1
|
Paziewska M, Szelest M, Kiełbus M, Masternak M, Zaleska J, Wawrzyniak E, Kotkowska A, Siemieniuk-Ryś M, Morawska M, Kalicińska E, Jabłonowska P, Wróbel T, Wolska-Washer A, Błoński JZ, Robak T, Bullinger L, Giannopoulos K. Increased abundance of Firmicutes and depletion of Bacteroidota predicts poor outcome in chronic lymphocytic leukemia. Oncol Lett 2024; 28:552. [PMID: 39328278 PMCID: PMC11425030 DOI: 10.3892/ol.2024.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/08/2024] [Indexed: 09/28/2024] Open
Abstract
Evidence indicates that there are significant alterations in gut microbiota diversity and composition in patients with hematological malignancies. The present study investigated the oral and intestinal microbiome in patients with chronic lymphocytic leukemia (CLL) (n=81) and age-matched healthy volunteers (HVs; n=21) using 16S ribosomal RNA next-generation sequencing. Changes in both oral and gut microbiome structures were identified, with a high abundance of Proteobacteria and depletion of Bacteroidetes in CLL as compared to HVs. Oral and stool samples of patients with CLL revealed a significant change in the abundance of short-chain fatty acid-producing genera in comparison with HVs. Furthermore, the relative abundance of oral and intestine Bacteroidetes was significantly decreased in patients with CLL with negative prognostic features, including unmutated immunoglobulin heavy chain gene (IGHV). Notably, an increased abundance of gut Firmicutes was found to be associated with high expression of CD38. Finally, the present study suggested the log Firmicutes/Bacteroidota ratio as a novel intestinal microbiome signature associated with a shorter time to first treatment in individuals with CLL. The findings indicate that oral and gut microbial diversity in CLL might point to the inflammatory-related modulation of the clinical course of the disease.
Collapse
Affiliation(s)
- Magdalena Paziewska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Marta Masternak
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
- Department of Hematology and Bone Marrow Transplantation, St John's Cancer Centre, 20-090 Lublin, Poland
| | - Joanna Zaleska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewa Wawrzyniak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | | | | | - Marta Morawska
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Elżbieta Kalicińska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Paula Jabłonowska
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Wolska-Washer
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Jerzy Zdzisław Błoński
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of Hematooncology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Tadeusz Robak
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland
- Department of General Hematology, Copernicus Memorial Hospital, 93-513 Lodz, Poland
| | - Lars Bullinger
- Department of Hematology, Oncology and Cancer Immunology, Charité-Universitätsmedizin Berlin (Corporate Member of Free University of Berlin, Humboldt University of Berlin), D-13353 Berlin, Germany
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
2
|
Chaudhary S, Kaur P, Singh TA, Bano KS, Vyas A, Mishra AK, Singh P, Mehdi MM. The dynamic crosslinking between gut microbiota and inflammation during aging: reviewing the nutritional and hormetic approaches against dysbiosis and inflammaging. Biogerontology 2024; 26:1. [PMID: 39441393 DOI: 10.1007/s10522-024-10146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
The early-life gut microbiota (GM) is increasingly recognized for its contributions to human health and disease over time. Microbiota composition, influenced by factors like race, geography, lifestyle, and individual differences, is subject to change. The GM serves dual roles, defending against pathogens and shaping the host immune system. Disruptions in microbial composition can lead to immune dysregulation, impacting defense mechanisms. Additionally, GM aids digestion, releasing nutrients and influencing physiological systems like the liver, brain, and endocrine system through microbial metabolites. Dysbiosis disrupts intestinal homeostasis, contributing to age-related diseases. Recent studies are elucidating the bacterial species that characterize a healthy microbiota, defining what constitutes a 'healthy' colonic microbiota. The present review article focuses on the importance of microbiome composition for the development of homeostasis and the roles of GM during aging and the age-related diseases caused by the alteration in gut microbial communities. This article might also help the readers to find treatments targeting GM for the prevention of various diseases linked to it effectively.
Collapse
Affiliation(s)
- Sakshi Chaudhary
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Pardeep Kaur
- Department of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Thokchom Arjun Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Kaniz Shahar Bano
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ashish Vyas
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Alok Kumar Mishra
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, 600119, India
| | - Mohammad Murtaza Mehdi
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Wang L, Li S, Hao Y, Liu X, Liu Y, Zuo L, Tai F, Yin L, Young LJ, Li D. Exposure to polystyrene microplastics reduces sociality and brain oxytocin levels through the gut-brain axis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174026. [PMID: 38885706 DOI: 10.1016/j.scitotenv.2024.174026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
The rising global prevalence of microplastics (MPs) has highlighted their diverse toxicological effects. The oxytocin (OT) system in mammals, deeply intertwined with social behaviors, is recognized to be vulnerable to environmental stressors. We hypothesized that MP exposure might disrupt this system, a topic not extensively studied. We investigated the effects of MPs on behavioral neuroendocrinology via the gut-brain axis by exposing adolescent male C57BL/6 mice to varied sizes (5 μm and 50 μm) and concentrations (100 μg/L and 1000 μg/L) of polystyrene MPs over 10 weeks. The results demonstrated that exposure to 50 μm MPs significantly reduced colonic mucin production and induced substantial alterations in gut microbiota. Notably, the 50 μm-100 μg/L group showed a significant reduction in OT content within the medial prefrontal cortex and associated deficits in sociality, along with damage to the blood-brain barrier. Importantly, blocking the vagal pathway ameliorated these behavioral impairments, emphasizing the pivotal role of the gut-brain axis in mediating neurobehavioral outcomes. Our findings confirm the toxicity of MPs on sociality and the corresponding neuroendocrine systems, shedding light on the potential hazards and adverse effects of environmental MPs exposure on social behavior and neuroendocrine frameworks in social mammals, including humans.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Ecology Postdoctoral Research Station at Hebei Normal University, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Shuxin Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao, Hebei 066003, China
| | - Xu Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yaqing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Lirong Zuo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Liyun Yin
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory National Primate Research Center, Emory University, Atlanta, GA 3032, United States; Center for Social Neural Networks, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-857, Japan
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
4
|
Lim ESY, Ong Y, Chou Y, Then CK. Interconnected influences of tumour and host microbiota on treatment response and side effects in nasopharyngeal cancer. Crit Rev Oncol Hematol 2024; 202:104468. [PMID: 39103130 DOI: 10.1016/j.critrevonc.2024.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
This study elucidates the intricate relationship between nasopharyngeal carcinoma (NPC), a significant malignancy predominant in Asia with notable global incidence and mortality rates, and the host microbiota, including those of tumour, nasal, nasopharyngeal, oral, oropharyngeal, and gut communities. It underscores how the composition and diversity of microbiota are altered in NPC, delving into their implications for disease pathogenesis, treatment response, and the side effects of therapies. A consistent reduction in alpha diversity across oral, nasal, and gut microbiomes in NPC patients compared to healthy individuals signals a distinct microbial signature indicative of the diseased state. The study also shows unique microbial changes tied to different NPC stages, indicating a dynamic interplay between disease progression and microbiota composition. Patients with specific microbial profiles exhibit varied responses to chemotherapy and immunotherapy, underscoring the potential for treatment personalisation based on microbiota analysis. Furthermore, the side effects of NPC treatments, such as oral mucositis, are intensified by shifts in microbial communities, suggesting a direct link between microbiota composition and treatment tolerance. This nexus offers opportunities for interventions aimed at modulating the microbiota to alleviate side effects, improve quality of life, and potentially enhance treatment efficacy. Highlighting the dual potential of microbiota as both a therapeutic target and a biomarker for NPC, this review emphasises its significance in influencing treatment outcomes and side effects, heralding a new era in NPC management through personalised treatment strategies and innovative approaches.
Collapse
Affiliation(s)
- Eugene Sheng Yao Lim
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yenyi Ong
- Jeffery Cheah School of Medicine and Health Sciences, Monash University, Malaysia
| | - Yang Chou
- Department of Otolaryngology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Chee Kin Then
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Prasad S, Singh S, Menge S, Mohapatra I, Kim S, Helland L, Singh G, Singh A. Gut redox and microbiome: charting the roadmap to T-cell regulation. Front Immunol 2024; 15:1387903. [PMID: 39234241 PMCID: PMC11371728 DOI: 10.3389/fimmu.2024.1387903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
The gastrointestinal (GI) tract redox environment, influenced by commensal microbiota and bacterial-derived metabolites, is crucial in shaping T-cell responses. Specifically, metabolites from gut microbiota (GM) exhibit robust anti-inflammatory effects, fostering the differentiation and regulation of CD8+ tissue-resident memory (TRM) cells, mucosal-associated invariant T (MAIT) cells, and stabilizing gut-resident Treg cells. Nitric oxide (NO), a pivotal redox mediator, emerges as a central regulator of T-cell functions and gut inflammation. NO impacts the composition of the gut microbiome, driving the differentiation of pro-inflammatory Th17 cells and exacerbating intestinal inflammation, and supports Treg expansion, showcasing its dual role in immune homeostasis. This review delves into the complex interplay between GI redox balance and GM metabolites, elucidating their profound impact on T-cell regulation. Additionally, it comprehensively emphasizes the critical role of GI redox, particularly reactive oxygen species (ROS) and NO, in shaping T-cell phenotype and functions. These insights offer valuable perspectives on disease mechanisms and potential therapeutic strategies for conditions associated with oxidative stress. Understanding the complex cross-talk between GI redox, GM metabolites, and T-cell responses provides valuable insights into potential therapeutic avenues for immune-mediated diseases, underscoring the significance of maintaining GI redox balance for optimal immune health.
