-S.C.); (T.-W.N.); (J.-H.K.); (C.-H.P.)
| | - Jae-Gyeong Jeong
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (H.J.); (J.-G.J.); (Y.-S.C.); (T.-W.N.); (J.-H.K.); (C.-H.P.)
| | - Youn-Soo Cheong
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (H.J.); (J.-G.J.); (Y.-S.C.); (T.-W.N.); (J.-H.K.); (C.-H.P.)
| | - Tae-Woo Nam
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (H.J.); (J.-G.J.); (Y.-S.C.); (T.-W.N.); (J.-H.K.); (C.-H.P.)
| | - Ju-Hyun Kim
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (H.J.); (J.-G.J.); (Y.-S.C.); (T.-W.N.); (J.-H.K.); (C.-H.P.)
| | - Chan-Hee Park
- Department of Rehabilitation Medicine, Kyungpook National University Hospital, Daegu 41944, Korea; (H.J.); (J.-G.J.); (Y.-S.C.); (T.-W.N.); (J.-H.K.); (C.-H.P.)
| | - Eunhee Park
- Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (E.P.); (T.-D.J.)
| | - Tae-Du Jung
- Department of Rehabilitation Medicine, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Department of Rehabilitation Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (E.P.); (T.-D.J.)
| |
Collapse
|
45
|
Chen C, Hu N, Wang J, Xu L, Jia XL, Fan X, Shi JX, Chen F, Tu Y, Wang YW, Li XH. Umbilical cord mesenchymal stem cells promote neurological repair after traumatic brain injury through regulating Treg/Th17 balance. Brain Res 2021; 1775:147711. [PMID: 34793756 DOI: 10.1016/j.brainres.2021.147711] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a brain injury resulting from blunt mechanical external forces, which is a crucial public health and socioeconomic problem worldwide. TBI is one of the leading causes of death or disability. The primary injury of TBI is generally irreversible. Secondary injury caused by neuroinflammation could result in exacerbation of patients, which indicated that anti-inflammation and immunomodulatory were necessary for the treatment of TBI. Accumulated evidence reveals that the transplantation of umbilical cord mesenchymal stem cells (UCMSCs) could regulate the microenvironment in vivo and keep a balance of helper T 17(Th17)/ regulatory T cell (Treg). Therefore, it is reasonable to hypothesize that the UCMSCs could repair neurological impairment by maintaining the balance of Th17/Treg after TBI. In the study, we observed the phenomenon of trans-differentiation of T lymphocytes into Th17 cells after TBI. Rats were divided into Sham, TBI, and TBI + UCMSCs groups to explore the effects of the UCMSCs. The results manifested that trans-differentiation of Th17 into Treg was facilitated by UCMSCs, which was followed by promotion of neurological recovery and improvement of learning and memory in TBI rats. Furthermore, UCMSCs decreased the phosphorylation of nuclear factor-kappa B (NF-κB) and increased the expression of mothers against decapentaplegic homolog 3 (Smad3) in vivo and vitro experiments. In conclusion, UCMSCs maintained Th17/Treg balance via the transforming growth factor-β (TGF-β)/ Smad3/ NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China; Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Lin Xu
- Medical Psychology Section, Hubei General Hospital of Armed Police Force, Wuhan 430071, China
| | - Xiao-Li Jia
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China
| | - Feng Chen
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - Yue Tu
- Tianjin Key Laboratory of Neurotrauma Repair, Pingjin Hospital Brain Center, Characteristic Medical Center of PAPF, Tianjin 300162, China
| | - You-Wei Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
46
|
Sharma HS, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Li C, Zhang Z, Wiklund L, Sharma A. Cerebrolysin restores balance between excitatory and inhibitory amino acids in brain following concussive head injury. Superior neuroprotective effects of TiO 2 nanowired drug delivery. PROGRESS IN BRAIN RESEARCH 2021; 266:211-267. [PMID: 34689860 DOI: 10.1016/bs.pbr.2021.