1
|
Chhipa AS, Boscaro V, Gallicchio M, Patel S. The curious case of type I interferon signaling in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189204. [PMID: 39477031 DOI: 10.1016/j.bbcan.2024.189204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Cytokines are the crucial signaling proteins that mediate the crosstalks between the cells of tumor microenvironment (TME). Interferon-1 (IFN-1) are the important cytokines that are widely known for their tumor suppressive roles comprising of cancer cell intrinsic and extrinsic mechanisms. Despite having known antitumor effects, IFN-1 are also reported to have tumor promoting functions under varying circumstances. This dichotomy in the functions of IFN-1 is largely attributed to the acute and chronic activation of IFN-1 signaling in TME. The chronic activation of IFN-1 signaling in tumor cells results in altered stimulation of downstream pathways that result in the expression of tumor promoting proteins, while the acute IFN-1 signaling activation maintains its tumor inhibiting functions. In the present review, we have discussed the anti- and pro-tumor actions of IFN-1 signaling under acute and chronic IFN-1 signaling activation. We have also discussed the downstream changes in signaling components that result in tumor supportive functions of a constitutive IFN-1 signaling. We have further discussed the possible strategies to overcome the detrimental effects of chronic IFN-1 pathway activation and to successfully employ IFN-1 for their beneficial anti-tumor effects.
Collapse
Affiliation(s)
- Abu Sufiyan Chhipa
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India; Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | - Valentina Boscaro
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy
| | | | - Snehal Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, 382481 Ahmedabad, India.
| |
Collapse
|
2
|
Farhangian M, Azarafrouz F, Valian N, Dargahi L. The role of interferon beta in neurological diseases and its potential therapeutic relevance. Eur J Pharmacol 2024; 981:176882. [PMID: 39128808 DOI: 10.1016/j.ejphar.2024.176882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Interferon beta (IFNβ) is a member of the type-1 interferon family and has various immunomodulatory functions in neuropathological conditions. Although the level of IFNβ is low under healthy conditions, it is increased during inflammatory processes to protect the central nervous system (CNS). In particular, microglia and astrocytes are the main sources of IFNβ upon inflammatory insult in the CNS. The protective effects of IFNβ are well characterized in reducing the progression of multiple sclerosis (MS); however, little is understood about its effects in other neurological/neurodegenerative diseases. In this review, different types of IFNs and their signaling pathways will be described. Then we will focus on the potential role and therapeutic effect of IFNβ in several CNS-related diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury, prion disease and spinocerebellar ataxia 7.
Collapse
Affiliation(s)
- Mohsen Farhangian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forouzan Azarafrouz
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
4
|
Wang X, Xu W, Wang Z, Yu Q, Yuan L, Liu Y, Sang J, Li W, Zhu S, Jiang W, Li Z, Zhang W, Dang Y. Sokotrasterol Sulfate Suppresses IFN-γ-Induced PD-L1 Expression by Inhibiting JAK Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:713-721. [PMID: 38417168 DOI: 10.1021/acs.jnatprod.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
PD-1/PD-L1 monoclonal antibodies exhibit promising therapeutic effectiveness in multiple cancers. However, developing a simple and efficient non-antibody treatment strategy using the PD-1/PD-L1 signaling pathway still remains challenging. In this study, we developed a flow cytometry assay to screen bioactive compounds with PD-L1 inhibitory activity. A total of 409 marine natural products were screened, and sokotrasterol sulfate (SKS) was found to efficiently suppress the IFN-γ-induced PD-L1 expression. SKS sensitizes the tumor cells to antigen-specific T-cell killing in the T cell-tumor cell coculture system. Mechanistically, SKS directly targeted Janus kinase (JAK) to inhibit the downstream activation of signal transducer and activator of transcription (STAT) and the subsequent transcription of PDL1. Our findings highlight the immunological role of SKS that may act as a basis for a potential immunotherapeutic agent.