Collapse
Affiliation(s)
- Sujata Prasad
- Translational Division, MLM Labs, LLC, Oakdale, MN, United States
| | - Shilpi Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Samuel Menge
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| | - Iteeshree Mohapatra
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, United States
| | - Stefan Kim
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Logan Helland
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Gatikrushna Singh
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, United States
| | - Amar Singh
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
7
|
Xie W, Sharma A, Kaushik H, Sharma L, Nistha, Anwer MK, Sachdeva M, Elossaily GM, Zhang Y, Pillappan R, Kaur M, Behl T, Shen B, Singla RK. Shaping the future of gastrointestinal cancers through metabolic interactions with host gut microbiota. Heliyon 2024; 10:e35336. [PMID: 39170494 PMCID: PMC11336605 DOI: 10.1016/j.heliyon.2024.e35336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Gastrointestinal (GI) cancers represent a significant global health challenge, driving relentless efforts to identify innovative diagnostic and therapeutic approaches. Recent strides in microbiome research have unveiled a previously underestimated dimension of cancer progression that revolves around the intricate metabolic interplay between GI cancers and the host's gut microbiota. This review aims to provide a comprehensive overview of these emerging metabolic interactions and their potential to catalyze a paradigm shift in precision diagnosis and therapeutic breakthroughs in GI cancers. The article underscores the groundbreaking impact of microbiome research on oncology by delving into the symbiotic connection between host metabolism and the gut microbiota. It offers valuable insights into tailoring treatment strategies to individual patients, thus moving beyond the traditional one-size-fits-all approach. This review also sheds light on novel diagnostic methodologies that could transform the early detection of GI cancers, potentially leading to more favorable patient outcomes. In conclusion, exploring the metabolic interactions between host gut microbiota and GI cancers showcases a promising frontier in the ongoing battle against these formidable diseases. By comprehending and harnessing the microbiome's influence, the future of precision diagnosis and therapeutic innovation for GI cancers appears more optimistic, opening doors to tailored treatments and enhanced diagnostic precision.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Hitesh Kaushik
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Nistha
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Yingbo Zhang
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Ramkumar Pillappan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangaluru, Karnataka, India
| | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, lovely Professional University, Phagwara, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Bairong Shen
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
| |
Collapse
|
8
|
Ilie CI, Spoiala A, Chircov C, Dolete G, Oprea OC, Vasile BS, Crainiceanu SA, Nicoara AI, Marinas IC, Stan MS, Ditu LM, Ficai A, Oprea E. Antioxidant, Antitumoral, Antimicrobial, and Prebiotic Activity of Magnetite Nanoparticles Loaded with Bee Pollen/Bee Bread Extracts and 5-Fluorouracil. Antioxidants (Basel) 2024; 13:895. [PMID: 39199141 PMCID: PMC11351729 DOI: 10.3390/antiox13080895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
The gut microbiota dysbiosis that often occurs in cancer therapy requires more efficient treatment options to be developed. In this concern, the present research approach is to develop drug delivery systems based on magnetite nanoparticles (MNPs) as nanocarriers for bioactive compounds. First, MNPs were synthesized through the spraying-assisted coprecipitation method, followed by loading bee pollen or bee bread extracts and an antitumoral drug (5-fluorouracil/5-FU). The loaded-MNPs were morphologically and structurally characterized through transmission electron microscopy (TEM), selected area electron diffraction (SAED), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Dynamic Light Scattering (DLS), and thermogravimetric analysis. UV-Vis spectroscopy was applied to establish the release profiles and antioxidant activity. Furthermore, the antibacterial and antitumoral activity of loaded-MNPs was assessed. The results demonstrate that MNPs with antioxidant, antibacterial, antiproliferative, and prebiotic properties are obtained. Moreover, the data highlight the improvement of 5-FU antibacterial activity by loading on the MNPs' surface and the synergistic effects between the anticancer drug and phenolic compounds (PCs). In addition, the prolonged release behavior of PCs for many hours (70-75 h) after the release of 5-FU from the developed nanocarriers is an advantage, at least from the point of view of the antioxidant activity of PCs. Considering the enhancement of L. rhamnosus MF9 growth and antitumoral activity, this study developed promising drug delivery alternatives for colorectal cancer therapy.
Collapse
Affiliation(s)
- Cornelia-Ioana Ilie
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Angela Spoiala
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | - Georgiana Dolete
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Bogdan-Stefan Vasile
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Simona Adriana Crainiceanu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
| | - Adrian-Ionut Nicoara
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
| | | | - Miruna Silvia Stan
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Biochemistry, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Lia-Mara Ditu
- The Research Institute, University of Bucharest, 050663 Bucharest, Romania (M.S.S.)
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (C.-I.I.); (A.S.); (C.C.); (G.D.); (S.A.C.); (A.-I.N.)
- National Centre for Micro and Nanomaterials and National Centre for Food Safety, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, 010719 Bucharest, Romania;
| | - Eliza Oprea
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| |
Collapse
|
9
|
Murdaca G, Tagliafico L, Page E, Paladin F, Gangemi S. Gender Differences in the Interplay between Vitamin D and Microbiota in Allergic and Autoimmune Diseases. Biomedicines 2024; 12:1023. [PMID: 38790985 PMCID: PMC11117902 DOI: 10.3390/biomedicines12051023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The synergic role of vitamin D and the intestinal microbiota in the regulation of the immune system has been thoroughly described in the literature. Vitamin D deficiency and intestinal dysbiosis have shown a pathogenetic role in the development of numerous immune-mediated and allergic diseases. The physiological processes underlying aging and sex have proven to be capable of having a negative influence both on vitamin D values and the biodiversity of the microbiome. This leads to a global increase in levels of systemic inflammatory markers, with potential implications for all immune-mediated diseases and allergic conditions. Our review aims to collect and analyze the relationship between vitamin D and the intestinal microbiome with the immune system and the diseases associated with it, emphasizing the effect mediated by sexual hormones and aging.
Collapse
Affiliation(s)
- Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Allergology and Clinical Immunology Unit, San Bartolomeo Hospital, 19038 Sarzana, Italy
| | - Luca Tagliafico
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Elena Page
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy (E.P.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Francesca Paladin
- Elderly and Disabeld Department, San Paolo Hospital, 17100 Savona, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
10
|
Zhao Y, Chen H, Liang H, Zhao T, Ren B, Li Y, Liang H, Liu Y, Cao H, Cui N, Wei W. Combined toxic effects of polyethylene microplastics and lambda-cyhalothrin on gut of zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116296. [PMID: 38593498 DOI: 10.1016/j.ecoenv.2024.116296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024]
Abstract
Microplastics (MPs), which are prevalent and increasingly accumulating in aquatic environments. Other pollutants coexist with MPs in the water, such as pesticides, and may be carried or transferred to aquatic organisms, posing unpredictable ecological risks. This study sought to assess the adsorption of lambda-cyhalothrin (LCT) by virgin and aged polyethylene MPs (VPE and APE, respectively), and to examine their influence on LCT's toxicity in zebrafish, specifically regarding acute toxicity, oxidative stress, gut microbiota and immunity. The adsorption results showed that VPE and APE could adsorb LCT, with adsorption capacities of 34.4 mg∙g-1 and 39.0 mg∙g-1, respectively. Compared with LCT exposure alone, VPE and APE increased the acute toxicity of LCT to zebrafish. Additionally, exposure to LCT and PE-MPs alone can induce oxidative stress in the zebrafish gut, while combined exposure can exacerbate the oxidative stress response and intensify intestinal lipid peroxidation. Moreover, exposure to LCT or PE-MPs alone promotes inflammation, and combined exposure leads to downregulation of the myd88-nf-κb related gene expression, thus impacting intestinal immunity. Furthermore, exposure to APE increased LCT toxicity to zebrafish more than VPE. Meanwhile, exposure to PE-MPs and LCT alone or in combination has the potential to affect gut microbiota function and alter the abundance and diversity of the zebrafish gut flora. Collectively, the presence of PE-MPs may affect the toxicity of pesticides in zebrafish. The findings emphasize the importance of studying the interaction between MPs and pesticides in the aquatic environment.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haiyue Chen
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Tingting Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bo Ren
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yanhong Li
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Hanlin Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
11
|
Giridhar P, Pradhan S, Dokania S, Venkatesulu B, Sarode R, Welsh JS. Microbiome and Abdominopelvic Radiotherapy Related Chronic Enteritis: A Microbiome-based Mechanistic Role of Probiotics and Antibiotics. Am J Clin Oncol 2024; 47:246-252. [PMID: 38193365 DOI: 10.1097/coc.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Chronic diarrhea and abdominal pain after radiotherapy continue to be a problem in cancer survivors. Gut microbiomes are essential for preventing intestinal inflammation, maintaining intestinal integrity, maintaining enterohepatic circulation, regulating bile acid metabolism, and absorption of nutrients, including fat-soluble vitamins. Gut microbiome dysbiosis is expected to cause inflammation, bile acid malabsorption, malnutrition, and associated symptoms. Postradiotherapy, Firmicutes and Bacteroidetes phylum are significantly decreased while Fusobacteria and other unclassified bacteria are increased. Available evidence suggests harmful bacteria Veillonella, Erysipelotrichaceae, and Ruminococcus are sensitive to Metronidazole or Ciprofloxacin. Beneficial bacteria lactobacillus and Bifidobacterium are relatively resistant to metronidazole. We hypothesize and provide an evidence-based review that short-course targeted antibiotics followed by specific probiotics may lead to alleviation of radiation enteritis.
