1
|
Kaito Y, Imai Y. Evolution of natural killer cell-targeted therapy for acute myeloid leukemia. Int J Hematol 2024; 120:34-43. [PMID: 38693419 DOI: 10.1007/s12185-024-03778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
In hematologic oncology, acute myeloid leukemia (AML) presents a significant challenge due to its complex genetic landscape and resistance to conventional therapies. Despite advances in treatment, including intensive chemotherapy and hematopoietic stem cell transplantation (HSCT), the prognosis for many patients with AML remains poor. Recently, immunotherapy has emerged as a promising approach to improve outcomes by augmenting existing treatments. Natural killer (NK) cells, a subset of innate lymphoid cells, have garnered attention for their potent cytotoxic capabilities against AML cells. In this review, we discuss the role of NK cells in AML immunosurveillance, their dysregulation in patients with AML, and various therapeutic strategies leveraging NK cells in AML treatment. We explore the challenges and prospects associated with NK cell therapy, including approaches to enhance NK cell function, overcome immune evasion mechanisms, and optimize treatment efficacy. Finally, we emphasize the importance of further research to validate and refine patient-first NK cell-based immunotherapies for AML.
Collapse
Affiliation(s)
- Yuta Kaito
- Department of Hematology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8602, Japan.
| | - Yoichi Imai
- Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan
| |
Collapse
|
2
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
Mayall JR, Horvat JC, Mangan NE, Chevalier A, McCarthy H, Hampsey D, Donovan C, Brown AC, Matthews AY, de Weerd NA, de Geus ED, Starkey MR, Kim RY, Daly K, Goggins BJ, Keely S, Maltby S, Baldwin R, Foster PS, Boyle MJ, Tanwar PS, Huntington ND, Hertzog PJ, Hansbro PM. Interferon-epsilon is a novel regulator of NK cell responses in the uterus. EMBO Mol Med 2024; 16:267-293. [PMID: 38263527 PMCID: PMC10897320 DOI: 10.1038/s44321-023-00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection.
Collapse
Affiliation(s)
- Jemma R Mayall
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Jay C Horvat
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Niamh E Mangan
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Anne Chevalier
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Huw McCarthy
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Daniel Hampsey
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia
| | - Alexandra C Brown
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Antony Y Matthews
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Nicole A de Weerd
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Eveline D de Geus
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Malcolm R Starkey
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Immunology and Pathology, Central Clinical School, Monash University, Clayton, VIC, 3168, Australia
| | - Richard Y Kim
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia
| | - Katie Daly
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Bridie J Goggins
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Simon Keely
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Steven Maltby
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Rennay Baldwin
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Paul S Foster
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Michael J Boyle
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia
- Immunology and Infectious Diseases Unit, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Pradeep S Tanwar
- Gynecology Oncology Research Group, School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Nicholas D Huntington
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3168, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Departments of Molecular and Translational Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Philip M Hansbro
- Immune Health Program, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, 2308, Australia.
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2000, Australia.
| |
Collapse
|
4
|
Ou Q, Power R, Griffin MD. Revisiting regulatory T cells as modulators of innate immune response and inflammatory diseases. Front Immunol 2023; 14:1287465. [PMID: 37928540 PMCID: PMC10623442 DOI: 10.3389/fimmu.2023.1287465] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Regulatory T cells (Treg) are known to be critical for the maintenance of immune homeostasis by suppressing the activation of auto- or allo-reactive effector T cells through a diverse repertoire of molecular mechanisms. Accordingly, therapeutic strategies aimed at enhancing Treg numbers or potency in the setting of autoimmunity and allogeneic transplants have been energetically pursued and are beginning to yield some encouraging outcomes in early phase clinical trials. Less well recognized from a translational perspective, however, has been the mounting body of evidence that Treg directly modulate most aspects of innate immune response under a range of different acute and chronic disease conditions. Recognizing this aspect of Treg immune modulatory function provides a bridge for the application of Treg-based therapies to common medical conditions in which organ and tissue damage is mediated primarily by inflammation involving myeloid cells (mononuclear phagocytes, granulocytes) and innate lymphocytes (NK cells, NKT cells, γδ T cells and ILCs). In this review, we comprehensively summarize pre-clinical and human research that has revealed diverse modulatory effects of Treg and specific Treg subpopulations on the range of innate immune cell types. In each case, we emphasize the key mechanistic insights and the evidence that Treg interactions with innate immune effectors can have significant impacts on disease severity or treatment. Finally, we discuss the opportunities and challenges that exist for the application of Treg-based therapeutic interventions to three globally impactful, inflammatory conditions: type 2 diabetes and its end-organ complications, ischemia reperfusion injury and atherosclerosis.
Collapse
Affiliation(s)
- Qifeng Ou
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Rachael Power
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM SFI Research Centre for Medical Devices, School of Medicine, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
- Nephrology Department, Galway University Hospitals, Saolta University Healthcare Group, Galway, Ireland
| |
Collapse
|
5
|
Guo SA, Bowyer GS, Ferdinand JR, Maes M, Tuong ZK, Gillman E, Liao M, Lindeboom RGH, Yoshida M, Worlock K, Gopee H, Stephenson E, Gao CA, Lyons PA, Smith KGC, Haniffa M, Meyer KB, Nikolić MZ, Zhang Z, Wunderink RG, Misharin AV, Dougan G, Navapurkar V, Teichmann SA, Conway Morris A, Clatworthy MR. Obesity Is Associated with Attenuated Tissue Immunity in COVID-19. Am J Respir Crit Care Med 2023; 207:566-576. [PMID: 36095143 PMCID: PMC10870921 DOI: 10.1164/rccm.202204-0751oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/12/2022] [Indexed: 02/03/2023] Open
Abstract
Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.
