1
|
Beliakova-Bethell N. Eliminating the persistent HIV reservoir based on biomarker expression - How do we get there? Virology 2024; 603:110368. [PMID: 39721194 DOI: 10.1016/j.virol.2024.110368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Persistent HIV reservoir with different levels of proviral transcriptional activity represents a hurdle to HIV cure. The absence of a specific molecular signature or a "biomarker" to define cells latently infected with HIV limits reservoir eradication efforts. Biomarkers proposed in the literature define subsets of latently infected cells. This article discusses factors contributing to biomarker heterogeneity: external stimuli the cells are exposed to, tissue microenvironments, and person-to-person variation. Despite reservoir heterogeneity, several biomarkers, e.g., programmed cell death 1 and the Fc fragment of IgG low affinity IIa receptor, were reported consistently in multiple studies; however, they alone are unlikely to define all the HIV reservoir cells. Identifying a minimal set of cell surface proteins that together define all reservoir subsets is needed. Future studies will need to focus on the identification of co-expressed proteins that define the same sets of cells to reduce the number of proteins in a biomarker panel. A detailed characterization of tissue biomarkers and proteins expressed in latently infected cells of the myeloid lineage is needed to ensure that all the reservoirs are targeted throughout the body. Furthermore, the effect of underlying conditions that develop as people with HIV age on the manifestation of latency should be evaluated. With the development of novel technologies, such as spatial transcriptomics and proteomics, such endeavors will soon be possible. Thus, there is promise that a minimal set of proteins defining all the different reservoir subsets can be identified and developed into a reservoir targeting strategy.
Collapse
Affiliation(s)
- Nadejda Beliakova-Bethell
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Albanese M, Chen HR, Gapp M, Muenchhoff M, Yang HH, Peterhoff D, Hoffmann K, Xiao Q, Ruhle A, Ambiel I, Schneider S, Mejías-Pérez E, Stern M, Wratil PR, Hofmann K, Amann L, Jocham L, Fuchs T, Ulivi AF, Besson-Girard S, Weidlich S, Schneider J, Spinner CD, Sutter K, Dittmer U, Humpe A, Baumeister P, Wieser A, Rothenfusser S, Bogner J, Roider J, Knolle P, Hengel H, Wagner R, Laketa V, Fackler OT, Keppler OT. Receptor transfer between immune cells by autoantibody-enhanced, CD32-driven trogocytosis is hijacked by HIV-1 to infect resting CD4 T cells. Cell Rep Med 2024; 5:101483. [PMID: 38579727 PMCID: PMC11031382 DOI: 10.1016/j.xcrm.2024.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/23/2023] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Immune cell phenotyping frequently detects lineage-unrelated receptors. Here, we report that surface receptors can be transferred from primary macrophages to CD4 T cells and identify the Fcγ receptor CD32 as driver and cargo of this trogocytotic transfer. Filamentous CD32+ nanoprotrusions deposit distinct plasma membrane patches onto target T cells. Transferred receptors confer cell migration and adhesion properties, and macrophage-derived membrane patches render resting CD4 T cells susceptible to infection by serving as hotspots for HIV-1 binding. Antibodies that recognize T cell epitopes enhance CD32-mediated trogocytosis. Such autoreactive anti-HIV-1 envelope antibodies can be found in the blood of HIV-1 patients and, consistently, the percentage of CD32+ CD4 T cells is increased in their blood. This CD32-mediated, antigen-independent cell communication mode transiently expands the receptor repertoire and functionality of immune cells. HIV-1 hijacks this mechanism by triggering the generation of trogocytosis-promoting autoantibodies to gain access to immune cells critical to its persistence.
Collapse
Affiliation(s)
- Manuel Albanese
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; Department for Clinical Sciences and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Hong-Ru Chen
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.
| | - Madeleine Gapp
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Maximilian Muenchhoff
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Hsiu-Hui Yang
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Katja Hoffmann
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Qianhao Xiao
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Adrian Ruhle
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Ina Ambiel
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Integrative Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Stephanie Schneider
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Ernesto Mejías-Pérez
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Marcel Stern
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Paul R Wratil
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Katharina Hofmann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Laura Amann
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Linda Jocham
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Thimo Fuchs
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | | | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, University Hospital, LMU München, Munich, Germany
| | - Simon Weidlich
- Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Jochen Schneider
- Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph D Spinner
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Technical University of Munich, School of Medicine, University Hospital Rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Kathrin Sutter
- University Hospital Essen, University Duisburg-Essen, Institute for Virology and Institute for Translational HIV Research, Essen, Germany
| | - Ulf Dittmer
- University Hospital Essen, University Duisburg-Essen, Institute for Virology and Institute for Translational HIV Research, Essen, Germany
| | - Andreas Humpe
- Department of Transfusion Medicine, Cell Therapeutics, and Hemostaseology, Department of Anesthesiology, University Hospital Munich, Munich, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU München, Munich, Germany
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Max von Pettenkofer Institute, Medical Microbiology and Hospital Epidemiology, Faculty of Medicine, LMU München, Munich, Germany; Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU München, Munich, Germany
| | - Simon Rothenfusser
- Division of Clinical Pharmacology, University Hospital, LMU München and Unit Clinical Pharmacology (EKliP), Helmholtz Center for Environmental Health, Munich, Germany
| | - Johannes Bogner
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Division of Infectious Diseases, University Hospital, Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
| | - Julia Roider
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Division of Infectious Diseases, University Hospital, Medizinische Klinik und Poliklinik IV, LMU München, Munich, Germany
| | - Percy Knolle
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Vibor Laketa
- German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany; Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany
| | - Oliver T Fackler
- Department of Infectious Diseases, Heidelberg University, Medical Faculty Heidelberg, Integrative Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany.
| | - Oliver T Keppler
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
3
|
Zacharopoulou P, Lee M, Oliveira T, Thornhill J, Robinson N, Brown H, Kinloch S, Goulder P, Fox J, Fidler S, Ansari MA, Frater J. Prevalence of resistance-associated viral variants to the HIV-specific broadly neutralising antibody 10-1074 in a UK bNAb-naïve population. Front Immunol 2024; 15:1352123. [PMID: 38562938 PMCID: PMC10982389 DOI: 10.3389/fimmu.2024.1352123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Broadly neutralising antibodies (bNAbs) targeting HIV show promise for both prevention of infection and treatment. Among these, 10-1074 has shown potential in neutralising a wide range of HIV strains. However, resistant viruses may limit the clinical efficacy of 10-1074. The prevalence of both de novo and emergent 10-1074 resistance will determine its use at a population level both to protect against HIV transmission and as an option for treatment. To help understand this further, we report the prevalence of pre-existing mutations associated with 10-1074 resistance in a bNAb-naive population of 157 individuals presenting to UK HIV centres with primary HIV infection, predominantly B clade, receiving antiretroviral treatment. Single genome analysis of HIV proviral envelope sequences showed that 29% of participants' viruses tested had at least one sequence with 10-1074 resistance-associated mutations. Mutations interfering with the glycan binding site at HIV Env position 332 accounted for 95% of all observed mutations. Subsequent analysis of a larger historic dataset of 2425 B-clade envelope sequences sampled from 1983 to 2019 revealed an increase of these mutations within the population over time. Clinical studies have shown that the presence of pre-existing bNAb mutations may predict diminished therapeutic effectiveness of 10-1074. Therefore, we emphasise the importance of screening for these mutations before initiating 10-1074 therapy, and to consider the implications of pre-existing resistance when designing prevention strategies.
Collapse
Affiliation(s)
| | - Ming Lee
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Thiago Oliveira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY, United States
| | - John Thornhill
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Helen Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sabine Kinloch
- Institute of Immunity and Transplantation, Royal Free Hospital, London, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Julie Fox
- Department of Infection, Guys and St Thomas’ NHS Trust, London, United Kingdom
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - M. Azim Ansari
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford National Institute of Health Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
4
|
Klinnert S, Schenkel CD, Freitag PC, Günthard HF, Plückthun A, Metzner KJ. Targeted shock-and-kill HIV-1 gene therapy approach combining CRISPR activation, suicide gene tBid and retargeted adenovirus delivery. Gene Ther 2024; 31:74-84. [PMID: 37558852 PMCID: PMC10940146 DOI: 10.1038/s41434-023-00413-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Infections with the human immunodeficiency virus type 1 (HIV-1) are incurable due the long-lasting, latent viral reservoir. The shock-and-kill cure approach aims to activate latent proviruses in HIV-1 infected cells and subsequently kill these cells with strategies such as therapeutic vaccines or immune enhancement. Here, we combined the dCas9-VPR CRISPR activation (CRISPRa) system with gRNA-V, the truncated Bid (tBid)-based suicide gene strategy and CD3-retargeted adenovirus (Ad) delivery vectors, in an all-in-one targeted shock-and-kill gene therapy approach to achieve specific elimination of latently HIV-1 infected cells. Simultaneous transduction of latently HIV-1 infected J-Lat 10.6 cells with a CD3-retargeted Ad-CRISPRa-V and Ad-tBid led to a 57.7 ± 17.0% reduction of productively HIV-1 infected cells and 2.4-fold ± 0.25 increase in cell death. The effective activation of latent HIV-1 provirus by Ad-CRISPRa-V was similar to the activation control TNF-α. The strictly HIV-1 dependent and non-leaky killing by tBid could be demonstrated. Furthermore, the high transduction efficiencies of up to 70.8 ± 0.4% by the CD3-retargeting technology in HIV-1 latently infected cell lines was the basis of successful shock-and-kill. This novel targeted shock-and-kill all-in-one gene therapy approach has the potential to safely and effectively eliminate HIV-1 infected cells in a highly HIV-1 and T cell specific manner.