Collapse
Affiliation(s)
| | | | | | - Bhanuprasad Venkatesulu
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood
- Department of Radiation Oncology, MPMMCC/HBCH Varanasi Edward Hines Veteran Affairs Hospital, Chicago, IL
| | - Rahul Sarode
- Department of Microbiology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer hospital, Tata Memorial Centre, Varanasi, India
| | - James S Welsh
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood
- Department of Radiation Oncology, MPMMCC/HBCH Varanasi Edward Hines Veteran Affairs Hospital, Chicago, IL
| |
Collapse
|
12
|
Zhao Y, Ma C, Wei W, Wang Y, Cao H, Cui N, Liu Y, Liang H. Effects of single and combined exposure of virgin or aged polyethylene microplastics and penthiopyrad on zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171160. [PMID: 38395170 DOI: 10.1016/j.scitotenv.2024.171160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The interaction between pesticides and microplastics (MPs) can lead to changes in their mode of action and biological toxicity, creating substantial uncertainty in risk assessments. Succinate dehydrogenase inhibitor (SDHI) fungicides, a common fungicide type, are widely used. However, little is known about how penthiopyrad (PTH), a member of the SDHI fungicide group, interacts with polyethylene microplastics (PE-MPs). This study primarily investigates the individual and combined effects of virgin or aged PE-MPs and penthiopyrad on zebrafish (Danio rerio), including acute toxicity, bioaccumulation, tissue pathology, enzyme activities, gut microbiota, and gene expression. Short-term exposure revealed that PE-MPs enhance the acute toxicity of penthiopyrad. Long-term exposure demonstrated that PE-MPs, to some extent, enhance the accumulation of penthiopyrad in zebrafish, leading to increased oxidative stress injury in their intestines by the 7th day. Furthermore, exposure to penthiopyrad and/or PE-MPs did not result in histopathological damage to intestinal tissue but altered the gut flora at the phylum level. Regarding gene transcription, penthiopyrad exposure significantly modified the expression of pro-inflammatory genes in the zebrafish gut, with these effects being mitigated when VPE or APE was introduced. These findings offer a novel perspective on environmental behavior and underscore the importance of assessing the combined toxicity of PE-MPs and fungicides on organisms.
Collapse
Affiliation(s)
- Yuexing Zhao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Chaofan Ma
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Wei Wei
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yang Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Huihui Cao
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Naqi Cui
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Yu Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China
| | - Hongwu Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010030, China.
| |
Collapse
|
13
|
Elgabry RM, Hassan M, Fawzy GA, Meselhy KM, Mohamed OG, Al-Taweel AM, Sedeek MS. A Comparative Analysis of Polysaccharides and Ethanolic Extracts from Two Egyptian Sweet Potato Cultivars, Abees and A 195: Chemical Characterization and Immunostimulant Activities. Metabolites 2024; 14:222. [PMID: 38668350 PMCID: PMC11051996 DOI: 10.3390/metabo14040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) belongs to family Convolvulaceae. The plant is distributed worldwide and consumed, especially for its edible tubers. Many studies have proved that the plant has variable biological activities such as antidiabetic, anti-cancer, antihypertensive, antimicrobial, and immunostimulant activities. The roots of sweet potatoes are rich in valuable phytochemical constituents that vary according to the flesh color. Our investigation focused on the chemical profiling of two Egyptian sweet potato cultivars, Abees and A 195, using UPLC-QTOF and the analysis of their polysaccharide fractions by GC-MS. Furthermore, we assessed the immunostimulant properties of these extracts in immunosuppressed mice. The study revealed that sweet potato roots contain significant concentrations of phenolic acids, including caffeoylquinic, caffeic, caffeoyl-feruloyl quinic, and p-coumaric acids, as well as certain flavonoids, such as diosmin, diosmetin, and jaceosidin, and coumarins, such as scopoletin and umbelliferone. Moreover, polysaccharides prepared from both studied cultivars were analyzed using GC-MS. Further biological analysis demonstrated that all the tested extracts possessed immunostimulant properties by elevating the level of WBCs, IL-2, TNF, and IFN-γ in the immunosuppressed mice relative to the control group with the highest values in polysaccharide fractions of A195 (the ethanolic extract showed a higher effect on TNF and IFN-γ, while its polysaccharide fraction exhibited a promising effect on IL-2 and WBCs). In conclusion, the roots of the Egyptian sweet potato cultivars Abees and A 195 demonstrated significant immunostimulant activities, which warrants further investigation through clinical studies.
Collapse
Affiliation(s)
- Rehab M. Elgabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 12613, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City 43511, Egypt
| | - Ghada A. Fawzy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Khaled M. Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| | - Osama G. Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Areej M. Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Mohamed S. Sedeek
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo 11562, Egypt; (R.M.E.); (G.A.F.); (K.M.M.); (O.G.M.)
| |
Collapse
|
14
|
Yang J, Isaka T, Kikuchi K, Numayama-Tsuruta K, Ishikawa T. Bacterial accumulation in intestinal folds induced by physical and biological factors. BMC Biol 2024; 22:76. [PMID: 38581018 PMCID: PMC10998401 DOI: 10.1186/s12915-024-01874-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 03/25/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND The gut microbiota, vital for host health, influences metabolism, immune function, and development. Understanding the dynamic processes of bacterial accumulation within the gut is crucial, as it is closely related to immune responses, antibiotic resistance, and colorectal cancer. We investigated Escherichia coli behavior and distribution in zebrafish larval intestines, focusing on the gut microenvironment. RESULTS We discovered that E. coli spread was considerably suppressed within the intestinal folds, leading to a strong physical accumulation in the folds. Moreover, a higher concentration of E. coli on the dorsal side than on the ventral side was observed. Our in vitro microfluidic experiments and theoretical analysis revealed that the overall distribution of E. coli in the intestines was established by a combination of physical factor and bacterial taxis. CONCLUSIONS Our findings provide valuable insight into how the intestinal microenvironment affects bacterial motility and accumulation, enhancing our understanding of the behavioral and ecological dynamics of the intestinal microbiota.
Collapse
Affiliation(s)
- Jinyou Yang
- School of Intelligent Medicine, China Medical University, Shenyang, 110122, China.
| | - Toma Isaka
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| | - Kenji Kikuchi
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| | - Keiko Numayama-Tsuruta
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| | - Takuji Ishikawa
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aoba, Sendai, 980-8579, Japan
| |
Collapse
|
15
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
16
|
Mofrad LZ, Fateh A, Sotoodehnejadnematalahi F, Asbi DNS, Davar Siadat S. The Effect of Akkermansia muciniphila and Its Outer Membrane Vesicles on MicroRNAs Expression of Inflammatory and Anti-inflammatory Pathways in Human Dendritic Cells. Probiotics Antimicrob Proteins 2024; 16:367-382. [PMID: 36884184 DOI: 10.1007/s12602-023-10058-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Probiotics play a crucial role in immunomodulation by regulating dendritic cell (DC) maturation and inducing tolerogenic DCs. Akkermansia muciniphila affects inflammatory response by elevating inhibitory cytokines. We aimed to evaluate whether Akkermansia muciniphila and its outer membrane vesicles (OMVs) affect microRNA-155, microRNA-146a, microRNA-34a, and let-7i expression of inflammatory and anti-inflammatory pathways. Peripheral blood mononuclear cells (PBMCs) were isolated from the healthy volunteers. To produce DCs, monocytes were cultivated with granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4). DCs were allocated into six subgroups: DC + Lipopolysaccharide (LPS), DC + dexamethasone, DC + A. muciniphila (MOI 100, 50), DC + OMVs (50 µg/ml), and DC + PBS. The surface expression of human leukocyte antigen-antigen D related (HLA-DR), CD86, CD80, CD83, CD11c, and CD14 was examined using flow cytometry, and the expression of microRNAs was assessed using qRT-PCR, and the levels of IL-12 and IL-10 were measured using ELISA. A. muciniphila (MOIs 50, 100) could significantly decrease IL-12 levels relative to the LPS group. The IL-10 levels were decreased in the DC + LPS group than the DC + dexamethasone group. Treatment with A. muciniphila (MOI 100) and OMVs could elevate the concentrations of IL-10. DC treatment with LPS led to a significant increment in the expression of microRNA-155, microRNA-34a, and microRNA-146a. The expression of these microRNAs was reversed by A. muciniphilia and its OMVs treatment. Let-7i increased in treatment groups compared to the DC + LPS group. A. muciniphilia (MOI 50) had a substantial effect on the expression of HLA-DR, CD80, and CD83 on DCs. Therefore, DCs treatment with A. muciniphila led to induce tolerogenic DCs and the production of anti-inflammatory IL-10.
Collapse
Affiliation(s)
- Laya Zoghi Mofrad
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Kong Y, Liu S, Wang X, Qie R. Associations between gut microbiota and gynecological cancers: A bi-directional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e37628. [PMID: 38552081 PMCID: PMC10977594 DOI: 10.1097/md.0000000000037628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Growing evidence has suggested that gut microbiota is associated with gynecologic cancers. However, whether there is a causal relationship between these associations remains to be determined. A two-sample Mendelian randomization (MR) evaluation was carried out to investigate the mechanism associating gut microbiota and 3 prevalent gynecological cancers, ovarian cancer (OC), endometrial cancer, and cervical cancer as well as their subtypes in individuals of European ancestry. The Genome-wide association studies statistics, which are publically accessible, were used. Eligible instrumental single nucleotide polymorphisms that were significantly related to the gut microbiota were selected. Multiple MR analysis approaches were carried out, including inverse variance weighted, MR-Egger, Weighted Median methods, and a range of sensitivity analyses. Lastly, we undertook a reverse MR analysis to evaluate the potential of reverse causality. We sifted through 196 bacterial taxa and identified 33 suggestive causal relationships between genetic liability in the gut microbiota and gynecological cancers. We found that 11 of these genera could be pathogenic risk factors for gynecological cancers, while 19 could lessen the risk of cancer. In the other direction, gynecological cancers altered gut microbiota composition. Our MR analysis revealed that the gut microbiota was causally associated with OC, endometrial cancer, and cervical cancer. This may assist in providing new insights for further mechanistic and clinical studies of microbiota-mediated gynecological cancer.
