1
|
Yao L, Wang X, Wang Z, Wang X. A Comprehensive Analysis Exploring the Vital Role of the Systemic Immune-Inflammatory Index Upon Admission in Severe Hemorrhagic Fever with Renal Syndrome. Int J Gen Med 2024; 17:4857-4866. [PMID: 39465187 PMCID: PMC11512764 DOI: 10.2147/ijgm.s480204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/19/2024] [Indexed: 10/29/2024] Open
Abstract
Objective To explore the value of the systemic immune-inflammatory index (SII) and the systemic inflammatory response index (SIRI) in patients with severe hemorrhagic fever with renal syndrome (HFRS) upon admission. Methods This study included a total of 165 patients with HFRS, who were divided into mild and severe groups based on the severity of the disease. By reviewing medical records, we collected the white blood cell (WBC), SII, and SIRI values of patients upon admission. Univariate and multivariate logistics regression analyses were performed to identify risk factors for severe HFRS. The receiver operating characteristic (ROC) curve was applied to calculate the area under the ROC curve (AUC) to analyze the predictive value of SII and SIRI for severe HFRS, and the results were compared with WBC and SIRI. Results Compared with the mild HFRS group, patients in the severe HFRS group had a longer duration of illness (P < 0.05), higher levels of WBC, neutrophil (NEUT), lymphocyte (LYMP), monocyte (MONO), procalcitonin (PCT), SIRI, alanine transaminase (ALT), and creatinine (Scr) (P < 0.05), while lower levels of ALB, platelet (PLT), platelet-to-lymphocyte rate (PLR), and SII, with statistically significant differences (P < 0.05). Binary logistics regression analysis indicated that WBC (OR: 1.190, 95% CI: 1.032-1.371), SII (OR: 0.967, 95% CI: 0.951-0.984), and SIRI (OR: 4.743, 95% CI: 2.077-10.830) were risk factors for severe HFRS. The AUCs of WBC, SII, and SIRI for predicting severe HFRS were 0.765, 0.803, and 0.785, respectively. Conclusion Low levels of SII and high levels of WBC and SIRI upon admission are risk factors for severe HFRS and have certain value in predicting the progression of HFRS to severe cases, among which SII exhibits the best predictive value.
Collapse
Affiliation(s)
- Lihua Yao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Xinlu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| | - Zihao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330000, People’s Republic of China
| |
Collapse
|
2
|
Mustonen J, Strandin T, Tietäväinen J, Pörsti I, Mäkelä S, Vaheri A. Hantavirus Research in Finland. Viruses 2024; 16:1591. [PMID: 39459924 PMCID: PMC11512264 DOI: 10.3390/v16101591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
The articles in this Special Issue, "Hantavirus Research in Finland", were published between 2021 and 2022 [...].
Collapse
Affiliation(s)
- Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.T.); (I.P.); (S.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.T.); (I.P.); (S.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.T.); (I.P.); (S.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Satu Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland; (J.T.); (I.P.); (S.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| |
Collapse
|
3
|
Nusshag C, Uhrig J, Gruber G, Schreiber P, Zeier M, Krautkrämer E. Glomerular Injury Is Associated with Severe Courses of Orthohantavirus Infection. Pathogens 2024; 13:693. [PMID: 39204293 PMCID: PMC11356809 DOI: 10.3390/pathogens13080693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) induced by Eurasian pathogenic orthohantaviruses is characterized by acute kidney injury (AKI) with often massive proteinuria. The mechanisms of the organ-specific manifestation are not completely understood. To analyze the role of glomerular and tubular damage in kidney injury induced by HFRS, we measured specific markers in urine samples of patients with acute Puumala virus (PUUV) infection and determined their correlation with disease severity. Levels of α1-microglobulin (α1-MG) and kidney injury molecule 1 (KIM-1), which is expressed by injured tubular epithelial cells, were measured to detect tubular dysfunction and injury. Immunoglobulin G (IgG) and the podocyte specific protein nephrin served as markers for glomerular injury. All four markers were elevated on admission. Markers of glomerular injury, IgG and nephrin, correlated with markers of disease severity such as length of hospitalization, serum creatinine, and proteinuria. In contrast, tubular injury did not correlate with these severity markers. Our results demonstrate that hantavirus infection induces both glomerular and tubular injury early in the clinical course. However, the glomerular dysfunction and podocyte injury seem to contribute directly to disease severity and to play a more central role in HFRS pathogenicity than direct damage to tubular epithelial cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Cabrera LE, Tietäväinen J, Jokiranta ST, Mäkelä S, Vaheri A, Mustonen J, Vapalahti O, Kanerva M, Strandin T. Maturing neutrophils of lower density associate with thrombocytopenia in Puumala orthohantavirus-caused hemorrhagic fever with renal syndrome. Front Immunol 2024; 15:1419787. [PMID: 39011044 PMCID: PMC11246883 DOI: 10.3389/fimmu.2024.1419787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/29/2024] [Indexed: 07/17/2024] Open
Abstract
Puumala orthohantavirus-caused hemorrhagic fever with renal syndrome (PUUV-HFRS) is characterized by strong neutrophil activation. Neutrophils are the most abundant immune cell type in the circulation and are specially equipped to rapidly respond to infections. They are more heterogenous than previously appreciated, with specific neutrophil subsets recently implicated in inflammation and immunosuppression. Furthermore, neutrophils can be divided based on their density to either low-density granulocytes (LDGs) or "normal density" polymorphonuclear cell (PMN) fractions. In the current study we aimed to identify and characterize the different neutrophil subsets in the circulation of PUUV-HFRS patients. PMNs exhibited an activation of antiviral pathways, while circulating LDGs were increased in frequency following acute PUUV-HFRS. Furthermore, cell surface marker expression analysis revealed that PUUV-associated LDGs are primarily immature and most likely reflect an increased neutrophil production from the bone marrow. Interestingly, both the frequency of LDGs and the presence of a "left shift" in blood associated with the extent of thrombocytopenia, one of the hallmarks of severe HFRS, suggesting that maturing neutrophils could play a role in disease pathogenesis. These results imply that elevated circulating LDGs might be a general finding in acute viral infections. However, in contrast to the COVID-19 associated LDGs described previously, the secretome of PUUV LDGs did not show significant immunosuppressive ability, which suggests inherent biological differences in the LDG responses that can be dependent on the causative virus or differing infection kinetics.
Collapse
Affiliation(s)
- Luz E Cabrera
- Viral Zoonosis Research Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Suvi T Jokiranta
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Antti Vaheri
- Viral Zoonosis Research Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
| | - Olli Vapalahti
- Viral Zoonosis Research Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Mari Kanerva
- Infectious Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tomas Strandin
- Viral Zoonosis Research Unit, Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
García M, Carrasco García A, Weigel W, Christ W, Lira-Junior R, Wirth L, Tauriainen J, Maleki K, Vanoni G, Vaheri A, Mäkelä S, Mustonen J, Nordgren J, Smed-Sörensen A, Strandin T, Mjösberg J, Klingström J. Innate lymphoid cells are activated in HFRS, and their function can be modulated by hantavirus-induced type I interferons. PLoS Pathog 2024; 20:e1012390. [PMID: 39038044 PMCID: PMC11293681 DOI: 10.1371/journal.ppat.1012390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024] Open
Abstract
Hantaviruses cause the acute zoonotic diseases hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). Infected patients show strong systemic inflammation and immune cell activation. NK cells are highly activated in HFRS, suggesting that also other innate lymphoid cells (ILCs) might be responding to infection. Here, we characterized peripheral ILC responses, and measured plasma levels of soluble factors and plasma viral load, in 17 Puumala virus (PUUV)-infected HFRS patients. This revealed an increased frequency of ILC2 in patients, in particular the ILC2 lineage-committed c-Kitlo ILC2 subset. Patients' ILCs showed an activated profile with increased proliferation and displayed altered expression of several homing markers. How ILCs are activated during viral infection is largely unknown. When analyzing PUUV-mediated activation of ILCs in vitro we observed that this was dependent on type I interferons, suggesting a role for type I interferons-produced in response to virus infection-in the activation of ILCs. Further, stimulation of naïve ILC2s with IFN-β affected ILC2 cytokine responses in vitro, causing decreased IL-5 and IL-13, and increased IL-10, CXCL10, and GM-CSF secretion. These results show that ILCs are activated in HFRS patients and suggest that the classical antiviral type I IFNs are involved in shaping ILC functions.
