1
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
2
|
Lau VWC, Mead GJ, Varyova Z, Mazet JM, Krishnan A, Roberts EW, Prota G, Gileadi U, Midwood KS, Cerundolo V, Gérard A. Remodelling of the immune landscape by IFNγ counteracts IFNγ-dependent tumour escape in mouse tumour models. Nat Commun 2025; 16:2. [PMID: 39746898 PMCID: PMC11696141 DOI: 10.1038/s41467-024-54791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Loss of IFNγ-sensitivity by tumours is thought to be a mechanism enabling evasion, but recent studies suggest that IFNγ-resistant tumours can be sensitised for immunotherapy, yet the underlying mechanism remains unclear. Here, we show that IFNγ receptor-deficient B16-F10 mouse melanoma tumours are controlled as efficiently as WT tumours despite their lower MHC class I expression. Mechanistically, IFNγ receptor deletion in B16-F10 tumours increases IFNγ availability, triggering a remodelling of the immune landscape characterised by inflammatory monocyte infiltration and the generation of 'mono-macs'. This altered myeloid compartment synergises with an increase in antigen-specific CD8+ T cells to promote anti-tumour immunity against IFNγ receptor-deficient tumours, with such an immune crosstalk observed around blood vessels. Importantly, analysis of transcriptomic datasets suggests that similar immune remodelling occurs in human tumours carrying mutations in the IFNγ pathway. Our work thus serves mechanistic insight for the crosstalk between tumour IFNγ resistance and anti-tumour immunity, and implicates this regulation for future cancer therapy.
Collapse
Affiliation(s)
- Vivian W C Lau
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Gracie J Mead
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Zofia Varyova
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Anagha Krishnan
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Immunodynamics Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Gennaro Prota
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Kim S Midwood
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- MRC Translational Immune Discovery Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Audrey Gérard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Jiang W, Xu S, Li P. SLC2A3 is a Potential Factor for Head and Neck Squamous Cancer Development through Tumor Microenvironment Alteration. Curr Gene Ther 2025; 25:157-177. [PMID: 38778609 DOI: 10.2174/0115665232291300240509104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tumor immunity has garnered increasing attention in cancer treatment and progression. However, there is still a challenge in understanding the mechanisms of specific molecules affecting the clinical prognosis and tumor microenvironment (TME). METHODS Here, we applied the ESTIMATE algorithm to calculate the immune and stromal scores in 504 HNSC cases from TCGA. Patients were grouped according to the median value of the immune and stromal. Clinicopathological characteristics and differentially expressed genes (DEG) were analyzed. Subsequently, LASSO, COX regression, survival analysis, and clinicopathological characteristics were conducted. Subsequently, SLC2A3 was determined as a predictive factor that high expression of SLC2A3 at the mRNA and protein levels predicted a worse clinical prognosis. GSEA25099 was utilized for external validation of immune infiltration, while tissue PCR, IHC, and Western Blot were used to confirm the expression levels of SLC2A3. RESULTS A series of immune-infiltration analyses showed that SLC2A3 expression was negatively correlated with CD8+ T cells, significantly affecting the survival prognosis of HNSC. In the GSEA analysis, the high expression of SLC2A3 was mainly enriched for immune-related biological processes. Meanwhile, high expression of SLC2A3 possessed higher TIDE scores and was also strongly positively correlated with a series of immune checkpoints affecting survival prognosis, thus causing greater susceptibility to immune escape. CONCLUSION Conclusively, SLC2A3 is a potential oncogene and factor of HNSC development, notably by an altered state of the immune microenvironment, immune-suppressive regulation, and immune escape.
Collapse
Affiliation(s)
- Wei Jiang
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Sheng Xu
- Department of Dental Laboratory, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Ping Li
- Department of Pathology, Guangxi Medical University College of Stomatology, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
4
|
Sævarsson T, de Lomana ALG, Sánchez Ó, van Esch V, Ragnarsson GB, Brynjólfsson SF, Steingrímsson E, Einarsdóttir BÓ. Differentiation status determines the effects of IFNγ on the expression of PD-L1 and immunomodulatory genes in melanoma. Cell Commun Signal 2024; 22:618. [PMID: 39736644 DOI: 10.1186/s12964-024-01963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Melanoma cells frequently dedifferentiate in response to inflammation which can increase responses to certain cytokines. Interferon-γ (IFNγ) is an integral part of the anti-tumor immune response and can directly induce both differentiational changes and expression of immunosuppressive proteins in melanoma cells. How the differentiation status of melanoma cells affects IFNγ responses remains unclear. METHODS Dedifferentiation of melanoma cells was induced via either siRNA or shRNA mediated MITF knockdown and the cells were subsequently treated with IFNγ. Effects of MITF knockdown and IFNγ treatment on gene expression were evaluated via qPCR and RNA sequencing. A Luminex assay was used to analyze the effects of dedifferentiation and IFNγ treatment on cytokine secretion. Effects on PD-L1 protein expression were analyzed via flow cytometry and western blotting. Inhibition of the JAK kinases, NF-κB and STAT3 with small molecule inhibitors, and siRNA mediated knockdown of STAT1 and IRF1 was applied to investigate the molecular mechanism behind IFNγ induced PD-L1 expression in dedifferentiated melanoma cells. The effects of inhibitor treatments and siRNA mediated knockdowns were evaluated via qPCR and western blotting. Bioinformatic analysis of publicly available RNA sequencing data, consisting of 45 patient derived melanoma cell lines, with or without IFNγ treatment, was conducted to assess the generalizability of the in vitro results. RESULTS Dedifferentiation renders 624Mel melanoma cells hypersensitive to IFNγ stimulation in a context-dependent manner, resulting in non-additive upregulation of IFNγ-induced genes, increased PD-L1 protein expression and amplified secretion of CCL2, CXCL10 and IL-10. Furthermore, the intensified PD-L1 protein expression occurs through the JAK-STAT1-IRF1 axis. Lastly, dedifferentiated patient derived melanoma cell lines showed enhanced inflammatory signaling in response to IFNγ compared to differentiated cells, and tended to have higher PD-L1 expression, associated with increased IRF1 expression and activity. CONCLUSIONS Together, these findings indicate the existence of a molecular context linking dedifferentiation and IFNγ signaling in melanoma which may lead to immune evasion. Additionally, the variability in PD-L1 expression among MITFlow and MITFhigh cells suggests that high IFNγ-induced PD-L1 expression associates with enhanced inflammatory gene expression. These results imply that modulating melanoma differentiation may help shape IFNγ responsiveness.
Collapse
Affiliation(s)
- Teitur Sævarsson
- Department of Biomedical Science, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Adrián López García de Lomana
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ólafur Sánchez
- Department of Biomedical Science, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Veerle van Esch
- Department of Biomedical Science, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | | | - Siggeir Fannar Brynjólfsson
- Department of Immunology, Landspítali - The National University Hospital of Iceland, Reykjavík, Iceland
- Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Berglind Ósk Einarsdóttir
- Department of Biomedical Science, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland.
| |
Collapse
|
5
|
Ma K, Wang L, Li W, Tang T, Ma B, Zhang L, Zhang L. Turning cold into hot: emerging strategies to fire up the tumor microenvironment. Trends Cancer 2024:S2405-8033(24)00278-4. [PMID: 39730243 DOI: 10.1016/j.trecan.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
The tumor microenvironment (TME) is a complex, highly structured, and dynamic ecosystem that plays a pivotal role in the progression of both primary and metastatic tumors. Precise assessment of the dynamic spatiotemporal features of the TME is crucial for understanding cancer evolution and designing effective therapeutic strategies. Cancer is increasingly recognized as a systemic disease, influenced not only by the TME, but also by a multitude of systemic factors, including whole-body metabolism, gut microbiome, endocrine signaling, and circadian rhythm. In this review, we summarize the intrinsic, extrinsic, and systemic factors contributing to the formation of 'cold' tumors within the framework of the cancer-immunity cycle. Correspondingly, we discuss potential strategies for converting 'cold' tumors into 'hot' ones to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Kaili Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Lin Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Tingting Tang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bo Ma
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Liyuan Zhang
- Center for Cancer Diagnosis and Treatment, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China; PRAG Therapy Center, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China; Key Laboratory of Synthetic Biology Regulatory Element, Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
6
|
Qin Y, Qian Y, Liu S, Chen R. A double-edged sword role of IFN-γ-producing iNKT cells in sepsis: Persistent suppression of Treg cell formation in an Nr4a1-dependent manner. iScience 2024; 27:111462. [PMID: 39720538 PMCID: PMC11667017 DOI: 10.1016/j.isci.2024.111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 11/20/2024] [Indexed: 12/26/2024] Open
Abstract
Sepsis, a leading cause of mortality in intensive care units worldwide, lacks effective treatments for advanced-stage sepsis. Therefore, understanding the underlying mechanisms of this disease is crucial. This study reveals that invariant natural killer T (iNKT) cells have an opposing role in the progression of sepsis by suppressing regulatory T (Treg) cell differentiation and function. The activation of iNKT cells by α-Galcer enhances interferon (IFN)-γ production. Blocking antibodies or transferring IFN-γ-deficient iNKT cells demonstrates that iNKT cells inhibit Treg differentiation through IFN-γ production. Additionally, iNKT cell-mediated Treg inhibition prevents secondary infection caused by Listeria monocytogenes during the post-septic phase. The transcriptomic analysis of Treg cells further reveals that the suppressive function of Tregs is impaired by iNKT cells. Finally, we demonstrate that iNKT cells inhibit Treg differentiation in an Nr4a1-dependent manner. Our data uncover the dual function of iNKT cells in sepsis progression and provide a potential treatment target for this adverse long-term outcome induced by sepsis.
Collapse
Affiliation(s)
- Yingyu Qin
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yilin Qian
- Department of Pathogenic Biology and Immunology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Shengqiu Liu
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rong Chen
- The Affiliated Zhongda Hospital, Clinical Medical College, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Sun L, Ma B, Yang F, Zou H, Guo Y, Wang X, Han M. Anti-hepatoma effect of homologous delivery of doxorubicin by HepG2 cells. Int J Pharm 2024; 670:125113. [PMID: 39710309 DOI: 10.1016/j.ijpharm.2024.125113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Compared to conventional polymer-based and biomaterial carriers, cells as vehicles for delivering bioactive molecules in the treatment of tumor diseases offer characteristics such as non-toxicity, biocompatibility, low immunogenicity, and prolonged in vivo circulation. However, the focus of current cell drug delivery systems predominantly lies on live cells, such as red blood cells, white blood cells and others. Here, a drug delivery strategy targeting liver cancer utilizing cryo-shocked liver cancer cells (HepG2) as carriers was presented, and non-proliferative HepG2 cells particles loaded with DOX (HepG2-DOX) was effectively prepared, which has good homologous targeting. Subsequent in vitro and in vivo experiments demonstrated the non-proliferative and non-pathogenic nature of this drug delivery system. The outcomes of in vitro experiments revealed that the inhibitory effect of HepG2-DOX on HepG2 was approximately five times higher than that of free DOX, with the IC50 value of HepG2-DOX being 0.0739 µg/mL and free DOX being 0.3606 µg/mL. Furthermore, in comparison to the positive DOX group, the HepG2-DOX group has a very significant advantage in tumor inhibition rate (91.34 % vs. 64.20 %). Cell uptake experiments indicated significant HepG2-DOX uptake by HepG2 cells compared to 4T1, LO2, and Raw cell groups, highlighting the excellent cell specificity of HepG2-DOX. Fluorescence imaging conducted in mice following the administration of HepG2-DOX demonstrated prompt drug localization within the tumor region, highlighting exceptional in vivo targeting precision. To sum up, this study introduced a novel strategy utilizing cryo-shocked liver cancer cells as a drug delivery system, effectively treating liver tumor by enhancing tumor targeting specificity.