Collapse
Affiliation(s)
- Sarah Klinnert
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Corinne D Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Patrick C Freitag
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Sperber HS, Raymond KA, Bouzidi MS, Ma T, Valdebenito S, Eugenin EA, Roan NR, Deeks SG, Winning S, Fandrey J, Schwarzer R, Pillai SK. The hypoxia-regulated ectonucleotidase CD73 is a host determinant of HIV latency. Cell Rep 2023; 42:113285. [PMID: 37910505 PMCID: PMC10838153 DOI: 10.1016/j.celrep.2023.113285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 07/04/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023] Open
Abstract
Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.
Collapse
Affiliation(s)
- Hannah S Sperber
- Vitalant Research Institute, San Francisco, CA, USA; Free University of Berlin, Institute of Biochemistry, Berlin, Germany; University of California, San Francisco, San Francisco, CA, USA; University Hospital Essen, Institute for Translational HIV Research, Essen, Germany
| | - Kyle A Raymond
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Mohamed S Bouzidi
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA
| | - Tongcui Ma
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | | | | | - Nadia R Roan
- University of California, San Francisco, San Francisco, CA, USA; Gladstone Institutes, San Francisco, CA, USA
| | - Steven G Deeks
- University of California, San Francisco, San Francisco, CA, USA
| | - Sandra Winning
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Joachim Fandrey
- University of Duisburg-Essen, Institute for Physiology, Essen, Germany
| | - Roland Schwarzer
- University Hospital Essen, Institute for Translational HIV Research, Essen, Germany.
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, CA, USA; University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Samer S, Chowdhury A, Wiche Salinas TR, Estrada PMDR, Reuter M, Tharp G, Bosinger S, Cervasi B, Auger J, Gill K, Ablanedo-Terrazas Y, Reyes-Teran G, Estes JD, Betts MR, Silvestri G, Paiardini M. Lymph-Node-Based CD3 + CD20 + Cells Emerge from Membrane Exchange between T Follicular Helper Cells and B Cells and Increase Their Frequency following Simian Immunodeficiency Virus Infection. J Virol 2023; 97:e0176022. [PMID: 37223960 PMCID: PMC10308947 DOI: 10.1128/jvi.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- HHSN261200800001C NCI NIH HHS
- U24 OD011023 NIH HHS
- U42 OD011023 NIH HHS
- P01 AI131338 NIAID NIH HHS
- HHSN261200800001E NCI NIH HHS
- UM1 AI164562 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID)
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart Lung and Blood Institute, National Institute of Neurological Disorders and Stroke (DIR, NIAID, NIDA, NIDDK, NHLBI, NINDS)
- HHS | NIH | National Cancer Institute (NCI)
- HHS | NIH | Office of Research Infrastructure Programs, National Institutes of Health (ORIP)
Collapse
Affiliation(s)
- Sadia Samer
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ankita Chowdhury
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | - Morgan Reuter
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Tharp
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
| | - Steven Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kiran Gill
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Yuria Ablanedo-Terrazas
- Práctica Médica Grupal en Otorrinolaringología, Centro Médico ABC Santa Fe, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael R. Betts
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Yao CY, Hu ZS, Yuan RL, Jin J, Chen ZX. CD32 Expression by CD4 + T and CD8 + T Lymphocytes Is Increased in Patients with Chronic Hepatitis B Virus Infection. Viral Immunol 2023; 36:351-359. [PMID: 37289774 DOI: 10.1089/vim.2022.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
FcγR is expressed by many immune cells and plays an important role in the immune response to hepatitis B virus (HBV) infection. CD32 belongs to the FcγR family. This study aimed to observe changes in CD32 expression by CD4+ T and CD8+ T lymphocytes in chronic HBV infection patients and evaluate the clinical utility of CD4+ T and CD8+ T CD32 expression to assess the severity of liver injury in chronic HBV-infected patients. A total of 68 chronic HBV patients and 40 healthy individuals were recruited, and the median fluorescence intensity (MFI) of CD32 expression on CD4+ T, CD8+ T lymphocytes was measured using flow cytometry and the CD4+ T, CD8+ T CD32 index was calculated. The reactivity of the healthy individual lymphocytes to mixed patients' plasma containing HBV was observed. Finally, the correlation between CD4+ T, CD8+ T lymphocytes CD32 MFI and liver function indicator levels was analyzed. The CD4+ T, CD8+ T CD32 MFI and index were significantly elevated in HBV patient groups than in normal control group (p < 0.001, for all). Furthermore, the CD32 MFI of healthy persons' CD4+ T and CD8+ T lymphocytes were remarkably increased when stimulated with mixed patients' plasma containing high HBV copies (p < 0.001; P < 0.001). More importantly, in HBV patients, there was a significant positive correlation between CD4+ T, CD8+ T CD32 MFI and the level of serum aspartate aminotransferase (p < 0.05, p < 0.05). In conclusion, the increased expression of CD32 on CD4+ T and CD8+ T lymphocytes might be potential promising biomarkers for the severity of liver function impairment in chronic HBV patients.
Collapse
Affiliation(s)
- Chun-Yan Yao
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Zhao-Suo Hu
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Run-Lin Yuan
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Juan Jin
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Zheng-Xu Chen
- Department of Clinical Laboratory, the Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
8
|
Qi H, Qin L, Li Y, Jin F, Kang Z, Hou J, Wang Y. A 16-color full spectrum flow cytometric analysis for comprehensive evaluation of T-cell reconstitution in SIV-infected rhesus macaques. J Immunol Methods 2023; 514:113404. [PMID: 36496008 DOI: 10.1016/j.jim.2022.113404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
T-cell reconstitution is central in human immunodeficiency virus (HIV) infection/disease progression. Simian immunodeficiency virus (SIV)-infected rhesus macaques (Macaca mulatta) have been the most widely used animal model for HIV research so far. An effective flow cytometry panel is crucial for monitoring the T cell reconstitution in SIV infection progression. We developed this sixteen-color flow cytometry-based panel for a T cell subsets analysis by manual gating and, once successfully gated, to characterize T cells function in-depth in rhesus macaques. This panel included markers to characterize CD4+ T cells and CD8+ T cells, T regulatory cells (Tregs), and T cell differentiation status (CD45RA and CCR7). Additionally, we included antibodies that measure T cell activation and proliferation molecules (CD69, HLA-DR, CD38 and Ki67), antibodies that examine the expressions of key PD-1 pathway molecule (PD-1), SIV potential target (CD32) and the primary SIV co-receptor CCR5 (CD195). High-dimensional single cell analysis was also performed to identify CD3+ T cells immunophenotypes of SIV-infected rhesus macaques. We designed this panel to evaluate the responses of different T cell subsets to SIV in whole blood from SIV-infected rhesus macaques.
Collapse
Affiliation(s)
- Hemei Qi
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Li Qin
- CAS Lamvac (Guangzhou) Biomedical Technology CO.,Ltd., Guangzhou 510663, China
| | - Yuefeng Li
- Landao Biotech Co., Ltd, Guangzhou 510555, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhongkui Kang
- CAS Lamvac (Guangzhou) Biomedical Technology CO.,Ltd., Guangzhou 510663, China
| | - Jianghou Hou
- Kunming City Matermal and Child Health Hospital, Kunming 650013, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Lee AYS. CD20 + T cells: an emerging T cell subset in human pathology. Inflamm Res 2022; 71:1181-1189. [PMID: 35951029 PMCID: PMC9616751 DOI: 10.1007/s00011-022-01622-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Although CD20 is classically a B cell marker, in the last three decades, dim expression has been noted on a subset of T cells as well that has been independently verified by a number of groups. Our understanding of these cells and their function is not well established. Methods A thorough review of original articles on CD20+T cells was undertaken of Pubmed by using combination of phrases including “CD20+”, “CD20-positive” and “T cells”. Articles in English were considered, and there was no time restriction. Results CD20+T cells express the standard T cell markers and, in comparison to CD20¯ T cells, appear to express greater inflammatory cytokines and markers of effector function. Although the ontogeny of these cells is still being established, the current theory is that CD20 may be acquired by trogocytosis from B cells. CD20+T cells may be found in healthy controls and in a wide range of pathologies including autoimmune diseases, haematological and non-haematological malignancies and human immunodeficiency virus (HIV) infections. One of the best studied diseases where these cells are found is multiple sclerosis (MS) where a number of therapeutic interventions, including anti-CD20 depletion, have been shown to effectively deplete these cells. Conclusion This review summarises the latest understanding of CD20+T cells, their presence in various diseases, their putative function and how they may be an ongoing target of CD20-depleting agents. Unfortunately, our understanding of these cells is still at its infancy and ongoing study in a wider range of pathologies is required.