Collapse
Affiliation(s)
- Marina García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Anna Carrasco García
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Whitney Weigel
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Wanda Christ
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Ronaldo Lira-Junior
- Section of Oral Diagnostics and Surgery, Division of Oral Diagnostics and Rehabilitation, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lorenz Wirth
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Mechanistic & Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Johanna Tauriainen
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Kimia Maleki
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Vanoni
- Institut Curie, PSL University, Inserm, Immunity and Cancer, Paris, France
| | - Antti Vaheri
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Satu Mäkelä
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Johan Nordgren
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anna Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
6
|
Nusshag C, Gruber G, Zeier M, Krautkrämer E. Neutrophil-to-lymphocyte ratio is elevated in acute hantavirus infection and correlates with markers of disease severity. J Med Virol 2024; 96:e29759. [PMID: 38899399 DOI: 10.1002/jmv.29759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Pathogenic Eurasian hantaviruses cause hemorrhagic fever with renal syndrome (HFRS), which is characterized by acute kidney injury. The clinical course shows a broad range of severity and is influenced by direct and immune-mediated effects. The neutrophil-to-lymphocyte ratio (NLR) is a marker of systemic inflammation and predicts severity and outcome in various diseases. Therefore, we examined the role of NLR in HFRS caused by hantavirus Puumala (PUUV) and its association with disease severity and kidney injury. We detected elevated NLR levels on admission (NLRadm: median 3.82, range 1.75-7.59), which increased during acute HFRS. Maximum NLR levels (NLRmax: median 4.19, range 1.75-13.16) were 2.38-fold higher compared to the reference NLR level of 1.76 in the general population. NLR levels on admission correlate with markers of severity (length of hospital stay, serum creatinine) but not with other markers of severity (leukocytes, platelets, C-reactive protein, lactate dehydrogenase, serum albumin, proteinuria). Interestingly, levels of nephrin, which is a specific marker of podocyte damage in kidney injury, are highest on admission and correlate with NLRmax, but not with NLRadm. Together, we observed a correlation between systemic inflammation and the severity of HFRS, but our results also revealed that podocyte damage precedes these inflammatory processes.
Collapse
Affiliation(s)
- Christian Nusshag
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Gefion Gruber
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Schrottmaier WC, Schmuckenschlager A, Thunberg T, Wigren-Byström J, Fors-Connolly AM, Assinger A, Ahlm C, Forsell MNE. Direct and indirect effects of Puumala hantavirus on platelet function. Thromb Res 2024; 233:41-54. [PMID: 38006765 DOI: 10.1016/j.thromres.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Thrombocytopenia is a cardinal symptom of hantavirus-induced diseases including Puumala virus (PUUV)-induced hemorrhagic fever with renal syndrome (HFRS), which is associated with impaired platelet function, bleeding manifestations and augmented thrombotic risk. However, the underlying mechanisms causing thrombocytopenia and platelet hypo-responsiveness are unknown. Thus, we investigated the direct and indirect impact of PUUV on platelet production, function and degradation. Analysis of PUUV-HFRS patient blood revealed that platelet hypo-responsiveness in PUUV infection was cell-intrinsic and accompanied by reduced platelet-leukocyte aggregates (PLAs) and upregulation of monocyte tissue factor (TF), whereas platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation was comparable to healthy controls. Plasma CXCL4 levels followed platelet count dynamics throughout disease course. PUUV activated both neutrophils and monocytes in vitro, but platelet desialylation, degranulation and GPIIb/IIIa activation as well as PLA formation and endothelial adhesion under flow remained unaltered in the presence of PUUV. Further, MEG-01 megakaryocytes infected with PUUV displayed unaltered polyploidization, expression of surface receptors and platelet production. However, infection of endothelial cells with PUUV significantly increased platelet sequestration. Our data thus demonstrate that although platelet production, activation or degradation are not directly modulated, PUUV indirectly fosters thrombocytopenia by sequestration of platelets to infected endothelium. Upregulation of immunothrombotic processes in PUUV-HFRS may further contribute to platelet dysfunction and consumption. Given the pathophysiologic similarities of hantavirus infections, our findings thus provide important insights into the mechanisms underlying thrombocytopenia and highlight immune-mediated coagulopathy as potential therapeutic target.
Collapse
Affiliation(s)
- Waltraud C Schrottmaier
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Clinical Microbiology, Umeå University, Umeå, Sweden.
| | - Anna Schmuckenschlager
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Therese Thunberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | | | - Alice Assinger
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
8
|
‘t Hart DC, van der Vlag J, Nijenhuis T. A Putative Role for TRPC6 in Immune-Mediated Kidney Injury. Int J Mol Sci 2023; 24:16419. [PMID: 38003608 PMCID: PMC10671681 DOI: 10.3390/ijms242216419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Excessive activation of the immune system is the cause of a wide variety of renal diseases. However, the pathogenic mechanisms underlying the aberrant activation of the immune system in the kidneys often remain unknown. TRPC6, a member of the Ca2+-permeant family of TRPC channels, is important in glomerular epithelial cells or podocytes for the process of glomerular filtration. In addition, TRPC6 plays a crucial role in the development of kidney injuries by inducing podocyte injury. However, an increasing number of studies suggest that TRPC6 is also responsible for tightly regulating the immune cell functions. It remains elusive whether the role of TRPC6 in the immune system and the pathogenesis of renal inflammation are intertwined. In this review, we present an overview of the current knowledge of how TRPC6 coordinates the immune cell functions and propose the hypothesis that TRPC6 might play a pivotal role in the development of kidney injury via its role in the immune system.
Collapse
|
9
|
Wang M, Zhou Y, Wang Y, Du Y, Guo Z, Ma L, Zhang H, Wang Y. Correlation analysis of CD8 + cell overexpression and prognosis of hemorrhagic fever with renal syndrome-a case-control study. Front Pediatr 2023; 11:1168205. [PMID: 37215590 PMCID: PMC10196636 DOI: 10.3389/fped.2023.1168205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Background Hemorrhagic fever with Renal Syndrome (HFRS) is an infectious disease caused by Hantavirus with fever, hemorrhage and acute kidney injury (AKI) as clinical characteristics. The research on the etiology and pathogenesis of diseases has become a focus of attention. However, there are few related medical studies in children with HFRS. The prognosis of the children with HFRS remains to be explored. Objectives We explored risk factors in children with HFRS and summarize sensitive indicators that are conducive to the prognosis of the disease. Methods We designed a case-control study and recruited 182 HFRS pediatric patients (2014.01-2022.08). They were divided into two groups according to the severity of disease, including the control group(158 cases with mild and moderate subgroup)and the observation group (24 cases with severe and critical subgroup). Risk factors influencing prognosis were analyzed by binary logistic regression. The cutoff value, sensitivity and specificity of the risk factors prediction were calculated by receiver operating characteristic (ROC) and Yoden index. Results Lymphocyte subsets characteristics analysis showed that in observation group the indexes were decreased in lymphocyte, T lymphocytes (CD3)+, helper/inducible T lymphocytes (CD4+)/inhibition/cytotoxic T cells (CD8+), B lymphocytes (CD19+); and the elevated index was CD8+, the difference were all significant between two groups. (P < 0.05). With death as the primary outcome, it was found that the serum CD8+ (odds ratio [OR] 2.91, 95% confidence interval [CI] 1.65, 4.00; P < 0.01) was risk factor and significantly associated with mortality. The cutoff value of the serum CD8+ was 845 × 106/L, the sensitivity and specificity were 78.5%, 85.4%. With complications as the secondary outcomes, the serum CD8+ (OR 2.69, 95% CI 1.15, 4.88; P < 0.01) was found to be risk factors. The cutoff of the serum CD8+ was 690 × 106/L, the sensitivity and specificity were 69.3%, 75.1% respectively. Conclusion CD8+ may be significantly correlated with the severity and prognosis of HFRS in children.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yi Wang
- Correspondence: Yi Wang Hua Zhang
| |
Collapse
|
10
|
Andrés CMC, Pérez de la Lastra JM, Juan CA, Plou FJ, Pérez-Lebeña E. The Role of Reactive Species on Innate Immunity. Vaccines (Basel) 2022; 10:vaccines10101735. [PMID: 36298601 PMCID: PMC9609844 DOI: 10.3390/vaccines10101735] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
This review examines the role of reactive species RS (of oxygen ROS, nitrogen RNS and halogen RHS) on innate immunity. The importance of these species in innate immunity was first recognized in phagocytes that underwent a “respiratory burst” after activation. The anion superoxide •O2− and hydrogen peroxide H2O2 are detrimental to the microbial population. NADPH oxidase NOx, as an •O2− producer is essential for microbial destruction, and patients lacking this functional oxidase are more susceptible to microbial infections. Reactive nitrogen species RNS (the most important are nitric oxide radical -•NO, peroxynitrite ONOO— and its derivatives), are also harmful to microorganisms, including bacteria, viruses, and parasites. Hypochlorous acid HOCl and hypothiocyanous acid HOSCN synthesized through the enzyme myeloperoxidase MPO, which catalyzes the reaction between H2O2 and Cl− or SCN−, are important inorganic bactericidal molecules, effective against a wide range of microbes. This review also discusses the role of antimicrobial peptides AMPs and their induction of ROS. In summary, reactive species RS are the heart of the innate immune system, and they are necessary for microbial lysis in infections that can affect mammals throughout their lives.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez 3, 38206 La Laguna, Spain
- Correspondence:
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Dhanya CR, Shailaja A, Mary AS, Kandiyil SP, Savithri A, Lathakumari VS, Veettil JT, Vandanamthadathil JJ, Madhavan M. RNA Viruses, Pregnancy and Vaccination: Emerging Lessons from COVID-19 and Ebola Virus Disease. Pathogens 2022; 11:800. [PMID: 35890044 PMCID: PMC9322689 DOI: 10.3390/pathogens11070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Pathogenic viruses with an RNA genome represent a challenge for global human health since they have the tremendous potential to develop into devastating pandemics/epidemics. The management of the recent COVID-19 pandemic was possible to a certain extent only because of the strong foundations laid by the research on previous viral outbreaks, especially Ebola Virus Disease (EVD). A clear understanding of the mechanisms of the host immune response generated upon viral infections is a prime requisite for the development of new therapeutic strategies. Hence, we present here a comparative study of alterations in immune response upon SARS-CoV-2 and Ebola virus infections that illustrate many common features. Vaccination and pregnancy are two important aspects that need to be studied from an immunological perspective. So, we summarize the outcomes and immune responses in vaccinated and pregnant individuals in the context of COVID-19 and EVD. Considering the significance of immunomodulatory approaches in combating both these diseases, we have also presented the state of the art of such therapeutics and prophylactics. Currently, several vaccines against these viruses have been approved or are under clinical trials in various parts of the world. Therefore, we also recapitulate the latest developments in these which would inspire researchers to look for possibilities of developing vaccines against many other RNA viruses. We hope that the similar aspects in COVID-19 and EVD open up new avenues for the development of pan-viral therapies.