Collapse
Affiliation(s)
- Shuang A. Guo
- Molecular Immunity Unit
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Georgina S. Bowyer
- Molecular Immunity Unit
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
| | - John R. Ferdinand
- Molecular Immunity Unit
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
| | - Mailis Maes
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
| | - Zewen K. Tuong
- Molecular Immunity Unit
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Eleanor Gillman
- Molecular Immunity Unit
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
| | - Mingfeng Liao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | | | - Masahiro Yoshida
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Kaylee Worlock
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Hudaa Gopee
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Stephenson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paul A. Lyons
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom; and
| | - Kenneth G. C. Smith
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom; and
| | - Muzlifah Haniffa
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kerstin B. Meyer
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Marko Z. Nikolić
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Gordon Dougan
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom; and
| | - Vilas Navapurkar
- John V. Farman Intensive Care Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | | - Andrew Conway Morris
- Division of Anaesthesia, Department of Medicine
- Division of Immunology, Department of Pathology, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- John V. Farman Intensive Care Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit
- Cambridge Institute for Therapeutic Immunology and Infectious Disease
- Department of Medicine, Cambridge Biomedical Campus
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom; and
| |
Collapse
|
6
|
Yano M, Byrd JC, Muthusamy N. Natural Killer Cells in Chronic Lymphocytic Leukemia: Functional Impairment and Therapeutic Potential. Cancers (Basel) 2022; 14:cancers14235787. [PMID: 36497266 PMCID: PMC9739887 DOI: 10.3390/cancers14235787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy approaches have advanced rapidly in recent years. While the greatest therapeutic advances so far have been achieved with T cell therapies such as immune checkpoint blockade and CAR-T, recent advances in NK cell therapy have highlighted the therapeutic potential of these cells. Chronic lymphocytic leukemia (CLL), the most prevalent form of leukemia in Western countries, is a very immunosuppressive disease but still shows significant potential as a target of immunotherapy, including NK-based therapies. In addition to their antileukemia potential, NK cells are important immune effectors in the response to infections, which represent a major clinical concern for CLL patients. Here, we review the interactions between NK cells and CLL, describing functional changes and mechanisms of CLL-induced NK suppression, interactions with current therapeutic options, and the potential for therapeutic benefit using NK cell therapies.
Collapse
Affiliation(s)
- Max Yano
- Medical Science Training Program, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - John C. Byrd
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: (J.C.B.); (N.M.)
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.C.B.); (N.M.)
| |
Collapse
|
7
|
Han SJ, Sung N, Wang J, O'Malley BW, Lonard DM. Steroid receptor coactivator-3 inhibition generates breast cancer antitumor immune microenvironment. Breast Cancer Res 2022; 24:73. [PMID: 36316775 PMCID: PMC9620627 DOI: 10.1186/s13058-022-01568-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The tumor immune microenvironment (TIME) generated by cancer-infiltrating immune cells has a crucial role in promoting or suppressing breast cancer progression. However, whether the steroid receptor coactivator-3 (SRC-3) modulates TIME to progress breast cancer is unclear. Therefore, the present study evaluates whether SRC-3 generates a tumor-promoting TIME in breast tumors using a syngeneic immune-intact mouse model of breast cancer. METHODS We employed E0771 and 4T1 breast cancer in immune-intact syngeneic female C57BL/6 and BALB/c mice, respectively. SI-2, a specific small-molecule inhibitor of SRC-3, was administered daily (2.5 mg/kg) to E0771 and 4T1 breast tumor-bearing immune-intact mice. In addition, SRC-3 knockdown (KD)-E0771 and SRC-3 KD-4T1 cells and their parental breast cancer cells were injected into their syngeneic immune-intact female mice versus immune-deficiency mice to validate that the host immune system is required for breast tumor suppression by SRC-3 KD in immune-intact mice. Furthermore, tumor-infiltrating immune cells (such as CD4+, CD8+, CD56+, and Foxp3+ cells) in E0771 and 4T1 breast cancers treated with SI-2 and in SRC-3 KD E0771 and 4T1 breast cancers were determined by immunohistochemistry. Additionally, cytokine levels in SI-2-treated and SRC-3 KD E0771 breast tumors and their control cancers were defined with a Mouse Cytokine Array. RESULTS SRC-3 inhibition by SI-2 significantly suppressed the progression of breast cancer cells (E0771 and 4T1) into breast cancers in immune-intact syngeneic female mice. SRC-3 KD-E0771 and -4T1 breast cancer cells did not produce well-developed tumors in immune-intact syngeneic female mice compared to their parental cells, but SRC-3 KD breast cancers were well developed in immune-defective host mice. SRC-3 inhibition by SI-2 and SRC-3 KD effectively increased the numbers of cytotoxic immune cells, such as CD4+ and CD8+ T cells and CD56+ NK cells, and Interferon γ (Ifng) in breast cancers compared to vehicle. However, SI-2 treatment reduced the number of tumor-infiltrating CD4+/Foxp3+ regulatory T (Treg) cells compared to vehicle treatment. In addition, SRC-3 inhibition by SI-2 and SRC-3 KD increased C-X-C motif chemokine ligand 9 (Cxcl9) expression in breast cancer to recruit C-X-C motif chemokine receptor 3 (Cxcr3)-expressing cytotoxic immune cells into breast tumors. CONCLUSIONS SRC-3 is a critical immunomodulator in breast cancer, generating a protumor immune microenvironment. SRC-3 inhibition by SI-2 or SRC-3 KD activates the Cxcl9/Cxcr3 axis in breast tumors and enhances the antitumor immune microenvironment to suppress breast cancer progression.