Collapse
Affiliation(s)
- Adrian Y S Lee
- Department of Clinical Immunology, Westmead Hospital, Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Department of Immunopathology, ICPMR and NSW Health Pathology, Westmead Hospital, Westmead, NSW, Australia. .,Department of Medicine, Westmead Clinical School, The University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
10
|
Astorga-Gamaza A, Grau-Expósito J, Burgos J, Navarro J, Curran A, Planas B, Suanzes P, Falcó V, Genescà M, Buzon M. Identification of HIV-reservoir cells with reduced susceptibility to antibody-dependent immune response. eLife 2022; 11:78294. [PMID: 35616530 PMCID: PMC9177146 DOI: 10.7554/elife.78294] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
HIV establishes a persistent infection in heterogeneous cell reservoirs, which can be maintained by different mechanisms including cellular proliferation, and represent the main obstacle to curing the infection. The expression of the Fcγ receptor CD32 has been identified as a marker of the active cell reservoirs in people on antiretroviral therapy, but if its expression has any role in conferring advantage for viral persistence is unknown. Here, we report that HIV-infected cells expressing CD32 have reduced susceptibility to natural killer (NK) antibody-dependent cell cytotoxicity (ADCC) by a mechanism compatible with the suboptimal binding of HIV-specific antibodies. Infected CD32 cells have increased proliferative capacity in the presence of immune complexes, and are more resistant to strategies directed to potentiate NK function. Remarkably, reactivation of the latent reservoir from antiretroviral-treated people living with HIV increases the pool of infected CD32 cells, which are largely resistant to the ADCC immune mechanism. Thus, we report the existence of reservoir cells that evade part of the NK immune response through the expression of CD32.
Collapse
Affiliation(s)
| | | | - Joaquín Burgos
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Jordi Navarro
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Adrià Curran
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Bibiana Planas
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Paula Suanzes
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Vicenç Falcó
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Meritxell Genescà
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| | - Maria Buzon
- Infectious Disease Department, Vall d'Hebron Research Institute (VHIR)
| |
Collapse
|
11
|
Malatinkova E, Thomas J, De Spiegelaere W, Rutsaert S, Geretti AM, Pollakis G, Paxton WA, Vandekerckhove L, Ruggiero A. Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences. Life (Basel) 2021; 11:life11121410. [PMID: 34947941 PMCID: PMC8706387 DOI: 10.3390/life11121410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022] Open
Abstract
Integrated HIV-1 DNA persists despite antiretroviral therapy and can fuel viral rebound following treatment interruption. Hence, methods to specifically measure the integrated HIV-1 DNA portion only are important to monitor the reservoir in eradication trials. Here, we provide an up-to-date overview of the literature on the different approaches used to measure integrated HIV-1 DNA. Further, we propose an implemented standard-curve free assay to quantify integrated HIV-1 DNA, so-called Alu-5LTR PCR, which utilises novel primer combinations. We tested the Alu-5LTR PCR in 20 individuals on suppressive ART for a median of nine years; the results were compared to those produced with the standard-free Alu-gag assay. The numbers of median integrated HIV-1 DNA copies were 5 (range: 1–12) and 14 (5–26) with the Alu-gag and Alu-5LTR, respectively. The ratios between Alu-gag vs Alu-5LTR results were distributed within the cohort as follows: most patients (12/20, 60%) provided ratios between 2–5, with 3/20 (15%) and 5/20 (25%) being below or above this range, respectively. Alu-5LTR assay sensitivity was also determined using an “integrated standard”; the data confirmed the increased sensitivity of the assay, i.e., equal to 0.25 proviruses in 10,000 genomes. This work represents an improvement in the field of measuring proviral HIV-1 DNA that could be employed in future HIV-1 persistence and eradication studies.
Collapse
Affiliation(s)
- Eva Malatinkova
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Faculty of Veterinary Sciences, Ghent University, B-9820 Ghent, Belgium;
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Anna Maria Geretti
- Fondazione PTV and Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, Faculty of Medicine and Health Sciences, Ghent University, B-9000 Ghent, Belgium; (E.M.); (S.R.); (L.V.)
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (J.T.); (G.P.); (W.A.P.)
- Department Neurosciences, Biomedicine and Movement Sciences, School of Medicine-University of Verona, 37129 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7190
| |
Collapse
|
12
|
Arsentieva NA, Batsunov OK, Semenov AV, Kudryavtsev IV, Esaulenko EV, Boeva EV, Kovelenov AY, Totolian AA. Association between Higher CD32a+CD4+ T Cell Count and Viral Load in the Peripheral Blood of HIV-infected Patients. Open AIDS J 2021. [DOI: 10.2174/1874613602115010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The significance of CD32a receptor expression in individuals infected with Human Immunodeficiency Virus (HIV) is currently unclear. Previously, B. Descours et al. (2017) concluded that in patients infected with HIV-1, CD32a is expressed on resting T cells that contain HIV DNA. According to the authors, these cells are reservoirs for inducible, replication-competent viruses. However, other studies have reported that CD32a expression is associated with activated T cells and is not a marker of HIV-1 reservoirs. The aims of this study were: to determine the significance of the CD32a marker in HIV infection, to assess its expression on T helper (Th) subpopulations in peripheral blood of HIV-infected individuals and to clarify the relationship between this expression and viral load.
Methods:
For comparative analysis, the following groups were used: 27 HIV-infected patients; 11 individuals with Hepatitis C Virus (HCV) infection; 16 individuals with Hepatitis B Virus (HBV) infection; and 13 healthy donors. Peripheral blood served as the study material. The expression of CD32a receptor on Th cell subpopulations was assessed using flow cytometry. Nonparametric statistical methods were used for data analysis.
Results:
It was found that relative CD32a+ Th cell counts in HIV-infected individuals significantly exceeded corresponding values in other groups: healthy individuals (p<0.0001), those with HCV infection (p=0.0008) and those with HBV infection (p <0.0001). Among the Th subpopulations in HIV-infected patients, the CD32a receptor was predominantly expressed on Th1 cells (p<0.0001) and Th2 cells (p<0.0001), compared with Th17. We found a strong, direct correlation (r=0.78; p<0.0001) between viral load and CD32a+CD4+ T cell count in peripheral blood of HIV-infected individuals.
Conclusion:
Thus, our results provide evidence that the CD32a receptor can serve as a marker of HIV infection, and its expression depends on viral load. Clinical material was used here, for the first time, to show that CD32a is predominantly expressed on Th1 and Th2 cells.
Collapse
|
13
|
Huot N, Rascle P, Planchais C, Contreras V, Passaes C, Le Grand R, Beignon AS, Kornobis E, Legendre R, Varet H, Saez-Cirion A, Mouquet H, Jacquelin B, Müller-Trutwin M. CD32 +CD4 + T Cells Sharing B Cell Properties Increase With Simian Immunodeficiency Virus Replication in Lymphoid Tissues. Front Immunol 2021; 12:695148. [PMID: 34220857 PMCID: PMC8242952 DOI: 10.3389/fimmu.2021.695148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
CD4 T cell responses constitute an important component of adaptive immunity and are critical regulators of anti-microbial protection. CD4+ T cells expressing CD32a have been identified as a target for HIV. CD32a is an Fcγ receptor known to be expressed on myeloid cells, granulocytes, B cells and NK cells. Little is known about the biology of CD32+CD4+ T cells. Our goal was to understand the dynamics of CD32+CD4+ T cells in tissues. We analyzed these cells in the blood, lymph nodes, spleen, ileum, jejunum and liver of two nonhuman primate models frequently used in biomedical research: African green monkeys (AGM) and macaques. We studied them in healthy animals and during viral (SIV) infection. We performed phenotypic and transcriptomic analysis at different stages of infection. In addition, we compared CD32+CD4+ T cells in tissues with well-controlled (spleen) and not efficiently controlled (jejunum) SIV replication in AGM. The CD32+CD4+ T cells more frequently expressed markers associated with T cell activation and HIV infection (CCR5, PD-1, CXCR5, CXCR3) and had higher levels of actively transcribed SIV RNA than CD32-CD4+T cells. Furthermore, CD32+CD4+ T cells from lymphoid tissues strongly expressed B-cell-related transcriptomic signatures, and displayed B cell markers at the cell surface, including immunoglobulins CD32+CD4+ T cells were rare in healthy animals and blood but increased strongly in tissues with ongoing viral replication. CD32+CD4+ T cell levels in tissues correlated with viremia. Our results suggest that the tissue environment induced by SIV replication drives the accumulation of these unusual cells with enhanced susceptibility to viral infection.