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concussive head injury (CHI) often associated with military personnel, soccer players and related sports personnel leads to serious clinical situation causing lifetime disabilities. About 3-4k head injury per 100k populations are recorded in the United States since 2000-2014. The annual incidence of concussion has now reached to 1.2% of population in recent years. Thus, CHI inflicts a huge financial burden on the society for rehabilitation. Thus, new efforts are needed to explore novel therapeutic strategies to treat CHI cases to enhance quality of life of the victims. CHI is well known to alter endogenous balance of excitatory and inhibitory amino acid neurotransmitters in the central nervous system (CNS) leading to brain pathology. Thus, a possibility exists that restoring the balance of amino acids in the CNS following CHI using therapeutic measures may benefit the victims in improving their quality of life. In this investigation, we used a multimodal drug Cerebrolysin (Ever NeuroPharma, Austria) that is a well-balanced composition of several neurotrophic factors and active peptide fragments in exploring its effects on CHI induced alterations in key excitatory (Glutamate, Aspartate) and inhibitory (GABA, Glycine) amino acids in the CNS in relation brain pathology in dose and time-dependent manner. CHI was produced in anesthetized rats by dropping a weight of 114.6g over the right exposed parietal skull from a distance of 20cm height (0.224N impact) and blood-brain barrier (BBB), brain edema, neuronal injuries and behavioral dysfunctions were measured 8, 24, 48 and 72h after injury. Cerebrolysin (CBL) was administered (2.5, 5 or 10mL/kg, i.v.) after 4-72h following injury. Our observations show that repeated CBL induced a dose-dependent neuroprotection in CHI (5-10mL/kg) and also improved behavioral functions. Interestingly when CBL is delivered through TiO2 nanowires superior neuroprotective effects were observed in CHI even at a lower doses (2.5-5mL/kg). These observations are the first to demonstrate that CBL is effectively capable to attenuate CHI induced brain pathology and behavioral disturbances in a dose dependent manner, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Zhiquiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Yuexiu District, Guangzhou, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
48
|
Niu F, Sharma A, Wang Z, Feng L, Muresanu DF, Sahib S, Tian ZR, Lafuente JV, Buzoianu AD, Castellani RJ, Nozari A, Menon PK, Patnaik R, Wiklund L, Sharma HS. Nanodelivery of oxiracetam enhances memory, functional recovery and induces neuroprotection following concussive head injury. PROGRESS IN BRAIN RESEARCH 2021; 265:139-230. [PMID: 34560921 DOI: 10.1016/bs.pbr.2021.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Military personnel are the most susceptible to concussive head injury (CHI) caused by explosion, blast or missile or blunt head trauma. Mild to moderate CHI could induce lifetime functional and cognitive disturbances causing significant decrease in quality of life. Severe CHI leads to instant death and lifetime paralysis. Thus, further exploration of novel therapeutic agents or new features of known pharmacological agents are needed to enhance quality of life of CHI victims. Previous reports from our laboratory showed that mild CHI induced by weight drop technique causing an impact of 0.224N results in profound progressive functional deficit, memory impairment and brain pathology from 5h after trauma that continued over several weeks of injury. In this investigation we report that TiO2 nanowired delivery of oxiracetam (50mg/kg, i.p.) daily for 5 days after CHI resulted in significant improvement of functional deficit on the 8th day. This was observed using Rota Rod treadmill, memory improvement assessed by the time spent in finding hidden platform under water. The motor function improvement is seen in oxiracetam treated CHI group by placing forepaw on an inclined mesh walking and foot print analysis for stride length and distance between hind feet. TiO2-nanowired oxiracetam also induced marked improvements in the cerebral blood flow, reduction in the BBB breakdown and edema formation as well as neuroprotection of neuronal, glial and myelin damages caused by CHI at light and electron microscopy on the 7th day after 5 days TiO2 oxiracetam treatment. Adverse biochemical events such as upregulation of CSF nitrite and nitrate, IL-6, TNF-a and p-Tau are also reduced significantly in oxiracetam treated CHI group. On the other hand post treatment of 100mg/kg dose of normal oxiracetam in identical conditions after CHI is needed to show slight but significant neuroprotection together with mild recovery of memory function and functional deficits on the 8th day. These observations are the first to point out that nanowired delivery of oxiracetam has superior neuroprotective ability in CHI. These results indicate a promising clinical future of TiO2 oxiracetam in treating CHI patients for better quality of life and neurorehabilitation, not reported earlier.