Collapse
Affiliation(s)
- Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shaoxuan Liu
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Rui Qie
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Morimoto T, Hirata H, Sugita K, Paholpak P, Kobayashi T, Tanaka T, Kato K, Tsukamoto M, Umeki S, Toda Y, Mawatari M. A view on the skin-bone axis: unraveling similarities and potential of crosstalk. Front Med (Lausanne) 2024; 11:1360483. [PMID: 38500951 PMCID: PMC10944977 DOI: 10.3389/fmed.2024.1360483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/12/2024] [Indexed: 03/20/2024] Open
Abstract
The phrase "skin as a mirror of internal medicine," which means that the skin reflects many of the diseases of the internal organs, is a well-known notion. Despite the phenotypic differences between the soft skin and hard bone, the skin and bone are highly associated. Skin and bone consist of fibroblasts and osteoblasts, respectively, which secrete collagen and are involved in synthesis, while Langerhans cells and osteoclasts control turnover. Moreover, the quality and quantity of collagen in the skin and bone may be modified by aging, inflammation, estrogen, diabetes, and glucocorticoids. Skin and bone collagen are pathologically modified by aging, drugs, and metabolic diseases, such as diabetes. The structural similarities between the skin and bone and the crosstalk controlling their mutual pathological effects have led to the advocacy of the skin-bone axis. Thus, the skin may mirror the health of the bones and conversely, the condition of the skin may be reflected in the bones. From the perspective of the skin-bone axis, the similarities between skin and bone anatomy, function, and pathology, as well as the crosstalk between the two, are discussed in this review. A thorough elucidation of the pathways governing the skin-bone axis crosstalk would enhance our understanding of disease pathophysiology, facilitating the development of new diagnostics and therapies for skin collagen-induced bone disease and of new osteoporosis diagnostics and therapies that enhance skin collagen to increase bone quality and density.
Collapse
Affiliation(s)
- Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Hirohito Hirata
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Kazunari Sugita
- Division of Dermatology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Permsak Paholpak
- Department of Orthopedics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Takaomi Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Tatsuya Tanaka
- Department of Neurosurgery, International University of Health and Welfare Narita Hospital, Chiba, Japan
| | - Kinshi Kato
- Department of Orthopaedic Surgery, Fukushima Medical University, Fukushima, Japan
| | - Masatsugu Tsukamoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Shun Umeki
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Yu Toda
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Masaaki Mawatari
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
19
|
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology 2024; 25:107-129. [PMID: 38150088 DOI: 10.1007/s10522-023-10082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Frailty syndrome denotes a decreased capacity of the body to maintain the homeostasis and stress of the internal environment, which simultaneously increases the risk of adverse health outcomes in older adults, including disability, hospitalization, falls, and death. To promote healthy aging, we should find strategies to cope with frailty. However, the pathogenesis of frailty syndrome is not yet clear. Recent studies have shown that the diversity, composition, and metabolites of gut microbiota significantly changed in older adults with frailty. In addition, several frailty symptoms were alleviated by adjusting gut microbiota with prebiotics, probiotics, and symbiosis. Therefore, we attempt to explore the pathogenesis of frailty syndrome in older people from gut microbiota and summarize the existing interventions for frailty syndrome targeting gut microbiota, with the aim of providing timely and necessary interventions and assistance for older adults with frailty.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chen-Chen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun-Jiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-E Deng
- Nephrology department, Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Zhuo Yuan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China
| | - Yan-Yang Li
- Department of Integrated Chinese and Western Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shi-Chao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine (National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion), Tianjin, 300193, China.
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| |
Collapse
|
20
|
Yadav M, Chauhan NS. Role of gut-microbiota in disease severity and clinical outcomes. Brief Funct Genomics 2024; 23:24-37. [PMID: 36281758 DOI: 10.1093/bfgp/elac037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/28/2022] [Indexed: 01/21/2024] Open
Abstract
A delicate balance of nutrients, antigens, metabolites and xenobiotics in body fluids, primarily managed by diet and host metabolism, governs human health. Human gut microbiota is a gatekeeper to nutrient bioavailability, pathogens exposure and xenobiotic metabolism. Human gut microbiota starts establishing during birth and evolves into a resilient structure by adolescence. It supplements the host's metabolic machinery and assists in many physiological processes to ensure health. Biotic and abiotic stressors could induce dysbiosis in gut microbiota composition leading to disease manifestations. Despite tremendous scientific advancements, a clear understanding of the involvement of gut microbiota dysbiosis during disease onset and clinical outcomes is still awaited. This would be important for developing an effective and sustainable therapeutic intervention. This review synthesizes the present scientific knowledge to present a comprehensive picture of the role of gut microbiota in the onset and severity of a disease.
Collapse
Affiliation(s)
- Monika Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
21
|
Wang S, Ju D, Zeng X. Mechanisms and Clinical Implications of Human Gut Microbiota-Drug Interactions in the Precision Medicine Era. Biomedicines 2024; 12:194. [PMID: 38255298 PMCID: PMC10813426 DOI: 10.3390/biomedicines12010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The human gut microbiota, comprising trillions of microorganisms residing in the gastrointestinal tract, has emerged as a pivotal player in modulating various aspects of human health and disease. Recent research has shed light on the intricate relationship between the gut microbiota and pharmaceuticals, uncovering profound implications for drug metabolism, efficacy, and safety. This review depicted the landscape of molecular mechanisms and clinical implications of dynamic human gut Microbiota-Drug Interactions (MDI), with an emphasis on the impact of MDI on drug responses and individual variations. This review also discussed the therapeutic potential of modulating the gut microbiota or harnessing its metabolic capabilities to optimize clinical treatments and advance personalized medicine, as well as the challenges and future directions in this emerging field.
Collapse
Affiliation(s)
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China;
| |
Collapse
|
22
|
Amato KR, Pradhan P, Mallott EK, Shirola W, Lu A. Host-gut microbiota interactions during pregnancy. Evol Med Public Health 2024; 12:7-23. [PMID: 38288320 PMCID: PMC10824165 DOI: 10.1093/emph/eoae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/07/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalian pregnancy is characterized by a well-known suite of physiological changes that support fetal growth and development, thereby positively affecting both maternal and offspring fitness. However, mothers also experience trade-offs between current and future maternal reproductive success, and maternal responses to these trade-offs can result in mother-offspring fitness conflicts. Knowledge of the mechanisms through which these trade-offs operate, as well as the contexts in which they operate, is critical for understanding the evolution of reproduction. Historically, hormonal changes during pregnancy have been thought to play a pivotal role in these conflicts since they directly and indirectly influence maternal metabolism, immunity, fetal growth and other aspects of offspring development. However, recent research suggests that gut microbiota may also play an important role. Here, we create a foundation for exploring this role by constructing a mechanistic model linking changes in maternal hormones, immunity and metabolism during pregnancy to changes in the gut microbiota. We posit that marked changes in hormones alter maternal gut microbiome composition and function both directly and indirectly via impacts on the immune system. The gut microbiota then feeds back to influence maternal immunity and metabolism. We posit that these dynamics are likely to be involved in mediating maternal and offspring fitness as well as trade-offs in different aspects of maternal and offspring health and fitness during pregnancy. We also predict that the interactions we describe are likely to vary across populations in response to maternal environments. Moving forward, empirical studies that combine microbial functional data and maternal physiological data with health and fitness outcomes for both mothers and infants will allow us to test the evolutionary and fitness implications of the gestational microbiota, enriching our understanding of the ecology and evolution of reproductive physiology.
Collapse
Affiliation(s)
- Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
| | - Priyanka Pradhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wesley Shirola
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
23
|
Yuan Z, Kang Y, Mo C, Huang S, Qin F, Zhang J, Wang F, Jiang J, Yang X, Liang H, Ye L. Causal relationship between gut microbiota and tuberculosis: a bidirectional two-sample Mendelian randomization analysis. Respir Res 2024; 25:16. [PMID: 38178098 PMCID: PMC10765819 DOI: 10.1186/s12931-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Growing evidence from observational studies and clinical trials suggests that the gut microbiota is associated with tuberculosis (TB). However, it is unclear whether any causal relationship exists between them and whether causality is bidirectional. METHODS A bidirectional two-sample Mendelian randomization (MR) analysis was performed. The genome-wide association study (GWAS) summary statistics of gut microbiota were obtained from the MiBioGen consortium, while the GWAS summary statistics of TB and its specific phenotypes [respiratory tuberculosis (RTB) and extrapulmonary tuberculosis (EPTB)] were retrieved from the UK Biobank and the FinnGen consortium. And 195 bacterial taxa from phylum to genus were analyzed. Inverse variance weighted (IVW), MR-Egger regression, maximum likelihood (ML), weighted median, and weighted mode methods were applied to the MR analysis. The robustness of causal estimation was tested using the heterogeneity test, horizontal pleiotropy test, and leave-one-out method. RESULTS In the UK Biobank database, we found that 11 bacterial taxa had potential causal effects on TB. Three bacterial taxa genus.Akkermansia, family.Verrucomicrobiacea, order.Verrucomicrobiales were validated in the FinnGen database. Based on the results in the FinnGen database, the present study found significant differences in the characteristics of gut microbial distribution between RTB and EPTB. Four bacterial taxa genus.LachnospiraceaeUCG010, genus.Parabacteroides, genus.RuminococcaceaeUCG011, and order.Bacillales were common traits in relation to both RTB and TB, among which order.Bacillales showed a protective effect. Additionally, family.Bacteroidacea and genus.Bacteroides were identified as common traits in relation to both EPTB and TB, positively associating with a higher risk of EPTB. In reverse MR analysis, no causal association was identified. No significant heterogeneity of instrumental variables (IVs) or horizontal pleiotropy was found. CONCLUSION Our study supports a one-way causal relationship between gut microbiota and TB, with gut microbiota having a causal effect on TB. The identification of characteristic gut microbiota provides scientific insights for the potential application of the gut microbiota as a preventive, diagnostic, and therapeutic tool for TB.
Collapse
Affiliation(s)
- Zongxiang Yuan
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Yiwen Kang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Chuye Mo
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Shihui Huang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fang Qin
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junhan Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Fengyi Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoxiang Yang
- Department of Infectious Diseases in Children, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, 530003, Guangxi, China.