Collapse
Affiliation(s)
| | - Aswathy Shailaja
- Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Aarcha Shanmugha Mary
- Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610105, India;
| | | | - Ambili Savithri
- Department of Biochemistry, Sree Narayana College, Kollam 691001, India;
| | | | | | | | - Maya Madhavan
- Department of Biochemistry, Government College for Women, Thiruvananthapuram 695014, India
| |
Collapse
|
12
|
Li P, Zhang C, Wang M, Zhang X, Zhang Y, Tang K, Hu H, Jia X, Zhuang R, Jin B, Ma Y, Zhang Y. Elevation of Myeloperoxidase Correlates with Disease Severity in Patients with Hantaan Virus Infection. Viral Immunol 2022; 35:418-424. [PMID: 35675645 DOI: 10.1089/vim.2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hantaan orthohantavirus (HTNV) can cause hemorrhagic fever with renal syndrome (HFRS) characterized by acute kidney injury and hemorrhage. Neutrophils are the most abundant innate immune cell and the body's first line of defense against pathogens. Currently, an increasing number of studies have shown that neutrophils may be a mixed blessing in terms of viral infections. However, the role of neutrophils in HFRS patients with HTNV infection has not been fully declared. In this study, we analyzed plasma levels of both myeloperoxidase (MPO) and MPO-DNA in HFRS patients, together with the clinical parameters. Neutrophil-platelet aggregates (NPAs) during the acute and convalescent phases of HFRS were also assessed. The results showed that plasma MPO-DNA levels had no change in different disease phases or severities of HFRS patients. Whereas plasma MPO significantly increased in the acute phase and critical/severe groups of HFRS patients. Furthermore, plasma MPO was positively correlated with inflammatory clinical parameters, such as white blood cell counts, neutrophil counts, and renal injury-related parameters, such as blood urea nitrogen, blood uric acid, and serum creatinine, as well as negatively correlated with and platelet counts. In addition, NPAs increased both in acute and convalescent phase in HFRS patients compared with normal controls. These results suggested that elevated plasma MPO in HFRS patients correlated with disease severity, together with the increases of NPAs in HFRS patients, which may provide new insights into potential role of neutrophils in the pathogenesis of HFRS.
Collapse
Affiliation(s)
- Pengcheng Li
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China.,Brigade of Cadet, Air Force Medical University, Xi'an, China
| | - Chunmei Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Meng Wang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Xiyue Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Yusi Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Kang Tang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Haifeng Hu
- Center for Infectious Diseases, Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xiaozhou Jia
- Department of Infectious Disease, Xi'an Eighth Hospital, Xi'an, China
| | - Ran Zhuang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Boquan Jin
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Ying Ma
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, Basic Medicine School, Air Force Medical University, Xi'an, China
| |
Collapse
|
13
|
Neutralizing Antibody Titers in Hospitalized Patients with Acute Puumala Orthohantavirus Infection Do Not Associate with Disease Severity. Viruses 2022; 14:v14050901. [PMID: 35632643 PMCID: PMC9143849 DOI: 10.3390/v14050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Nephropathia epidemica (NE), a mild form of haemorrhagic fever with renal syndrome (HFRS), is an acute febrile illness caused by Puumala orthohantavirus (PUUV). NE manifests typically with acute kidney injury (AKI), with a case fatality rate of about 0.1%. The treatment and management of hantavirus infections are mainly supportive, although neutralizing monoclonal antibodies and immune sera therapeutics are under investigation. In order to assess the potential use of antibody therapeutics in NE, we sought to determine the relationship between circulating PUUV neutralizing antibodies, PUUV nucleocapsid protein (N) IgG antibodies, and viral loads with markers of disease severity. The study included serum samples of extensively characterized patient cohorts (n = 116) from Tampere University Hospital, Finland. The results showed that upon hospitalization, most patients already had considerable neutralizing and anti-PUUV-N IgG antibody levels. However, contrary to expectations, neutralizing antibody titers from the first day of hospitalization did not appear to protect from AKI or correlate with more favorable disease outcomes. This indicates that further studies are needed to investigate the applicability of neutralizing antibodies as a therapy for hospitalized NE patients.
Collapse
|
14
|
Increased Heparanase Levels in Urine during Acute Puumala Orthohantavirus Infection Are Associated with Disease Severity. Viruses 2022; 14:v14030450. [PMID: 35336857 PMCID: PMC8954369 DOI: 10.3390/v14030450] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Old–world orthohantaviruses cause hemorrhagic fever with renal syndrome (HFRS), characterized by acute kidney injury (AKI) with transient proteinuria. It seems plausible that proteinuria during acute HFRS is mediated by the disruption of the glomerular filtration barrier (GFB) due to vascular leakage, a hallmark of orthohantavirus–caused diseases. However, direct infection of endothelial cells by orthohantaviruses does not result in increased endothelial permeability, and alternative explanations for vascular leakage and diminished GFB function are necessary. Vascular integrity is partly dependent on an intact endothelial glycocalyx, which is susceptible to cleavage by heparanase (HPSE). To understand the role of glycocalyx degradation in HFRS–associated proteinuria, we investigated the levels of HPSE in urine and plasma during acute, convalescent and recovery stages of HFRS caused by Puumala orthohantavirus. HPSE levels in urine during acute HFRS were significantly increased and strongly associated with the severity of AKI and other markers of disease severity. Furthermore, increased expression of HPSE was detected in vitro in orthohantavirus–infected podocytes, which line the outer surfaces of glomerular capillaries. Taken together, these findings suggest the local activation of HPSE in the kidneys of orthohantavirus–infected patients with the potential to disrupt the endothelial glycocalyx, leading to increased protein leakage through the GFB, resulting in high amounts of proteinuria.
Collapse
|
15
|
Serum Cytokine Alterations Associated with Age of Patients with Nephropathia Epidemica. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4685288. [PMID: 35059462 PMCID: PMC8766188 DOI: 10.1155/2022/4685288] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022]
Abstract
Nephropathia epidemica (NE) is a zoonotic disease caused by hantaviruses transmitted from rodents, endemic in the Republic of Tatarstan, Russia. The disease presents clinically with mild, moderate, and severe forms, and time-dependent febrile, oliguric, and polyuric stages of the disease are also recognized. The patient's cytokine responses have been suggested to play a central role in disease pathogenesis; however, little is known about the different patterns of cytokine expression in NE in cohorts of different ages and sexes. Serum samples and clinical records were collected from 139 patients and 57 controls (healthy donors) and were used to analyze 48 analytes with the Bio-Plex multiplex magnetic bead-based antibody detection kits. Principal component analysis of 137 patient and 55 controls (for which there was full data) identified two components that individually accounted for >15% of the total variance in results and together for 38% of the total variance. PC1 represented a proinflammatory TH17/TH2 cell antiviral cytokine profile and PC2 a more antiviral cytokine profile with patients tending to display one or the other of these. Severity of disease and stage of illness did not show any correlation with PC1 profiles; however, significant differences were seen in patients with high PC1 profiles vs. lower for a number of individual clinical parameters: High PC1 patients showed a reduced number of febrile days, but higher maximum urine output, higher creatinine levels, and lower platelet levels. Overall, the results of this study point towards a stronger proinflammatory profile occurring in younger NE patients, this being associated with markers of acute kidney injury and low levels of high-density cholesterol. This is consistent with previous work indicating that the pathology of NE is immune driven, with an inflammatory immune response being associated with disease and that this immune response is more extreme in younger patients.