Collapse
Affiliation(s)
- Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Cyril Planchais
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | - Vanessa Contreras
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Caroline Passaes
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud-Inserm, U1184, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Etienne Kornobis
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique - Département Biologie Computationnelle, Institut Pasteur, Paris, France.,Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Asier Saez-Cirion
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Hugo Mouquet
- Institut Pasteur, INSERM U1222, Laboratoire d'Immunologie Humorale, Paris, France
| | | | | |
Collapse
|
14
|
Lamptey H, Bonney EY, Adu B, Kyei GB. Are Fc Gamma Receptor Polymorphisms Important in HIV-1 Infection Outcomes and Latent Reservoir Size? Front Immunol 2021; 12:656894. [PMID: 34017334 PMCID: PMC8129575 DOI: 10.3389/fimmu.2021.656894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Fc gamma receptors (FcγR) are cell surface glycoproteins which trigger specific effector-cell responses when cross-linked with the Fc portions of immunoglobulin (IgG) antibodies. During HIV-1 infection, the course of disease progression, ART response, and viral reservoir size vary in different individuals. Several factors may account for these differences; however, Fc gamma receptor gene polymorphisms, which influence receptor binding to IgG antibodies, are likely to play a key role. FcγRIIa (CD32) was recently reported as a potential marker for latent HIV reservoir, however, this assertion is still inconclusive. Whether FcγR polymorphisms influence the size of the viral reservoir, remains an important question in HIV cure studies. In addition, potential cure or viral suppression methods such as broadly neutralizing antibody (bNAbs) may depend on FcγRs to control the virus. Here, we discuss the current evidence on the potential role played by FcγR polymorphisms in HIV-1 infection, treatment and vaccine trial outcomes. Importantly, we highlight contrasting findings that may be due to multiple factors and the relatively limited data from African populations. We recommend further studies especially in sub-Saharan Africa to confirm the role of FcγRIIa in the establishment of latent reservoir and to determine their influence in therapies involving bNAbs.
Collapse
Affiliation(s)
- Helena Lamptey
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Adu
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - George B. Kyei
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Medicine, Washington University School of Medicine in St Louis, St. Louis, MO, United States
- Medical and Scientific Research Centre, University of Ghana Medical Centre, University of Ghana, Accra, Ghana
| |
Collapse
|
15
|
Darcis G, Kootstra NA, Hooibrink B, van Montfort T, Maurer I, Groen K, Jurriaans S, Bakker M, van Lint C, Berkhout B, Pasternak AO. CD32 +CD4 + T Cells Are Highly Enriched for HIV DNA and Can Support Transcriptional Latency. Cell Rep 2021; 30:2284-2296.e3. [PMID: 32075737 PMCID: PMC7050565 DOI: 10.1016/j.celrep.2020.01.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
The HIV latent reservoir forms the major hurdle to an HIV cure. The discovery of CD32 as marker of this reservoir has aroused much interest, but subsequent reports have challenged this finding. Here, we observe a positive correlation between the percentages of CD32+ cells among CD4+ T cells of aviremic cART-treated, HIV-infected individuals and their HIV DNA loads in peripheral blood. Moreover, optimization of the CD32+CD4+ T cell purification protocol reveals prominent enrichment for HIV DNA (mean, 292-fold) in these cells. However, no enrichment for HIV RNA is observed in CD32+CD4+ cells, yielding significantly reduced HIV RNA/DNA ratios. Furthermore, HIV proviruses in CD32+CD4+ cells can be reactivated ex vivo to produce virus, strongly suggesting that these cells support HIV transcriptional latency. Our results underscore the importance of isolating pure, bona fide CD32+CD4+ T cells for future studies and indicate that CD32 remains a promising candidate marker of the HIV reservoir.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Infectious Diseases Department, Liège University Hospital, Liège, Belgium.
| | - Neeltje A Kootstra
- Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Berend Hooibrink
- Department of Cell Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Thijs van Montfort
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Irma Maurer
- Laboratory of Viral Immune Pathogenesis, Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Kevin Groen
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Suzanne Jurriaans
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Carine van Lint
- Service of Molecular Virology, Département de Biologie Moléculaire (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Adams P, Fievez V, Schober R, Amand M, Iserentant G, Rutsaert S, Dessilly G, Vanham G, Hedin F, Cosma A, Moutschen M, Vandekerckhove L, Seguin-Devaux C. CD32 +CD4 + memory T cells are enriched for total HIV-1 DNA in tissues from humanized mice. iScience 2021; 24:101881. [PMID: 33364576 PMCID: PMC7753142 DOI: 10.1016/j.isci.2020.101881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/04/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022] Open
Abstract
CD32 has raised conflicting results as a putative marker of the HIV-1 reservoir. We measured CD32 expression in tissues from viremic and virally suppressed humanized mice treated relatively early or late after HIV-1 infection with combined antiretroviral therapy. CD32 was expressed in a small fraction of the memory CD4+ T-cell subsets from different tissues in viremic and aviremic mice, regardless of treatment initiation time. CD32+ memory CD4+ T cells were enriched in cell-associated (CA) HIV-1 DNA but not in CA HIV-1 RNA as compared to the CD32-CD4+ fraction. Using multidimensional reduction analysis, several memory CD4+CD32+ T-cell clusters were identified expressing HLA-DR, TIGIT, or PD-1. Importantly, although tissue-resident CD32+CD4+ memory cells were enriched with translation-competent reservoirs, most of it was detected in memory CD32-CD4+ T cells. Our findings support that CD32 labels highly activated/exhausted memory CD4+ T-cell subsets that contain only a small proportion of the translation-competent reservoir.
Collapse
Affiliation(s)
- Philipp Adams
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Virginie Fievez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Rafaëla Schober
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Mathieu Amand
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Géraldine Dessilly
- AIDS Reference Laboratory, Catholic University of Louvain, Brussels 1348, Belgium
| | - Guido Vanham
- Department of Biomedical and Clinical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp 2000, Belgium
| | - Fanny Hedin
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Antonio Cosma
- Quantitative Biology Unit, National Cytometry Platform, Luxembourg Institute of Health, Esch-sur-Alzette L-4354, Luxembourg
| | - Michel Moutschen
- Department of Infectious Diseases, University of Liège, CHU de Liège, Liège 4000, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium
| | - Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette 4354, Luxembourg
| |
Collapse
|
17
|
Bournazos S, Corti D, Virgin HW, Ravetch JV. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 2020; 588:485-490. [PMID: 33032297 PMCID: PMC7672690 DOI: 10.1038/s41586-020-2838-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/02/2020] [Indexed: 02/05/2023]
Abstract
Antibodies against viral pathogens represent promising therapeutic agents for the control of infection, and their antiviral efficacy has been shown to require the coordinated function of both the Fab and Fc domains1. The Fc domain engages a wide spectrum of receptors on discrete cells of the immune system to trigger the clearance of viruses and subsequent killing of infected cells1-4. Here we report that Fc engineering of anti-influenza IgG monoclonal antibodies for selective binding to the activating Fcγ receptor FcγRIIa results in enhanced ability to prevent or treat lethal viral respiratory infection in mice, with increased maturation of dendritic cells and the induction of protective CD8+ T cell responses. These findings highlight the capacity for IgG antibodies to induce protective adaptive immunity to viral infection when they selectively activate a dendritic cell and T cell pathway, with important implications for the development of therapeutic antibodies with improved antiviral efficacy against viral respiratory pathogens.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Viral/chemistry
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Dendritic Cells/cytology
- Dendritic Cells/immunology
- Female
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin Fc Fragments/chemistry
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin G/chemistry
- Immunoglobulin G/immunology
- Influenza, Human/drug therapy
- Influenza, Human/immunology
- Influenza, Human/mortality
- Influenza, Human/prevention & control
- Lymphocyte Activation
- Mice
- Neuraminidase/immunology
- Orthomyxoviridae/immunology
- Receptors, IgG/chemistry
- Receptors, IgG/immunology
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology Inc., Bellinzona, Switzerland
| | | | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
18
|
The importance of advanced cytometry in defining new immune cell types and functions relevant for the immunopathogenesis of HIV infection. AIDS 2020; 34:2169-2185. [PMID: 32910071 DOI: 10.1097/qad.0000000000002675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
: In the last years, novel, exciting immunological findings of interest for HIV research and treatment were identified thanks to different cytometric approaches. The analysis of the phenotypes and functionality of cells belonging to the immune system could clarify their role in the immunopathogenesis of HIV infection, and to elaborate key concepts, relevant in the treatment of this disease. Important discoveries have been made concerning cells that are important for protective immunity like lymphocytes that display polyfunctionality, resident memory T cells, innate lymphoid cells, to mention a few. The complex phenotype of myeloid-derived suppressor cells has been investigated, and relevant changes have been reported during chronic and primary HIV infection, in correlation with changes in CD4 T-cell number, T-cell activation, and with advanced disease stage. The search for markers of HIV persistence present in latently infected cells, namely those molecules that are important for a functional or sterilizing cure, evidenced the role of follicular helper T cells, and opened a discussion on the meaning and use of different surface molecules not only in identifying such cells, but also in designing new strategies. Finally, advanced technologies based upon the simultaneous detection of HIV-RNA and proteins at the single cell level, as well as those based upon spectral cytometry or mass cytometry are now finding new actors and depicting a new scenario in the immunopathogenesis of the infection, that will allow to better design innovative therapies based upon novel drugs and vaccines.