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Duncan Cancer Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Nuri Sung
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Duncan Cancer Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Duncan Cancer Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
9
|
Guo Z, Zhang J, Liu X, Unsinger J, Hotchkiss RS, Cao YQ. Low-dose interleukin-2 reverses chronic migraine-related sensitizations through peripheral interleukin-10 and transforming growth factor beta-1 signaling. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100096. [PMID: 35733705 PMCID: PMC9207571 DOI: 10.1016/j.ynpai.2022.100096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/19/2022]
Abstract
Low-dose interleukin-2 (LD-IL-2) treatment has been shown to effectively reverse chronic migraine-related behaviors and the sensitization of trigeminal ganglion (TG) neurons through expansion and activation of peripheral regulatory T cells (Tregs) in mice. In this study, we investigated the molecular mechanisms underlying the effects of LD-IL-2 and Treg cells. LD-IL-2 treatment increases the production of cytokines interleukin-10 (IL-10) and transforming growth factor beta-1 (TGFβ1) in T cells, especially Treg cells, suggesting that they may mediate the therapeutic effect of LD-IL-2. Indeed, neutralizing antibodies against either IL-10 or TGFβ completely blocked the effects of LD-IL-2 on the facial mechanical hypersensitivity as well as the sensitization of TG neurons resulting from repeated nitroglycerin (NTG, a reliable trigger of migraine in patients) administration in mice, indicating that LD-IL-2 and Treg cells engage both peripheral IL-10 and TGFβ signaling pathways to reverse chronic-migraine related sensitizations. In an in vitro assay, incubation of TG culture with exogenous IL-10 or TGFβ1 fully reversed NTG-induced sensitization of TG neurons, suggesting that the IL-10 and TGFβ1 signaling in TG neurons contribute to LD-IL-2's therapeutic effects. Collectively, these results not only elucidate the molecular mechanisms through which LD-IL-2 and Treg cells reverse chronic-migraine related sensitizations, but also suggest that the IL-10 and TGFβ1 signaling pathways in TG neurons are potential targets for chronic migraine therapy.
Collapse
Affiliation(s)
- Zhaohua Guo
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jintao Zhang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Xuemei Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jacqueline Unsinger
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Richard S Hotchkiss
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Yu-Qing Cao
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
10
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Aygun H. Vitamin D can reduce severity in COVID-19 through regulation of PD-L1. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:487-494. [PMID: 35099571 PMCID: PMC8802291 DOI: 10.1007/s00210-022-02210-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
COVID-19 is a highly contagious viral infection that has killed millions of people around the world. The most important diagnostic feature of COVID-19 is lymphocyte depletion, particularly the depletion of T cells. In COVID-19 infections, there is a link between destruction of T cells and increased expression of inhibitory immune checkpoint molecules (PD-1/PD-L1) on T cell surfaces. It was shown that PD-1/PD-L1 levels increase in severely COVID-19 infected individuals. Higher proinflammatory cytokine levels cause increased PD-1/PD-L1 expression. In severe COVID-19, higher proinflammatory cytokine levels may increase PD-1/PD-L1. Vitamin-D is an important immune regulator. It is known that the numbers of CD4+ and CD8+ T lymphocytes decrease in vitamin D deficiency while vitamin D supplementation increases CD + 4 lymphocytes. Vitamin D can increase regulatory T cell (Treg) activity. Vitamin D also has a diminishing effect on proinflammatory cytokines. In severe COVID-19 cases, vitamin D supplementation may inhibit the increase of PD-L1 expression through reducing proinflammatory cytokine levels. Thus, vitamin D supplementation could eliminate the suppressive effect of PD-L1 on CD4+ and CD8+ T cells, preventing lymphopenia and reducing disease severity and mortality in patients infected with COVID-19. Besides, vitamin D supplementation can reduce inflammation by increasing Treg activity. The aim of this letter is to discuss the functions of inhibitory immune checkpoint molecules and their effects on dysfunction and depletion of T-cells as well as to explain the possible modulatory effect of vitamin D on these checkpoints and T cells.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60030, Tokat, Turkey.