Collapse
|
16
|
Koehler FC, Di Cristanziano V, Späth MR, Hoyer-Allo KJR, Wanken M, Müller RU, Burst V. OUP accepted manuscript. Clin Kidney J 2022; 15:1231-1252. [PMID: 35756741 PMCID: PMC9217627 DOI: 10.1093/ckj/sfac008] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Hantavirus-induced diseases are emerging zoonoses with endemic appearances and frequent outbreaks in different parts of the world. In humans, hantaviral pathology is characterized by the disruption of the endothelial cell barrier followed by increased capillary permeability, thrombocytopenia due to platelet activation/depletion and an overactive immune response. Genetic vulnerability due to certain human leukocyte antigen haplotypes is associated with disease severity. Typically, two different hantavirus-caused clinical syndromes have been reported: hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). The primarily affected vascular beds differ in these two entities: renal medullary capillaries in HFRS caused by Old World hantaviruses and pulmonary capillaries in HCPS caused by New World hantaviruses. Disease severity in HFRS ranges from mild, e.g. Puumala virus-associated nephropathia epidemica, to moderate, e.g. Hantaan or Dobrava virus infections. HCPS leads to a severe acute respiratory distress syndrome with high mortality rates. Due to novel insights into organ tropism, hantavirus-associated pathophysiology and overlapping clinical features, HFRS and HCPS are believed to be interconnected syndromes frequently involving the kidneys. As there are no specific antiviral treatments or vaccines approved in Europe or the USA, only preventive measures and public awareness may minimize the risk of hantavirus infection. Treatment remains primarily supportive and, depending on disease severity, more invasive measures (e.g., renal replacement therapy, mechanical ventilation and extracorporeal membrane oxygenation) are needed.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - K Johanna R Hoyer-Allo
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Manuel Wanken
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | |
Collapse
|
17
|
Delayed viral clearance despite high number of activated T cells during the acute phase in Argentinean patients with hantavirus pulmonary syndrome. EBioMedicine 2022; 75:103765. [PMID: 34986457 PMCID: PMC8743200 DOI: 10.1016/j.ebiom.2021.103765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/08/2021] [Accepted: 12/03/2021] [Indexed: 01/16/2023] Open
Abstract
Background The hallmarks of HPS are increase of vascular permeability and endothelial dysfunction. Although an exacerbated immune response is thought to be implicated in pathogenesis, clear evidence is still elusive. As orthohantaviruses are not cytopathic CD8+ T cells are believed to be the central players involved in pathogenesis. Methods Serum and blood samples from Argentinean HPS patients were collected from 2014 to 2019. Routine white blood cell analyses, quantification and characterization of T-cell phenotypic profile, viral load, neutralizing antibody response and quantification of inflammatory mediators were performed. Findings High numbers of activated CD4+ and CD8+ T cells were found in all HPS cases independently of disease severity. We found increased levels of some proinflammatory mediators during the acute phase of illness. Nonetheless, viral RNA remained high, showing a delay in clearance from blood up to late convalescence, when titers of neutralizing antibodies reached a high level. Interpretation The high activated phenotypic profile of T cells seems to be unable to resolve infection during the acute and early convalescent phases, and it was not associated with the severity of the disease. Thus, at least part of the activated T cells could be induced by the dysregulated inflammatory response in an unspecific manner. Viral clearance seems to have been more related to high titers of neutralizing antibodies than to the T-cell response. Funding This work was supported mainly by the Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) “Dr. Carlos Malbrán”. Further details of fundings sources is included in the appendix.
Collapse
|
18
|
Tietäväinen J, Laine O, Mäkelä S, Huhtala H, Pörsti I, Vaheri A, Mustonen J. ABO and Rhesus Blood Groups in Acute Puumala Hantavirus Infection. Viruses 2021; 13:v13112271. [PMID: 34835077 PMCID: PMC8621274 DOI: 10.3390/v13112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Puumala hantavirus (PUUV) causes hemorrhagic fever with renal syndrome. We aimed to evaluate whether ABO and rhesus blood groups associate with the susceptibility or the severity of PUUV infection. We analyzed blood groups in 289 adult patients treated in Tampere University hospital due to PUUV infection during the years 1982–2017. Patients’ blood group distribution was compared to that of healthy, voluntary blood donors living in the Tampere University Hospital responsibility area (n = 21,833). The severity of PUUV infection, as judged by the severity of acute kidney injury (AKI), thrombocytopenia, inflammation, capillary leakage, and the length of hospital care, was analyzed across the groups. The ABO and rhesus blood group distributions did not differ between the patients and blood donors. Patients with non-O blood groups had lower systolic blood pressure compared to patients with blood group O, but there was no difference in other markers of capillary leakage or in the severity of AKI. Minor deviations in the number of platelets and leukocytes were detected between the O and non-O blood groups. To conclude, patients with blood group O may be less susceptible to hypotension, but otherwise blood groups have no major influences on disease susceptibility or severity during acute PUUV infection.
Collapse
Affiliation(s)
- Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (O.L.); (S.M.); (I.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| | - Outi Laine
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (O.L.); (S.M.); (I.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Satu Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (O.L.); (S.M.); (I.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, 33250 Tampere, Finland;
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (O.L.); (S.M.); (I.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland;
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (O.L.); (S.M.); (I.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
19
|
Hantavirus infection-induced B cell activation elevates free light chains levels in circulation. PLoS Pathog 2021; 17:e1009843. [PMID: 34379707 PMCID: PMC8382192 DOI: 10.1371/journal.ppat.1009843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
In humans, orthohantaviruses can cause hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). An earlier study reported that acute Andes virus HPS caused a massive and transient elevation in the number of circulating plasmablasts with specificity towards both viral and host antigens suggestive of polyclonal B cell activation. Immunoglobulins (Igs), produced by different B cell populations, comprise heavy and light chains; however, a certain amount of free light chains (FLCs) is constantly present in serum. Upregulation of FLCs, especially clonal species, associates with renal pathogenesis by fibril or deposit formations affecting the glomeruli, induction of epithelial cell disorders, or cast formation in the tubular network. We report that acute orthohantavirus infection increases the level of Ig FLCs in serum of both HFRS and HPS patients, and that the increase correlates with the severity of acute kidney injury in HFRS. The fact that the kappa to lambda FLC ratio in the sera of HFRS and HPS patients remained within the normal range suggests polyclonal B cell activation rather than proliferation of a single B cell clone. HFRS patients demonstrated increased urinary excretion of FLCs, and we found plasma cell infiltration in archival patient kidney biopsies that we speculate to contribute to the observed FLC excreta. Analysis of hospitalized HFRS patients’ peripheral blood mononuclear cells showed elevated plasmablast levels, a fraction of which stained positive for Puumala virus antigen. Furthermore, B cells isolated from healthy donors were susceptible to Puumala virus in vitro, and the virus infection induced increased production of Igs and FLCs. The findings propose that hantaviruses directly activate B cells, and that the ensuing intense production of polyclonal Igs and FLCs may contribute to acute hantavirus infection-associated pathological findings. Orthohantaviruses are globally spread zoonotic pathogens, which can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS) with significant burden to human health. The pathogenesis mechanisms of orthohantavirus-caused diseases are not known in detail; however, excessive immune response towards the virus with concomitant pathological effects against host tissues appears to be a contributing factor. Here we report an increase of free immunoglobulin (Ig) light chains (FLCs), components required to make complete Ig molecules, in blood of acute HFRS and HPS. Samples collected during acute HFRS demonstrated increased FLCs levels in the urine and blood of patients hospitalized due the disease. Furthermore, the FLC levels positively correlated with markers of acute kidney injury. In addition, our results show that orthohantaviruses can infect and activate B cells to produce FLCs as well as whole Igs, which provides a mechanistic explanation of the increased FLC levels in patients. Taken together, our results suggest that aberrant antibody responses might play a role in the pathogenesis of orthohantavirus infections.