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Life Science Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
24
|
Lin TL, Kuo YL, Lai JH, Lu CC, Yuan CT, Hsu CY, Yan BS, Wu LSH, Wu TS, Wang JY, Yu CJ, Lai HC, Shu JC, Shu CC. Gut microbiota dysbiosis-related susceptibility to nontuberculous mycobacterial lung disease. Gut Microbes 2024; 16:2361490. [PMID: 38860456 PMCID: PMC11174134 DOI: 10.1080/19490976.2024.2361490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
The role of gut microbiota in host defense against nontuberculous mycobacterial lung disease (NTM-LD) was poorly understood. Here, we showed significant gut microbiota dysbiosis in patients with NTM-LD. Reduced abundance of Prevotella copri was significantly associated with NTM-LD and its disease severity. Compromised TLR2 activation activity in feces and plasma in the NTM-LD patients was highlighted. In the antibiotics-treated mice as a study model, gut microbiota dysbiosis with reduction of TLR2 activation activity in feces, sera, and lung tissue occurred. Transcriptomic analysis demonstrated immunocompromised in lung which were closely associated with increased NTM-LD susceptibility. Oral administration of P. copri or its capsular polysaccharides enhanced TLR2 signaling, restored immune response, and ameliorated NTM-LD susceptibility. Our data highlighted the association of gut microbiota dysbiosis, systematically compromised immunity and NTM-LD development. TLR2 activation by P. copri or its capsular polysaccharides might help prevent NTM-LD.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
- REVIVEBIO CO, Taipei city, Taiwan
| | - Yen-Liang Kuo
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Fu Jen Catholic University Hospital, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Juo-Hsin Lai
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Chen Lu
- REVIVEBIO CO, Taipei city, Taiwan
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chang-Tsu Yuan
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Yu Hsu
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Bo-Shiun Yan
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Lawrence Shih-Hsin Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, Taiwan
| | - Ting-Shu Wu
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Jann-Yuan Wang
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chong-Jen Yu
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan, Taiwan
- REVIVEBIO CO, Taipei city, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jwu-Ching Shu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Chung Shu
- Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Samiraninezhad N, Kazemi H, Rezaee M, Gholami A. Effect of lactobacillus reuteri-derived probiotic nano-formulation on recurrent aphthous stomatitis: a double-blinded randomized clinical trial. BMC Oral Health 2023; 23:1019. [PMID: 38114936 PMCID: PMC10729528 DOI: 10.1186/s12903-023-03756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
OBJECTIVES We aimed to assess the therapeutic effects of a topical probiotic nano-formulation derived from Lactobacillus reuteri on treating recurrent aphthous stomatitis. MATERIALS AND METHODS 60 participants were randomly allocated into two groups (control and probiotic). Probiotic group administered topical probiotic nano-formulation three times a day for seven days. The control group administered a standard analgesic oral rinse. The size of ulcer(s) and pain severity were recorded on days 0, 3, 5, and 7 after intervention. RESULTS Before the intervention, the groups had no significant differences in terms of pain severity (P-value = 0.28) and lesion size (P-value = 0.24). Both groups exhibited significant reductions in pain severity and lesion size over the course of the intervention. After one week, the probiotic group had a notably larger lesion size reduction than the control group (P-value = 0.01). The probiotic group also showed a significantly greater reduction in pain severity than the control group (P-value = 0.04). CONCLUSIONS Applying topical probiotic nano-formulation derived from Lactobacillus reuteri three times a day decreased lesion size and pain severity in RAS patients faster than the local analgesic oral rinse. CLINICAL RELEVANCE Lactobacillus reuteri-derived probiotic nano-formulation might be a promising treatment option for RAS.
Collapse
Affiliation(s)
| | - Hojat Kazemi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mostafa Rezaee
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Science and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
26
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
27
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
28
|
Benešová I, Křížová Ľ, Kverka M. Microbiota as the unifying factor behind the hallmarks of cancer. J Cancer Res Clin Oncol 2023; 149:14429-14450. [PMID: 37555952 PMCID: PMC10590318 DOI: 10.1007/s00432-023-05244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The human microbiota is a complex ecosystem that colonizes body surfaces and interacts with host organ systems, especially the immune system. Since the composition of this ecosystem depends on a variety of internal and external factors, each individual harbors a unique set of microbes. These differences in microbiota composition make individuals either more or less susceptible to various diseases, including cancer. Specific microbes are associated with cancer etiology and pathogenesis and several mechanisms of how they drive the typical hallmarks of cancer were recently identified. Although most microbes reside in the distal gut, they can influence cancer initiation and progression in distant tissues, as well as modulate the outcomes of established cancer therapies. Here, we describe the mechanisms by which microbes influence carcinogenesis and discuss their current and potential future applications in cancer diagnostics and management.
Collapse
Affiliation(s)
- Iva Benešová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic
| | - Ľudmila Křížová
- Department of Oncology, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology v.v.i., Czech Academy of Sciences, Vídeňská 1083, 142 00, Prague 4-Krč, Czech Republic.
| |
Collapse
|
29
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
30
|
Chaudhary A, Nadeem M, Townsend J, Miller VJ, Hajrasouliha AR. Perinatal events and development of juvenile idiopathic arthritis-associated uveitis. Sci Rep 2023; 13:17576. [PMID: 37845273 PMCID: PMC10579364 DOI: 10.1038/s41598-023-44208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
Uveitis is one of the most common manifestations of juvenile idiopathic arthritis (JIA). Currently, JIA is associated with decreased gut microbiota diversity. Studies confirm that perinatal events can cause aberrant microbial colonization. The objective of this study is to determine if JIA is associated with perinatal events with a secondary focus on these variables to the development of JIA-uveitis. 369 patients with strabismus (n = 200) or JIA (n = 196) were included in the study. Completed surveys (JIA 37; strabismus 18) collected data about birth route, pregnancy and labor complications, JIA medications, and the presence of eye disorders. Analysis indicates that there is no relationship between JIA development and the perinatal events investigated. Similarly, no significance was found between JIA-uveitis and birth route or labor complications. Pregnancy complications, namely gestational diabetes (GD), were statistically higher in the JIA group with uveitis compared to JIA without uveitis. The data from this survey study showed that JIA-uveitis was highly associated with pregnancy complications, particularly with GD. However, no statistically significant association was found between JIA and route of delivery, labor complications, or pregnancy complications. Further studies are needed to understand the ways that GD interrelates with the development of uveitis in JIA patients.
Collapse
Affiliation(s)
- Aysha Chaudhary
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Manahil Nadeem
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Jack Townsend
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Victoria J Miller
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA
| | - Amir R Hajrasouliha
- Eugene and Marilyn Glick Eye Institute and Department of Ophthalmology, Indiana University School of Medicine, 1160 W Michigan St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
31
|
Pal P, Shastry RP. Exploring the complex role of gut microbiome in the development of precision medicine strategies for targeting microbial imbalance-induced colon cancer. Folia Microbiol (Praha) 2023; 68:691-701. [PMID: 37624549 DOI: 10.1007/s12223-023-01085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
The gut microbiome has been increasingly recognized as a key player in the development and progression of colon cancer. Alterations in the gut microbiota, known as dysbiosis, can lead to a variety of medical issues. Microbial adaptation through signals and small molecules can enhance pathogen colonization and modulate host immunity, significantly impacting disease progression. Quorum sensing peptides and molecules have been linked to the progression of colon cancer. Various interventions, such as fecal microbiota transplantation, probiotics, prebiotics, synbiotics, and antibiotics, have been used to reverse dysbiosis with mixed results and potential side effects. Thus, a personalized approach to treatment selection based on patient characteristics, such as individual gut microbiota manipulation, is necessary to prevent and treat diseases like colon cancer. With advances in metagenomic sequencing and other omics technologies, there has been a growing interest in developing precision medicine strategies for microbial imbalance-induced colon cancer. This review serves as a comprehensive synthesis of current knowledge on the gut microbiome involvement in colon cancer. By exploring the potential of utilizing the gut microbiome as a target for precision medicine, this review underscores the exciting opportunities that lie ahead. Although challenges exist, the integration of microbiome data into precision medicine approaches has the potential to revolutionize the management of colon cancer, providing patients with more personalized and effective treatment options.
Collapse
Affiliation(s)
- Pamela Pal
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India
| | - Rajesh P Shastry
- Division of Microbiology and Biotechnology, Yenepoya (Deemed to Be University), Yenepoya Research Centre, University Road, Mangaluru-575018, India.
| |
Collapse
|
32
|
Fang X, Gao C, Wu W, Hu X, Shao M, Zhou C, Cai R, Fang J, Li Y, Xu Y, Zhang X. The role of the gut microbiome in weight-gain in schizophrenia patients treated with atypical antipsychotics: Evidence based on altered composition and function in a cross-sectional study. Psychiatry Res 2023; 328:115463. [PMID: 37717547 DOI: 10.1016/j.psychres.2023.115463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVES We aimed to explore the interconnection between the weight-gain in schizophrenia patients with atypical antipsychotic treatment and gut microbiome. METHODS This study employed a cross-sectional design, encompassing a total of 88 schizophrenia patients with long-term atypical antipsychotic treatment. The 16S rRNA gene sequencing was used to identify gut microbiome contents. RESULTS No significant differences in alpha diversity between normal-weight and overweight schizophrenia treated with atypical antipsychotics. The beta diversity analysis showed that overweight patients clustered tightly while normal-weight patients clustered widely. For taxonomic composition, overweight patients had a lower relative abundance in Porphyromonadaceae at family level and Butyrivibrio at genus level, but higher relative abundance in Ruminococcus2 and Clostridium_XIVa at genus level than normal-weight patients. Function prediction revelated that four pathways (including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection and Meiosis-yeast) were significantly different between groups. Correlation analysis indicated that Klebsiella, Butyrivibrio, Unassigned, Methanosphaera, Holdemania, Anaerotruncus were negatively, while Veillonella was positively correlated with BMI in patients. CONCLUSION Our findings offer evidence that perturbations in the gut microbiome composition, encompassing taxa such as Porphyromonadaceae, Butyrivibrio, Ruminococcus2, and Clostridium_XIVa, in conjunction with distinct functional pathways including Cell cycle, Non-homologous end-joining, Vibrio cholerae infection, and Meiosis-yeast, might contribute to the weight-gain in schizophrenia treated with atypical antipsychotics.