| |
Collapse
|
12
|
Wang H, Wang Z, Cao W, Wu Q, Yuan Y, Zhang X. Regulatory T cells in COVID-19. Aging Dis 2021; 12:1545-1553. [PMID: 34631206 PMCID: PMC8460308 DOI: 10.14336/ad.2021.0709] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) is caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which leads to the disruption of immune system, exacerbated inflammation, and even multiple organ dysfunction syndrome. Regulatory T cells (Tregs) are an important subpopulation of T cells that exert immunosuppressive effects. Recent studies have demonstrated that the number of Tregs is significantly reduced in COVID-19 patients, and this reduction may affect COVID-19 patients on several aspects, such as weakening the effect of inflammatory inhibition, causing an imbalance in Treg/Th17 ratio, and increasing the risk of respiratory failure. Treg-targeted therapy may alleviate the symptoms and retard disease progression in COVID-19 patients. This study highlights the recent findings on the involvement of Tregs in the regulation of immune responses to COVID-19, and we hope to provide novel perspectives on the alternative immunotherapeutic strategies for this disease that is currently prevalent worldwide.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Wen Cao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Qianqian Wu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei 050000, China
- Hebei Vascular Homeostasis Key Laboratory for Neurology, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
13
|
Littwitz-Salomon E, Moreira D, Frost JN, Choi C, Liou KT, Ahern DK, O'Shaughnessy S, Wagner B, Biron CA, Drakesmith H, Dittmer U, Finlay DK. Metabolic requirements of NK cells during the acute response against retroviral infection. Nat Commun 2021; 12:5376. [PMID: 34508086 PMCID: PMC8433386 DOI: 10.1038/s41467-021-25715-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are important early responders against viral infections. Changes in metabolism are crucial to fuel NK cell responses, and altered metabolism is linked to NK cell dysfunction in obesity and cancer. However, very little is known about the metabolic requirements of NK cells during acute retroviral infection and their importance for antiviral immunity. Here, using the Friend retrovirus mouse model, we show that following infection NK cells increase nutrient uptake, including amino acids and iron, and reprogram their metabolic machinery by increasing glycolysis and mitochondrial metabolism. Specific deletion of the amino acid transporter Slc7a5 has only discrete effects on NK cells, but iron deficiency profoundly impaires NK cell antiviral functions, leading to increased viral loads. Our study thus shows the requirement of nutrients and metabolism for the antiviral activity of NK cells, and has important implications for viral infections associated with altered iron levels such as HIV and SARS-CoV-2. Metabolic alterations control the fate and function of immune cells in response to infections, but the function of NK cell metabolism in the context of acute viral infections is unclear. Here the authors show that acute NK cell responses to Friend retrovirus involve increased glycolysis and mitochondrial metabolism and require amino acid transport as well as iron sufficiency.
Collapse
Affiliation(s)
- Elisabeth Littwitz-Salomon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland.
| | - Diana Moreira
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Joe N Frost
- MRC Human Immunology Unit, MRC Weatherall, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Kevin T Liou
- Department of Molecular Microbiology and Immunology, Brown University, Box G-B, 171 Meeting Street, Providence, RI, 02912, USA
| | - David K Ahern
- MRC Human Immunology Unit, MRC Weatherall, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Simon O'Shaughnessy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Bernd Wagner
- Department of Clinical Chemistry, University Hospital Essen, Essen, Germany
| | - Christine A Biron
- Department of Molecular Microbiology and Immunology, Brown University, Box G-B, 171 Meeting Street, Providence, RI, 02912, USA
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall, Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland. .,School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland.
| |
Collapse
|
14
|
Bachiller M, Perez-Amill L, Battram AM, Carné SC, Najjar A, Verhoeyen E, Juan M, Urbano-Ispizua A, Martin-Antonio B. NK cells enhance CAR-T cell antitumor efficacy by enhancing immune/tumor cells cluster formation and improving CAR-T cell fitness. J Immunother Cancer 2021; 9:jitc-2021-002866. [PMID: 34433634 PMCID: PMC8388291 DOI: 10.1136/jitc-2021-002866] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell immunotherapy has modified the concept of treatment in hematological malignancies. In comparison with pediatric patients, where responses are maintained over many years, older patients, such as those with non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM), present lower persistence of CAR-T cells that might be due to decreased fitness of T cells acquired with aging. Moreover, cord blood derived-NK cells (CB-NKs) and CAR-NK cells derived from CB-NK can be used 'off-the-shelf' as immune cells with antitumor properties for the treatment of cancer patients. However, to date, clinical studies have only demonstrated the safety of these therapies but not optimal efficacy. To confront the shortcomings of each therapy, we devised a novel approach consisting of simultaneous (CAR-)NK cell and CAR-T cell administration. In this setting, NK cells demonstrate an important immunoregulation of T cells that could be exploited to enhance the efficacy of CAR-T cells. METHODS A combinatorial treatment based on either CAR-T and CAR-NK cells or CB-NK and CAR-T cells in two models of NHL and MM was performed. Antitumor efficacy was analyzed in vitro and in vivo, and parameters related to early activation, exhaustion and senescence of T cells were analyzed. RESULTS We show that CAR-NK cells derived from CB-NK are only effective at high doses (high E:T ratio) and that their activity rapidly decreases over time in comparison with CAR-T cells. In comparison and to exploit the potential of 'off-the-shelf' CB-NK, we demonstrate that a low number of CB-NK in the CAR-T cell product promotes an early activation of CAR-T cells and their migration to MM cells leading to enhanced anti-MM efficacy. Moreover, cytokines related to CRS development were not increased, and importantly, CB-NK enhanced the fitness of both CARpos and CARneg T cells, promoting lower levels of exhaustion and senescence. CONCLUSION This study demonstrates a relevant immunoregulatory role of CB-NK collaborating with CAR-T cells to enhance their antitumor activity. A novel and different approach to consider in CAR-T cell immunotherapy studies is presented here with the goal to enhance the efficacy of the treatment.