Collapse
Affiliation(s)
- Xiaobo Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 131 Dong-An Road, Shanghai 200032, People's Republic of China
| | - Wenlong Xu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 131 Dong-An Road, Shanghai 200032, People's Republic of China
| | - Zengyiyi Wang
- School of Medicine, Tongji University, 1238 Si-Ping Road, Shanghai 200092, People's Republic of China
| | - Qian Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 131 Dong-An Road, Shanghai 200032, People's Republic of China
| | - Li Yuan
- School of Pharmacy, Naval Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Yihang Liu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, College of Pharmacy, Chongqing Medical University, 1 Yi-Xue-Yuan Road, Chongqing 400010, People's Republic of China
| | - Jinpeng Sang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Sanyong Zhu
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, College of Pharmacy, Chongqing Medical University, 1 Yi-Xue-Yuan Road, Chongqing 400010, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Wei Jiang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 131 Dong-An Road, Shanghai 200032, People's Republic of China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 131 Dong-An Road, Shanghai 200032, People's Republic of China
| | - Wen Zhang
- School of Medicine, Tongji University, 1238 Si-Ping Road, Shanghai 200092, People's Republic of China
- School of Pharmacy, Naval Medical University, 325 Guo-He Road, Shanghai 200433, People's Republic of China
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, Institute of Life Sciences, The Second Affiliated Hospital of Chongqing Medical University, College of Pharmacy, Chongqing Medical University, 1 Yi-Xue-Yuan Road, Chongqing 400010, People's Republic of China
| |
Collapse
|
5
|
Minayoshi Y, Maeda H, Hamasaki K, Nagasaki T, Takano M, Fukuda R, Mizuta Y, Tanaka M, Sasaki Y, Otagiri M, Watanabe H, Maruyama T. Mouse Type-I Interferon-Mannosylated Albumin Fusion Protein for the Treatment of Chronic Hepatitis. Pharmaceuticals (Basel) 2024; 17:260. [PMID: 38399475 PMCID: PMC10893114 DOI: 10.3390/ph17020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Although a lot of effort has been put into creating drugs and combination therapies against chronic hepatitis, no effective treatment has been established. Type-I interferon is a promising therapeutic for chronic hepatitis due to its excellent anti-inflammatory effects through interferon receptors on hepatic macrophages. To develop a type-I IFN equipped with the ability to target hepatic macrophages through the macrophage mannose receptor, the present study designed a mouse type-I interferon-mannosylated albumin fusion protein using site-specific mutagenesis and albumin fusion technology. This fusion protein exhibited the induction of anti-inflammatory molecules, such as IL-10, IL-1Ra, and PD-1, in RAW264.7 cells, or hepatoprotective effects on carbon tetrachloride-induced chronic hepatitis mice. As expected, such biological and hepatoprotective actions were significantly superior to those of human fusion proteins. Furthermore, the repeated administration of mouse fusion protein to carbon tetrachloride-induced chronic hepatitis mice clearly suppressed the area of liver fibrosis and hepatic hydroxyproline contents, not only with a reduction in the levels of inflammatory cytokine (TNF-α) and fibrosis-related genes (TGF-β, Fibronectin, Snail, and Collagen 1α2), but also with a shift in the hepatic macrophage phenotype from inflammatory to anti-inflammatory. Therefore, type-I interferon-mannosylated albumin fusion protein has the potential as a new therapeutic agent for chronic hepatitis.
Collapse
Affiliation(s)
- Yuki Minayoshi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Keisuke Hamasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Taisei Nagasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Mei Takano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Ryo Fukuda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Yuki Mizuta
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Motohiko Tanaka
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (M.T.); (Y.S.)
- Public Health and Welfare Bureau, 5-1-1 Oe, Chuo-ku, Kumamoto 862-0971, Japan
| | - Yutaka Sasaki
- Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (M.T.); (Y.S.)