Collapse
Affiliation(s)
- Lina Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Baonan Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Fangzhou Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hang Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
8
|
Alirezaee A, Mirmoghtadaei M, Heydarlou H, Akbarian A, Alizadeh Z. Interferon therapy in alpha and Delta variants of SARS-CoV-2: The dichotomy between laboratory success and clinical realities. Cytokine 2024; 186:156829. [PMID: 39693873 DOI: 10.1016/j.cyto.2024.156829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
The COVID-19 pandemic has caused significant morbidity and mortality worldwide. The emergence of the Alpha and Delta variants of SARS-CoV-2 has led to a renewed interest in using interferon therapy as a potential treatment option. Interferons are a group of signaling proteins produced by host cells in response to viral infections. They play a critical role in the innate immune response to viral infections by inducing an antiviral state in infected and neighboring cells. Interferon therapy has shown promise as a potential treatment option for COVID-19. In this review paper, we review the current knowledge regarding interferon therapy in the context of the Alpha and Delta variants of SARS-CoV-2 and discuss the challenges that must be overcome to translate laboratory findings into effective clinical treatments.
Collapse
Affiliation(s)
- Atefe Alirezaee
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Mirmoghtadaei
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanieh Heydarlou
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asiye Akbarian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Lu P, Cheng Y, Xue L, Ren X, Xu X, Chen C, Cao L, Li J, Wu Q, Sun S, Hou J, Jia W, Wang W, Ma Y, Jiang Z, Li C, Qi X, Huang N, Han T. Selective degradation of multimeric proteins by TRIM21-based molecular glue and PROTAC degraders. Cell 2024; 187:7126-7142.e20. [PMID: 39488207 DOI: 10.1016/j.cell.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/10/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Targeted protein degradation (TPD) utilizes molecular glues or proteolysis-targeting chimeras (PROTACs) to eliminate disease-causing proteins by promoting their interaction with E3 ubiquitin ligases. Current TPD approaches are limited by reliance on a small number of constitutively active E3 ubiquitin ligases. Here, we report that (S)-ACE-OH, a metabolite of the antipsychotic drug acepromazine, acts as a molecular glue to induce an interaction between the E3 ubiquitin ligase TRIM21 and the nucleoporin NUP98, leading to the degradation of nuclear pore proteins and disruption of nucleocytoplasmic trafficking. Functionalization of acepromazine into PROTACs enabled selective degradation of multimeric proteins, such as those within biomolecular condensates, while sparing monomeric proteins. This selectivity is consistent with the requirement of substrate-induced clustering for TRIM21 activation. As aberrant protein assemblies cause diseases such as autoimmunity, neurodegeneration, and cancer, our findings highlight the potential of TRIM21-based multimer-selective degraders as a strategy to tackle the direct causes of these diseases.
Collapse
Affiliation(s)
- Panrui Lu
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Yalong Cheng
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Xue
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xintong Ren
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Xilong Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Chenglong Chen
- National Institute of Biological Sciences, Beijing 102206, China; College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Longzhi Cao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingcui Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junjie Hou
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Jia
- Deepkinase Co, Ltd, Beijing 102206, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yan Ma
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zhaodi Jiang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Xiangbing Qi
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Niu Huang
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Ting Han
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China; National Institute of Biological Sciences, Beijing 102206, China.
| |
Collapse
|
10
|
Surd AO, Răducu C, Răducu E, Ihuț A, Munteanu C. Lamina Propria and GALT: Their Relationship with Different Gastrointestinal Diseases, Including Cancer. GASTROINTESTINAL DISORDERS 2024; 6:947-963. [DOI: 10.3390/gidisord6040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The structural integrity of the gastrointestinal tract is important because it dictates the functionality of this system. Regarding this, gut-associated lymphoid tissue (GALT) has a significant role in immunity. Most cancer research focuses on organized lymphoid structures and less on diffuse structures such as the lamina propria (LP). Therefore, this paper aims to investigate the link between the LP and cancer in humans. The interstitial matrix and loose connective tissue layer located directly under the epithelium is known as the LP. In this area, there are a lot of IgA+ plasma cells (PCs), T and B lymphocytes, macrophages, dendritic cells (DCs), and stromal cells (SCs). Antigens from the lumen are picked up by LP DCs and presented directly to B cells, which may cause IgA class switching and differentiation in the presence of T cells. In humans, the GALT of the mucosa has been proposed as the source of a unique malignancy known as “GALT carcinoma”, which is thought to represent the “third pathway of colorectal carcinogenesis”. However, present colorectal cancer classifications do not define GALT carcinoma as a separate histologic category.
Collapse
Affiliation(s)
- Adrian Onisim Surd
- Department of Pediatric Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Camelia Răducu
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Eugen Răducu
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Andrada Ihuț
- Department of Technological Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| | - Camelia Munteanu
- Department of Plant Culture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Mănăștur Street, 400372 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Kim HW, Shin S, Park SH, Park JH, Kim SM, Lee YH, Lee MJ. Next-generation adjuvant systems containing furfurman drives potent adaptive immunity and host defense as a foot-and-mouth disease vaccine adjuvant. Front Immunol 2024; 15:1491043. [PMID: 39742276 PMCID: PMC11687127 DOI: 10.3389/fimmu.2024.1491043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Many countries use commercial foot-and-mouth disease (FMD) vaccines to prevent FMD pandemics, but these vaccines have disadvantages, such as repeated vaccinations due to the short persistence of antibody (Ab) titers and incomplete host defense despite high Ab titers. To address these shortcomings, we aimed to develop a novel FMD vaccine containing furfurman as an adjuvant. Method To demonstrate the efficacy of the test vaccine, adaptive immunity was evaluated by measuring Ab and neutralizing Ab titers and host defense against viral infections in experimental and target animals. In addition, the expression levels of cytokines [interferon (IFN)α, IFNβ, IFNγ, interleukin (IL)-1β, IL-2, and IL-12p40] were evaluated at the early stages of vaccination to confirm the simultaneous induction of cellular and humoral immune responses induced by the test vaccine. Result The groups that received vaccine containing furfurman showed a strong early, mid-term, and long-term immune response and host defense against viral infections compared to the control groups. The significant upregulation observed in cytokine levels in the furfurman group compared to those in the control groups strongly suggest that the test vaccine strengthens cellular immune response and effectively induces a humoral immune response. Conclusion Our study demonstrated that furfurman, as an FMD vaccine adjuvant, achieves long-lasting immunity and host defense against viral infections by eliciting potent cellular and humoral immune responses. Therefore, our findings contribute to the design of next-generation FMD vaccines and highlight the potential application of furfurman as an adjuvant for other viral diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
12
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2024; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
13
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
14
|
Taheri M, Tehrani HA, Farzad SA, Korourian A, Arefian E, Ramezani M. The potential of mesenchymal stem cell coexpressing cytosine deaminase and secretory IL18-FC chimeric cytokine in suppressing glioblastoma recurrence. Int Immunopharmacol 2024; 142:113048. [PMID: 39236459 DOI: 10.1016/j.intimp.2024.113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Glioblastoma multiforme (GBM) patients have a high recurrence rate of 90%, and the 5-year survival rate is only about 5%. Cytosine deaminase (CDA)/5-fluorocytosine (5-FC) gene therapy is a promising glioma treatment as 5-FC can cross the blood-brain barrier (BBB), while 5-fluorouracil (5-FU) cannot. Furthermore, 5-FU can assist reversing the immunological status of cold solid tumors. This study developed mesenchymal stem cells (MSCs) co-expressing yeast CDA and the secretory IL18-FC superkine to prevent recurrent tumor progression by simultaneously exerting cytotoxic effects and enhancing immune responses. IL18 was fused with Igk and IgG2a FC domains to enhance its secretion and serum half-life. The study confirmed the expression and activity of the CDA enzyme, as well as the expression, secretion, and activity of secretory IL18 and IL18-FC superkine, which were expressed by lentiviruses transduced-MSCs. In the transwell tumor-tropism assay, it was observed that the genetically modified MSCs retained their selective tumor-tropism ability following transduction. CDA-expressing MSCs, in the presence of 5-FC (200 µg/ml), induced cell cycle arrest and apoptosis in glioma cells through bystander effects in an indirect transwell co-culture system. They reduced the viability of the direct co-culture system when they constituted only 12.5 % of the cell population. The effectiveness of engineered MSCs in suppressing tumor progression was assessed by intracerebral administration of a lethal dose of GL261 cells combined in a ratio of 1:1 with MSCs expressing CDA, or CDA and sIL18, or CDA and sIL18-FC, into C57BL/6 mice. PET scan showed no conspicuous tumor mass in the MSC-CDA-sIL18-FC group that received 5-FC treatment. The pathological analysis showed that tumor progression suppressed in this group until 20th day after cell inoculation. Cytokine assessment showed that both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) increased in the serum of MSC-CDA-sIL18 and MSC-CDA-sIL18-FC, treated with normal saline (NS) compared to those of the control group. The MSC-CDA-sIL18-FC group that received 5-FC treatment showed reduced serum levels of IL-6 and a considerably improved survival rate compared to the control group. Therefore, MSCs co-expressing yeast CDA and secretory IL18-FC, with tumor tropism capability, may serve as a supplementary approach to standard GBM treatment to effectively inhibit tumor progression and prevent recurrence.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Korourian
- Quality Control Department Pathobiology Laboratory Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Yu H, Li J, Peng S, Liu Q, Chen D, He Z, Xiang J, Wang B. Tumor microenvironment: Nurturing cancer cells for immunoevasion and druggable vulnerabilities for cancer immunotherapy. Cancer Lett 2024; 611:217385. [PMID: 39645024 DOI: 10.1016/j.canlet.2024.217385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
The tumor microenvironment (TME) is an intricate ecosystem where cancer cells thrive, encompassing a wide array of cellular and non-cellular components. The TME co-evolves with tumor progression in a spatially and temporally dynamic manner, which endows cancer cells with the adaptive capability of evading immune surveillance. To this end, diverse cancer-intrinsic mechanisms were exploited to dampen host immune system, such as upregulating immune checkpoints, impairing antigens presentation and competing for nutrients. In this review, we discuss how cancer immunoevasion is tightly regulated by hypoxia, one of the hallmark biochemical features of the TME. Moreover, we comprehensively summarize how immune evasiveness of cancer cells is facilitated by the extracellular matrix, as well as soluble components of TME, including inflammatory factors, lactate, nutrients and extracellular vesicles. Given their important roles in dictating cancer immunoevasion, various strategies to target TME components are proposed, which holds promising translational potential in developing novel therapeutics to sensitize anti-cancer immunotherapy such as immune checkpoint blockade.