Collapse
Affiliation(s)
- Mireia Bachiller
- Department of Hematology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | | | | | | | - Amer Najjar
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon 1, Lyon, France.,Université Côte d'Azur, INSERM, Nice, France
| | - Manel Juan
- Department of Immunology, Hospital Clinic de Barcelona (HCB), Platforms of Immunoterapy IDIBAPS HSJD-HCB and BST-HCB, Barcelona, Spain.,Department of Medicine, University of Barcelona, Barcelona, Catalunya, Spain
| | - Alvaro Urbano-Ispizua
- Department of Hematology. University of Barcelona, IDIBAPS, Barcelona, Spain.,Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Beatriz Martin-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria-Fundación Jiménez Diaz, Madrid, Spain
| |
Collapse
|
15
|
Improved Activity against Acute Myeloid Leukemia with Chimeric Antigen Receptor (CAR)-NK-92 Cells Designed to Target CD123. Viruses 2021; 13:v13071365. [PMID: 34372571 PMCID: PMC8310147 DOI: 10.3390/v13071365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 01/08/2023] Open
Abstract
Anti-cancer activity can be improved by engineering immune cells to express chimeric antigen receptors (CARs) that recognize tumor-associated antigens. Retroviral vector gene transfer strategies allow stable and durable transgene expression. Here, we used alpharetroviral vectors to modify NK-92 cells, a natural killer cell line, with a third-generation CAR designed to target the IL-3 receptor subunit alpha (CD123), which is strongly expressed on the surface of acute myeloid leukemia (AML) cells. Alpharetroviral vectors also contained a transgene cassette to allow constitutive expression of human IL-15 for increased NK cell persistence in vivo. The anti-AML activity of CAR-NK-92 cells was tested via in vitro cytotoxicity assays with the CD123+ AML cell line KG-1a and in vivo in a patient-derived xenotransplantation CD123+ AML model. Unmodified NK-92 cells or NK-92 cells modified with a truncated version of the CAR that lacked the signaling domain served as controls. Alpharetroviral vector-modified NK-92 cells stably expressed the transgenes and secreted IL-15. Anti-CD123-CAR-NK-92 cells exhibited enhanced anti-AML activity in vitro and in vivo as compared to control NK-92 cells. Our data (1) shows the importance of IL-15 expression for in vivo persistence of NK-92 cells, (2) supports continued investigation of anti-CD123-CAR-NK cells to target AML, and (3) points towards potential strategies to further improve CAR-NK anti-AML activity.
Collapse
|
16
|
Stem cells-derived natural killer cells for cancer immunotherapy: current protocols, feasibility, and benefits of ex vivo generated natural killer cells in treatment of advanced solid tumors. Cancer Immunol Immunother 2021; 70:3369-3395. [PMID: 34218295 DOI: 10.1007/s00262-021-02975-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Nowadays, natural killer (NK) cell-based immunotherapy provides a practical therapeutic strategy for patients with advanced solid tumors (STs). This approach is adaptively conducted by the autologous and identical NK cells after in vitro expansion and overnight activation. However, the NK cell-based cancer immunotherapy has been faced with some fundamental and technical limitations. Moreover, the desirable outcomes of the NK cell therapy may not be achieved due to the complex tumor microenvironment by inhibition of intra-tumoral polarization and cytotoxicity of implanted NK cells. Currently, stem cells (SCs) technology provides a powerful opportunity to generate more effective and universal sources of the NK cells. Till now, several strategies have been developed to differentiate types of the pluripotent and adult SCs into the mature NK cells, with both feeder layer-dependent and/or feeder laye-free strategies. Higher cytokine production and intra-tumoral polarization capabilities as well as stronger anti-tumor properties are the main features of these SCs-derived NK cells. The present review article focuses on the principal barriers through the conventional NK cell immunotherapies for patients with advanced STs. It also provides a comprehensive resource of protocols regarding the generation of SCs-derived NK cells in an ex vivo condition.
Collapse
|
17
|
Salminen A. Feed-forward regulation between cellular senescence and immunosuppression promotes the aging process and age-related diseases. Ageing Res Rev 2021; 67:101280. [PMID: 33581314 DOI: 10.1016/j.arr.2021.101280] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Aging is a progressive degenerative process involving a chronic low-grade inflammation and the accumulation of senescent cells. One major issue is to reveal the mechanisms which promote the deposition of pro-inflammatory senescent cells within tissues. The accumulation involves mechanisms which increase cellular senescence as well as those inhibiting the clearance of senescent cells from tissues. It is known that a persistent inflammatory state evokes a compensatory immunosuppression which inhibits pro-inflammatory processes by impairing the functions of effector immune cells, e.g., macrophages, T cells and natural killer (NK) cells. Unfortunately, these cells are indispensable for immune surveillance and the subsequent clearance of senescent cells, i.e., the inflammation-induced counteracting immunosuppression prevents the cleansing of host tissues. Moreover, senescent cells can also repress their own clearance by expressing inhibitors of immune surveillance and releasing the ligands of NKG2D receptors which impair their surveillance by NK and cytotoxic CD8+ T cells. It seems that cellular senescence and immunosuppression establish a feed-forward process which promotes the aging process and age-related diseases. I will examine in detail the immunosuppressive mechanisms which impair the surveillance and clearance of pro-inflammatory senescent cells with aging. In addition, I will discuss several therapeutic strategies to halt the degenerative feed-forward circuit associated with the aging process and age-related diseases.