Collapse
|
20
|
Coagulopathy in Acute Puumala Hantavirus Infection. Viruses 2021; 13:v13081553. [PMID: 34452419 PMCID: PMC8402851 DOI: 10.3390/v13081553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome (HFRS), also called nephropathia epidemica (NE), which is mainly endemic in Europe and Russia. The clinical features include a low platelet count, altered coagulation, endothelial activation, and acute kidney injury (AKI). Multiple connections between coagulation pathways and inflammatory mediators, as well as complement and kallikrein–kinin systems, have been reported. The bleeding symptoms are usually mild. PUUV-infected patients also have an increased risk for disseminated intravascular coagulation (DIC) and thrombosis.
Collapse
|
21
|
Iba T, Levy JH, Levi M. Viral-induced inflammatory coagulation disorders: Preparing for another epidemic. Thromb Haemost 2021; 122:8-19. [PMID: 34331297 PMCID: PMC8763450 DOI: 10.1055/a-1562-7599] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of viral infectious diseases have emerged or reemerged from wildlife vectors that have generated serious threats to global health. Increased international traveling and commerce increase the risk of transmission of viral or other infectious diseases. In addition, recent climate changes accelerate the potential spread of domestic disease. The Coronavirus disease 2019 (COVID-19) pandemic is an important example of the worldwide spread, and the current epidemic will unlikely be the last. Viral hemorrhagic fevers, such as Dengue and Lassa fevers, may also have the potential to spread worldwide with a significant impact on public health with unpredictable timing. Based on the important lessons learned from COVID-19, it would be prudent to prepare for future pandemics of life-threatening viral diseases. Among the various threats, this review focuses on the coagulopathy of acute viral infections since hypercoagulability has been a major challenge in COVID-19, but represents a different presentation compared to viral hemorrhagic fever. However, both thrombosis and hemorrhage are understood as the result of thromboinflammation due to viral infections, and the role of anticoagulation is important to consider.
Collapse
Affiliation(s)
- Toshiaki Iba
- Emergency and Disaster Medicine, Juntendo University, Bunkyo-ku, Japan
| | - J H Levy
- Anesthesiology and Critcal Care, Duke University, Durham, United States
| | - Marcel Levi
- Department of Gastroenterology, University College London Hospitals NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
22
|
Vaheri A, Henttonen H, Mustonen J. Hantavirus Research in Finland: Highlights and Perspectives. Viruses 2021; 13:v13081452. [PMID: 34452318 PMCID: PMC8402838 DOI: 10.3390/v13081452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/24/2023] Open
Abstract
Finland has the highest incidence of hantavirus infections globally, with a significant impact on public health. The large coverage of boreal forests and the cyclic dynamics of the dominant forest rodent species, the bank vole Myodes glareolus, explain most of this. We review the relationships between Puumala hantavirus (PUUV), its host rodent, and the hantavirus disease, nephropathia epidemica (NE), in Finland. We describe the history of NE and its diagnostic research in Finland, the seasonal and multiannual cyclic dynamics of PUUV in bank voles impacting human epidemiology, and we compare our northern epidemiological patterns with those in temperate Europe. The long survival of PUUV outside the host and the life-long shedding of PUUV by the bank voles are highlighted. In humans, the infection has unique features in pathobiology but rarely long-term consequences. NE is affected by specific host genetics and risk behavior (smoking), and certain biomarkers can predict the outcome. Unlike many other hantaviruses, PUUV causes a relatively mild disease and is rarely fatal. Reinfections do not exist. Antiviral therapy is complicated by the fact that when symptoms appear, the patient already has a generalized infection. Blocking vascular leakage measures counteracting pathobiology, offer a real therapeutic approach.
Collapse
Affiliation(s)
- Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland
- Correspondence: ; Tel.: +358-505552884
| | - Heikki Henttonen
- Wildlife Ecology, Natural Resources Institute Finland, 00790 Helsinki, Finland;
| | - Jukka Mustonen
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland;
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
23
|
Yang Z, Hu Q, Feng Z, Sun Y. Development and validation of a nomogram for predicting severity in patients with hemorrhagic fever with renal syndrome: A retrospective study. Open Med (Wars) 2021; 16:944-954. [PMID: 34222669 PMCID: PMC8234813 DOI: 10.1515/med-2021-0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/29/2021] [Accepted: 05/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease caused by hantavirus infection. Patients with severe HFRS may develop multiple organ failure or even death, which makes HFRS a serious public health problem. Methods In this retrospective study, we included a total of 155 consecutive patients who were diagnosed with HFRS, of whom 109 patients served as a training cohort and 46 patients as an independent verification cohort. In the training set, the least absolute shrinkage and selection operator (LASSO) regression was used to screen the characteristic variables of the risk model. Multivariate logistic regression analysis was used to construct a nomogram containing the characteristic variables selected in the LASSO regression model. Results The area under the receiver operating characteristic curve (AUC) of the nomogram indicated that the model had good discrimination. The calibration curve exhibited that the nomogram was in good agreement between the prediction and the actual observation. Decision curve analysis and clinical impact curve suggested that the predictive nomogram had clinical utility. Conclusion In this study, we established a simple and feasible model to predict severity in patients with HFRS, with which HFRS would be better identified and patients can be treated early.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Infectious Disease, Jingzhou Hospital, Yangtze University, Jingzhou, 434020, China
| | - Qinming Hu
- Department of Infectious Disease, Jingzhou Hospital, Yangtze University, Jingzhou, 434020, China
| | - Zhipeng Feng
- Department of Infectious Disease, Jingzhou Hospital, Yangtze University, Jingzhou, 434020, China
| | - Yi Sun
- Department of Dermatology, Jingzhou Hosiptal, Yangtze University, No. 60 Jingzhong Road, Jingzhou District, Hubei Province, Jingzhou, 434020, China
| |
Collapse
|
24
|
Tietäväinen J, Mäkelä S, Huhtala H, Pörsti IH, Strandin T, Vaheri A, Mustonen J. The Clinical Presentation of Puumala Hantavirus Induced Hemorrhagic Fever with Renal Syndrome Is Related to Plasma Glucose Concentration. Viruses 2021; 13:v13061177. [PMID: 34202952 PMCID: PMC8235586 DOI: 10.3390/v13061177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023] Open
Abstract
Puumala hantavirus (PUUV) causes a hemorrhagic fever with renal syndrome characterized by thrombocytopenia, increased capillary leakage, and acute kidney injury (AKI). As glucosuria at hospital admission predicts the severity of PUUV infection, we explored how plasma glucose concentration associates with disease severity. Plasma glucose values were measured during hospital care in 185 patients with PUUV infection. They were divided into two groups according to maximum plasma glucose concentration: P-Gluc < 7.8 mmol/L (n = 134) and P-Gluc ≥ 7.8 mmol/L (n = 51). The determinants of disease severity were analyzed across groups. Patients with P-Gluc ≥7.8 mmol/L had higher hematocrit (0.46 vs. 0.43; p < 0.001) and lower plasma albumin concentration (24 vs. 29 g/L; p < 0.001) than patients with P-Gluc < 7.8 mmol/L. They presented with higher prevalence of pulmonary infiltrations and pleural effusion in chest radiograph, higher prevalence of shock and greater weight change during hospitalization. Patients with P-Gluc ≥ 7.8 mmol/L were characterized by lower platelet count (50 vs. 66 × 109/L; p = 0.001), more severe AKI (plasma creatinine 272 vs. 151 µmol/L; p = 0.001), and longer hospital treatment (8 vs. 6 days; p < 0.001) than patients with P-Gluc < 7.8 mmol/L. Plasma glucose level is associated with the severity of capillary leakage, thrombocytopenia, inflammation, and AKI in patients with acute PUUV infection.
Collapse
Affiliation(s)
- Johanna Tietäväinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| | - Satu Mäkelä
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, 33520 Tampere, Finland;
| | - Ilkka H. Pörsti
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Antti Vaheri
- Department of Virology, Medicum, University of Helsinki, 00290 Helsinki, Finland; (T.S.); (A.V.)
| | - Jukka Mustonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (S.M.); (I.H.P.); (J.M.)