Collapse
Affiliation(s)
- Feng Niu
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Zhenguo Wang
- CSPC NBP Pharmaceutical Medicine, Shijiazhuang, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
49
|
Treelet transform analysis to identify clusters of systemic inflammatory variance in a population with moderate-to-severe traumatic brain injury. Brain Behav Immun 2021; 95:45-60. [PMID: 33524553 PMCID: PMC9004489 DOI: 10.1016/j.bbi.2021.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/20/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory cascades following traumatic brain injury (TBI) can have both beneficial and detrimental effects on recovery. Single biomarker studies do not adequately reflect the major arms of immunity and their relationships to long-term outcomes. Thus, we applied treelet transform (TT) analysis to identify clusters of interrelated inflammatory markers reflecting major components of systemic immune function for which substantial variation exists among individuals with moderate-to-severe TBI. METHODS Serial blood samples from 221 adults with moderate-to-severe TBI were collected over 1-6 months post-injury (n = 607 samples). Samples were assayed for 33 inflammatory markers using Millipore multiplex technology. TT was applied to standardized mean biomarker values generated to identify latent patterns of correlated markers. Treelet clusters (TC) were characterized by biomarkers related to adaptive immunity (TC1), innate immunity (TC2), soluble molecules (TC3), allergy immunity (TC4), and chemokines (TC5). For each TC, a score was generated as the linear combination of standardized biomarker concentrations and cluster load for each individual in the cohort. Ordinal logistic or linear regression was used to test associations between TC scores and 6- and 12-month Glasgow Outcome Scale (GOS), Disability Rating Scale (DRS), and covariates. RESULTS When adjusting for clinical covariates, TC5 was significantly associated with 6-month GOS (odds ratio, OR = 1.44; p-value, p = 0.025) and 6-month DRS scores (OR = 1.46; p = 0.013). TC5 relationships were attenuated when including all TC scores in the model (GOS: OR = 1.29, p = 0.163; DRS: OR = 1.33, p = 0.100). When adjusting for all TC scores and covariates, only TC3 was associated with 6- and 12-month GOS (OR = 1.32, p = 0.041; OR = 1.39, p = 0.002) and also 6- and 12-month DRS (OR = 1.38, p = 0.016; OR = 1.58, p = 0.0002). When applying TT to inflammation markers significantly associated with 6-month GOS, multivariate modeling confirmed that TC3 remained significantly associated with GOS. Biomarker cluster membership remained consistent between the GOS-specific dendrogram and overall dendrogram. CONCLUSIONS TT effectively characterized chronic, systemic immunity among a cohort of individuals with moderate-to-severe TBI. We posit that chronic chemokine levels are effector molecules propagating cellular immune dysfunction, while chronic soluble receptors are inflammatory damage readouts perpetuated, in part, by persistent dysfunctional cellular immunity to impact neuro-recovery.
Collapse
|
50
|
Vitamin K2 Holds Promise for Alzheimer's Prevention and Treatment. Nutrients 2021; 13:nu13072206. [PMID: 34199021 PMCID: PMC8308377 DOI: 10.3390/nu13072206] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Recent studies have highlighted the importance of vitamin K2 (VK2) in human health. However, there have been no clinical studies investigating the role of VK2 in the prevention or treatment of Alzheimer's disease (AD), a debilitating disease for which currently there is no cure. In reviewing basic science research and clinical studies that have connected VK2 to factors involved in AD pathogenesis, we have found a growing body of evidence demonstrating that VK2 has the potential to slow the progression of AD and contribute to its prevention. In our review, we consider the antiapoptotic and antioxidant effects of VK2 and its impact on neuroinflammation, mitochondrial dysfunction, cognition, cardiovascular health, and comorbidities in AD. We also examine the link between dysbiosis and VK2 in the context of the microbiome's role in AD pathogenesis. Our review is the first to consider the physiological roles of VK2 in the context of AD, and, given the recent shift in AD research toward nonpharmacological interventions, our findings emphasize the timeliness and need for clinical studies involving VK2.
Collapse
|