Collapse
Affiliation(s)
- Hongyang Yu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Shiyin Peng
- School of Medicine, Chongqing University, Chongqing, China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China; Institute of Pathology and Southwest Cancer Center, And Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
16
|
Jang J, He Z, Huang L, Hwang JY, Kim MY, Cho JY. Upregulation of NK cell activity, cytokine expression, and NF-κB pathway by ginsenoside concentrates from Panax ginseng berries in healthy mice and macrophage cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118681. [PMID: 39121929 DOI: 10.1016/j.jep.2024.118681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng (P. ginseng) C.A. Meyer. Has been studied for decades for its various biological activities, especially in terms of immune-regulatory properties. Traditionally, it has been known that root, leaves, and fruits of P. ginseng were eaten for improving body's Qi and homeostasis. Also, these were used to protect body from various types of infectious diseases. However, molecular mechanisms of immunomodulatory activities of ginseng berries have not been systemically studied as often as other parts of the plant. AIM OF THE STUDY The aim of this research is to discover the regulatory effects of P. ginseng berries, more importantly, their ginsenosides, on innate immune responses and to elucidate the molecular mechanism. MATERIALS AND METHODS Ginseng berry concentrate (GBC) was orally injected into BALB/c mice for 30 days, and spleens were extracted for evaluation of immune-regulatory effects. Murine macrophage RAW264.7 cells were used for detailed molecular mechanism studies. Splenic natural killer (NK) cells were isolated using the magnetic-activated cell sorting (MACS) system, and the cytotoxic activity of isolated NK cells was measured using a lactate dehydrogenase (LDH) release assay. The splenic immune cell population was determined by flow-cytometry. NF-κB promoter activity was assessed by in vitro luciferase assay. Expression of inflammatory proteins and cytokines of the spleen and RAW264.7 cells were evaluated using western blotting and real-time PCR, respectively. RESULTS The GBC enhanced cytotoxic activity of NK cells and the immune-regulation-related splenic cell population. Moreover, GBC promoted NF-κB promoter activity and stimulated the NF-κB signaling cascade. In spleen and RAW264.7 cells, expression of pro-inflammatory cytokines was increased upon GBC application, while expression of anti-inflammatory cytokines decreased. CONCLUSIONS These results suggest that P. ginseng berry can stimulate innate immune responses and help maintain a balanced immune condition, mostly due to the action of its key ginsenoside Re, along with other protopanaxadiol- and protopanaxatriol-type ginsenosides. Such finding will provide a new insight into the field of well-being diet research as well as non-chemical immune modulator, by providing nature-derived and plant-based bioactive materials.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ziliang He
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Ji Yeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biocosmetics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Hasan A, Ibrahim M, Alonazi WB, Shen J. Application of immunoinformatics to develop a novel and effective multiepitope chimeric vaccine against Variovorax durovernensis. Comput Biol Chem 2024; 113:108266. [PMID: 39504600 DOI: 10.1016/j.compbiolchem.2024.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/31/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024]
Abstract
Bloodstream infections pose a significant public health challenge caused by resistant bacteria such as Variovorax durovernensis, a recently reported Gram-negative bacterium, worsening the burden on healthcare systems. The design of a vaccine using chimeric peptides derived from a representative V. durovernensis strain holds significant promise for preventing disease onset. The current study aimed to employ reverse vaccinology (RV) approaches such as the retrieval of V. durovernensis proteomics data, removal of redundant proteins by CD-HIT, filtering of non-homologous proteins to humans and essential proteins, identification of outer membrane (OM) proteins by CELLO and PSORTb. Following these steps immunoinformatic approaches were applied, such as epitope prediction by IEDB, vaccine design using linkers and adjuvant and analysis of antigenicity, allergenicity, safety and stability. Among the 4208 nonredundant proteins, an OmpA family protein (A0A940EKP4) was designated a potential candidate for the development of a multiepitope vaccine construct. Upon analysis of OM protein, six immunodominant (B cell) epitopes were found on the basis of the chimeric construct following the prediction of CTL stands cytotoxic T lymphocyte and HTL stands helper T lymphocyte epitopes. To ensure comprehensive population coverage globally, the CTL and HTL coverage rates were 58.18 % and 46.56 %, respectively, and 77.23 % overall. By utilizing EAAAK, GPGPG, and AAY linkers, Cholera toxin B subunit adjuvants, and appropriate epitopes were smoothly incorporated into a chimeric vaccine effectively triggering both adaptive and innate immune responses. For example, the administered antigen showed a peak in counts on the fifthday post injection and then gradually declined until the fifteenth day. Elevated levels of several antibodies (IgG + IgM > 700,000; IgM > 600,000; IgG1 + IgG2; IgG1 > 500,000) were observed as decreased in the antigen concentration. Molecular dynamics simulations carried out via iMODS revealed strong correlations between residue pairs, highlighting the stability of the docked complex. The designed vaccine has promising potential in eliciting specific immunogenic responses, thereby facilitating future research for vaccine development against V. durovernensis.
Collapse
Affiliation(s)
- Ahmad Hasan
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Muhammad Ibrahim
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, PR China
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | - Jian Shen
- Department of Medical Administration, Zhejiang Province People Hospital, Affiliated People Hospital, Hangzhou Medical College Hangzhou, Zhejiang, PR China.
| |
Collapse
|
18
|
Chaudhari K, Vasu VT, Golani A, Shaikh A, Nagariya N, Roy H. Interferon Induced Upregulation of Tripartite Motif 34 (TRIM34) Leads Apoptotic Cell Death in Lung Adenocarcinoma. J Biochem Mol Toxicol 2024; 38:e70072. [PMID: 39607040 DOI: 10.1002/jbt.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Despite breakthroughs in our understanding of lung cancer risk, development, immunologic control, and therapy choices, it remains one of the leading causes of cancer mortality. This study aimed to investigate the role of TRIM34 upon treatment of Interferon Gamma (IFN-γ) in Non-Small Cell Lung Cancer (NSCLC). NCI-H23 cells were exposed to IFN-γ in a dose- and time-dependent manner to understand TRIM34 expression and its role as a co-regulator of treatment. The regulatory role of TRIM34 on IFN-γ exposure was studied by qRT-PCR, Western blot analysis, immunocytochemistry, apoptosis assay and scratch assay. On exposure to IFN-γ, TRIM34 expression at transcript and protein level was significantly upregulated. With its upregulation, NCI-H23 underwent apoptosis and its rate of proliferation was impeded. Our results suggest that induction of TRIM34 by IFN-γ treatment may lead to an anti-tumor inflammatory response, resulting in NSCLC regression via apoptosis.
Collapse
Affiliation(s)
- Kaushalkumar Chaudhari
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Vihas T Vasu
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Aparna Golani
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Afridi Shaikh
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Nidhi Nagariya
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Hetal Roy
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
19
|
Kapetanovic E, Weber CR, Bruand M, Pöschl D, Kucharczyk J, Hirth E, Dietsche C, Khan R, Wagner B, Belli O, Vazquez-Lombardi R, Castellanos-Rueda R, Di Roberto RB, Kalinka K, Raess L, Ly K, Rai S, Dittrich PS, Platt RJ, Oricchio E, Reddy ST. Engineered allogeneic T cells decoupling T-cell-receptor and CD3 signalling enhance the antitumour activity of bispecific antibodies. Nat Biomed Eng 2024; 8:1665-1681. [PMID: 39322719 DOI: 10.1038/s41551-024-01255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/09/2024] [Indexed: 09/27/2024]
Abstract
Bispecific antibodies (biAbs) used in cancer immunotherapies rely on functional autologous T cells, which are often damaged and depleted in patients with haematological malignancies and in other immunocompromised patients. The adoptive transfer of allogeneic T cells from healthy donors can enhance the efficacy of biAbs, but donor T cells binding to host-cell antigens cause an unwanted alloreactive response. Here we show that allogeneic T cells engineered with a T-cell receptor that does not convert antigen binding into cluster of differentiation 3 (CD3) signalling decouples antigen-mediated T-cell activation from T-cell cytotoxicity while preserving the surface expression of the T-cell-receptor-CD3 signalling complex as well as biAb-mediated CD3 signalling and T-cell activation. In mice with CD19+ tumour xenografts, treatment with the engineered human cells in combination with blinatumomab (a clinically approved biAb) led to the recognition and clearance of tumour cells in the absence of detectable alloreactivity. Our findings support the development of immunotherapies combining biAbs and 'off-the-shelf' allogeneic T cells.
Collapse
MESH Headings
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Animals
- Humans
- CD3 Complex/immunology
- CD3 Complex/metabolism
- T-Lymphocytes/immunology
- Signal Transduction/drug effects
- Mice
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Lymphocyte Activation/immunology
- Lymphocyte Activation/drug effects
- Cell Line, Tumor
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Cell Engineering/methods
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Xenograft Model Antitumor Assays
- Allogeneic Cells/immunology
Collapse
Affiliation(s)
- Edo Kapetanovic
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Cédric R Weber
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marine Bruand
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Daniel Pöschl
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Jakub Kucharczyk
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisabeth Hirth
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Claudius Dietsche
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Riyaz Khan
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Olivier Belli
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Rocío Castellanos-Rueda
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Life Science Zurich Graduate School, Systems Biology, ETH Zurich, University of Zurich, Zurich, Switzerland
| | - Raphael B Di Roberto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Kalinka
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Luca Raess
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Kevin Ly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Shivam Rai
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Elisa Oricchio
- Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
- School of Life Sciences, EPFL, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Sai T Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
20
|
Jin M, Fang J, Peng J, Wang X, Xing P, Jia K, Hu J, Wang D, Ding Y, Wang X, Li W, Chen Z. PD-1/PD-L1 immune checkpoint blockade in breast cancer: research insights and sensitization strategies. Mol Cancer 2024; 23:266. [PMID: 39614285 PMCID: PMC11605969 DOI: 10.1186/s12943-024-02176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/13/2024] [Indexed: 12/01/2024] Open
Abstract
Immunotherapy targeting programmed cell death-1 (PD-1) and PD-L1 immune checkpoints has reshaped treatment paradigms across several cancers, including breast cancer. Combining PD-1/PD-L1 immune checkpoint blockade (ICB) with chemotherapy has shown promising efficacy in both early and metastatic triple-negative breast cancer, although only a subset of patients experiences durable responses. Identifying responders and optimizing immune drug selection are therefore critical. The effectiveness of PD-1/PD-L1 immunotherapy depends on both tumor-intrinsic factors and the extrinsic cell-cell interactions within the tumor microenvironment (TME). This review systematically summarizes the key findings from clinical trials of ICBs in breast cancer and examines the mechanisms underlying PD-L1 expression regulation. We also highlight recent advances in identifying potential biomarkers for PD-1/PD-L1 therapy and emerging evidence of TME alterations following treatment. Among these, the quantity, immunophenotype, and spatial distribution of tumor-infiltrating lymphocytes stand out as promising biomarkers. Additionally, we explore strategies to enhance the effectiveness of ICBs in breast cancer, aiming to support the development of personalized treatment approaches tailored to the unique characteristics of each patient's tumor.
Collapse
Affiliation(s)
- Menglei Jin
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Fang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Junwen Peng
- Department of General Surgery, The First People's Hospital of Jiande, Hangzhou, China
| | - Xintian Wang
- Department of General Surgery, The Second People's Hospital of Tongxiang, Jiaxing, Zhejiang, China
| | - Ping Xing
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Kunpeng Jia
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jianming Hu
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Danting Wang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Yuxin Ding
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Xinyu Wang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, China
| | - Wenlu Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, China.
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
21
|
Van Gelder RD, Gokhale NS, Genoyer E, Omelia DS, Anderson SK, Young HA, Savan R. Interleukin-2-mediated NF-κB-dependent mRNA splicing modulates interferon gamma protein production. EMBO Rep 2024:10.1038/s44319-024-00324-1. [PMID: 39578552 DOI: 10.1038/s44319-024-00324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Interferon-gamma (IFNγ) is a pleiotropic cytokine produced by natural killer (NK) cells during the early infection response. IFNγ expression is tightly regulated to mount sterilizing immunity while preventing tissue pathology. Several post-transcriptional effectors dampen IFNγ expression through IFNG mRNA degradation. In this study, we identify mRNA splicing as a positive regulator of IFNγ production. While treatment with the combination of IL-12 and IL-2 causes synergistic induction of IFNG mRNA and protein, defying transcription-translation kinetics, we observe that NK cells treated with IL-12 alone transcribe IFNG with introns intact. When NK cells are treated with both IL-2 and IL-12, IFNG transcript is spliced to form mature mRNA with a concomitant increase in IFNγ protein. We find that IL-2-mediated intron splicing occurs independently of nascent transcription but relies upon NF-κB signaling. We propose that while IL-12 transcriptionally induces IFNG mRNA, IL-2 signaling stabilizes IFNG mRNA by splicing detained introns, allowing for rapid IFNγ protein production. This study uncovers a novel role for cytokine-induced splicing in regulating IFNγ through a mechanism potentially applicable to other inflammatory mediators.
Collapse
Affiliation(s)
| | - Nandan S Gokhale
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Emmanuelle Genoyer
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Dylan S Omelia
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Stephen K Anderson
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Howard A Young
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
22
|
Oliveira I, Rodrigues-Santos P, Ferreira L, Pires das Neves R. Synthetic and biological nanoparticles for cancer immunotherapy. Biomater Sci 2024; 12:5933-5960. [PMID: 39441658 DOI: 10.1039/d4bm00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Cancer is becoming the main public health problem globally. Conventional chemotherapy approaches are slowly being replaced or complemented by new therapies that avoid the loss of healthy tissue, limit off-targets, and eradicate cancer cells. Immunotherapy is nowadays an important strategy for cancer treatment, that uses the host's anti-tumor response by activating the immune system and increasing the effector cell number, while, minimizing cancer's immune-suppressor mechanisms. Its efficacy is still limited by poor therapeutic targeting, low immunogenicity, antigen presentation deficiency, impaired T-cell trafficking and infiltration, heterogeneous microenvironment, multiple immune checkpoints and unwanted side effects, which could benefit from improved delivery systems, able to release immunotherapeutic agents to tumor microenvironment and immune cells. Nanoparticles (NPs) for immunotherapy (Nano-IT), have a huge potential to solve these limitations. Natural and/or synthetic, targeted and/or stimuli-responsive nanoparticles can be used to deliver immunotherapeutic agents in their native conformations to the site of interest to enhance their antitumor activity. They can also be used as co-adjuvants that enhance the activity of IT effector cells. These nanoparticles can be engineered in the natural context of cell-derived extracellular vesicles (EVs) or exosomes or can be fully synthetic. In this review, a detailed SWOT analysis is done through the comparison of engineered-synthetic and naturaly-derived nanoparticles in terms of their current and future use in cancer immunotherapy.