Collapse
Affiliation(s)
- Xinyu Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chunying Gao
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Department of Psychiatry, Changzhou De'an Hospital, Changzhou, China
| | - Weifeng Wu
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China; Nanjing Public Health and Medical Center, Nanjing, China
| | - Xiuxiu Hu
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Miaomiao Shao
- Department of Psychiatry, Jiangning District Second People' s Hospital, Nanjing, China
| | - Chou Zhou
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Renliang Cai
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Li
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Xu
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
33
|
Rust C, Malan-Muller S, van den Heuvel LL, Tonge D, Seedat S, Pretorius E, Hemmings SMJ. Platelets bridging the gap between gut dysbiosis and neuroinflammation in stress-linked disorders: A narrative review. J Neuroimmunol 2023; 382:578155. [PMID: 37523892 DOI: 10.1016/j.jneuroim.2023.578155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
In this narrative review, we examine the association between gut dysbiosis, neuroinflammation, and stress-linked disorders, including depression, anxiety, and post-traumatic stress disorder (PTSD), and investigate whether tryptophan (TRP) metabolism and platelets play a role in this association. The mechanisms underlying the aetiology of stress-linked disorders are complex and not yet completely understood. However, a potential link between chronic inflammation and these disorders may potentially be found in TRP metabolism and platelets. By critically analysing existing literature on platelets, the gut microbiome, and stress-linked disorders, we hope to elicit the role of platelets in mediating the effects on serotonin (5-HT) levels and neuroinflammation. We have included studies specifically investigating platelets and TRP metabolism in relation to inflammation, neuroinflammation and neuropsychiatric disorders. Alteration in microbial composition due to stress could contribute to increased intestinal permeability, facilitating the translocation of microbial products, and triggering the release of pro-inflammatory cytokines. This causes platelets to become hyperactive and secrete 5-HT into the plasma. Increased levels of pro-inflammatory cytokines may also lead to increased permeability of the blood-brain barrier (BBB), allowing inflammatory mediators entry into the brain, affecting the balance of TRP metabolism products, such as 5-HT, kynurenic acid (KYNA), and quinolinic acid (QUIN). These alterations may contribute to neuroinflammation and possible neurological damage. Furthermore, platelets can cross the compromised BBB and interact with astrocytes and neurons, leading to the secretion of 5-HT and pro-inflammatory factors, exacerbating inflammatory conditions in the brain. The mechanisms underlying neuroinflammation resulting from peripheral inflammation are still unclear, but the connection between the brain and gut through the bloodstream could be significant. Identifying peripheral biomarkers and mechanisms in the plasma that reflect neuroinflammation may be important. This review serves as a foundation for further research on the association between the gut microbiome, blood microbiome, and neuropsychiatric disorders. The integration of these findings with protein and metabolite markers in the blood may expand our understanding of the subject.
Collapse
Affiliation(s)
- Carlien Rust
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa.
| | - Stefanie Malan-Muller
- Department of Pharmacology and Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain; Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Leigh L van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Daniel Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, ST5 5BG Newcastle, England, UK
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology Biosciences Building, University of Liverpool, Liverpool, United Kingdom.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| |
Collapse
|
34
|
Łoniewska B, Łoniewski I. Effect of Pre- and Perinatal Factors and Infant Nutrition on the Intestinal Microbiota. Nutrients 2023; 15:3977. [PMID: 37764760 PMCID: PMC10534608 DOI: 10.3390/nu15183977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal microbiota is an essential determinant of human health [...].
Collapse
Affiliation(s)
- Beata Łoniewska
- Department of Neonatology and Intensive Neonatal Care, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
- Sanprobi sp. z o.o. sp. k., 70-535 Szczecin, Poland
| |
Collapse
|
35
|
Pławińska-Czarnak J, Wódz K, Strzałkowska Z, Żychska M, Nowak T, Kwieciński A, Kwieciński P, Bielecki W, Rodo A, Rzewuska M, Kłosińska D, Anusz K, Orłowska B. Comparison of automatic methods MALDI-TOF, VITEK2 and manual methods for the identification of intestinal microbial communities on the example of samples from alpacas ( Vicugna pacos). J Vet Res 2023; 67:361-372. [PMID: 37786852 PMCID: PMC10541665 DOI: 10.2478/jvetres-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/22/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Universally, in microbiological diagnostics the detection of live bacteria is essential. Rapid identification of pathogens enables appropriate remedial measures to be taken. The identification of many bacteria simultaneously facilitates the determination of the characteristics of the accompanying microbiota and/or the microbiological complexity of a given environment. Material and Methods The effectiveness of the VITEK2 Compact automated microbial identification system and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS), analytical profile index (API) and Remel RapID tests were compared in identification of bacteria isolated from the alpaca gastrointestinal tract. Results Most isolates were Gram-positive, such as Bacillus cereus, Bacillus flexus, Bacillus licheniformis, Bacillus pumilus and Bacillus subtilis; Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae and Enterococcus casseliflavus; Staphylococcus aureus, Staphylococcus equorum, Staphylococcus lentus, Staphylococcus pseudintermedius and Staphylococcus sciuri; Paenibacillus amylolyticus; Cellulosimicrobium cellulans; Leuconostoc mesenteroides; Clostridium perfringens; Corynebacterium stationis, Corynebacterium xerosis, and Corynebacterium diphtheriae (the last only isolated manually by API Coryne and the VITEK2 system and Corynebacteria (CBC) card). Corynebacterium diphtheriae was misidentified by MALDI-TOF MS as Candida lipolytica (currently Yarrowia lipolytica). Gram-positive and Gram-variable Micrococcus luteus were also isolated. Gram-negative Enterobacter cloacae, Enterobacter gergoviae, Enterobacter hormaechei and Enterobacter ludwigii; E. coli; Klebsiella pneumoniae subsp. pneumoniae; Citrobacter braakii and Citrobacter freundii; Serratia liquefaciens, Serratia odorifera and Serratia marcescens; Morganella morganii subsp. morganii; Providencia alcalifaciens; Pseudomonas aeruginosa; Stenotrophomonas maltophilia; Moraxella osloensis; and Ochrobactrum intermedium were also found. The yeasts Candida albicans, Candida haemulonii and Candida ciferrii were also present. Conclusion MALDI-TOF MS enabled the identification of pathogens and opportunistic pathogens from the alpaca gut which may represent a high risk to human and animal health.
Collapse
Affiliation(s)
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | | | - Monika Żychska
- Laboratory of Veterinary Epidemiology and Economic, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786Warsaw, Poland
| | - Tomasz Nowak
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Adam Kwieciński
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Piotr Kwieciński
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720Brudzew, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Anna Rodo
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787Warsaw, Poland
| | - Daria Kłosińska
- Division of Histology and Embryology, Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - Krzysztof Anusz
- Department of Food Hygiene and Public Health Protection, Warsaw, Poland
| | - Blanka Orłowska
- Department of Food Hygiene and Public Health Protection, Warsaw, Poland
| |
Collapse
|
36
|
Dai Y, Shen Z, Khachatryan LG, Vadiyan DE, Karampoor S, Mirzaei R. Unraveling mechanistic insights into the role of microbiome in neurogenic hypertension: A comprehensive review. Pathol Res Pract 2023; 249:154740. [PMID: 37567034 DOI: 10.1016/j.prp.2023.154740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Neurogenic hypertension, a complex and multifactorial cardiovascular disorder, is known to be influenced by various genetic, environmental, and lifestyle factors. In recent years, there has been growing interest in the role of the gut microbiome in hypertension pathogenesis. The bidirectional communication between the gut microbiota and the central nervous system, known as the microbiota-gut-brain axis, has emerged as a crucial mechanism through which the gut microbiota exerts its influence on neuroinflammation, immune responses, and blood pressure regulation. Recent studies have shown how the microbiome has a substantial impact on a variety of physiological functions, such as cardiovascular health. The increased sympathetic activity to the gut may cause microbial dysbiosis, increased permeability of the gut, and increased inflammatory reactions by altering a number of intestinal bacteria producing short-chain fatty acids (SCFAs) and the concentrations of lipopolysaccharide (LPS) in the plasma. Collectively, these microbial metabolic and structural compounds stimulate sympathetic stimulation, which may be an important stage in the onset of hypertension. The result is an upsurge in peripheral and central inflammatory response. In addition, it has recently been shown that a link between the immune system and the gut microbiota might play a significant role in hypertension. The therapeutic implications of the gut microbiome including probiotic usage, prebiotics, dietary modifications, and fecal microbiota transplantation in neurogenic hypertension have also been found. A large body of research suggests that probiotic supplementation might help reduce chronic inflammation and hypertension that have an association with dysbiosis in the gut microbiota. Overall, this review sheds light on the intricate interplay between the gut microbiome and neurogenic hypertension, providing valuable insights for both researchers and clinicians. As our knowledge of the microbiome's role in hypertension expands, novel therapeutic strategies and diagnostic biomarkers may pave the way for more effective management and prevention of this prevalent cardiovascular disorder. Exploring the potential of the microbiome in hypertension offers an exciting avenue for future research and offers opportunities for precision medicine and improved patient care.
Collapse
Affiliation(s)
- Yusang Dai
- Physical Examination Center, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zheng Shen
- Department of Cardiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Diana E Vadiyan
- Institute of Dentistry, Department of Pediatric, Preventive Dentistry and Orthodontics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Santacroce L, Passarelli PC, Azzolino D, Bottalico L, Charitos IA, Cazzolla AP, Colella M, Topi S, Godoy FG, D’Addona A. Oral microbiota in human health and disease: A perspective. Exp Biol Med (Maywood) 2023; 248:1288-1301. [PMID: 37688509 PMCID: PMC10625343 DOI: 10.1177/15353702231187645] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2023] Open
Abstract
The evolution of medical knowledge about oral microbiota has increased awareness of its important role for the entire human body health. A wide range of microbial species colonizing the oral cavity interact both with each other and with their host through complex pathways. Usually, these interactions lead to a harmonious coexistence (i.e. eubiosis). However, several factors - including diet, poor oral hygiene, tobacco smoking, and certain medications, among others - can disrupt this weak homeostatic balance (i.e. dysbiosis) with potential implications on both oral (i.e. development of caries and periodontal disease) and systemic health. This article is thus aimed at providing an overview on the importance of oral microbiota in mediating several physiological and pathological conditions affecting human health. In this context, strategies based on oral hygiene and diet as well as the role of probiotics supplementation are discussed.