Collapse
|
18
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Tan Y, Tang F. SARS-CoV-2-mediated immune system activation and potential application in immunotherapy. Med Res Rev 2021; 41:1167-1194. [PMID: 33185926 DOI: 10.1002/med.21756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Although novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated pulmonary inflammation has recently attracted great attention, its pathology and pathogenesis are not clear. Notably, due to both its high infective and pathogenicity, SARS-CoV-2 infection may cause a severe sometimes fatal respiratory disease. A specific vaccine, which relies on the analysis of SARS-CoV-2 structural protein-derived antigenic peptides, is indispensable for restraining the spread and reducing the mortality of SARS-CoV-2. SARS-CoV-2 infections activate cytototxic, myeloid-derived suppressor cells, dendritic cells, macrophages, as well as natural killer, B, helper T, and regulatory T cells, thus further stimulating innate and antigen-specific immune responses. Nevertheless, many immune effector cells cause hyperinflammation and pulmonary immunopathology by releasing proinflammatory cytokines and chemokines, including interferon (IFN)-α, IFN-β, IFN-γ, monocyte chemoattractant protein-1, macrophage inflammatory protein (MIP)-1A, MIP1B, interleukin (IL)-1, IL-2, IL-4, IL-6, IL-7, IL-8, IL-9, IL-12, IL-17, and IL-18, platelet-derived growth factor, fibroblast growth factor, tumor necrosis factor-α, and induced protein 10. Interestingly, related products derived from SARS-CoV-2 are likely to trigger immune evasion. Therefore, investigating SARS-CoV-2-specific vaccines, blocking immunopathology, and prohibiting immune evasion are urgently required for treating SARS-CoV-2 infection. In this review, we emphatically illuminated the development of a SARS-CoV-2-specific vaccine based on the analysis of epitopes, also expounding the molecular mechanisms of SARS-CoV-2-mediated cytokine release syndrome. Furthermore, we comprehensively discussed SARS-CoV-2-associated immune evasion and lung immunopathology. Lastly, potential therapeutic strategies against SARS-CoV-2 were explored.
Collapse
Affiliation(s)
- Yuan Tan
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Faqin Tang
- Department of Clinical Laboratory, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
20
|
Giganti G, Atif M, Mohseni Y, Mastronicola D, Grageda N, Povoleri GA, Miyara M, Scottà C. Treg cell therapy: How cell heterogeneity can make the difference. Eur J Immunol 2020; 51:39-55. [PMID: 33275279 DOI: 10.1002/eji.201948131] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/18/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
CD4+ CD25high CD127low/- FOXP3+ T regulatory cells are responsible for maintaining immune tolerance and controlling excessive immune responses. Treg cell use in pre-clinical animal models showed the huge therapeutic potential of these cells in immune-mediated diseases and laid the foundations for their applications in therapy in humans. Currently, there are several clinical trials utilizing the adoptive transfer of Treg cells to reduce the morbidity in autoimmune disorders, allogeneic HSC transplantation, and solid organ transplantation. However, a large part of them utilizes total Treg cells without distinction of their biological variability. Many studies on the heterogeneity of Treg cell population revealed distinct subsets with different functions in the control of the immune response and induction of peripheral tolerance. Some of these subsets also showed a role in controlling the general homeostasis of non-lymphoid tissues. All these Treg cell subsets and their peculiar properties can be therefore exploited to develop novel therapeutic approaches. This review describes these functionally distinct subsets, their phenotype, homing properties and functions in lymphoid and non-lymphoid tissues. In addition, we also discuss the limitations in using Treg cells as a cellular therapy and the strategies to enhance their efficacy.
Collapse
Affiliation(s)
- Giulio Giganti
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Muhammad Atif
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Yasmin Mohseni
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Daniela Mastronicola
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Nathali Grageda
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| | - Giovanni Am Povoleri
- Centre for Inflammation Biology and Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Makoto Miyara
- Sorbonne Université, Inserm, Centre d'immunologie et des maladies infectieuses, Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Paris, France
| | - Cristiano Scottà
- "Peter Gorer" Department of Immunobiology, School of Immunology & Microbiological Sciences, King's College London, London, UK
| |
Collapse
|
21
|
Bachiller M, Battram AM, Perez-Amill L, Martín-Antonio B. Natural Killer Cells in Immunotherapy: Are We Nearly There? Cancers (Basel) 2020; 12:E3139. [PMID: 33120910 PMCID: PMC7694052 DOI: 10.3390/cancers12113139] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are potent anti-tumor and anti-microbial cells of our innate immune system. They are equipped with a vast array of receptors that recognize tumor cells and other pathogens. The innate immune activity of NK cells develops faster than the adaptive one performed by T cells, and studies suggest an important immunoregulatory role for each population against the other. The association, observed in acute myeloid leukemia patients receiving haploidentical killer-immunoglobulin-like-receptor-mismatched NK cells, with induction of complete remission was the determinant to begin an increasing number of clinical studies administering NK cells for the treatment of cancer patients. Unfortunately, even though transfused NK cells demonstrated safety, their observed efficacy was poor. In recent years, novel studies have emerged, combining NK cells with other immunotherapeutic agents, such as monoclonal antibodies, which might improve clinical efficacy. Moreover, genetically-modified NK cells aimed at arming NK cells with better efficacy and persistence have appeared as another option. Here, we review novel pre-clinical and clinical studies published in the last five years administering NK cells as a monotherapy and combined with other agents, and we also review chimeric antigen receptor-modified NK cells for the treatment of cancer patients. We then describe studies regarding the role of NK cells as anti-microbial effectors, as lessons that we could learn and apply in immunotherapy applications of NK cells; these studies highlight an important immunoregulatory role performed between T cells and NK cells that should be considered when designing immunotherapeutic strategies. Lastly, we highlight novel strategies that could be combined with NK cell immunotherapy to improve their targeting, activity, and persistence.