Collapse
|
19
|
Virdi AK, Wallace J, Barbian H, Richards MH, Ritz EM, Sha B, Al-Harthi L. CD32 is enriched on CD4dimCD8bright T cells. PLoS One 2020; 15:e0239157. [PMID: 32960910 PMCID: PMC7508398 DOI: 10.1371/journal.pone.0239157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
CD4dimCD8bright T cells, a genuine population of CD8+ T cells, are highly activated and cytolytic. Recently, the low affinity IgG Fc fragment receptor CD32a was described as marker of HIV latency while others reported that CD32a is associated with T cell activation. Given that we have previously established that CD4dimCD8bright T cells are highly activated, mediate anti-HIV responses, and are infected by HIV, we assessed here CD32 expression on CD4dimCD8bright T cells in context of HIV. CD32 frequency on peripheral CD4dimCD8bright and CD4+ T cells was determined by flow cytometry among HIV negative and HIV positive patients. We report that among HIV- individuals, mean CD32 percent expression was 60% on CD4dimCD8bright T cells and 17% on CD4+ T cells (p<0.01). Among HIV+ patients, mean CD32 percent expression was 54% on CD4dimCD8bright T cells and 12% on CD4+ T cells (p<0.001). CD32 expression on CD4dimCD8bright T cells did not correlate with CD4 count and viral load and was not different by HIV serostatus. CD32 was also higher on other double positive T cell populations in both HIV negative and HIV positive donors in comparison to their single positive T cell counterpart. Together, these studies indicate that CD32 is enriched on double positive T cells regardless of HIV serostatus. The functional role of CD32 on these double positive T cells remains to be elucidated.
Collapse
Affiliation(s)
- Amber K. Virdi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Hannah Barbian
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Maureen H. Richards
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Ethan M. Ritz
- Biostatistics and Bioinformatics Core, Rush University Medical Center, Chicago, IL, United States of America
| | - Beverly Sha
- Infectious Diseases Division, Rush Medical College, Chicago, IL, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
20
|
Thomas J, Ruggiero A, Paxton WA, Pollakis G. Measuring the Success of HIV-1 Cure Strategies. Front Cell Infect Microbiol 2020; 10:134. [PMID: 32318356 PMCID: PMC7154081 DOI: 10.3389/fcimb.2020.00134] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
HIV-1 eradication strategies aim to achieve viral remission in the absence of antiretroviral therapy (ART). The development of an HIV-1 cure remains challenging due to the latent reservoir (LR): long-lived CD4 T cells that harbor transcriptionally silent HIV-1 provirus. The LR is stable despite years of suppressive ART and is the source of rebound viremia following therapy interruption. Cure strategies such as "shock and kill" aim to eliminate or reduce the LR by reversing latency, exposing the infected cells to clearance via the immune response or the viral cytopathic effect. Alternative strategies include therapeutic vaccination, which aims to prime the immune response to facilitate control of the virus in the absence of ART. Despite promising advances, these strategies have been unable to significantly reduce the LR or increase the time to viral rebound but have provided invaluable insight in the field of HIV-1 eradication. The development and assessment of an HIV-1 cure requires robust assays that can measure the LR with sufficient sensitivity to detect changes that may occur following treatment. The viral outgrowth assay (VOA) is considered the gold standard method for LR quantification due to its ability to distinguish intact and defective provirus. However, the VOA is time consuming and resource intensive, therefore several alternative assays have been developed to bridge the gap between practicality and accuracy. Whilst a cure for HIV-1 infection remains elusive, recent advances in our understanding of the LR and methods for its eradication have offered renewed hope regarding achieving ART free viral remission.
Collapse
Affiliation(s)
- Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom.,Immune and Infectious Disease Division, Academic Department of Pediatrics (DPUO), Bambino Gesù Children's Hospital, Rome, Italy
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
21
|
Halling Folkmar Andersen A, Tolstrup M. The Potential of Long-Acting, Tissue-Targeted Synthetic Nanotherapy for Delivery of Antiviral Therapy Against HIV Infection. Viruses 2020; 12:E412. [PMID: 32272815 PMCID: PMC7232358 DOI: 10.3390/v12040412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oral administration of a combination of two or three antiretroviral drugs (cART) has transformed HIV from a life-threatening disease to a manageable infection. However, as the discontinuation of therapy leads to virus rebound in plasma within weeks, it is evident that, despite daily pill intake, the treatment is unable to clear the infection from the body. Furthermore, as cART drugs exhibit a much lower concentration in key HIV residual tissues, such as the brain and lymph nodes, there is a rationale for the development of drugs with enhanced tissue penetration. In addition, the treatment, with combinations of multiple different antiviral drugs that display different pharmacokinetic profiles, requires a strict dosing regimen to avoid the emergence of drug-resistant viral strains. An intriguing opportunity lies within the development of long-acting, synthetic scaffolds for delivering cART. These scaffolds can be designed with the goal to reduce the frequency of dosing and furthermore, hold the possibility of potential targeting to key HIV residual sites. Moreover, the synthesis of combinations of therapy as one molecule could unify the pharmacokinetic profiles of different antiviral drugs, thereby eliminating the consequences of sub-therapeutic concentrations. This review discusses the recent progress in the development of long-acting and tissue-targeted therapies against HIV for the delivery of direct antivirals, and examines how such developments fit in the context of exploring HIV cure strategies.
Collapse
Affiliation(s)
- Anna Halling Folkmar Andersen
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Tolstrup
- Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus, Denmark;
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
22
|
Kwon KJ, Timmons AE, Sengupta S, Simonetti FR, Zhang H, Hoh R, Deeks SG, Siliciano JD, Siliciano RF. Different human resting memory CD4 + T cell subsets show similar low inducibility of latent HIV-1 proviruses. Sci Transl Med 2020; 12:eaax6795. [PMID: 31996465 PMCID: PMC7875249 DOI: 10.1126/scitranslmed.aax6795] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/10/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.
Collapse
Affiliation(s)
- Kyungyoon J Kwon
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Timmons
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Flow Cytometry and Immunology Core, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
23
|
Ait-Ammar A, Kula A, Darcis G, Verdikt R, De Wit S, Gautier V, Mallon PWG, Marcello A, Rohr O, Van Lint C. Current Status of Latency Reversing Agents Facing the Heterogeneity of HIV-1 Cellular and Tissue Reservoirs. Front Microbiol 2020; 10:3060. [PMID: 32038533 PMCID: PMC6993040 DOI: 10.3389/fmicb.2019.03060] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
One of the most explored therapeutic approaches aimed at eradicating HIV-1 reservoirs is the "shock and kill" strategy which is based on HIV-1 reactivation in latently-infected cells ("shock" phase) while maintaining antiretroviral therapy (ART) in order to prevent spreading of the infection by the neosynthesized virus. This kind of strategy allows for the "kill" phase, during which latently-infected cells die from viral cytopathic effects or from host cytolytic effector mechanisms following viral reactivation. Several latency reversing agents (LRAs) with distinct mechanistic classes have been characterized to reactivate HIV-1 viral gene expression. Some LRAs have been tested in terms of their potential to purge latent HIV-1 in vivo in clinical trials, showing that reversing HIV-1 latency is possible. However, LRAs alone have failed to reduce the size of the viral reservoirs. Together with the inability of the immune system to clear the LRA-activated reservoirs and the lack of specificity of these LRAs, the heterogeneity of the reservoirs largely contributes to the limited success of clinical trials using LRAs. Indeed, HIV-1 latency is established in numerous cell types that are characterized by distinct phenotypes and metabolic properties, and these are influenced by patient history. Hence, the silencing mechanisms of HIV-1 gene expression in these cellular and tissue reservoirs need to be better understood to rationally improve this cure strategy and hopefully reach clinical success.