Collapse
Affiliation(s)
- Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Pier Carmine Passarelli
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Domenico Azzolino
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Ioannis Alexandros Charitos
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
- Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Bari 70124, Italy
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Riuniti University Hospital of Foggia, Foggia 71122, Italy
| | - Marica Colella
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University Hospital of Bari, Bari 70124, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, University of Elbasan “A. Xhuvani,” Elbasan 3001, Albania
| | - Franklin Garcia Godoy
- Bioscience Research Center, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- The Forsyth Institute, Cambridge, MA 02142, USA
- Department of Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Antonio D’Addona
- Department of Head, Neck and Sense Organs, Division of Oral Surgery and Implantology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
38
|
Taha SFM, Bhassu S, Omar H, Raju CS, Rajamanikam A, Govind SKP, Mohamad SB. Gut microbiota of healthy Asians and their discriminative features revealed by metagenomics approach. 3 Biotech 2023; 13:275. [PMID: 37457869 PMCID: PMC10338424 DOI: 10.1007/s13205-023-03671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03671-3.
Collapse
Affiliation(s)
- Siti Fatimah Mohd Taha
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hasmahzaiti Omar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Museum of Zoology (Block J14), Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Chandramati Samudi Raju
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arutchelvan Rajamanikam
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Suresh Kumar P. Govind
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saharuddin Bin Mohamad
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Bendriss G, MacDonald R, McVeigh C. Microbial Reprogramming in Obsessive-Compulsive Disorders: A Review of Gut-Brain Communication and Emerging Evidence. Int J Mol Sci 2023; 24:11978. [PMID: 37569349 PMCID: PMC10419219 DOI: 10.3390/ijms241511978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a debilitating mental health disorder characterized by intrusive thoughts (obsessions) and repetitive behaviors (compulsions). Dysbiosis, an imbalance in the gut microbial composition, has been associated with various health conditions, including mental health disorders, autism, and inflammatory diseases. While the exact mechanisms underlying OCD remain unclear, this review presents a growing body of evidence suggesting a potential link between dysbiosis and the multifaceted etiology of OCD, interacting with genetic, neurobiological, immunological, and environmental factors. This review highlights the emerging evidence implicating the gut microbiota in the pathophysiology of OCD and its potential as a target for novel therapeutic approaches. We propose a model that positions dysbiosis as the central unifying element in the neurochemical, immunological, genetic, and environmental factors leading to OCD. The potential and challenges of microbial reprogramming strategies, such as probiotics and fecal transplants in OCD therapeutics, are discussed. This review raises awareness of the importance of adopting a holistic approach that considers the interplay between the gut and the brain to develop interventions that account for the multifaceted nature of OCD and contribute to the advancement of more personalized approaches.
Collapse
|
40
|
Fakharian F, Thirugnanam S, Welsh DA, Kim WK, Rappaport J, Bittinger K, Rout N. The Role of Gut Dysbiosis in the Loss of Intestinal Immune Cell Functions and Viral Pathogenesis. Microorganisms 2023; 11:1849. [PMID: 37513022 PMCID: PMC10384393 DOI: 10.3390/microorganisms11071849] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/15/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome plays a critical role in maintaining overall health and immune function. However, dysbiosis, an imbalance in microbiome composition, can have profound effects on various aspects of human health, including susceptibility to viral infections. Despite numerous studies investigating the influence of viral infections on gut microbiome, the impact of gut dysbiosis on viral infection and pathogenesis remains relatively understudied. The clinical variability observed in SARS-CoV-2 and seasonal influenza infections, and the presence of natural HIV suppressors, suggests that host-intrinsic factors, including the gut microbiome, may contribute to viral pathogenesis. The gut microbiome has been shown to influence the host immune system by regulating intestinal homeostasis through interactions with immune cells. This review aims to enhance our understanding of how viral infections perturb the gut microbiome and mucosal immune cells, affecting host susceptibility and response to viral infections. Specifically, we focus on exploring the interactions between gamma delta (γδ) T cells and gut microbes in the context of inflammatory viral pathogenesis and examine studies highlighting the role of the gut microbiome in viral disease outcomes. Furthermore, we discuss emerging evidence and potential future directions for microbiome modulation therapy in the context of viral pathogenesis.
Collapse
Affiliation(s)
- Farzaneh Fakharian
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Siva Thirugnanam
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - David A. Welsh
- Department of Microbiology, Immunology and Parasitology, Louisiana State University School of Medicine, New Orleans, LA 70806, USA
| | - Woong-Ki Kim
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Namita Rout
- Tulane National Primate Research Center, Covington, LA 70433, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
41
|
Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol 2023; 13:1209381. [PMID: 37520442 PMCID: PMC10373507 DOI: 10.3389/fcimb.2023.1209381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic β-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.
Collapse
Affiliation(s)
- Shuxian Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
42
|
Smith KB, Murack M, Ismail N. The sex-dependent and enduring impact of pubertal stress on health and disease. Brain Res Bull 2023; 200:110701. [PMID: 37422090 DOI: 10.1016/j.brainresbull.2023.110701] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Illness is often predicated long before the manifestation of its symptoms. Exposure to stressful experiences particularly during critical periods of development, such as puberty and adolescence, can induce various physical and mental illnesses. Puberty is a critical period of maturation for neuroendocrine systems, such as the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes. Exposure to adverse experiences during puberty can impede normal brain reorganizing and remodelling and result in enduring consequences on brain functioning and behaviour. Stress responsivity differs between the sexes during the pubertal period. This sex difference is partly due to differences in circulating sex hormones between males and females, impacting stress and immune responses differently. The effects of stress during puberty on physical and mental health remains under-examined. The purpose of this review is to summarize the most recent findings pertaining to age and sex differences in HPA axis, HPG axis, and immune system development, and describe how disruption in the functioning of these systems can propagate disease. Lastly, we delve into the notable neuroimmune contributions, sex differences, and the mediating role of the gut microbiome on stress and health outcomes. Understanding the enduring consequences of adverse experiences during puberty on physical and mental health will allow a greater proficiency in treating and preventing stress-related diseases early in development.
Collapse
Affiliation(s)
- Kevin B Smith
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Michael Murack
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada
| | - Nafissa Ismail
- NISE Laboratory - University of Ottawa, School of Psychology, Ottawa, Ontario, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada; LIFE Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
43
|
Enichen E, Adams RB, Demmig-Adams B. Physical Activity as an Adjunct Treatment for People Living with HIV? Am J Lifestyle Med 2023; 17:502-517. [PMID: 37426740 PMCID: PMC10328202 DOI: 10.1177/15598276221078222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
This review evaluates physical activity as a candidate for an adjunct treatment, in conjunction with antiretroviral therapy (ART), for people living with HIV (PLWH). Evidence is summarized that chronic, non-resolving inflammation (a principal feature of immune system dysfunction) and a dysfunctional state of the gut environment are key factors in HIV infection that persist despite treatment with ART. In addition, evidence is summarized that regular physical activity may restore normal function of both the immune system and the gut environment and may thereby ameliorate symptoms and non-resolving inflammation-associated comorbidities that burden PLWH. Physicians who care for PLWH could thus consider incorporating physical activity into treatment plans to complement ART. It is also discussed that different types of physical activity can have different effects on the gut environment and immune function, and that future research should establish more specific criteria for the design of exercise regimens tailored to PLWH.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Robert B. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA, (EE, BDA); Physical Therapy of Boulder, Boulder, CO, USA, (RBA)
| |
Collapse
|
44
|
Banzragch M, Sanli K, Stensvold CR, Kurt O, Ari S. Metabarcoding of colonic cleansing fluid reveals unique bacterial members of mucosal microbiota associated with Inflammatory Bowel Disease. Scand J Gastroenterol 2023; 58:1253-1263. [PMID: 37337895 DOI: 10.1080/00365521.2023.2223708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Inflammatory Bowel Disease (IBD) is a group of chronic idiopathic inflammatory diseases of the gastrointestinal (GI) tract associated with the dysbiosis of gut microbiota. Metabarcoding-based profiling of the gut microbiota of IBD patients is generally based on the stool samples collected from individual patients which rarely represent the mucosa-associated microbiota. The ideal sampling strategy for routine monitoring of the mucosal component of IBD has yet to be determined. METHODS We hereby compare the microbiota composition of the colonic cleansing fluid (CCF) collected during colonoscopy with stool samples from IBD patients. The relationship between IBD and gut microbiota was revealed through the application of the 16S rRNA amplicon sequencing-based metabarcoding approach. CCF and stool samples were collected from IBD patients with Crohn's disease and ulcerative colitis. RESULTS The present study shows significant differences in the microbial composition of CCF samples, presumably indicating changes in the mucosal microbiota of IBD patients as compared to the control group. Short-chain fatty acid-producing bacteria under the family Lachnospiraceae, the actinobacterial genus Bifidobacterium, the proteobacterial Sutterella and Raoultella are found to contribute to the microbial dysbiosis of the mucosal flora in IBD patients. CONCLUSIONS CCF microbiota has the capacity to distinguish IBD patients from healthy controls and, thus, may constitute an alternative analysis strategy for the early diagnosis and disease progression in IBD biomarker research.