Collapse
Affiliation(s)
- Inês Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - Paulo Rodrigues-Santos
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ricardo Pires das Neves
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
23
|
Lei X, Xiao R, Chen Z, Ren J, Zhao W, Tang W, Wen K, Zhu Y, Li X, Ouyang S, Xu A, Hu Y, Bi E. Augmenting antitumor efficacy of Th17-derived Th1 cells through IFN-γ-induced type I interferon response network via IRF7. Proc Natl Acad Sci U S A 2024; 121:e2412120121. [PMID: 39541355 PMCID: PMC11588128 DOI: 10.1073/pnas.2412120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
The importance of CD4+ T cells in cancer immunotherapy has gained increasing recognition. Particularly, a specific subset of CD4+ T cells coexpressing the T helper type 1 (Th1) and Th17 markers has demonstrated remarkable antitumor potential. However, the underlying mechanisms governing the differentiation of these cells and their subsequent antitumor responses remain incompletely understood. Single-cell RNA sequencing (scRNA-seq) data reanalysis demonstrated the presence of Th171 cells within tumors. Subsequent trajectory analysis found that these Th171 cells are initially primed under Th17 conditions and then converted into IFN-γ-producing cells. Following the in vivo differentiation trajectory of Th171 cells, we successfully established in vitro Th171 cell culture. Transcriptomic profiling has unveiled a substantial resemblance between in vitro-generated Th171 cells and their tumor-infiltrating counterparts. Th171 cells exhibit more potent antitumor responses than Th1 or Th17 cells. Additionally, Th171chimeric antigen receptor T (CAR-T) cells eradicate solid tumors more efficiently. Importantly, Th171 cells display an early exhaustion phenotype while retaining stemness. Mechanistically, Th171 cells migrate faster and accumulate more in tumors in an extracellular matrix protein 1 (ECM1)-dependent manner. Furthermore, we show that IFN-γ up-regulated IRF7 to promote the type I interferon response network and ECM1 expression but decreased the exhaustion status in Th171 cells. Taken together, our findings position Th171 cells as a great candidate for improving targeted immunotherapies in solid malignancies.
Collapse
Affiliation(s)
- Xiaoyi Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Ruipei Xiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Zhe Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wenli Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wenting Tang
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Kang Wen
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou510280, China
| | - Yihan Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xinru Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan523808, China
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou510280, China
| | - Yu Hu
- Division of Nephrology, State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou510515, China
| | - Enguang Bi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou510280, China
| |
Collapse
|
24
|
Gaimari A, De Lucia A, Nicolini F, Mazzotti L, Maltoni R, Rughi G, Zurlo M, Marchesini M, Juan M, Parras D, Cerchione C, Martinelli G, Bravaccini S, Tettamanti S, Pasetto A, Pasini L, Magnoni C, Gazzola L, Borges de Souza P, Mazza M. Significant Advancements and Evolutions in Chimeric Antigen Receptor Design. Int J Mol Sci 2024; 25:12201. [PMID: 39596267 PMCID: PMC11595069 DOI: 10.3390/ijms252212201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Recent times have witnessed remarkable progress in cancer immunotherapy, drastically changing the cancer treatment landscape. Among the various immunotherapeutic approaches, adoptive cell therapy (ACT), particularly chimeric antigen receptor (CAR) T cell therapy, has emerged as a promising strategy to tackle cancer. CAR-T cells are genetically engineered T cells with synthetic receptors capable of recognising and targeting tumour-specific or tumour-associated antigens. By leveraging the intrinsic cytotoxicity of T cells and enhancing their tumour-targeting specificity, CAR-T cell therapy holds immense potential in achieving long-term remission for cancer patients. However, challenges such as antigen escape and cytokine release syndrome underscore the need for the continued optimisation and refinement of CAR-T cell therapy. Here, we report on the challenges of CAR-T cell therapies and on the efforts focused on innovative CAR design, on diverse therapeutic strategies, and on future directions for this emerging and fast-growing field. The review highlights the significant advances and changes in CAR-T cell therapy, focusing on the design and function of CAR constructs, systematically categorising the different CARs based on their structures and concepts to guide researchers interested in ACT through an ever-changing and complex scenario. UNIVERSAL CARs, engineered to recognise multiple tumour antigens simultaneously, DUAL CARs, and SUPRA CARs are some of the most advanced instances. Non-molecular variant categories including CARs capable of secreting enzymes, such as catalase to reduce oxidative stress in situ, and heparanase to promote infiltration by degrading the extracellular matrix, are also explained. Additionally, we report on CARs influenced or activated by external stimuli like light, heat, oxygen, or nanomaterials. Those strategies and improved CAR constructs in combination with further genetic engineering through CRISPR/Cas9- and TALEN-based approaches for genome editing will pave the way for successful clinical applications that today are just starting to scratch the surface. The frontier lies in bringing those approaches into clinical assessment, aiming for more regulated, safer, and effective CAR-T therapies for cancer patients.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Animals
- Antigens, Neoplasm/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Genetic Engineering
Collapse
Affiliation(s)
- Anna Gaimari
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Anna De Lucia
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Fabio Nicolini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Lucia Mazzotti
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Roberta Maltoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanna Rughi
- Centro Trial Oncoematologico, Department of “Onco-Ematologia e Terapia Cellulare e Genica Bambino” Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Matteo Zurlo
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Matteo Marchesini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Manel Juan
- Department of Immunology, Centre de Diagnòstic Biomèdic, Hospital Clínic of Barcelona, 08036 Barcelona, Spain;
| | - Daniel Parras
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| | - Claudio Cerchione
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Giovanni Martinelli
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Sara Bravaccini
- Faculty of Medicine and Surgery, “Kore” University of Enna, 94100 Enna, Italy;
| | - Sarah Tettamanti
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano Bicocca, Osp. San Gerardo/Fondazione MBBM, 20900 Monza, Italy;
| | | | - Luigi Pasini
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Chiara Magnoni
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Luca Gazzola
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Patricia Borges de Souza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| | - Massimiliano Mazza
- Scientific Institute for Research, Hospitalization and Healthcare, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 40121 Meldola, Italy; (A.G.); (A.D.L.); (F.N.); (L.M.); (R.M.); (M.Z.); (M.M.); (C.C.); (G.M.); (L.P.); (C.M.); (L.G.); (M.M.)
| |
Collapse
|
25
|
Li A, Cai X, Li D, Yu Y, Liu C, Shen J, You J, Qiao J, Wang F. Nasal mRNA Nanovaccine with Key Activators of Dendritic and MAIT Cells for Effective Against Lung Tumor Metastasis in Mice Model. Int J Nanomedicine 2024; 19:11479-11497. [PMID: 39534380 PMCID: PMC11556332 DOI: 10.2147/ijn.s479741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background Lung metastasis is a leading cause of cancer-related death. mRNA-based cancer vaccines have been demonstrated to be effective at inhibiting tumor growth. Intranasal immunization has emerged as a more effective method of inducing local immune responses against cancer cells in the lungs. Methods An innovative layered double hydroxide- and 5-OP-RU-based mRNA nanovaccine (Mg/Al LDH-5-OP-RU/mRNA) was synthesized via coprecipitation. The particle size distribution and zeta potential were measured, and the nanovaccine was observed by transmission electron microscopy. The functions and properties of the nanovaccine were evaluated via an mRNA-targeted delivery assay and measurement of dendritic cell (DC) and mucosa-associated invariant T (MAIT) cell maturation and activation. In addition, the cytotoxicity, antigen-specific T cell activation, cytokines, protective ability, and therapeutic ability of the nanovaccine were assessed in a mouse tumor model. Further, the immune cell composition was evaluated in tumors. Results The Mg/Al LDH-5-OP-RU/mRNA nanovaccine was efficiently delivered into lung-draining mediastinal lymph nodes (MLNs), and it activated dendritic cells (DCs) and mucosa-associated invariant T (MAIT) cells after intranasal administration. Moreover, the optimized dual-activating mRNA nanovaccine efficiently transfected DC cells and expressed antigen proteins in DC cells. An HPV-associated tumor model revealed that the intranasal delivery of the Mg/Al LDH-5-OP-RU/E7 mRNA nanovaccine significantly prevented the lung metastasis of tumors and had a therapeutic effect on established metastatic tumor nodules in the lungs. Mechanistically, the enhanced activation of DC and MAIT cells induced by the Mg/Al LDH-5-OP-RU/E7 mRNA nanovaccine increased the production of immune-stimulating cytokines and decreased the secretion of immunosuppressive cytokines, which led to the expansion and activation of memory T cells targeting the E7 antigen, a reduction in the population of neutrophils, and differentiation of tumor -associated macrophages to the M1 phenotype in the lungs. Conclusion These results highlight the potential of the innovative nasal mRNA nanovaccine for both preventing and treating tumor metastasis in the lungs.
Collapse
Affiliation(s)
- Ang Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Xushan Cai
- Department of Clinical Laboratory, Shanghai Jiading Maternal and Child Health Hospital, Shanghai, People’s Republic of China
| | - Dong Li
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Yimin Yu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Chengyu Liu
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Jie Shen
- Department of Laboratory Medicine, Shanghai Tongji Hospital, School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Jiaqi You
- Department of Respiratory, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Jianou Qiao
- Department of Respiratory, Shanghai Ninth People’s Hospital Affiliated Shanghai JiaoTong University School of Medicine, Shanghai, People’s Republic of China
| | - Feng Wang
- Department of Thoracic Surgery, Shanghai Ninth People’s Hospital Affiliated Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
26
|
Dhall A, Patiyal S, Raghava GPS. A hybrid method for discovering interferon-gamma inducing peptides in human and mouse. Sci Rep 2024; 14:26859. [PMID: 39501025 PMCID: PMC11538504 DOI: 10.1038/s41598-024-77957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Interferon-gamma (IFN-γ) is a versatile pleiotropic cytokine essential for both innate and adaptive immune responses. It exhibits both pro-inflammatory and anti-inflammatory properties, making it a promising therapeutic candidate for treating various infectious diseases and cancers. We present IFNepitope2, a host-specific technique to annotate IFN-γ inducing peptides, it is an updated version of IFNepitope introduced by Dhanda et al. In this study, dataset used for developing prediction method contain experimentally validated 25,492 and 7983 IFN-γ inducing peptides in human and mouse host, respectively. In initial phase, machine learning techniques have been exploited to develop classification model using wide range of peptide features. Further, to improve machine learning based models or alignment free models, we explore potential of similarity-based technique BLAST. Finally, a hybrid model has been developed that combine best machine learning based model with BLAST. In most of the case, models based on extra tree perform better than other machine learning techniques. In case of peptide features, compositional feature particularly dipeptide composition performs better than one-hot encoding or binary profile. Our best machine learning based models achieved AUROC 0.89 and 0.83 for human and mouse host, respectively. The hybrid model achieved the AUROC 0.90 and 0.85 for human and mouse host, respectively. All models have been evaluated on an independent/validation dataset not used for training or testing these models. Newly developed method performs better than existing method on independent dataset. The major objective of this study is to predict, design and scan IFN-γ inducing peptides, thus server/software have been developed ( https://webs.iiitd.edu.in/raghava/ifnepitope2/ ). This method is also available as standalone at https://github.com/raghavagps/ifnepitope2 and python package index at https://pypi.org/project/ifnepitope2/ .