- Department of Internal Medicine, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
25
|
Garishah FM, Rother N, Riswari SF, Alisjahbana B, Overheul GJ, van Rij RP, van der Ven A, van der Vlag J, de Mast Q. Neutrophil Extracellular Traps in Dengue Are Mainly Generated NOX-Independently. Front Immunol 2021; 12:629167. [PMID: 34122402 PMCID: PMC8187769 DOI: 10.3389/fimmu.2021.629167] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/05/2021] [Indexed: 01/12/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are increasingly recognized to play a role in the pathogenesis of viral infections, including dengue. NETs can be formed NADPH oxidase (NOX)-dependently or NOX-independently. NOX-independent NETs can be induced by activated platelets and are very potent in activating the endothelium. Platelet activation with thrombocytopenia and endothelial dysfunction are prominent features of dengue virus infection. We postulated that dengue infection is associated with NOX-independent NET formation, which is related to platelet activation, endothelial perturbation and increased vascular permeability. Using our specific NET assays, we investigated the time course of NET formation in a cohort of Indonesian dengue patients. We found that plasma levels of NETs were profoundly elevated and that these NETs were predominantly NOX-independent NETs. During early recovery phase (7-13 days from fever onset), total NETs correlated negatively with platelet number and positively with platelet P-selectin expression, the binding of von Willebrand factor to platelets and levels of Syndecan-1. Patients with gall bladder wall thickening, an early marker of plasma leakage, had a higher median level of total NETs. Ex vivo, platelets induced NOX-independent NET formation in a dengue virus non-structural protein 1 (NS1)-dependent manner. We conclude that NOX-independent NET formation is enhanced in dengue, which is most likely mediated by NS1 and activated platelets.
Collapse
Affiliation(s)
- Fadel Muhammad Garishah
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Center for Tropical and Infectious Diseases (CENTRID), Faculty of Medicine, Diponegoro University, Dr. Kariadi Hospital, Semarang, Indonesia
| | - Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Silvita Fitri Riswari
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Bachti Alisjahbana
- Research Center for Care and Control of Infectious Disease (RC3ID), Universitas Padjadjaran, Bandung, Indonesia.,Department of Internal Medicine, Hasan Sadikin General Hospital, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - André van der Ven
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine and the Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
26
|
Predictive value of pentraxin-3 on disease severity and mortality risk in patients with hemorrhagic fever with renal syndrome. BMC Infect Dis 2021; 21:445. [PMID: 34001041 PMCID: PMC8130374 DOI: 10.1186/s12879-021-06145-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/05/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus is characterized by systemic immunopathological injury. Pentraxin-3 is an acute-phase reactant involved in the processes of inflammation and infection. This study aimed to investigate the levels of plasma pentraxin-3 and evaluate its predictive value on disease severity and mortality risk in patients with HFRS. METHODS This was a prospective real-world observational study. The concentrations of plasma pentraxin-3 were measured by enzyme linked immunosorbent assay (ELISA) in 105 HFRS patients and 27 healthy controls. We analyzed the clinical relevance between pentraxin-3 and clinical subtyping, hospital stay and conventional laboratory parameters of HFRS patients. Considering the prognosis (death) as the primary endpoint, the levels of pentraxin-3 between survivors and non-survivors were compared, and its association with mortality was assessed by Kaplan-Meier survival analysis. The predictive potency of pentraxin-3 for mortality risk in HFRS patients was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS The levels of pentraxin-3 during the acute phase were increased with the aggravation of the disease, and showed the highest expression in critical-type patients (P < 0.05). Pentraxin-3 demonstrated significant correlations with conventional laboratory parameters (WBC, PLT, AST, ALB, APTT, Fib) and the length of hospital stay. Compared with the survivors, non-survivors showed higher levels of pentraxin-3 and worse expressions of conventional laboratory parameters during the acute phase. The Kaplan-Meier survival curves showed that high levels of pentraxin-3 during the acute phase were significantly associated with the death in HFRS patients. Pentraxin-3 demonstrated significant predictive value for the mortality risk of HFRS patients, with the area under ROC curve (AUC) of 0.753 (95%CI: 0.593 ~ 0.914, P = 0.003). CONCLUSIONS The detection of plasma pentraxin-3 might be beneficial to the evaluation of disease severity and to the prediction of mortality risk in HFRS patients.
Collapse
|
27
|
Salinas TP, Garrido JL, Salazar JR, Gonzalez P, Zambrano N, Fuentes-Villalobos F, Bravo F, Fica-Leon V, Salas-Burgos A, Calvo M, Alvarez R, Armien B, Barria MI. Cytokine Profiles and Antibody Response Associated to Choclo Orthohantavirus Infection. Front Immunol 2021; 12:603228. [PMID: 33815363 PMCID: PMC8017165 DOI: 10.3389/fimmu.2021.603228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Background New World Hantaviruses (NWHs) are the etiological agent underlying hantavirus cardiopulmonary syndrome (HCPS), a severe respiratory disease with high mortality rates in humans. In Panama, infections with Choclo Orthohantavirus (CHOV) cause a much milder illness characterized by higher seroprevalence and lower mortality rates. To date, the cytokine profiles and antibody responses associated with this milder form of HCPS have not been defined. Therefore, in this study, we examined immune serological profiles associated with CHOV infections. Methods For this retrospective study, sera from fifteen individuals with acute CHOV-induced HCPS, were analyzed alongside sera from fifteen convalescent phase individuals and thirty-three asymptomatic, CHOV-seropositive individuals. Cytokine profiles were analyzed by multiplex immunoassay. Antibody subclasses, binding, and neutralization against CHOV-glycoprotein (CHOV-GP) were evaluated by ELISA, and flow cytometry. Results High titers of IFNγ, IL-4, IL-8, and IL-10 serum cytokines were found in the acute individuals. Elevated IL-4 serum levels were found in convalescent and asymptomatic seropositive individuals. High titers of IgG1 subclass were observed across the three cohorts analyzed. Neutralizing antibody response against CHOV-GP was detectable in few acute individuals but was strong in both convalescent and asymptomatic seropositive individuals. Conclusion A Th1/Th2 cytokine signature is characteristic during acute mild HCPS caused by CHOV infection. High expression of Th2 and IL-8 cytokines are correlated with clinical parameters in acute mild HCPS. In addition, a strong IL-4 signature is associated with different cohorts, including asymptomatic individuals. Furthermore, asymptomatic individuals presented high titers of neutralizing antibodies.
Collapse
Affiliation(s)
- Tybbysay P Salinas
- Department of Microbiology, Biotechnology Center, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile.,Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Jose L Garrido
- Department of Microbiology, Biotechnology Center, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile.,Ichor Biologics LLC, New York, NY, United States
| | - Jacqueline R Salazar
- Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Publio Gonzalez
- Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama
| | - Nicole Zambrano
- Department of Microbiology, Biotechnology Center, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Francisco Fuentes-Villalobos
- Department of Microbiology, Biotechnology Center, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| | - Felipe Bravo
- Department of Microbiology, Biotechnology Center, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile.,Ichor Biologics LLC, New York, NY, United States
| | - Victor Fica-Leon
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Alexis Salas-Burgos
- Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Mario Calvo
- Institute of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | | | - Blas Armien
- Department of Research in Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, Panama City, Panama.,Sistema Nacional de Investigación (SIN), SENACYT, Panama City, Panama
| | - Maria Ines Barria
- Department of Microbiology, Biotechnology Center, Faculty of Biological Science, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
28
|
Monocyte subset redistribution from blood to kidneys in patients with Puumala virus caused hemorrhagic fever with renal syndrome. PLoS Pathog 2021; 17:e1009400. [PMID: 33690725 PMCID: PMC7984619 DOI: 10.1371/journal.ppat.1009400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/22/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Innate immune cells like monocytes patrol the vasculature and mucosal surfaces, recognize pathogens, rapidly redistribute to affected tissues and cause inflammation by secretion of cytokines. We previously showed that monocytes are reduced in blood but accumulate in the airways of patients with Puumala virus (PUUV) caused hemorrhagic fever with renal syndrome (HFRS). However, the dynamics of monocyte infiltration to the kidneys during HFRS, and its impact on disease severity are currently unknown. Here, we examined longitudinal peripheral blood samples and renal biopsies from HFRS patients and performed in vitro experiments to investigate the fate of monocytes during HFRS. During the early stages of HFRS, circulating CD14-CD16+ nonclassical monocytes (NCMs) that patrol the vasculature were reduced in most patients. Instead, CD14+CD16- classical (CMs) and CD14+CD16+ intermediate monocytes (IMs) were increased in blood, in particular in HFRS patients with more severe disease. Blood monocytes from patients with acute HFRS expressed higher levels of HLA-DR, the endothelial adhesion marker CD62L and the chemokine receptors CCR7 and CCR2, as compared to convalescence, suggesting monocyte activation and migration to peripheral tissues during acute HFRS. Supporting this hypothesis, increased numbers of HLA-DR+, CD14+, CD16+ and CD68+ cells were observed in the renal tissues of acute HFRS patients compared to controls. In vitro, blood CD16+ monocytes upregulated CD62L after direct exposure to PUUV whereas CD16- monocytes upregulated CCR7 after contact with PUUV-infected endothelial cells, suggesting differential mechanisms of activation and response between monocyte subsets. Together, our findings suggest that NCMs are reduced in blood, potentially via CD62L-mediated attachment to endothelial cells and monocytes are recruited to the kidneys during HFRS. Monocyte mobilization, activation and functional impairment together may influence the severity of disease in acute PUUV-HFRS.