Collapse
Affiliation(s)
| | - Kemal Sanli
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Life Sciences, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Christen Rune Stensvold
- Department of Microbiology and Infection Control, Statens Serum Institute, Copenhagen, Denmark
| | - Ozgur Kurt
- Department of Medical Microbiology, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
| | - Sule Ari
- Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
| |
Collapse
|
45
|
Jacobs S, Payne C, Shaboodien S, Kgatla T, Pretorius A, Jumaar C, Sanni O, Butrous G, Maarman G. Gut microbiota crosstalk mechanisms are key in pulmonary hypertension: The involvement of melatonin is instrumental too. Pulm Circ 2023; 13:e12277. [PMID: 37583483 PMCID: PMC10423855 DOI: 10.1002/pul2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
The microbiota refers to a plethora of microorganisms with a gene pool of approximately three million, which inhabits the human gastrointestinal tract or gut. The latter, not only promotes the transport of nutrients, ions, and fluids from the lumen to the internal environment but is linked with the development of diseases including coronary artery disease, heart failure, and lung diseases. The exact mechanism of how the microbiota achieves crosstalk between itself and distant organs/tissues is not clear, but factors released to other organs may play a role, like inflammatory and genetic factors, and now we highlight melatonin as a novel mediator of the gut-lung crosstalk. Melatonin is present in high concentrations in the gut and the lung and has recently been linked to the pathogenesis of pulmonary hypertension (PH). In this comprehensive review of the literature, we suggest that melatonin is an important link between the gut microbiota and the development of PH (where suppressed melatonin-crosstalk between the gut and lungs could promote the development of PH). More studies are needed to investigate the link between the gut microbiota, melatonin and PH. Studies could also investigate whether microbiota genes play a role in the epigenetic aspects of PH. This is relevant because, for example, dysbiosis (caused by epigenetic factors) could reduce melatonin signaling between the gut and lungs, reduce subcellular melatonin concentrations in the gut/lungs, or reduce melatonin serum levels secondary to epigenetic factors. This area of research is largely unexplored and further studies are warranted.
Collapse
Affiliation(s)
- Steve Jacobs
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Carmen Payne
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Sara Shaboodien
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Thato Kgatla
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Amy Pretorius
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Chrisstoffel Jumaar
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Olakunle Sanni
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Ghazwan Butrous
- School of Pharmacy, Imperial College of LondonUniversity of KentCanterburyUK
| | - Gerald Maarman
- CARMA: Centre for Cardio‐Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
46
|
Flores-Balderas X, Peña-Peña M, Rada KM, Alvarez-Alvarez YQ, Guzmán-Martín CA, Sánchez-Gloria JL, Huang F, Ruiz-Ojeda D, Morán-Ramos S, Springall R, Sánchez-Muñoz F. Beneficial Effects of Plant-Based Diets on Skin Health and Inflammatory Skin Diseases. Nutrients 2023; 15:2842. [PMID: 37447169 DOI: 10.3390/nu15132842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The human skin is a crucial organ that protects the organism from the outer environment. Skin integrity and health depend on both extrinsic and intrinsic factors. Intrinsic factors such as aging and genetic background contribute to weakened skin and disease susceptibility. Meanwhile, extrinsic factors including UV radiation, pollution, smoking, humidity, and poor diet also affect skin health and disease. On the other hand, healthy dietary patterns such as plant-based diets have gained popularity as a complementary therapy for skin health. A plant-based diet is defined as all diets based on plant foods, including an abundance of vegetables, fruits, beans, lentils, legumes, nuts, seeds, fungi, and whole grains, with limited or no animal products or processed foods. However, some authors also exclude or limit processed foods in the definition. Recent research has shown that these diets have beneficial effects on inflammatory skin diseases. This review explored the beneficial effects of plant-based diets on inflammatory skin diseases and plant-based functional foods on healthy skin. In conclusion, plant-based diets and plant-based functional foods may have beneficial effects on skin health through the gut microbiome.
Collapse
Affiliation(s)
- Ximena Flores-Balderas
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Mario Peña-Peña
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karla M Rada
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Yamnia Q Alvarez-Alvarez
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
- Departamento de Fisiopatología Cardiorrenal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Carlos A Guzmán-Martín
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - José L Sánchez-Gloria
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fengyang Huang
- Laboratorio de Investigación en Obesidad y Asma, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Dayanara Ruiz-Ojeda
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Sofía Morán-Ramos
- Unidad de Genόmica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM/Instituto Nacional de Medicina Genόmica (INMEGEN), Mexico City 14609, Mexico
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico
| | - Rashidi Springall
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| |
Collapse
|
47
|
Pecyna P, Gabryel M, Mankowska-Wierzbicka D, Nowak-Malczewska DM, Jaskiewicz K, Jaworska MM, Tomczak H, Rydzanicz M, Ploski R, Grzymislawski M, Dobrowolska A, Gajecka M. Gender Influences Gut Microbiota among Patients with Irritable Bowel Syndrome. Int J Mol Sci 2023; 24:10424. [PMID: 37445604 DOI: 10.3390/ijms241310424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disease that affects approximately 11% of the general population. The gut microbiota, among other known factors, plays a substantial role in its pathogenesis. The study aimed to characterize the gut microbiota differences between patients with IBS and unaffected individuals, taking into account the gender aspect of the patients and the types of IBS determined on the basis of the Rome IV Criteria, the IBS-C, IBS-D, IBS-M, and IBS-U. In total, 121 patients with IBS and 70 unaffected individuals participated in the study; the derived stool samples were subjected to 16S rRNA amplicon sequencing. The gut microbiota of patients with IBS was found to be more diverse in comparison to unaffected individuals, and the differences were observed primarily among Clostridiales, Mogibacteriaceae, Synergistaceae, Coriobacteriaceae, Blautia spp., and Shuttleworthia spp., depending on the study subgroup and patient gender. There was higher differentiation of females' gut microbiota compared to males, regardless of the disease status. No correlation between the composition of the gut microbiota and the type of IBS was found. Patients with IBS were characterized by more diverse gut microbiota compared to unaffected individuals. The gender criterion should be considered in the characterization of the gut microbiota. The type of IBS did not determine the identified differences in gut microbiota.
Collapse
Affiliation(s)
- Paulina Pecyna
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dorota Mankowska-Wierzbicka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Dorota M Nowak-Malczewska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | | | - Marcelina M Jaworska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Hanna Tomczak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Central Microbiology Laboratory, H. Swiecicki Clinical Hospital at the Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Malgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland
| | - Marian Grzymislawski
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| |
Collapse
|
48
|
Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends. Food Chem 2023; 411:135478. [PMID: 36696721 DOI: 10.1016/j.foodchem.2023.135478] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Potential effects of metabiotics (probiotics effector molecules or signaling factors), pharmabiotics (pro-functional metabolites produced by gut microbiota (GMB)) and postbiotics (multifunctional metabolites and structural compounds of food-grade microorganisms) on GMB have been rarely reviewed. These multifunctional components have several promising capabilities for prevention, alleviation and treatment of some diseases or disorders. Correlations between these essential biotics and GMB are also very interesting and important in human health and nutrition. Furthermore, these natural bioactives are involved in modulation of the immune function, control of metabolic dysbiosis and regulation of the signaling pathways. This review discusses the potential of meta/pharma/post-biotics as new classes of pharmaceutical agents and their effective mechanisms associated with GMB-host cell to cell communications with therapeutic benefits which are important in balance and the integrity of the host microbiome. In addition, cutting-edge findings about bioinformatics /metabolomics analyses related to GMB and these essential biotics are reviewed.
Collapse
|
49
|
Erinle TJ, Boulianne M, Miar Y, Scales R, Adewole D. Red osier dogwood and its use in animal nutrition: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 13:64-77. [PMID: 37009073 PMCID: PMC10060110 DOI: 10.1016/j.aninu.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
As the human population increases globally, the food animal industry has not been spared from the monumental demand for edible animal products, particularly meat. This has necessitated the simultaneous expansion of the productivity of the animal sector to meet the ever-growing human needs. Although antibiotics have been used in food animal production with commendable positive impacts on their growth performance, their sole contributive factor to the increasing incidence of antimicrobial resistance has ushered the strict restrictions placed on their use in the animal sector. This has handed a setback to both animals and farmers; thus, the intense push for a more sustainable antibiotic alternative for use in animal production. The use of plants with concentrated phytogenic compounds has gained much interest due to their beneficial bioactivities, including antioxidant and selective antimicrobial. While the reported beneficial activities of phytogenic additives on animals vary due to their varying total polyphenol concentrations (TPC), red osier dogwood (ROD) plant materials boast of high TPC with excellent antioxidant prowess and growth improvement capacities compared to some plant extracts commonly used in research. However, its adoption in research and commercial scale is still low. Thus, the present review aims to provide concise information on the dietary potential of ROD plant materials in animal feeding.
Collapse
Affiliation(s)
- Taiwo Joseph Erinle
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Martine Boulianne
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte Street, Saint-Hyacinthe QC, J2S 2M2, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| | - Robert Scales
- Red Dog Enterprises Ltd., Swan River MB, R0L 1Z0, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Truro NS, B2N 5E3, Canada
| |
Collapse
|
50
|
Scott E, Brewer MS, Peralta AL, Issa FA. The Effects of Social Experience on Host Gut Microbiome in Male Zebrafish ( Danio rerio). THE BIOLOGICAL BULLETIN 2023; 244:177-189. [PMID: 38457676 DOI: 10.1086/729377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractAlthough the gut and the brain vastly differ in physiological function, they have been interlinked in a variety of different neurological and behavioral disorders. The bacteria that comprise the gut microbiome communicate and influence the function of various physiological processes within the body, including nervous system function. However, the effects of social experience in the context of dominance and social stress on gut microbiome remain poorly understood. Here, we examined whether social experience impacts the host zebrafish (Danio rerio) gut microbiome. We studied how social dominance during the first 2 weeks of social interactions changed the composition of zebrafish gut microbiome by comparing gut bacterial composition, diversity, and relative abundance between socially dominant, submissive, social isolates and control group-housed communal fish. Using amplicon sequencing of the 16S rRNA gene, we report that social dominance significantly affects host gut bacterial community composition but not bacterial diversity. At the genus level, Aeromonas and unclassified Enterobacteriaceae relative abundance decreased in dominant individuals while commensal bacteria (e.g., Exiguobacterium and Cetobacterium) increased in relative abundance. Conversely, the relative abundance of Psychrobacter and Acinetobacter was increased in subordinates, isolates, and communal fish compared to dominant fish. The shift in commensal and pathogenic bacteria highlights the impact of social experience and the accompanying stress on gut microbiome, with potentially similar effects in other social organisms.
Collapse
|