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Phase III, (Near Govind Puri Metro Station), New Delhi, 110020, India.
| |
Collapse
|
27
|
Cui Z, Zheng C, You Y, He S, Jiang S, Chen Y, Lin Y, Xiao Z. Comprehensive Analysis of the Prognostic Implications and Biological Function of HDACs in Liver Hepatocellular Carcinoma. Int J Med Sci 2024; 21:2807-2823. [PMID: 39512688 PMCID: PMC11539383 DOI: 10.7150/ijms.97169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Background: The prognostic significance and biological functions of the histone deacetylases (HDACs) gene family in liver hepatocellular carcinoma (LIHC) have not been fully investigated. Methods: Using Kaplan-Meier and Cox regression analysis, this study determined if HDAC genes were relevant for prognosis in LIHC. A regression model utilizing HDAC genes and the least absolute shrinkage and selection operator (LASSO) was created to foretell LIHC risk. A selective inhibitor of endogenous HDACs, CKD-581, was studied in vitro and in vivo to determine its effects on the development, invasion, migration, and proliferation of LIHC cell lines. Results: Six HDACs were identified as correlating with the prognosis of LIHC. Overall survival (OS) was found to be shorter in individuals with higher risk scores when compared to those with lower risk scores, according to survival study. Natural killer cell infiltration was higher in individuals with lower risk ratings, which was mainly explained by the type II interferon (IFN) response. Limiting the activity of endogenous HDACs caused LIHC cell death by preventing their migration, invasion, and proliferation. In vivo studies confirmed that blocking HDAC expression inhibited tumor growth in mice. Further mechanistic studies showed that inhibition of HDACs expression elevates the protein levels of P21 and P27, and reduces those of cyclins A2, B1, D1 and E1. Conclusions: The risk score prognostic model based on HDAC genes could provide a valuable prognostic biomarker for LIHC. CKD-581 prohibits LIHC progression via inhibiting the cell cycle signaling pathway. CKD-581 holds promise as a therapeutic agent for the clinical management of LIHC.
Collapse
Affiliation(s)
- Zhaolei Cui
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Chaoqiang Zheng
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yiqing You
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shijie He
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Shan Jiang
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yan Chen
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Yingying Lin
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zhenzhou Xiao
- Laboratory of Biochemistry and Molecular Biology Research, Department of Laboratory Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| |
Collapse
|
28
|
Lin Q, Olkowski CP, Choyke PL, Sato N. Tumor growth suppression in adoptive T cell therapy via IFN-γ targeting of tumor vascular endothelial cells. Theranostics 2024; 14:6897-6912. [PMID: 39629126 PMCID: PMC11610145 DOI: 10.7150/thno.101107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/27/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: In adoptive T cell therapy (ACT), the direct cytotoxic effects of CD8 T cells on tumor cells, including the release of interferon-gamma (IFN-γ), are considered the primary mechanism for tumor eradication. Cancer antigen escape diminishes the T cell responses, thereby limiting the therapeutic success. The impacts of IFN-γ targeting non-tumor cells in ACT, on the other hand, remains under-investigated. We hypothesized that IFN-γ action on non-tumor cells, particularly tumor vascular endothelial cells within the physiological tumor microenvironment, could influence therapeutic efficacy. Methods: ACT was performed against ovalbumin (OVA)- or OVA-peptide SIINFEKL-expressing syngeneic mouse tumors, MCA-205-OVA-GFP fibrosarcoma or MOC2-SIINFEKL oral squamous cell carcinoma, using ex vivo-activated OT-1 CD8 T cells expressing the T cell receptor against OVA. Efficacy was examined in wild-type mice, mice deficient for IFN-γ receptor 1 (IFN-γR1KO), and bone marrow chimeras lacking IFN-γR1 expression in endothelial cells. To exclude direct IFN-γ action against tumor cells, IFN-γR1KO-MCA-205-OVA-GFP tumors were used. IFN-γ production, STAT1 induction in its targets, and subsequent changes, especially in vasculatures in the tumor, were examined. Results: ACT suppressed the growth of MCA-205-OVA-GFP and MOC2-SIINFEKL tumors in wild-type mice but failed in IFNγR1KO mice. Furthermore, in the bone marrow chimeras lacking endothelial cell IFN-γR1, ACT efficacy was lost, thus implicating a vital role of IFN-γ action on the endothelium. IFN-γR1KO-MCA-205-OVA-GFP tumor growth was successfully suppressed by ACT in wild-type mice, suggesting that IFN-γ targeting of tumor cells may not be essential for ACT efficacy. OT-1 CD8 T cells interacted with endothelial cells or localized in proximity to the vessels on Day 1.5 after transfer, as observed by intravital microscopy. The OT-1 T cells found in tumors were limited in number but produced high levels of IFN-γ on Day 1.5, while their number peaked on Day 5.5 with negligible IFN-γ production. Together with IFN-γ production by endogenous lymphocytes, IFN-γ levels in the whole tumor peaked on Day 1.5, inducing IFN-γ/STAT1 signaling in endothelial cells. Early targeting of tumor vascular endothelial cells by IFN-γ led to endothelial regression, reduced perfusion, and tumor hypoxia/necrosis (Day 4.5-7). Conclusions: These findings highlight the critical role of T cell-derived IFN-γ action on endothelial cells early in ACT, emphasizing its dynamic influence on the tumor microenvironment, and offering insights into addressing antigen escape.
Collapse
Affiliation(s)
| | | | | | - Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Li F, Yang Z, Savage TM, Vincent RL, de Los Santos-Alexis K, Ahn A, Rouanne M, Mariuzza DL, Danino T, Arpaia N. Programmable bacteria synergize with PD-1 blockade to overcome cancer cell-intrinsic immune resistance mechanisms. Sci Immunol 2024; 9:eadn9879. [PMID: 39423284 DOI: 10.1126/sciimmunol.adn9879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Interferon-γ (IFN-γ) is a potent cytokine critical for response to immunotherapy, yet conventional methods to systemically deliver this cytokine have been hindered by severe dose-limiting toxicities. Here, we engineered a strain of probiotic bacteria that home to tumors and locally release IFN-γ. A single intratumoral injection of these IFN-γ-producing bacteria was sufficient to drive systemic tumor antigen-specific antitumor immunity, without observable toxicity. Although cancer cells use various resistance mechanisms to evade immune responses, bacteria-derived IFN-γ overcame primary resistance to programmed cell death 1 (PD-1) blockade via activation of cytotoxic Foxp3-CD4+ and CD8+ T cells. Moreover, by activating natural killer (NK) cells, bacteria-derived IFN-γ also overcame acquired resistance mechanisms to PD-1 blockade, specifically loss-of-function mutations in IFN-γ signaling and antigen presentation pathways. Collectively, these results demonstrate the promise of combining IFN-γ-producing bacteria with PD-1 blockade as a therapeutic strategy for overcoming immunotherapy-resistant, locally advanced, and metastatic disease.
Collapse
Affiliation(s)
- Fangda Li
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Zaofeng Yang
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Thomas M Savage
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Rosa L Vincent
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Alexander Ahn
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Mathieu Rouanne
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Dylan L Mariuzza
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Data Science Institute, Columbia University, New York, NY, USA
| | - Nicholas Arpaia
- Department of Microbiology and Immunology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| |
Collapse
|
30
|
Fu D, Zhang B, Fan W, Zeng F, Feng J, Wang X. Fatty acid metabolism prognostic signature predicts tumor immune microenvironment and immunotherapy, and identifies tumorigenic role of MOGAT2 in lung adenocarcinoma. Front Immunol 2024; 15:1456719. [PMID: 39478862 PMCID: PMC11521851 DOI: 10.3389/fimmu.2024.1456719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Background Aberrant fatty acid metabolism (FAM) plays a critical role in the tumorigenesis of human malignancies. However, studies on its impact in lung adenocarcinoma (LUAD) are limited. Methods We developed a prognostic signature comprising 10 FAM-related genes (GPR115, SOAT2, CDH17, MOGAT2, COL11A1, TCN1, LGR5, SLC34A2, RHOV, and DKK1) using data from LUAD patients in The Cancer Genome Atlas (TCGA). This signature was validated using six independent LUAD datasets from the Gene Expression Omnibus (GEO). Patients were classified into high- and low-risk groups, and overall survival (OS) was compared by Kaplan-Meier analysis. The signature's independence as a prognostic indicator was assessed after adjusting for clinicopathological features. Receiver operating characteristic (ROC) analysis validated the signature. Tumor immune microenvironment (TIME) was analyzed using ESTIMATE and multiple deconvolution algorithms. Functional assays, including CCK8, cell cycle, apoptosis, transwell, and wound healing assays, were performed on MOGAT2-silenced H1299 cells using CRISPR/Cas9 technology. Results Low-risk group patients exhibited decreased OS. The signature was an independent prognostic indicator and demonstrated strong risk-stratification utility for disease relapse/progression. ROC analysis confirmed the signature's validity across validation sets. TIME analysis revealed higher infiltration of CD8+ T cells, natural killers, and B cells, and lower tumor purity, stemness index, and tumor mutation burden (TMB) in low-risk patients. These patients also showed elevated T cell receptor richness and diversity, along with reduced immune cell senescence. High-risk patients exhibited enrichment in pathways related to resistance to immune checkpoint blockades, such as DNA repair, hypoxia, epithelial-mesenchymal transition, and the G2M checkpoint. LUAD patients receiving anti-PD-1 treatment had lower risk scores among responders compared to non-responders. MOGAT2 was expressed at higher levels in low-risk LUAD patients. Functional assays revealed that MOGAT2 knockdown in H1299 cells promoted proliferation and migration, induced G2 cell cycle arrest, and decreased apoptosis. Conclusions This FAM-related gene signature provides a valuable tool for prognostic stratification and monitoring of TIME and immunotherapy responses in LUAD. MOGAT2 is identified as a potential anti-tumor regulator, offering new insights into its role in LUAD pathogenesis.
Collapse
Affiliation(s)
- Denggang Fu
- College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Biyu Zhang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, China
| | - Wenyan Fan
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, Jiangxi, China
| | - Fanfan Zeng
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, Jiangxi, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Jueping Feng
- Department of Oncology, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Xin Wang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, Jiangxi, China
| |
Collapse
|
31
|
Heimes AS, Shehaj I, Almstedt K, Krajnak S, Schwab R, Stewen K, Lebrecht A, Brenner W, Hasenburg A, Schmidt M. Prognostic Impact of Acute and Chronic Inflammatory Interleukin Signatures in the Tumor Microenvironment of Early Breast Cancer. Int J Mol Sci 2024; 25:11114. [PMID: 39456897 PMCID: PMC11507514 DOI: 10.3390/ijms252011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Interleukins play dual roles in breast cancer, acting as both promoters and inhibitors of tumorigenesis within the tumor microenvironment, shaped by their inflammatory functions. This study analyzed the subtype-specific prognostic significance of an acute inflammatory versus a chronic inflammatory interleukin signature using microarray-based gene expression analysis. Correlations between these interleukin signatures and immune cell markers (CD8, IgKC, and CD20) and immune checkpoints (PD-1) were also evaluated. This study investigated the prognostic significance of an acute inflammatory IL signature (IL-12, IL-21, and IFN-γ) and a chronic inflammatory IL signature (IL-4, IL-5, IL-10, IL-13, IL-17, and CXCL1) for metastasis-free survival (MFS) using Kaplan-Meier curves and Cox regression analyses in a cohort of 461 patients with early breast cancer. Correlations were analyzed using the Spearman-Rho correlation coefficient. Kaplan-Meier curves revealed that the prognostic significance of the acute inflammatory IL signature was specifically pronounced in the basal-like subtype (p = 0.004, Log Rank). This signature retained independent prognostic significance in multivariate Cox regression analysis (HR 0.463, 95% CI 0.290-0.741; p = 0.001). A higher expression of the acute inflammatory IL signature was associated with longer MFS. The chronic inflammatory IL signature showed a significant prognostic effect in the whole cohort, with higher expression associated with shorter MFS (p = 0.034). Strong correlations were found between the acute inflammatory IL signature and CD8 expression (ρ = 0.391; p < 0.001) and between the chronic inflammatory IL signature and PD-1 expression (ρ = 0.627; p < 0.001). This study highlights the complex interaction between acute and chronic inflammatory interleukins in breast cancer progression and prognosis. These findings provide insight into the prognostic relevance of interleukin expression patterns in breast cancer and may inform future therapeutic strategies targeting the immune-inflammatory axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center of Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (A.-S.H.); (I.S.); (K.A.); (S.K.); (R.S.); (K.S.); (A.L.); (W.B.); (A.H.)