Collapse
|
29
|
Zhang Y, Song R, Shen Y, Zhao Y, Zhao Z, Fan T, Yang X, Wang L, Zhang W, Chen C, Tian D, Wang Y, Wen J, Ge Z, Yu X, Liu L, Feng Y, Duan J, Ma Y, Li X, Zeng H, Chen Z, Zhu L. High Levels of Circulating Cell-free DNA Are Associated With a Poor Prognosis in Patients With Severe Fever With Thrombocytopenia Syndrome. Clin Infect Dis 2021; 70:1941-1949. [PMID: 31240319 DOI: 10.1093/cid/ciz553] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The extensive geographical distribution and high mortality rate of severe fever with thrombocytopenia syndrome (SFTS) have made it an important threat to public health. Neutrophil extracellular traps (NETs) can be activated by a variety of pathogens and are associated with thrombocytopenia in viral infections. We aimed to identify NET production and its predictive value for disease progression and prognosis in patients with SFTS. METHODS A prospective study was performed with a multicenter cohort of patients with SFTS (n = 112) to quantify serum NET levels. Three markers of NETs-namely, cell-free DNA (cfDNA), myeloperoxidase-DNA complexes, and lactoferrin-DNA complexes-were measured with PicoGreen double-stranded DNA assays and enzyme-linked immunosorbent assays. Receiver operating characteristic curves and multivariate regression analyses were performed to calculate the predictive value of cfDNA levels. RESULTS SFTS was characterized by pronounced NET formation. The serum levels of NETs changed dynamically during disease progression, with an inverse pattern of the trends of platelet and neutrophil levels. High cfDNA levels were strongly associated with multiple pathological processes, including coagulopathy, myocardial damage, liver dysfunction, and the development of encephalopathy. A high level of cfDNA (>711.7 ng/mL) at the time of the initial diagnosis predicted severe illness in patients with SFTS (odds ratio, 8.285 [95% confidence interval, 2.049-33.503]; P = .003). CONCLUSIONS This study has a high degree of clinical impact for identification of cfDNA as a useful predictive biomarker of clinical outcomes of SFTS.
Collapse
Affiliation(s)
- Yue Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, China
| | - Rui Song
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Yi Shen
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, China
| | - Yongxiang Zhao
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, China
| | - Zhenghua Zhao
- Department of Infectious Diseases, Taian City Central Hospital, China
| | - Tianli Fan
- Department of Infectious Disease, Qing Dao No. 6 People's Hospital, China
| | - Xiaoyu Yang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, China
| | - Lin Wang
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Wei Zhang
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Chong Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Di Tian
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Ying Wang
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Jing Wen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Ziruo Ge
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Xiaoli Yu
- Department of Infectious Diseases, Dandong Infectious Disease Hospital, China
| | - Li Liu
- Department of Infectious Diseases, Taian City Central Hospital, China
| | - Yang Feng
- Department of Infectious Diseases, Taian City Central Hospital, China
| | - Jianping Duan
- Department of Infectious Disease, Qing Dao No. 6 People's Hospital, China
| | - Yanli Ma
- Department of Infectious Disease, Qing Dao No. 6 People's Hospital, China
| | - Xingwang Li
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, China
| | - Zhihai Chen
- Center of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, China
| | - Liuluan Zhu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Capital Medical University, China
| |
Collapse
|
30
|
Hiroki CH, Toller-Kawahisa JE, Fumagalli MJ, Colon DF, Figueiredo LTM, Fonseca BALD, Franca RFO, Cunha FQ. Neutrophil Extracellular Traps Effectively Control Acute Chikungunya Virus Infection. Front Immunol 2020; 10:3108. [PMID: 32082301 PMCID: PMC7005923 DOI: 10.3389/fimmu.2019.03108] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022] Open
Abstract
The Chikungunya virus (CHIKV) is a re-emerging arbovirus, in which its infection causes a febrile illness also commonly associated with severe joint pain and myalgia. Although the immune response to CHIKV has been studied, a better understanding of the virus-host interaction mechanisms may lead to more effective therapeutic interventions. In this context, neutrophil extracellular traps (NETs) have been described as a key mediator involved in the control of many pathogens, including several bacteria and viruses, but no reports of this important protective mechanism were documented during CHIKV infection. Here we demonstrate that the experimental infection of mouse-isolated neutrophils with CHIKV resulted in NETosis (NETs release) through a mechanism dependent on TLR7 activation and reactive oxygen species generation. In vitro, mouse-isolated neutrophils stimulated with phorbol 12-myristate 13-acetate release NETs that once incubated with CHIKV, resulting in further virus capture and neutralization. In vivo, NETs inhibition by the treatment of the mice with DNase resulted in the enhanced susceptibility of IFNAR−/− mice to CHIKV experimental acute infection. Lastly, by accessing the levels of MPO-DNA complex on the acutely CHIKV-infected patients, we found a correlation between the levels of NETs and the viral load in the blood, suggesting that NETs are also released in natural human infection cases. Altogether our findings characterize NETosis as a contributing natural process to control CHIKV acute infection, presenting an antiviral effect that helps to control systemic virus levels.
Collapse
Affiliation(s)
- Carlos H Hiroki
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Juliana E Toller-Kawahisa
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Marcilio J Fumagalli
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - David F Colon
- Department of Biochemistry and Immunology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Luiz T M Figueiredo
- Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Bendito A L D Fonseca
- Virology Research Center, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Rafael F O Franca
- Department of Virology and Experimental Therapy, Institute Aggeu Magalhaes, Oswaldo Cruz Foundation, Recife, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, School of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
31
|
Puumala and Tula Virus Differ in Replication Kinetics and Innate Immune Stimulation in Human Endothelial Cells and Macrophages. Viruses 2019; 11:v11090855. [PMID: 31540120 PMCID: PMC6784088 DOI: 10.3390/v11090855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Old world hantaviruses cause hemorrhagic fever with renal syndrome (HFRS) upon zoonotic transmission to humans. In Europe, the Puumala virus (PUUV) is the main causative agent of HFRS. Tula virus (TULV) is also widely distributed in Europe, but there is little knowledge about the pathogenicity of TULV for humans, as reported cases are rare. We studied the replication of TULV in different cell types in comparison to the pathogenic PUUV and analyzed differences in stimulation of innate immunity. While both viruses replicated to a similar extent in interferon (IFN)-deficient Vero E6 cells, TULV replication in human lung epithelial (A549) cells was slower and less efficient when compared to PUUV. In contrast to PUUV, no replication of TULV could be detected in human microvascular endothelial cells and in macrophages. While a strong innate immune response towards PUUV infection was evident at 48 h post infection, TULV infection triggered only a weak IFN response late after infection of A549 cells. Using appropriate in vitro cell culture models for the orthohantavirus infection, we could demonstrate major differences in host cell tropism, replication kinetics, and innate immune induction between pathogenic PUUV and the presumably non- or low-pathogenic TULV that are not observed in Vero E6 cells and may contribute to differences in virulence.
Collapse
|
32
|
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants" of Hantaviral Pathogenesis. Viruses 2019; 11:v11090849. [PMID: 31540199 PMCID: PMC6783833 DOI: 10.3390/v11090849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses are widespread zoonotic pathogens found around the globe. Depending on their geographical location, hantaviruses can cause two human syndromes, haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). HPS and HFRS have many commonalities amongst which excessive activation of immune cells is a prominent feature. Hantaviruses replicate in endothelial cells (ECs), the major battlefield of hantavirus-induced pathogenesis, without causing cytopathic effects. This indicates that a misdirected response of human immune cells to hantaviruses is causing damage. As dendritic cells (DCs) orchestrate antiviral immune responses, they are in the focus of research analysing hantavirus-induced immunopathogenesis. In this review, we discuss the interplay between hantaviruses and DCs and the immunological consequences thereof.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
33
|
Characterization of Biomarker Levels in Crimean-Congo Hemorrhagic Fever and Hantavirus Fever with Renal Syndrome. Viruses 2019; 11:v11080686. [PMID: 31357521 PMCID: PMC6722556 DOI: 10.3390/v11080686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 01/02/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) and Crimean-Congo hemorrhagic fever (CCHF) are important viral hemorrhagic fevers (VHF), especially in the Balkan region. Infections with Dobrava or Puumala orthohantavirus and Crimean-Congo hemorrhagic fever orthonairovirus can vary from a mild, nonspecific febrile illness, to a severe disease with a fatal outcome. The pathogenesis of both diseases is poorly understood, but it has been suggested that a host’s immune mechanism might influence the pathogenesis of the diseases and survival. The aim of our study is to characterize cytokine response in patients with VHF in association with the disease progression and viral load. Forty soluble mediators of the immune response, coagulation, and endothelial dysfunction were measured in acute serum samples in 100 HFRS patients and 70 CCHF patients. HFRS and CCHF patients had significantly increased levels of IL-6, IL-12p70, IP-10, INF-γ, TNF-α, GM-CSF, MCP-3, and MIP-1b in comparison to the control group. Interestingly, HFRS patients had higher concentrations of serum MIP-1α, MIP-1β, which promote activation of macrophages and NK cells. HFRS patients had increased concentrations of IFN-γ and TNF-α, while CCHF patients had significantly higher concentrations of IFN-α and IL-8. In both, CCHF and HFRS patients’ viral load significantly correlated with IP-10. Patients with fatal outcome had significantly elevated concentrations of IL-6, IFN-α2 and MIP-1α, while GRO-α, chemokine related to activation of neutrophils and basophils, was downregulated. Our study provided a comprehensive characterization of biomarkers released in the acute stages of CCHF and HFRS.