Collapse
Affiliation(s)
| | | | | | - Beatriz Martín-Antonio
- Department of Hematology, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain; (M.B.); (A.M.B.); (L.P.-A.)
| |
Collapse
|
22
|
Pontrelli P, Rascio F, Castellano G, Grandaliano G, Gesualdo L, Stallone G. The Role of Natural Killer Cells in the Immune Response in Kidney Transplantation. Front Immunol 2020; 11:1454. [PMID: 32793200 PMCID: PMC7390843 DOI: 10.3389/fimmu.2020.01454] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Natural killer cells (NK) represent a population of lymphocytes involved in innate immune response. In addition to their role in anti-viral and anti-tumor defense, they also regulate several aspects of the allo-immune response in kidney transplant recipients. Growing evidence suggests a key role of NK cells in the pathogenesis of immune-mediated graft damage in kidney transplantation. Specific NK cell subsets are associated with operational tolerance in kidney transplant patients. On the other side, allo-reactive NK cells are associated with chronic antibody-mediated rejection and graft loss. Moreover, NK cells can prime the adaptive immune system and promote the migration of other immune cells, such as dendritic cells, into the graft leading to an increased allo-immune response and, eventually, to chronic graft rejection. Finally, activated NK cells can infiltrate the transplanted kidney and cause a direct graft damage. Interestingly, immunosuppression can influence NK cell numbers and function, thus causing an increased risk of post-transplant neoplasia or infection. In this review, we will describe how these cells can influence the innate and the adaptive immune response in kidney transplantation and how immunosuppression can modulate NK behavior.
Collapse
Affiliation(s)
- Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Federica Rascio
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Giuseppe Grandaliano
- Nephrology Unit, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
23
|
Zhao L, Wang H, Thomas R, Gao X, Bai H, Shekhar S, Wang S, Yang J, Zhao W, Yang X. NK cells modulate T cell responses via interaction with dendritic cells in Chlamydophila pneumoniae infection. Cell Immunol 2020; 353:104132. [DOI: 10.1016/j.cellimm.2020.104132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/27/2022]
|
24
|
Effects of Regulatory T Cell Depletion on NK Cell Responses against Listeria monocytogenes in Feline Immunodeficiency Virus Infected Cats. Viruses 2019; 11:v11110984. [PMID: 31653122 PMCID: PMC6893779 DOI: 10.3390/v11110984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
Regulatory T cells (Treg) are key players in the maintenance of peripheral tolerance, preventing autoimmune diseases and restraining chronic inflammatory diseases. Evidence suggests Treg cells and NK cells have important roles in feline immunodeficiency virus (FIV) pathogenesis; however, in vivo studies investigating the interplay between these two cell populations are lacking. We previously described innate immune defects in FIV-infected cats characterized by cytokine deficits and impaired natural killer cell (NK) and NK T cell (NKT) functions. In this study, we investigated whether in vivo Treg depletion by treatment with an anti-feline CD25 monoclonal antibody would improve the innate immune response against subcutaneous challenge with Listeria monocytogenes (Lm). Treg depletion resulted in an increased overall number of cells in Lm-draining lymph nodes and increased proliferation of NK and NKT cells in FIV-infected cats. Treg depletion did not normalize expression of perforin or granzyme A by NK and NKT cells, nor did Treg depletion result in improved clearance of Lm. Thus, despite the quantitative improvements in the NK and NKT cell responses to Lm, there was no functional improvement in the early control of Lm. CD1a+ dendritic cell percentages in the lymph nodes of FIV-infected cats were lower than in specific-pathogen-free control cats and failed to upregulate CD80 even when Treg were depleted. Taken together, Treg depletion failed to improve the innate immune response of FIV-infected cats against Lm and this may be due to dendritic cell dysfunction.
Collapse
|
25
|
Ghaemdoust F, Keshavarz-Fathi M, Rezaei N. Natural killer cells and cancer therapy, what we know and where we are going. Immunotherapy 2019; 11:1231-1251. [DOI: 10.2217/imt-2019-0040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are among the significant components of innate immune system and they have come to the first line of defense against tumor cells developing inside the body. CD56lo/CD16+ NK cells are highly cytotoxic and CD56hi NK cells can produce cytokines and perform a regulatory function. Specific features of NK cells have made them a unique choice for cancer immunotherapy. Simple interventions like cytokine-injection to boost the internal NK cells were the first trials to target these cells. Nowadays, many other types of intervention are under investigation, such as adoptive NK cell immunotherapy. In this paper, we will discuss the biology and function of NK cells in cancer immunosurveillance and therapeutic approaches against cancer via using NK cells.
Collapse
Affiliation(s)
- Faezeh Ghaemdoust
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
| | - Mahsa Keshavarz-Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education & Research Network (USERN), Tehran, 1419733151, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, 1419733151, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| |
Collapse
|
26
|
Dittmer U, Sutter K, Kassiotis G, Zelinskyy G, Bánki Z, Stoiber H, Santiago ML, Hasenkrug KJ. Friend retrovirus studies reveal complex interactions between intrinsic, innate and adaptive immunity. FEMS Microbiol Rev 2019; 43:435-456. [PMID: 31087035 PMCID: PMC6735856 DOI: 10.1093/femsre/fuz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/14/2022] Open
Abstract
Approximately 4.4% of the human genome is comprised of endogenous retroviral sequences, a record of an evolutionary battle between man and retroviruses. Much of what we know about viral immunity comes from studies using mouse models. Experiments using the Friend virus (FV) model have been particularly informative in defining highly complex anti-retroviral mechanisms of the intrinsic, innate and adaptive arms of immunity. FV studies have unraveled fundamental principles about how the immune system controls both acute and chronic viral infections. They led to a more complete understanding of retroviral immunity that begins with cellular sensing, production of type I interferons, and the induction of intrinsic restriction factors. Novel mechanisms have been revealed, which demonstrate that these earliest responses affect not only virus replication, but also subsequent innate and adaptive immunity. This review on FV immunity not only surveys the complex host responses to a retroviral infection from acute infection to chronicity, but also highlights the many feedback mechanisms that regulate and counter-regulate the various arms of the immune system. In addition, the discovery of molecular mechanisms of immunity in this model have led to therapeutic interventions with implications for HIV cure and vaccine development.