| |
Collapse
|
32
|
Cattelan L, Dayan S, Fabi SG. Optimal Practices in the Delivery of Aesthetic Medical Care to Patients on Immunosuppressants and Immunomodulators: A Systematic Review of the Literature. Aesthet Surg J 2024; 44:NP819-NP828. [PMID: 38967686 DOI: 10.1093/asj/sjae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024] Open
Abstract
Nonsurgical aesthetic procedures have been steadily growing in popularity among patients of all ages and ethnicities. At present, the literature remains devoid of guidelines on optimal practices in the delivery of aesthetic medical care to patients on immunosuppressant medications. The authors of this review sought to determine the physiologic responses of immunocompromised patients related to outcomes and potential complications following nonsurgical aesthetic procedures, and to suggest recommendations for optimal management of these patients. A comprehensive systematic review of the literature was performed to identify clinical studies of patients who had undergone nonsurgical aesthetic procedures while immunosuppressed. Forty-three articles reporting on 1690 immunosuppressed patients who underwent filler injection were evaluated, of which the majority (99%; 1682/1690) were HIV patients, while the remaining 8 were medically immunosuppressed. The complication rate of filler in this population was 28% (481/1690), with subcutaneous nodules the most frequently reported adverse event. A detailed synthesis of complications and a review of the inflammatory responses and impact of immunosuppressants and HIV infection on filler complications is presented. The authors concluded that patients on immunomodulatory medications may be at increased risk of filler granuloma relative to the general population, while patients on immunosuppressants may be at increased risk of infectious complications. Rudimentary guidelines for optimal preprocedural patient assessment, aseptic technique, injection technique, and antibacterial and antiviral prophylaxis are reviewed. Ongoing advancements in our understanding of the mechanisms underlying these inflammatory processes will undoubtedly optimize management in this patient population. LEVEL OF EVIDENCE: 3
Collapse
|
33
|
Alnasraui AHF, Joe IH, Al-Musawi S. Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies. ACS Biomater Sci Eng 2024; 10:6299-6313. [PMID: 39221994 DOI: 10.1021/acsbiomaterials.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic nanoparticles used for targeted drug administration present a promising approach in cancer treatment owing to its notable advantages, such as targeted and enhanced encapsulation ability and improved bio protection compared with conventional drug delivery methods. Au shell-iron core nanoparticles (Fe3O4@Au) were manufactured by a chemical process, coated with dextran to encapsulate curcumin, and functionalized for precision drug delivery using folic acid to combat liver cancer. Dynamic light scattering, scanning electron microscopy, transmission electron microscopy, vibrational spectroscopy, and magnetometry were applied to assess the synthesis of the Fe3O4@Au-DEX-CU-FA compound. The mean size, zeta potential, and polydispersity of Fe3O4@Au-DEX-CU-FA were 63.3 ± 2.33 nm, -68.3 ± 1.78 mV, and 0.041 ± 0.008, respectively. Molecular docking models were created to examine the relationship between Fe3O4@Au-CU and BCL-XL, BAK, and to identify potential binding sites. The loading efficiency and release profile tests examined the medication delivery system's ability. MTT assay was subsequently utilized to determine the optimal dosage and therapeutic efficacy of Fe3O4@Au-DEX-CU-FA on cancer SNU-449 and healthy THLE-2 cell lines. Flow cytometry demonstrated that Fe3O4@Au-DEX-CU-FA effectively induced cancer cell death. Fe3O4@Au-DEX-FA showed a regulated release profile of free curcumin at 37 °C and pH values of 7.4 and 5.4. Real-time PCR revealed increased BAK expression and decreased BCL-XL expression. Nude tumor-bearing mice were used for in vivo experiments. Fe3O4@Au-DEX-CU-FA treatment dramatically reduced the swelling size compared with free CU and control treatments. It also resulted in a longer lifespan, expanded splenocyte proliferation, increased IFN-γ levels, and decreased IL-4 levels. The regular cells showed no cytotoxic effect compared with the cancer type, confirming that Fe3O4@Au-DEX-CU-FA maintained its potent anticancer actions. The data suggests that Fe3O4@Au-DEX-CU-FA possesses a promising potential as a therapeutic agent for combating tumors.
Collapse
Affiliation(s)
- Ali Hussein F Alnasraui
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695015, India
- College of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq
| | - I Hubert Joe
- Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, Kerala 695015, India
| | | |
Collapse
|
34
|
Xing YL, Grossauer S, Park JW, Nasajpour E, Bui B, Morales D, Panovska D, Nirschl JJ, Feng ZP, Wei R, Koeck K, Thomason W, Xiu J, Harter PN, Filipski K, Mahaney K, Ji X, Mulcahy Levy JM, Grant GA, Prolo LM, Walsh KM, Lim M, Hambardzumyan D, Petritsch CK. Dual MAPK Inhibition Triggers Pro-inflammatory Signals and Sensitizes BRAF V600E Glioma to T Cell-Mediated Checkpoint Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.03.526065. [PMID: 39416185 PMCID: PMC11482820 DOI: 10.1101/2023.02.03.526065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BRAF V600E pediatric low-grade gliomas frequently transform into high-grade gliomas (HGG) and poorly respond to chemotherapy, resulting in high mortality. Although combined BRAF and MEK inhibition (BRAFi+MEKi) outperforms chemotherapy, ∼70% of BRAF V600E HGG patients are therapy resistant and undergo unbridled tumor progression. BRAF V600E glioma have an immune-rich microenvironment suggesting that they could be responsive to immunotherapy but effects of BRAFi+MEKi on anti-tumor immunity are unclear. Using patient tumor tissue before and after BRAFi+MEKi, two novel syngeneic murine models of BRAF V600E HGG, and patient-derived cell lines, we examined the effects of clinically relevant BRAFi+MEKi with dabrafenib and trametinib on tumor growth, cell states, and tumor-infiltrating T cells. We find that BRAFi+MEKi treatment: i) upregulated programmed cell death protein-1 (PD-1) signaling genes and PD-1 ligand (PD-L1) protein expression in murine BRAF V600E HGG by stimulating IFNγ and IL-27, ii) attenuated T cell activity by IL-23, IL-27 and IL-32 production, which can promote the expansion of regulatory T cells, and iii) induced glial differentiation linked to a therapy-resistant PD-L1+ compartment through Galectin-3 secretion by tumor cells. Murine BRAF V600E HGG shrinkage by BRAFi+MEKi is associated with the upregulation of interferon-gamma response genes, MHC class I/II expression, and antigen presentation and processing programs, indicative of increased anti-tumor immunity. Combined BRAFi+MEKi with therapeutic antibodies inhibiting the PD-1 and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) immune checkpoints re-activate T cells and provide a survival benefit over single therapy in a T cell-dependent manner. The quadruple treatment overcame BRAFi+MEKi resistance by invigorating T cell-mediated anti-tumor immunity in murine BRAF V600E HGG. PD-L1 expression was elevated in human BRAF-mutant versus BRAF-wildtype glioblastoma clinical specimen, complementing experimental findings and suggesting translational relevance for patient care.
Collapse
|
35
|
Vernet-Tomas M, Vazquez I, Olivares F, Lopez D, Yelamos J, Comerma L. Human Leukocyte Antigen Class I Expression and Natural Killer Cell Infiltration and Its Correlation with Prognostic Features in Luminal Breast Cancers. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:657-666. [PMID: 39387059 PMCID: PMC11463177 DOI: 10.2147/bctt.s476721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024]
Abstract
Purpose The aim of this study was to determine whether low HLA-I expression and NK cells infiltration are related to prognostic features in breast cancer, as observed in cancers in other locations and non-hormone dependent breast cancers. Particularly, we explored their relation to infiltrated axillary lymph nodes (ALNs), with the aim of finding new predictors helping to decide the extent of axillary surgery. Patients and Methods We conducted a retrospective correlational analysis of 35 breast cancers from 35 breast cancer patients showing axillary infiltration at diagnosis and with upfront surgery. HLA-I H-score and the number of NK cells x 50 high power fields (HPF) in the biopsy specimen were correlated with pathological variables of the surgical specimen: number of infiltrated ALNs, tumor size, histological type, the presence of ductal carcinoma in situ, focality, histological grade, necrosis, lymphovascular and perineural invasion, Her2Neu status, and the percentages of tumor-infiltrating lymphocytes (TILs), estrogen receptor, progesterone receptor, ki67, and p53. Results All tumors showed hormone receptor expression and three of them Her2Neu positivity. A positive correlation (p=0.001**) was found between HLA-I H-score and TILs and Ki67 expression. HLA H-score increased with histological grade and was higher in unifocal than in multifocal disease (p=0.044 and p=0.011, respectively). No other correlations were found. Conclusion High HLA-I H-score values correlated with features of poor prognosis in this cohort of luminal breast tumors, but not with infiltrated ALNs. This finding highlights the differences between luminal breast cancer, and cancers in other locations and non-hormone dependent breast cancers, in which low HLA-I expression tends to be associated with poor prognostic features.
Collapse
Affiliation(s)
- Maria Vernet-Tomas
- Breast Diseases Unit, Hospital Del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ivonne Vazquez
- Breast Diseases Unit, Hospital Del Mar, Barcelona, Spain
- Department of Pathology; Hospital del Mar, Barcelona, Spain
| | | | - David Lopez
- Department of Pathology; Hospital del Mar, Barcelona, Spain
| | - Jose Yelamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Laboratory of Immunology, Department of Pathology; Hospital Del Mar, Barcelona, Spain
| | - Laura Comerma
- Breast Diseases Unit, Hospital Del Mar, Barcelona, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Department of Pathology; Hospital del Mar, Barcelona, Spain
| |
Collapse
|
36
|
Cao H, Xiao J, Baylink DJ, Nguyen V, Shim N, Lee J, Mallari DJR, Wasnik S, Mirshahidi S, Chen CS, Abdel-Azim H, Reeves ME, Xu Y. Development of a Competitive Nutrient-Based T-Cell Immunotherapy Designed to Block the Adaptive Warburg Effect in Acute Myeloid Leukemia. Biomedicines 2024; 12:2250. [PMID: 39457563 PMCID: PMC11504511 DOI: 10.3390/biomedicines12102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: T-cell-based adoptive cell therapies have emerged at the forefront of cancer immunotherapies; however, failed long-term survival and inevitable exhaustion of transplanted T lymphocytes in vivo limits clinical efficacy. Leukemia blasts possess enhanced glycolysis (Warburg effect), exploiting their microenvironment to deprive nutrients (e.g., glucose) from T cells, leading to T-cell dysfunction and leukemia progression. Methods: Thus, we explored whether genetic reprogramming of T-cell metabolism could improve their survival and empower T cells with a competitive glucose-uptake advantage against blasts and inhibit their uncontrolled proliferation. Results: Here, we discovered that high-glucose concentration reduced the T-cell expression of glucose transporter GLUT1 (SLC2A1) and TFAM (mitochondrion transcription factor A), an essential transcriptional regulator of mitochondrial biogenesis, leading to their impaired expansion ex vivo. To overcome the glucose-induced genetic deficiency in metabolism, we engineered T cells with lentiviral overexpression of SLC2A1 and/or TFAM transgene. Multi-omics analyses revealed that metabolic reprogramming promoted T-cell proliferation by increasing IL-2 release and reducing exhaustion. Moreover, the engineered T cells competitively deprived glucose from allogenic blasts and lessened leukemia burden in vitro. Conclusions: Our findings propose a novel T-cell immunotherapy that utilizes a dual strategy of starving blasts and cytotoxicity for preventing uncontrolled leukemia proliferation.