Collapse
|
34
|
Deletions in Genes Participating in Innate Immune Response Modify the Clinical Course of Andes Orthohantavirus Infection. Viruses 2019; 11:v11080680. [PMID: 31349540 PMCID: PMC6723883 DOI: 10.3390/v11080680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022] Open
Abstract
Andes orthohantavirus (ANDV) is an important human pathogen causing hantavirus cardiopulmonary syndrome (HCPS) with a fatality rate of 30% in Chile. Around 60% of all cases have a severe clinical course, while the others have a mild clinical course. The main goal of this study was to understand if the genetic variation of patients is associated with the clinical course they develop after ANDV infection. For this, the frequency of copy number variants (CNVs, i.e., deletions and duplications) was studied in 195 patients, 88 with mild and 107 with severe HCPS. CNVs were called from intensity data of the Affymetrix Genome-Wide SNP Array 6.0. The analysis of the data was performed with PennCNV, ParseCNV and R softwares; Results: a deletion of 19, 416 bp in the q31.3 region of chromosome 1 is found more frequently in severe patients (p < 0.05). This region contains Complement Factor H Related (CFHR1) and CFHR3 genes, regulators of the complement cascade. A second deletion of 1.81 kb located in the p13 region of chr20 was significantly more frequent in mild patients (p < 0.05). This region contains the SIRPB1 gene, which participates in the innate immune response, more specifically in neutrophil trans-epithelial migration. Both deletions are associated with the clinical course of HCPS, the first being a risk factor and the second being protective. The participation of genes contained in both deletions in ANDV infection pathophysiology deserves further investigation.
Collapse
|
35
|
Maas M, van Heteren M, de Vries A, Kuiken T, Hoornweg T, Veldhuis Kroeze E, Rockx B. Seoul Virus Tropism and Pathology in Naturally Infected Feeder Rats. Viruses 2019; 11:v11060531. [PMID: 31181690 PMCID: PMC6630879 DOI: 10.3390/v11060531] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/24/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
Seoul virus (SEOV) is a zoonotic orthohantavirus carried by black and brown rats, and can cause hemorrhagic fever with renal syndrome in humans. Human cases of SEOV virus infection have most recently been reported in the USA, United Kingdom, France and the Netherlands and were primarily associated with contact with pet rats and feeder rats. Infection of rats results in an asymptomatic but persistent infection. Little is known about the cell tropism of SEOV in its reservoir and most available data is based on experimental infection studies in which rats were inoculated via a route which does not recapitulate virus transmission in nature. Here we report the histopathological analysis of SEOV cell tropism in key target organs following natural infection of a cohort of feeder rats, comprising 19 adults and 11 juveniles. All adult rats in this study were positive for SEOV specific antibodies and viral RNA in their tissues. One juvenile rat was seropositive, but negative in the rRT-PCR. Of the 19 adult rats of which subsequently additional organs were tested, SEOV RNA was detected in all lungs, followed by kidney (79%) and liver (74%). Histopathologic changes associated with SEOV infection were primarily found in the liver, consistent with a pathological diagnosis of a mild hepatitis. In conclusion, natural SEOV infection results in mild inflammation of the liver in the absence of clinical disease.
Collapse
Affiliation(s)
- Miriam Maas
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands.
| | - Melanie van Heteren
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| | - Ankje de Vries
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands.
| | - Thijs Kuiken
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| | - Tabitha Hoornweg
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, 3720 BA, Bilthoven, The Netherlands.
| | - Edwin Veldhuis Kroeze
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Klingström J, Smed-Sörensen A, Maleki KT, Solà-Riera C, Ahlm C, Björkström NK, Ljunggren HG. Innate and adaptive immune responses against human Puumala virus infection: immunopathogenesis and suggestions for novel treatment strategies for severe hantavirus-associated syndromes. J Intern Med 2019; 285:510-523. [PMID: 30663801 PMCID: PMC6850289 DOI: 10.1111/joim.12876] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two related hyperinflammatory syndromes are distinguished following infection of humans with hantaviruses: haemorrhagic fever with renal syndrome (HFRS) seen in Eurasia and hantavirus pulmonary syndrome (HPS) seen in the Americas. Fatality rates are high, up to 10% for HFRS and around 35%-40% for HPS. Puumala virus (PUUV) is the most common HFRS-causing hantavirus in Europe. Here, we describe recent insights into the generation of innate and adaptive cell-mediated immune responses following clinical infection with PUUV. First described are studies demonstrating a marked redistribution of peripheral blood mononuclear phagocytes (MNP) to the airways, a process that may underlie local immune activation at the site of primary infection. We then describe observations of an excessive natural killer (NK) cell activation and the persistence of highly elevated numbers of NK cells in peripheral blood following PUUV infection. A similar vigorous CD8 Tcell response is also described, though Tcell responses decline with viraemia. Like MNPs, many NK cells and CD8 T cells also localize to the lung upon acute PUUV infection. Following this, findings demonstrating the ability of hantaviruses, including PUUV, to cause apoptosis resistance in infected target cells, are described. These observations, and associated inflammatory cytokine responses, may provide new insights into HFRS and HPS disease pathogenesis. Based on similarities between inflammatory responses in severe hantavirus infections and other hyperinflammatory disease syndromes, we speculate whether some therapeutic interventions that have been successful in the latter conditions may also be applicable in severe hantavirus infections.
Collapse
Affiliation(s)
- J Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Smed-Sörensen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - K T Maleki
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Solà-Riera
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University Hospital, Umeå University, Umeå, Sweden
| | - N K Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - H G Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
37
|
Raftery MJ, Abdelaziz MO, Hofmann J, Schönrich G. Hantavirus-Driven PD-L1/PD-L2 Upregulation: An Imperfect Viral Immune Evasion Mechanism. Front Immunol 2018; 9:2560. [PMID: 30559738 PMCID: PMC6287426 DOI: 10.3389/fimmu.2018.02560] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Viruses often subvert antiviral immune responses by taking advantage of inhibitory immune signaling. We investigated if hantaviruses use this strategy. Hantaviruses cause viral hemorrhagic fever (VHF) which is associated with strong immune activation resulting in vigorous CD8+ T cell responses. Surprisingly, we observed that hantaviruses strongly upregulate PD-L1 and PD-L2, the ligands of checkpoint inhibitor programmed death-1 (PD-1). We detected high amounts of soluble PD-L1 (sPD-L1) and soluble PD-L2 (sPD-L2) in sera from hantavirus-infected patients. In addition, we observed hantavirus-induced PD-L1 upregulation in mice with a humanized immune system. The two major target cells of hantaviruses, endothelial cells and monocyte-derived dendritic cells, strongly increased PD-L1 and PD-L2 surface expression upon hantavirus infection in vitro. As an underlying mechanism, we found increased transcript levels whereas membrane trafficking of PD-L1 was not affected. Further analysis revealed that hantavirus-associated inflammatory signals and hantaviral nucleocapsid (N) protein enhance PD-L1 and PD-L2 expression. Cell numbers were strongly reduced when hantavirus-infected endothelial cells were mixed with T cells in the presence of an exogenous proliferation signal compared to uninfected cells. This is compatible with the concept that virus-induced PD-L1 and PD-L2 upregulation contributes to viral immune escape. Intriguingly, however, we observed hantavirus-induced CD8+ T cell bystander activation despite strongly upregulated PD-L1 and PD-L2. This result indicates that hantavirus-induced CD8+ T cell bystander activation bypasses checkpoint inhibition allowing an early antiviral immune response upon virus infection.
Collapse
Affiliation(s)
- Martin J Raftery
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mohammed O Abdelaziz
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jörg Hofmann
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günther Schönrich
- Berlin Institute of Health, Institute of Virology, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|