Collapse
Affiliation(s)
- Amina Ait-Ammar
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Anna Kula
- Malopolska Centre of Biotechnology, Laboratory of Virology, Jagiellonian University, Krakow, Poland
| | - Gilles Darcis
- Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Roxane Verdikt
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Stephane De Wit
- Service des Maladies Infectieuses, CHU Saint-Pierre, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Virginie Gautier
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick W G Mallon
- UCD Centre for Experimental Pathogen Host Research (CEPHR), School of Medicine, University College Dublin, Dublin, Ireland
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Olivier Rohr
- Université de Strasbourg, EA7292, FMTS, IUT Louis Pasteur, Schiltigheim, France
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Virology (DBM), Université Libre de Bruxelles (ULB), Gosselies, Belgium
| |
Collapse
|
24
|
Dhummakupt A, Siems LV, Singh D, Chen YH, Anderson T, Collinson-Streng A, Zhang H, Patel P, Agwu A, Persaud D. The Latent Human Immunodeficiency Virus (HIV) Reservoir Resides Primarily in CD32-CD4+ T Cells in Perinatally HIV-Infected Adolescents With Long-Term Virologic Suppression. J Infect Dis 2019; 219:80-88. [PMID: 30053296 DOI: 10.1093/infdis/jiy461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/20/2018] [Indexed: 11/13/2022] Open
Abstract
Background High-level expression of the Fcγ receptor, CD32hi, on CD4+ T cells was associated with enhanced human immunodeficiency virus (HIV) infection of the latent reservoir in a study of adults receiving antiretroviral therapy. We tested the hypothesis that CD32 was the preferential marker of the latent HIV reservoir in virally suppressed, perinatally HIV-infected adolescents. Methods The frequency of CD32hiCD4+ T cells was determined by flow cytometry (N = 5) and the inducible HIV reservoir in both CD32hi and CD32-CD4+ T cells was quantified (N = 4) with a quantitative viral outgrowth assay. Viral outgrowth was measured by the standard p24 enzyme-linked immunosorbent assay and an ultrasensitive p24 assay (Simoa; Quanterix) with lower limits of quantitation. Results We found a 59.55-fold enrichment in the absolute number of infectious cells in the CD32- population compared with CD32hi cells. Exponential HIV replication occurred exclusively in CD32-CD4+ T cells (mean change, 17.46 pg/mL; P = .04). Induced provirus in CD32hiCD4+ T cells replicated to substantially lower levels, which did not increase significantly over time (mean change, 0.026 pg/mL; P = .23) and were detected only with the Simoa assay. Conclusions Our data suggests that the latent HIV reservoir resides mainly in CD32-CD4+ T cells in virally suppressed, perinatally HIV-infected adolescents, which has implications for reservoir elimination strategies.
Collapse
Affiliation(s)
- Adit Dhummakupt
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lilly V Siems
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dolly Singh
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ya Hui Chen
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thuy Anderson
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aleisha Collinson-Streng
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Zhang
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Allison Agwu
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah Persaud
- Department of Pediatrics, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Responses to Quadrivalent Influenza Vaccine Reveal Distinct Circulating CD4+CXCR5+ T Cell Subsets in Men Living with HIV. Sci Rep 2019; 9:15650. [PMID: 31666568 PMCID: PMC6821795 DOI: 10.1038/s41598-019-51961-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 10/02/2019] [Indexed: 11/08/2022] Open
Abstract
T cell help for B cells may be perturbed in people living with HIV (PLWH), even when HIV is suppressed, as evidenced by reports of suboptimal responses to influenza vaccination. We investigated cTFH responses to the 2017-18 inactivated quadrivalent influenza vaccine (QIV) in men living with antiretroviral therapy (ART)-suppressed HIV infection who were treated in the early or chronic phase of infection, and control subjects. Here we show that seroprotective antibody responses in serum and oral fluid correlated with cTFH activation and were equivalent in all three groups, irrespective of when ART was started. These responses were attenuated in those reporting immunisation with influenza vaccine in the preceding three years, independent of HIV infection. Measurement of influenza-specific IgG in oral fluid was closely correlated with haemagglutination inhibition titre. T-SNE and two-dimensional analysis revealed a subset of CD4+CXCR3+CXCR5+ cTFH activated at one week after vaccination. This was distinguishable from cTFH not activated by vaccination, and a rare, effector memory CD4+CXCR5hiCD32hi T cell subset. The data support the use of QIV for immunisation of PLWH, reveal distinct circulating CD4+CXCR5+ T cell subsets and demonstrate oral fluid sampling for influenza-specific IgG is an alternative to phlebotomy.
Collapse
|
26
|
Darcis G, Berkhout B, Pasternak AO. The Quest for Cellular Markers of HIV Reservoirs: Any Color You Like. Front Immunol 2019; 10:2251. [PMID: 31616425 PMCID: PMC6763966 DOI: 10.3389/fimmu.2019.02251] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022] Open
Abstract
Combination antiretroviral therapy (ART) suppresses human immunodeficiency virus (HIV) replication and improves immune function, but is unable to eradicate the virus. Therefore, development of an HIV cure has become one of the main priorities of the HIV research field. The main obstacle for an HIV cure is the formation of latent viral reservoirs, where the virus is able to “hide” despite decades of therapy, just to reignite active replication once therapy is stopped. Revealing HIV hiding places is thus central to HIV cure research, but the absence of markers of these reservoir cells greatly complicates the search for a cure. Identification of one or several marker(s) of latently infected cells would represent a significant step forward toward a better description of the cell types involved and improved understanding of HIV latency. Moreover, it could provide a “handle” for selective therapeutic targeting of the reservoirs. A number of cellular markers of HIV reservoir have recently been proposed, including immune checkpoint molecules, CD2, and CD30. CD32a is perhaps the most promising of HIV reservoir markers as it is reported to be associated with a very prominent enrichment in HIV DNA, although this finding has been challenged. In this review, we provide an update on the current knowledge about HIV reservoir markers. We specifically highlight studies that characterized markers of persistently infected cells in the lymphoid tissues.
Collapse
Affiliation(s)
- Gilles Darcis
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Infectious Diseases Department, Liège University Hospital, Liège, Belgium
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Alexander O Pasternak
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Thornhill JP, Pace M, Martin GE, Hoare J, Peake S, Herrera C, Phetsouphanh C, Meyerowitz J, Hopkins E, Brown H, Dunn P, Olejniczak N, Willberg C, Klenerman P, Goldin R, Fox J, Fidler S, Frater J. CD32 expressing doublets in HIV-infected gut-associated lymphoid tissue are associated with a T follicular helper cell phenotype. Mucosal Immunol 2019; 12:1212-1219. [PMID: 31239514 DOI: 10.1038/s41385-019-0180-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 04/23/2019] [Accepted: 05/28/2019] [Indexed: 02/04/2023]
Abstract
Gut-associated lymphoid tissue (GALT) is a key location for the HIV reservoir. The observation that B-cell-T-cell doublets are enriched for CD32a (a low-affinity IgG receptor) in peripheral blood raises interesting questions, especially as these cells have been associated with HIV DNA in some studies. We sought to determine if similar doublets were present in GALT, the significance of these doublets, and their implications for the HIV reservoir. Given the importance of GALT as a reservoir for HIV, we looked for expression of CD32 on gut CD4 T cells and for evidence of doublets, and any relationship with HIV DNA in HIV + individuals initiated on antiretroviral therapy (ART) during primary HIV infection (PHI). Tonsil tissue was also available for one individual. As previously shown for blood, CD32high CD4 cells were mainly doublets of CD4 T cells and B cells, with T-cell expression of ICOS in tonsil and gut tissue. CD4 T cells associated with CD32 (compared with 'CD32-' CD4 cells) had higher expression of follicular markers CXCR5, PD-1, ICOS, and Bcl-6 consistent with a T follicular helper (TFH) phenotype. There was a significant correlation between rectal HIV DNA levels and CD32 expression on TFH cells. Together, these data suggest that CD32high doublets are primarily composed of TFH cells, a subset known to be preferentially infected by HIV.