Collapse
Affiliation(s)
- Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Nathan Shim
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jae Lee
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Dave J. R. Mallari
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Saied Mirshahidi
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Biospecimen Laboratory, Department of Medicine and Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Hisham Abdel-Azim
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Transplant and Cell Therapy, Loma Linda University Cancer Center, Loma Linda, CA 92354, USA
- Division of Hematology and Oncology, Department of Pediatrics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yi Xu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
37
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
38
|
Xia WY, Shen YJ, Zhang CC, Qian LQ, Wang H, Wang K, Jin HZ, Zhu XR, Ding ZP, Zhang Q, Yu W, Feng W, Fu XL. Combination of radiotherapy and PD-L1 blockade induces abscopal responses in EGFR-mutated lung cancer through activating CD8 + T cells. Transl Oncol 2024; 48:102074. [PMID: 39106551 PMCID: PMC11357862 DOI: 10.1016/j.tranon.2024.102074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
Patients with EGFR-mutated non-small cell lung cancer (NSCLC) respond poorly to immune checkpoint inhibitors (ICIs). It has been reported that the number of CD8+T cells is reduced in EGFR-mutated NSCLC. However, the extent of heterogeneity and effector function of distinct populations of CD8+T cells has not been investigated intensively. In addition, studies investigating whether a combination of radiotherapy and ICIs can improve the efficacy of ICIs in EGFR-mutated lung cancer are lacking. Single-cell RNA sequencing (scRNA-seq) was used to investigate the heterogeneity of CD8+T cell populations in EGFR-mutated NSCLC. The STING pathway was explored after hypofractionated radiation of EGFR-mutated and wild-type cells. Mice bearing LLC-19del and LLC-EGFR tumors were treated with radiotherapy plus anti-PD-L1. The scRNA-seq data showed the percentage of progenitor exhausted CD8+T cells was lower in EGFR-mutated NSCLC. In addition, CD8+T cells in EGFR-mutated NSCLC were enriched in oxidative phosphorylation. In EGFR-mutated and wild-type cells, 8 Gy × 3 increased the expression of chemokines that recruit T cells and activate the cGAS-STING pathway. In the LLC-19del and LLC-EGFR mouse model, the combination of radiation and anti-PD-L1 significantly inhibited the growth of abscopal tumors. The enhanced abscopal effect was associated with systemic CD8+T cell infiltration. This study provided an intensive understanding of the heterogeneity and effector functions of CD8+T cells in EGFR-mutated NSCLC. We showed that the combination of hypofractionated radiation and anti-PD-L1 significantly enhanced the abscopal responses in both EGFR-mutated and wild-type lung cancer by activating CD8+T cells in mice.
Collapse
Affiliation(s)
- Wu-Yan Xia
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Jia Shen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen-Chen Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li-Qiang Qian
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Zhen Jin
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Ru Zhu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Ping Ding
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin Zhang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Yu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
39
|
Zhang C, Qiu M, Fu H. Oligodendrocytes in central nervous system diseases: the effect of cytokine regulation. Neural Regen Res 2024; 19:2132-2143. [PMID: 38488548 PMCID: PMC11034588 DOI: 10.4103/1673-5374.392854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 04/24/2024] Open
Abstract
Cytokines including tumor necrosis factor, interleukins, interferons, and chemokines are abundantly produced in various diseases. As pleiotropic factors, cytokines are involved in nearly every aspect of cellular functions such as migration, survival, proliferation, and differentiation. Oligodendrocytes are the myelin-forming cells in the central nervous system and play critical roles in the conduction of action potentials, supply of metabolic components for axons, and other functions. Emerging evidence suggests that both oligodendrocytes and oligodendrocyte precursor cells are vulnerable to cytokines released under pathological conditions. This review mainly summarizes the effects of cytokines on oligodendrocyte lineage cells in central nervous system diseases. A comprehensive understanding of the effects of cytokines on oligodendrocyte lineage cells contributes to our understanding of central nervous system diseases and offers insights into treatment strategies.
Collapse
Affiliation(s)
- Chengfu Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Mengsheng Qiu
- Institute of Life Sciences, Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environment Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| | - Hui Fu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
40
|
Pascal W, Gotowiec M, Smoliński A, Suchecki M, Kopka M, Pascal AM, Włodarski PK. Biologic Brachytherapy: Genetically Modified Surgical Flap as a Therapeutic Tool-A Systematic Review of Animal Studies. Int J Mol Sci 2024; 25:10330. [PMID: 39408659 PMCID: PMC11476562 DOI: 10.3390/ijms251910330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Surgical flaps are rudimentary tools in reconstructive surgery, especially following extensive solid tumour resections. They cover skin and soft tissue defects but are prone to ischaemia and necrosis. Since their primary aim is reconstruction, they rarely exhibit a therapeutic activity against the treated disease. Attempts have been made to develop a new therapeutic strategy-biologic brachytherapy, which uses genetically engineered surgical flaps as a drug delivery vehicle, allowing the flap tissue to act as a "biologic pump". This systematic review summarizes the preclinical evidence on using genetically modified surgical flaps. A literature search was conducted in PubMed, EMBASE, Scopus and Web of Science. The initial literature search yielded 714 papers, and, eventually, seventy-seven studies were included in qualitative analysis. The results show that genetic enhancement of flaps has been used as a local or systemic therapy for numerous disease models. Frequently, it has been used to increase flap survival and limit ischaemia or promote flap survival in a non-ischemic context, with some studies focusing on optimizing the technique of such gene therapy. The results show that genetically modified flaps can be successfully used in a variety of contexts, but we need more studies to implement this research into specific clinical scenarios.
Collapse
Affiliation(s)
- Wiktor Pascal
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Mateusz Gotowiec
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Antoni Smoliński
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Michał Suchecki
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Adriana M. Pascal
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| |
Collapse
|
41
|
Garcia P, Wang Y, Viallet J, Mehdi NEH, Montaut E, Decaens T, Emadali A, Macek Jílková Z. Liver cancer in ovo models for preclinical testing. FASEB J 2024; 38:e70029. [PMID: 39215630 DOI: 10.1096/fj.202401416r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapies have significantly improved the prognosis of patients with advanced hepatocellular carcinoma (HCC), although more than 70% of patients still do not respond to this first-line treatment. Many new combination strategies are currently being explored, which drastically increases the need for preclinical models that would allow large-scale testing of new immunotherapies and their combinations. We developed several in ovo (in the egg) human liver cancer models, based on human tumor xenografts of different liver cancer cell lines on the chicken embryo's chorioallantoic membrane. We characterized the angiogenesis, as well as the collagen accumulation and tumor immune microenvironment, and tested atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) treatment. Our results show the involvement of chicken immune cells in tumor growth, reproducing a classical non-inflamed "cold" as well as inflamed "hot" tumor status, depending on the in ovo liver cancer model. The treatment by atezolizumab and bevacizumab was highly efficient in the "hot" tumor model PLC/PRF/5 in ovo with the reduction of tumor size by 76% (p ≤ .0001) compared with the control, whereas the efficacy was limited in the "cold" Hep3B in ovo tumor. The contribution of the anti-PD-L1 blockade to the anti-tumoral effect in the PLC/PRF/5 in ovo model was demonstrated by the efficacy of atezolizumab monotherapy (p = .0080, compared with the control). To conclude, our study provides a detailed characterization and rational arguments that could help to partially replace conventional laboratory animals with a more ethical model, suited to the current needs of preclinical research of new immunotherapies for liver cancer.
Collapse
Affiliation(s)
- Paul Garcia
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Nour El Houda Mehdi
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Emilie Montaut
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Pôle Recherche, CHU Grenoble Alpes, La Tronche, France
| | - Thomas Decaens
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| | - Anouk Emadali
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Pôle Recherche, CHU Grenoble Alpes, La Tronche, France
| | - Zuzana Macek Jílková
- Univ. Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
- Service d'Hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, La Tronche, France
| |
Collapse
|
42
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kim A. Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca L. Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
43
|
Li FL, Gu LH, Tong YL, Chen RQ, Chen SY, Yu XL, Liu N, Lu JL, Si Y, Sun JH, Chen J, Long YR, Gong LK. INHBA promotes tumor growth and induces resistance to PD-L1 blockade by suppressing IFN-γ signaling. Acta Pharmacol Sin 2024:10.1038/s41401-024-01381-x. [PMID: 39223366 DOI: 10.1038/s41401-024-01381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Inhibin beta A (INHBA) and its homodimer activin A have pleiotropic effects on modulation of immune responses and tumor progression, but it remains uncertain whether tumors may release activin A to regulate anti-tumor immunity. In this study we investigated the effects and mechanisms of tumor intrinsic INHBA on carcinogenesis, tumor immunity and PD-L1 blockade. Bioinformatic analysis on the TCGA database revealed that INHBA expression levels were elevated in 33 cancer types, including breast cancer (BRCA) and colon adenocarcinoma (COAD). In addition, survival analysis also corroborated that INHBA expression was negatively correlated with the prognosis of many types of cancer patients. We demonstrated that gain or loss function of Inhba did not alter in vitro growth of colorectal cancer CT26 cells, but had striking impact on mouse tumor models including CT26, MC38, B16 and 4T1 models. By using the TIMER 2.0 tool, we figured out that in most cancer types, Inhba expression in tumors was inversely associated with the infiltration of CD4+ T and CD8+ T cells. In CT26 tumor-bearing mice, overexpression of tumor INHBA eliminated the anti-tumor effect of the PD-L1 antibody atezolizumab, whereas INHBA deficiency enhanced the efficacy of atezolizumab. We revealed that tumor INHBA significantly downregulated the interferon-γ (IFN-γ) signaling pathway. Tumor INHBA overexpression led to lower expression of PD-L1 induced by IFN-γ, resulting in poor responsiveness to anti-PD-L1 treatment. On the other hand, decreased secretion of IFN-γ-stimulated chemokines, including C-X-C motif chemokine 9 (CXCL9) and 10 (CXCL10), impaired the infiltration of effector T cells into the tumor microenvironment (TME). Furthermore, the activin A-specific antibody garetosmab improved anti-tumor immunity and its combination with the anti-PD-L1 antibody atezolizumab showed a superior therapeutic effect to monotherapy with garetosmab or atezolizumab. We demonstrate that INHBA and activin A are involved in anti-tumor immunity by inhibiting the IFN-γ signaling pathway, which can be considered as potential targets to improve the responsive rate of PD-1/PD-L1 blockade.
Collapse
Affiliation(s)
- Fang-Lin Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Long-Hua Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Liang Tong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Qiu Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Microbiological and Biochemical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shi-Yi Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Lu Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang-Ling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Si
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jing Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Ru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Li-Kun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
| |
Collapse
|
44
|
Dzikowiec M, Galant S, Lik P, Góralska K, Nejc D, Piekarski J, Majos A, Brzeziańska-Lasota E, Pastuszak-Lewandoska D. Analysis of Spermine Oxidase gene and proinflammatory cytokines expression in gastric cancer patients with and without Helicobacter pylori infection - A pilot study in Polish population. Adv Med Sci 2024; 69:443-450. [PMID: 39305951 DOI: 10.1016/j.advms.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Many types of cancer have infectious origins. Gastric cancer patients can demonstrate high seroprevalence of Helicobacter pylori (H. pylori). The aim of the present study was to assess the expression of SMOX gene in the group of Polish patients with gastric cancer. SMOX is believed to promote H. pylori-induced carcinogenesis via inflammation, DNA damage and activation of β-catenin signaling. We also assessed the mRNA expression of selected pro-inflammatory cytokines, i.e. IL-2, IFN-γ, TNF-α, and antimicrobial peptide, cathelicidin. MATERIALS/METHODS The study material consisted of gastric tissue samples collected during total gastrectomy from three different places in stomach: from primary tumor, 3 cm away from the primary lesion, and from the wall opposite to the primary tumor. After RNA isolation, qPCR reactions were performed for the relevant genes. RESULTS The obtained results confirmed an increased level of SMOX expression in gastric cancer patients with the history of H. pylori infection. And, as far as we know, this is the first study on SMOX gene expression conducted on tissue taken from a patient, not on a cell line. The levels of pro-inflammatory cytokines, i.e. IL-2, IFN-γ, TNF-α, were also increased, thus indicating their contribution to the specific inflammatory microenvironment of the tumor. Interestingly, the levels of CAMP, encoding antimicrobial peptide, were reduced in all tissue types. CONCLUSIONS The findings confirm that SMOX plays a role in gastric carcinogenesis. However, further research is needed on the role of inflammatory and other factors involved in this process to identify targets for cancer immunotherapy.