Collapse
Affiliation(s)
- Ulf Dittmer
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - George Kassiotis
- Retroviral Immunology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Department of Medicine, Faculty of Medicine, Imperial College London, St Mary's Hospital, Praed St, Paddington, London W2 1NY, UK
| | - Gennadiy Zelinskyy
- Institute for Virology, University Clinics Essen, University of Duisburg-Essen, Virchowstr. 179, 45147 Essen, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Heribert Stoiber
- Division of Virology, Medical University of Innsbruck, Peter-Mayrstr. 4b, A-6020 Innsbruck, Austria
| | - Mario L Santiago
- University of Colorado School of Medicine, 12700E 19th Ave, Aurora, CO 80045, USA
| | - Kim J Hasenkrug
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903S 4th Street, Hamilton, MT 59840, USA
| |
Collapse
|
27
|
High Expression of Angiopoietin-like Protein 4 in Advanced Colorectal Cancer and its Association with Regulatory T Cells and M2 Macrophages. Pathol Oncol Res 2019; 26:1269-1278. [PMID: 31264122 DOI: 10.1007/s12253-019-00695-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/23/2019] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC) is one of the most aggressive tumours in the human digestive system. Most CRC patients have poor prognosis due to metastasis and recurrence. Angiopoietin-like 4 (ANGPTL4) is involved in tumour development. Regulatory T (Treg) cells and M2 macrophages promote tumour growth and metastasis. Herein, we explored the changes of ANGPTL4 expression in CRC patients at different stages and observed whether in situ tumour-Treg and -M2 macrophages are correlated with ANGPTL4 expression. Serum ANGPTL4 (sANGPTL4) levels of 70 CRC patients and 10 healthy controls were detected by ELISA. ANGPTL4, Foxp3 and CD163 expression levels in CRC tissues were measured by immunohistochemistry. Recombinant ANGPTL4 (rANGPTL4) proteins were further added into cell-culture systems for induction of Treg cells and M2 macrophages. The results showed both sANGPTL4 and in situ tumour-ANGPTL4 expression levels increased in Dukes C-D stage CRC patients. Foxp3+ and CD163+ cells in tumour tissue sections were also more intensive in Dukes C-D stage patients than in Dukes A-B stage patients. Foxp3+ and CD163+ cells in tumour tissues were positively correlated with both tissue and sANGPTL4 expression (P < 0.01). Recombinant ANGPTL4 promoted the induction of murine Treg cells and M2 macrophages ex vivo. Therefore, elevated ANGPTL4 expression could be a marker for advanced CRC. Treg cell and M2 macrophage induction could be one of the mechanisms of tumour promotion mediated by ANGPTL4.
Collapse
|
28
|
Pal SK, Moreira D, Won H, White SW, Duttagupta P, Lucia M, Jones J, Hsu J, Kortylewski M. Reduced T-cell Numbers and Elevated Levels of Immunomodulatory Cytokines in Metastatic Prostate Cancer Patients De Novo Resistant to Abiraterone and/or Enzalutamide Therapy. Int J Mol Sci 2019; 20:ijms20081831. [PMID: 31013891 PMCID: PMC6515443 DOI: 10.3390/ijms20081831] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
Currently, there are two Food and Drug Administration (FDA)-approved drugs for androgen deprivation therapy (ADT) of metastatic castration-resistant prostate cancer (mCRPC) patients: abiraterone and enzalutamide. However, our understanding of the effect of these therapies on the immune system in mCRPC patients remains limited. Here, we examined how abiraterone and enzalutamide treatment affects levels of soluble immune mediators in plasma and in circulating immune cells of 44 mCRPC patients. We found that the baseline levels of cytokines fibroblast growth factor (FGF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 10 (IL-10), and IL-6 were significantly lower in ADT-sensitive compared to de novo resistant patients. In addition, resistant patients showed significantly lower T cell frequencies. When comparing the levels of cytokines over the course of treatment, we observed that the levels of proinflammatory mediators, such as interferon-γ (IFN-γ), IL-5, macrophage inflammatory protein 1 alpha (MIP-1α), and tumor necrosis factor alpha (TNFα), were significantly increased in the ADT-sensitive patients. At the same time, the abiraterone/enzalutamide therapy did not reduce the percentage of tolerogenic myeloid cell populations, such as polymorphonuclear myeloid-derived suppressor cells, which retained unaltered expression of programmed death-ligand 1 (PD-L1) and B7-H3. Overall, our results suggest that certain immune markers, such as IL-6 and the frequency of effector T cells, could be predictive of therapeutic response to ADT therapies in mCRPC patients.
Collapse
Affiliation(s)
- Sumanta K Pal
- Medical Oncology and Experimental Therapeutics; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Dayson Moreira
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Haejung Won
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Seok Woon White
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Pryanka Duttagupta
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Marc Lucia
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Jeremy Jones
- Medical Oncology and Experimental Therapeutics; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - JoAnn Hsu
- Medical Oncology and Experimental Therapeutics; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Marcin Kortylewski
- Department of Immuno-Oncology, Beckman Research Institute at City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
29
|
The Potential for Cancer Immunotherapy in Targeting Surgery-Induced Natural Killer Cell Dysfunction. Cancers (Basel) 2018; 11:cancers11010002. [PMID: 30577463 PMCID: PMC6356325 DOI: 10.3390/cancers11010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.
Collapse
|