Collapse
Affiliation(s)
- John P Thornhill
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Matthew Pace
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Genevieve E Martin
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Hoare
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Simon Peake
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Carolina Herrera
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Chan Phetsouphanh
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emily Hopkins
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helen Brown
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Polly Dunn
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Natalia Olejniczak
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Christian Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,National Institute of Health Research Biomedical Research Centre, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rob Goldin
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK
| | - Julie Fox
- Department of Genitourinary Medicine and Infectious Disease, Guys and St Thomas' NHS Trust, London, UK
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, UK.,Imperial College NIHR Biomedical Research Centre, London, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Oxford NIHR Biomedical Research Centre, Oxford, UK.
| | | |
Collapse
|
28
|
Phetsouphanh C, Aldridge D, Marchi E, Munier CML, Meyerowitz J, Murray L, Van Vuuren C, Goedhals D, Fidler S, Kelleher A, Klenerman P, Frater J. Maintenance of Functional CD57+ Cytolytic CD4+ T Cells in HIV+ Elite Controllers. Front Immunol 2019; 10:1844. [PMID: 31440240 PMCID: PMC6694780 DOI: 10.3389/fimmu.2019.01844] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/22/2019] [Indexed: 11/29/2022] Open
Abstract
Cytolytic CD4+ T cells play a prominent role in chronic viral infection. CD4+ CTLs clones specific for HIV-1 Nef and Gag are capable of killing HIV-1 infected CD4+ T cells and macrophages. Additionally, HIV-specific cytolytic CD4+ T cell responses in acute HIV infection are predictive of disease progression. CD57 expression on CD4s identifies cytolytic cells. These cells were dramatically increased in chronic HIV infection. CD57 expression correlated with cytolytic granules, granzyme B and perforin expression. They express lower CCR5 compared to CD57- cells, have less HIV total DNA, and were a minor component of the HIV reservoir. A small percentage of CD57+ CD4+ CTLs from EC were HIV-specific, could upregulate IFNγ with Gag peptide stimulation, express cytolytic granule markers and maintain TbethighEomes+ transcription factor phenotype. This was not observed in viraemic controllers. The maintenance of HIV-specific CD4 cytolytic function in Elite controllers together with CD8 CTLs may be important for the control of HIV viraemia and of potential relevance to cure strategies.
Collapse
Affiliation(s)
| | - Daniel Aldridge
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Emanuele Marchi
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - C. Mee Ling Munier
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Lyle Murray
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | | | - Dominique Goedhals
- National Health Laboratory Service, Division of Virology, University of the Free State, Bloemfontein, South Africa
| | | | - Anthony Kelleher
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - John Frater
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Vásquez JJ, Aguilar-Rodriguez BL, Rodriguez L, Hogan LE, Somsouk M, McCune JM, Deeks SG, Laszik ZG, Hunt PW, Henrich TJ. CD32-RNA Co-localizes with HIV-RNA in CD3+ Cells Found within Gut Tissues from Viremic and ART-Suppressed Individuals. Pathog Immun 2019; 4:147-160. [PMID: 31139759 PMCID: PMC6508427 DOI: 10.20411/pai.v4i1.271] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 04/08/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Identifying biomarkers for cells harboring replication-competent HIV is a major research priority. Recently, there have been mixed reports addressing the possibility that CD32-expressing T cells are enriched for HIV. There is growing evidence that CD32 expression increases with cellular activation that may be related to, but not necessarily specific for, infection with HIV. However, the relationship of CD32 expression to HIV-infection in subtypes of tissue-resident leukocytes is unclear. METHODS First, we used duplex chromogenic in situ hybridization to identify cells actively transcribing RNA for both CD32 and HIV on human gut tissues. Then we performed multiplexed immunofluorescence and in situ hybridization (mIFISH) on sections from the same tissues to determine the phenotype of individual cells co-expressing HIV-RNA and CD32-RNA. RESULTS HIV-RNA+ cells were more abundant in tissues from viremic individuals than in those receiving suppressive anti-retroviral therapy (ART). However, staining by both methods indicated that a higher proportion of HIV-RNA+ cells co-expressed CD32-RNA in ART-suppressed individuals than in those with viremia. The majority of HIV-RNA+ cells were CD3+. CONCLUSIONS Our data suggest that the transcription of CD32-RNA is correlated with HIV transcriptional activity in CD3+ cells found within human gut tissue. Whether or not up-regulation of CD32-RNA is a direct result of HIV transcription or more global T-cell activation remains unclear.
Collapse
Affiliation(s)
- Joshua J. Vásquez
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco
| | | | - Leonardo Rodriguez
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco
| | - Louise E. Hogan
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco
| | - Ma Somsouk
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Division of Gastroenterology, University of California, San Francisco
| | - Joseph M. McCune
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco
| | - Steven G. Deeks
- Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco
| | - Zoltan G. Laszik
- Department of Pathology, University of California, San Francisco
| | - Peter W. Hunt
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, These two authors contributed equally to this work
| | - Timothy J. Henrich
- Department of Medicine, Division of Experimental Medicine, University of California, San Francisco, Department of Medicine, Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, These two authors contributed equally to this work
| |
Collapse
|
30
|
Holgado MP, Sananez I, Raiden S, Geffner JR, Arruvito L. CD32 Ligation Promotes the Activation of CD4 + T Cells. Front Immunol 2018; 9:2814. [PMID: 30555482 PMCID: PMC6284025 DOI: 10.3389/fimmu.2018.02814] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 11/14/2018] [Indexed: 11/20/2022] Open
Abstract
Low affinity receptors for the Fc portion of IgG (FcγRs) represent a critical link between innate and adaptive immunity. Immune complexes (ICs) are the natural ligands for low affinity FcγRs, and high levels of ICs are usually detected in both, chronic viral infections and autoimmune diseases. The expression and function of FcγRs in myeloid cells, NK cells and B cells have been well characterized. By contrast, there are controversial reports about the expression and function of FcγRs in T cells. Here, we demonstrated that ~2% of resting CD4+ T cells express cell surface FcγRII (CD32). Analysis of CD32 expression in permeabilized cells revealed an increased proportion of CD4+CD32+ T cells (~9%), indicating that CD4+ T cells store a CD32 cytoplasmic pool. Activation of CD4+ T cells markedly increased the expression of CD32 either at the cell surface or intracellularly. Analysis of CD32 mRNA transcripts in activated CD4+ T cells revealed the presence of both, the stimulatory FcγRIIa (CD32a) and the inhibitory FcγRIIb (CD32b) isoforms of CD32, being the CD32a:CD32b mRNA ratio ~5:1. Consistent with this finding, we found not only that CD4+ T cells bind aggregated IgG, used as an IC model, but also that CD32 ligation by specific mAb induced a strong calcium transient in CD4+ T cells. Moreover, we found that pretreatment of CD4+ T cells with immobilized IgG as well as cross-linking of CD32 by specific antibodies increased both, the proliferative response of CD4+ T cells and the release of a wide pattern of cytokines (IL-2, IL-5, IL-10, IL-17, IFN-γ, and TNF-α) triggered by either PHA or anti-CD3 mAb. Collectively, our results indicate that ligation of CD32 promotes the activation of CD4+ T cells. These findings suggest that ICs might contribute to the perpetuation of chronic inflammatory responses by virtue of its ability to directly interact with CD4+ T cells through CD32a, promoting the activation of T cells into different inflammatory profiles.
Collapse
Affiliation(s)
- María Pía Holgado
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Inés Sananez
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Silvina Raiden
- Unidad I, Departamento de Clínica Médica, Hospital de Niños Pedro de Elizalde, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jorge R Geffner
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lourdes Arruvito
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Tomalka AG, Resto-Garay I, Campbell KS, Popkin DL. In vitro Evidence That Combination Therapy With CD16-Bearing NK-92 Cells and FDA-Approved Alefacept Can Selectively Target the Latent HIV Reservoir in CD4+ CD2hi Memory T Cells. Front Immunol 2018; 9:2552. [PMID: 30455699 PMCID: PMC6230627 DOI: 10.3389/fimmu.2018.02552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Elimination of the latent HIV reservoir remains the biggest hurdle to achieve HIV cure. In order to specifically eliminate HIV infected cells they must be distinguishable from uninfected cells. CD2 was recently identified as a potential marker enriched in the HIV-1 reservoir on CD4+ T cells, the largest, longest-lived and best-characterized constituent of the HIV reservoir. We previously proposed to repurpose FDA-approved alefacept, a humanized α-CD2 fusion protein, to reduce the HIV reservoir in CD2hi CD4+ memory T cells. Here, we show the first evidence that alefacept can specifically target and reduce CD2hi HIV infected cells in vitro. We explore a variety of natural killer (NK) cells as mediators of antibody-dependent cell-mediated cytotoxicity (ADCC) including primary NK cells, expanded NK cells as well as the CD16 transduced NK-92 cell line which is currently under study in clinical trials as a treatment for cancer. We demonstrate that CD16.NK-92 has a natural preference to kill CD2hi CD45RA- memory T cells, specifically CD45RA- CD27+ central memory/transitional memory (TCM/TM) subset in both healthy and HIV+ patient samples as well as to reduce HIV DNA from HIV+ samples from donors well controlled on antiretroviral therapy. Lastly, alefacept can combine with CD16.NK-92 to decrease HIV DNA in some patient samples and thus may yield value as part of a strategy toward sustained HIV remission.