Collapse
Affiliation(s)
- Magdalena Dzikowiec
- Department of Biology and Parasitology, Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland.
| | - Sandra Galant
- Department of Biology and Parasitology, Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| | - Przemysław Lik
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Góralska
- Department of Biology and Parasitology, Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Janusz Piekarski
- Department of Surgical Oncology, Medical University of Lodz, Lodz, Poland
| | - Alicja Majos
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| | - Dorota Pastuszak-Lewandoska
- Department of Microbiology and Laboratory Medical Immunology, Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
45
|
Zong YH, Cao JF, Zhao Y, Gao M, Chen WL, Wu M, Xu X, Xu ZY, Zhang XQ, Tang JZ, Liu Y, Hu XS, Wang SQ, Zhang X. Mechanism of Lian Hua Qing Wen capsules regulates the inflammatory response caused by M 1 macrophage based on cellular experiments and computer simulations. Acta Trop 2024; 257:107320. [PMID: 39002739 DOI: 10.1016/j.actatropica.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE The polarization of macrophages with the resulting inflammatory response play a crucial part in tissue and organ damage due to inflammatory. Study has proved Lian Hua Qing Wen capsules (LHQW) can reduce activation of inflammatory response and damage of tissue derived from the inflammatory reactions. However, the mechanism of LHQW regulates the macrophage-induced inflammatory response is unclear. Therefore, we investigated the mechanism of LHQW regulated the inflammatory response of M1 macrophages by cellular experiments and computer simulations. METHODS This study has analysed the targets and mechanisms of macrophage regulating inflammatory response at gene and protein levels through bioinformatics. The monomeric components of LHQW were analyzed by High Performance Liquid Chromatography (HPLC). We established the in vitro cell model by M1 macrophages (Induction of THP-1 cells into M1 macrophages). RT-qPCR and immunofluorescence were used to detect changes in gene and protein levels of key targets after LHQW treatment. Computer simulations were utilized to verify the binding stability of monomeric components and protein targets. RESULTS Macrophages had 140,690 gene targets, inflammatory response had 12,192 gene targets, intersection gene targets were 11,772. Key monomeric components (including: Pinocembrin, Fargesone-A, Nodakenin and Bowdichione) of LHQW were screened by HPLC. The results of cellular experiments indicated that LHQW could significantly reduce the mRNA expression of CCR5, CSF2, IFNG and TNF, thereby alleviating the inflammatory response caused by M1 macrophage. The computer simulations further validated the binding stability and conformation of key monomeric components and key protein targets, and IFNG/Nodakenin was able to form the most stable binding conformation for its action. CONCLUSION In this study, the mechanism of LHQW inhibits the polarization of macrophages and the resulting inflammatory response was investigated by computer simulations and cellular experiments. We found that LHQW may not only reduce cell damage and death by acting on TNF and CCR5, but also inhibit the immune recognition process and inflammatory response by regulating CSF2 and IFNG to prevent polarization of macrophages. Therefore, these results suggested that LHQW may act through multiple targets to inhibit the polarization of macrophages and the resulting inflammatory response.
Collapse
Affiliation(s)
| | - Jun-Feng Cao
- College of Medicine, Southwest Jiaotong University, Chengdu, PR China
| | | | - Miao Gao
- Chengdu Medical College, Chengdu, PR China
| | | | - Mei Wu
- Chengdu Medical College, Chengdu, PR China
| | - Xiang Xu
- Chengdu Medical College, Chengdu, PR China
| | | | | | | | - Yulin Liu
- Chengdu Medical College, Chengdu, PR China
| | | | | | - Xiao Zhang
- Chengdu Medical College, Chengdu, PR China.
| |
Collapse
|
46
|
Belcher DJ, Kim N, Navarro‐Llinas B, Möller M, López‐Soriano FJ, Busquets S, Nader GA. Anabolic deficits and divergent unfolded protein response underlie skeletal and cardiac muscle growth impairments in the Yoshida hepatoma tumor model of cancer cachexia. Physiol Rep 2024; 12:e70044. [PMID: 39294861 PMCID: PMC11410559 DOI: 10.14814/phy2.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer cachexia manifests as whole body wasting, however, the precise mechanisms governing the alterations in skeletal muscle and cardiac anabolism have yet to be fully elucidated. In this study, we explored changes in anabolic processes in both skeletal and cardiac muscles in the Yoshida AH-130 ascites hepatoma model of cancer cachexia. AH-130 tumor-bearing rats experienced significant losses in body weight, skeletal muscle, and heart mass. Skeletal and cardiac muscle loss was associated with decreased ribosomal (r)RNA, and hypophosphorylation of the eukaryotic factor 4E binding protein 1. Endoplasmic reticulum stress was evident by higher activating transcription factor mRNA in skeletal muscle and growth arrest and DNA damage-inducible protein (GADD)34 mRNA in both skeletal and cardiac muscles. Tumors provoked an increase in tissue expression of interferon-γ in the heart, while an increase in interleukin-1β mRNA was apparent in both skeletal and cardiac muscles. We conclude that compromised skeletal muscle and heart mass in the Yoshida AH-130 ascites hepatoma model involves a marked reduction translational capacity and efficiency. Furthermore, our observations suggest that endoplasmic reticulum stress and tissue production of pro-inflammatory factors may play a role in the development of skeletal and cardiac muscle wasting.
Collapse
Affiliation(s)
- Daniel J. Belcher
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nina Kim
- Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Blanca Navarro‐Llinas
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
| | - Maria Möller
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
| | - Francisco J. López‐Soriano
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Silvia Busquets
- Department of Biochemistry and Molecular MedicineUniversity of BarcelonaBarcelonaSpain
- Institut de Biomedicina de la Universitat de BarcelonaBarcelonaSpain
| | - Gustavo A. Nader
- Huck Institutes of the Life SciencesThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of KinesiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Penn State Cancer InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
47
|
Bchetnia M, Powell J, McCuaig C, Boucher-Lafleur AM, Morin C, Dupéré A, Laprise C. Pathological Mechanisms Involved in Epidermolysis Bullosa Simplex: Current Knowledge and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9495. [PMID: 39273442 PMCID: PMC11394917 DOI: 10.3390/ijms25179495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Epidermolysis bullosa (EB) is a clinically and genetically heterogeneous group of mechanobullous diseases characterized by non-scarring blisters and erosions on the skin and mucous membranes upon mechanical trauma. The simplex form (EBS) is characterized by recurrent blister formation within the basal layer of the epidermis. It most often results from dominant mutations in the genes coding for keratin (K) 5 or 14 proteins (KRT5 and KRT14). A disruptive mutation in KRT5 or KRT14 will not only structurally impair the cytoskeleton, but it will also activate a cascade of biochemical mechanisms contributing to EBS. Skin lesions are painful and disfiguring and have a significant impact on life quality. Several gene expression studies were accomplished on mouse model and human keratinocytes to define the gene expression signature of EBS. Several key genes associated with EBS were identified as specific immunological mediators, keratins, and cell junction components. These data deepened the understanding of the EBS pathophysiology and revealed important functional biological processes, particularly inflammation. This review emphasizes the three EBS subtypes caused by dominant mutations on either KRT5 or KRT14 (localized, intermediate, and severe). It aims to summarize current knowledge about the EBS expression profiling pattern and predicted molecular mechanisms involved and to outline progress in therapy.
Collapse
Affiliation(s)
- Mbarka Bchetnia
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Julie Powell
- CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada
| | | | - Anne-Marie Boucher-Lafleur
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| | - Charles Morin
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Audrey Dupéré
- Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-Saint-Jean, Hôpital Universitaire de Chicoutimi, Saguenay, QC G7H 7K9, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, QC G7H 2B1, Canada
- Centre Intersectoriel en Santé Durable, Saguenay, QC G7H 2B1, Canada
| |
Collapse
|
48
|
Liu Q, Liu M, Zou Z, Lin J, Zhang N, Zhao L, Zhou J, Zhou H, Zhou X, Jiao X, Yu Y, Liu T. Tofacitinib for the treatment of immune-related adverse events in cancer immunotherapy: a multi-center observational study. J Transl Med 2024; 22:803. [PMID: 39210332 PMCID: PMC11360683 DOI: 10.1186/s12967-024-05617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Treatment strategy against immune-related adverse events (irAEs) induced by immune checkpoint inhibitors (ICIs) frequently requires other immunosuppressive agents. Tofacitinib is a rapidly acting JAK-STAT inhibitor with proven efficacy in multiple autoimmune diseases. We aimed to evaluate the efficacy and safety of tofacitinib in the management of irAEs in cancer patients. METHODS Cancer patients who received ICIs and were treated with tofacitinib for the management of irAEs at 6 institutions were retrospectively included in this study. Demographic and clinical characteristics were obtained from electronic medical records. Longitudinal assessment of cardiac troponin T (cTnT) with clinical assessment was utilized to evaluate the benefit of tofacitinib treatment in patients with ICI myocarditis. Overall survival (OS) was also assessed. RESULTS Fifty-three patients were included in this study. The median time from irAE onset to tofacitinib therapy was 17 (range, 2-186) days and the median duration of tofacitinib treatment was 52.5 (range, 3-277) days. Enrolled patients were subdivided into 3 groups based on clinical severity and steroid responsiveness including 11 life-threatening cases, 30 steroid-resistant cases, and 12 cases with steroid taper failure. Clinical remission rate in each group was 54.5%, 96.7%, and 100%, respectively (P < 0.01). Tofacitinib was well-tolerated with 4 patients (7.5%) developing infectious events. From the ICI initiation, the overall median OS was 16.1 (95% CI 7.8-26.9) months. CONCLUSION Tofacitinib showed promising clinical efficacy in patients experiencing irAEs, particularly in patients who failed to respond to steroids or experienced relapse during steroid tapering. Moreover, and most importantly, tofacitinib exhibited a favorable safety profile in cancer patients developing irAEs in terms of both toxicity and anti-tumor activity. Future prospective studies are warranted.
Collapse
Affiliation(s)
- Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
- Cancer Center, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China
| | - Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyi Lin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ningping Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin Zhao
- Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiahua Zhou
- Department of Oncology, Shanghai Construction Group (SCG) Hospital, Shanghai, 200083, China
| | - Haojie Zhou
- Department of Oncology, Shanghai Xuhui Central Hospital, Shanghai, 200031, China
| | - Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaodong Jiao
- Department of Medical Oncology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China.
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Cancer Center, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
49
|
da Silva MI, Oli N, Gambonini F, Ott T. Effects of parity and early pregnancy on peripheral blood leukocytes in dairy cattle. J Dairy Sci 2024:S0022-0302(24)01086-5. [PMID: 39216517 DOI: 10.3168/jds.2024-25063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Subfertility remains a major problem in the dairy industry. Only 35-40% of high-yielding dairy cows and 55-65% of nonlactating heifers become pregnant after their first service. The immune system plays a critical role in the establishment of pregnancy. However, it can also create challenges for embryo survival and contribute to reduced fertility. We conducted 2 separate experiments to characterize changes in subsets of peripheral blood leukocytes (PBL) and their phenotype over the estrous cycle and early pregnancy in heifers and cows. We used flow cytometry and RT-qPCR to assess protein and mRNA expression of molecules important for immune function. We observed that CD14+ monocytes and CD3+ T cells tended to be affected by pregnancy status in heifers, whereas CD8B+ lymphocytes and NCR1+ natural killer (NK) cells were affected during early pregnancy in cows. Changes in expression of immune function proteins appeared to be greater in heifers than cows. To compare the most striking differences between heifers and cows observed in the initial experiments, we conducted a third experiment where PBL sampled from heifers and cows were simultaneously collected and analyzed under the same experimental conditions. Our results indicate that, compared with heifers, cows had greater mRNA expression of proinflammatory cytokines (IFNG and IL6) and AHR protein along with greater percentage of MM20A+ neutrophils and myeloid cells expressing SIRPA, ITGAM and ITGAX. Moreover, animals that failed to become pregnant showed altered expression of anti-inflammatory molecules compared with cyclic and pregnant animals. Overall, these findings support the hypothesis that early pregnancy signaling alters the phenotype of immune cells in the peripheral blood and that there are differences in the peripheral immune response to pregnancy between cows and heifers. Because cows have lower conception rates than heifers, it is possible that a more proinflammatory immune status in peripheral blood may play a role in embryo loss.
Collapse
Affiliation(s)
- M I da Silva
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - N Oli
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - F Gambonini
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - T Ott
- Department of Animal Science, Center for Reproductive Biology and Health, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
50
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|