Collapse
Affiliation(s)
- Amanda G. Tomalka
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ivelisse Resto-Garay
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Kerry S. Campbell
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, PA, United States
| | - Daniel L. Popkin
- Department of Dermatology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
32
|
García M, Navarrete-Muñoz MA, Ligos JM, Cabello A, Restrepo C, López-Bernaldo JC, de la Hera FJ, Barros C, Montoya M, Fernández-Guerrero M, Estrada V, Górgolas M, Benito JM, Rallón N. CD32 Expression is not Associated to HIV-DNA content in CD4 cell subsets of individuals with Different Levels of HIV Control. Sci Rep 2018; 8:15541. [PMID: 30341387 PMCID: PMC6195600 DOI: 10.1038/s41598-018-33749-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/05/2018] [Indexed: 01/20/2023] Open
Abstract
A recent study has pointed out to CD32a as a potential biomarker of HIV-persistent CD4 cells. We have characterized the level and phenotype of CD32+ cells contained in different subsets of CD4 T-cells and its potential correlation with level of total HIV-DNA in thirty HIV patients (10 typical progressors naïve for cART, 10 cART-suppressed patients, and 10 elite controllers). Total HIV-DNA was quantified in different subsets of CD4 T-cells: Trm and pTfh cells. Level and immunephenotype of CD32+ cells were analyzed in these same subsets by flow cytometry. CD32 expression in Trm and pTfh subsets was similar in the different groups, and there was no significant correlation between the level of total HIV-DNA and the level of CD32 expression in these subsets. However, total HIV-DNA level was correlated with expression of CD127 (rho = -0.46, p = 0.043) and of CCR6 (rho = -0.418, p = 0.027) on CD32+ cells. Our results do not support CD32 as a biomarker of total HIV-DNA content. However, analyzing the expression of certain markers by CD32+ cells could improve the utility of this marker in the clinical setting, prompting the necessity of further studies to both validate our results and to explore the potential utility of certain markers expressed by CD32+ cells.
Collapse
Affiliation(s)
- Marcial García
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - María Angeles Navarrete-Muñoz
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José M Ligos
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Alfonso Cabello
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Clara Restrepo
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | | | | | | | - María Montoya
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | - Miguel Górgolas
- Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - José M Benito
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| | - Norma Rallón
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain. .,Hospital Universitario Rey Juan Carlos, Móstoles, Spain.
| |
Collapse
|
33
|
CD32 + and PD-1 + Lymph Node CD4 T Cells Support Persistent HIV-1 Transcription in Treated Aviremic Individuals. J Virol 2018; 92:JVI.00901-18. [PMID: 29976671 PMCID: PMC6158413 DOI: 10.1128/jvi.00901-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/29/2018] [Indexed: 11/20/2022] Open
Abstract
A recent study conducted in blood has proposed CD32 as the marker identifying the "elusive" HIV reservoir. We have investigated the distribution of CD32+ CD4 T cells in blood and lymph nodes (LNs) of HIV-1-uninfected subjects and viremic untreated and long-term-treated HIV-1-infected individuals and their relationship with PD-1+ CD4 T cells. The frequency of CD32+ CD4 T cells was increased in viremic compared to treated individuals in LNs, and a large proportion (up to 50%) of CD32+ cells coexpressed PD-1 and were enriched within T follicular helper (Tfh) cells. We next investigated the role of LN CD32+ CD4 T cells in the HIV reservoir. Total HIV DNA was enriched in CD32+ and PD-1+ CD4 T cells compared to CD32- and PD-1- cells in both viremic and treated individuals, but there was no difference between CD32+ and PD-1+ cells. There was no enrichment of latently infected cells with inducible HIV-1 in CD32+ versus PD-1+ cells in antiretroviral therapy (ART)-treated individuals. HIV-1 transcription was then analyzed in LN memory CD4 T cell populations sorted on the basis of CD32 and PD-1 expression. CD32+ PD-1+ CD4 T cells were significantly enriched in cell-associated HIV RNA compared to CD32- PD-1- (averages of 5.2-fold in treated individuals and 86.6-fold in viremics), CD32+ PD-1- (2.2-fold in treated individuals and 4.3-fold in viremics), and CD32- PD-1+ (2.2-fold in ART-treated individuals and 4.6-fold in viremics) cell populations. Similar levels of HIV-1 transcription were found in CD32+ PD-1- and CD32- PD-1+ CD4 T cells. Interestingly, the proportion of CD32+ and PD-1+ CD4 T cells negatively correlated with CD4 T cell counts and length of therapy. Therefore, the expression of CD32 identifies, independently of PD-1, a CD4 T cell population with persistent HIV-1 transcription and coexpression of CD32 and PD-1, the CD4 T cell population with the highest levels of HIV-1 transcription in both viremic and treated individuals.IMPORTANCE The existence of long-lived latently infected resting memory CD4 T cells represents a major obstacle to the eradication of HIV infection. Identifying cell markers defining latently infected cells containing replication-competent virus is important in order to determine the mechanisms of HIV persistence and to develop novel therapeutic strategies to cure HIV infection. We provide evidence that PD-1 and CD32 may have a complementary role in better defining CD4 T cell populations infected with HIV-1. Furthermore, CD4 T cells coexpressing CD32 and PD-1 identify a CD4 T cell population with high levels of persistent HIV-1 transcription.
Collapse
|
34
|
|
35
|
Coindre S, Tchitchek N, Alaoui L, Vaslin B, Bourgeois C, Goujard C, Avettand-Fenoel V, Lecuroux C, Bruhns P, Le Grand R, Beignon AS, Lambotte O, Favier B. Mass Cytometry Analysis Reveals the Landscape and Dynamics of CD32a + CD4 + T Cells From Early HIV Infection to Effective cART. Front Immunol 2018; 9:1217. [PMID: 29915583 PMCID: PMC5995043 DOI: 10.3389/fimmu.2018.01217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
CD32a has been proposed as a specific marker of latently HIV-infected CD4+ T cells. However, CD32a was recently found to be expressed on CD4+ T cells of healthy donors, leading to controversy on the relevance of this marker in HIV persistence. Here, we used mass cytometry to characterize the landscape and variation in the abundance of CD32a+ CD4+ T cells during HIV infection. To this end, we analyzed CD32a+ CD4+ T cells in primary HIV infection before and after effective combination antiretroviral therapy (cART) and in healthy donors. We found that CD32a+ CD4+ T cells include heterogeneous subsets that are differentially affected by HIV infection. Our analysis revealed that naive (N), central memory (CM), and effector/memory (Eff/Mem) CD32a+ CD4+ T-cell clusters that co-express LILRA2- and CD64-activating receptors were more abundant in primary HIV infection and cART stages. Conversely, LILRA2− CD32a+ CD4+ T-cell clusters of either the TN, TCM, or TEff/Mem phenotype were more abundant in healthy individuals. Finally, an activated CD32a+ CD4+ TEff/Mem cell cluster co-expressing LILRA2, CD57, and NKG2C was more abundant in all HIV stages, particularly during primary HIV infection. Overall, our data show that multiple abundance modifications of CD32a+ CD4+ T-cell subsets occur in the early phase of HIV infection, and some of which are conserved after effective cART. Our study brings a better comprehension of the relationship between CD32a expression and CD4+ T cells during HIV infection.
Collapse
Affiliation(s)
- Sixtine Coindre
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Lamine Alaoui
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Bruno Vaslin
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Christine Bourgeois
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Cecile Goujard
- Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Veronique Avettand-Fenoel
- Paris Descartes University, EA 7327, Sorbonne Paris Cité, APHP, Necker Hospital, Virology Department, Paris, France
| | - Camille Lecuroux
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Pierre Bruhns
- Institut Pasteur, Department of Immunology, Unit of Antibodies in Therapy and Pathology, Paris, France.,INSERM, U1222, Paris, France
| | - Roger Le Grand
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Anne-Sophie Beignon
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | - Olivier Lambotte
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France.,Assistance Publique-Hôpitaux de Paris, Service de Médecine Interne et Immunologie Clinique, Groupe Hospitalier Universitaire Paris Sud, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Benoit Favier
- CEA-Université Paris Sud 11-INSERM U1184, Immunology of Viral Infections and Autoimmune Diseases (IMVA), IDMIT Department, IBFJ, DRF, Fontenay-aux-Roses, France
| | | |
Collapse
|