- Osaka Central Hospital, 3-3-30 Umeda, Kita-ku, Osaka 530-0001, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan;
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-Honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (Y.M.); (K.H.); (T.N.); (M.T.); (R.F.); (Y.M.); (H.W.)
| |
Collapse
|
6
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
7
|
Noe P, Wang JH, Chung K, Cheng Z, Field JJ, Shen X, Cortesio CL, Pastuskovas CV, Phee H, Tarbell KV, Egen JG, Casbon AJ. Therapeutically targeting type I interferon directly to XCR1+ dendritic cells reveals the role of cDC1s in anti-drug antibodies. Front Immunol 2023; 14:1272055. [PMID: 37942313 PMCID: PMC10628189 DOI: 10.3389/fimmu.2023.1272055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Conventional type 1 dendritic cells (cDC1s) are superior in antigen cross-presentation and priming CD8+ T cell anti-tumor immunity and thus, are a target of high interest for cancer immunotherapy. Type I interferon (IFN) is a potent inducer of antigen cross-presentation, but, unfortunately, shows only modest results in the clinic given the short half-life and high toxicity of current type I IFN therapies, which limit IFN exposure in the tumor. CD8+ T cell immunity is dependent on IFN signaling in cDC1s and preclinical studies suggest targeting IFN directly to cDC1s may be sufficient to drive anti-tumor immunity. Here, we engineered an anti-XCR1 antibody (Ab) and IFN mutein (IFNmut) fusion protein (XCR1Ab-IFNmut) to determine whether systemic delivery could drive selective and sustained type I IFN signaling in cDC1s leading to anti-tumor activity and, in parallel, reduced systemic toxicity. We found that the XCR1Ab-IFNmut fusion specifically enhanced cDC1 activation in the tumor and spleen compared to an untargeted control IFN. However, multiple treatments with the XCR1Ab-IFNmut fusion resulted in robust anti-drug antibodies (ADA) and loss of drug exposure. Using other cDC1-targeting Ab-IFNmut fusions, we found that localizing IFN directly to cDC1s activates their ability to promote ADA responses, regardless of the cDC1 targeting antigen. The development of ADA remains a major hurdle in immunotherapy drug development and the cellular and molecular mechanisms governing the development of ADA responses in humans is not well understood. Our results reveal a role of cDC1s in ADA generation and highlight the potential ADA challenges with targeting immunostimulatory agents to this cellular compartment.
Collapse
Affiliation(s)
- Paul Noe
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Joy H. Wang
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Kyu Chung
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Zhiyong Cheng
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Jessica J. Field
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Xiaomeng Shen
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Christa L. Cortesio
- Therapeutics Discovery, Amgen Research, South San Francisco, CA, United States
| | - Cinthia V. Pastuskovas
- Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, CA, United States
| | - Hyewon Phee
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Kristin V. Tarbell
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Jackson G. Egen
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| | - Amy-Jo Casbon
- Oncology Research, Amgen Research, South San Francisco, CA, United States
| |
Collapse
|
8
|
Razaghi A, Durand-Dubief M, Brusselaers N, Björnstedt M. Combining PD-1/PD-L1 blockade with type I interferon in cancer therapy. Front Immunol 2023; 14:1249330. [PMID: 37691915 PMCID: PMC10484344 DOI: 10.3389/fimmu.2023.1249330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
PD-1 and PD-L1 are crucial regulators of immunity expressed on the surface of T cells and tumour cells, respectively. Cancer cells frequently use PD-1/PD-L1 to evade immune detection; hence, blocking them exposes tumours to be attacked by activated T cells. The synergy of PD-1/PD-L1 blockade with type I interferon (IFN) can improve cancer treatment efficacy. Type I IFN activates immune cells boosts antigen presentation and controls proliferation. In addition, type I IFN increases tumour cell sensitivity to the blockade. Combining the two therapies increases tumoral T cell infiltration and activation within tumours, and stimulate the generation of memory T cells, leading to prolonged patient survival. However, limitations include heterogeneous responses, the need for biomarkers to predict and monitor outcomes, and adverse effects and toxicity. Although treatment resistance remains an obstacle, the combined therapeutic efficacy of IFNα/β and PD-1/PD-L1 blockade demonstrated considerable benefits across a spectrum of cancer types, notably in melanoma. Overall, the phases I and II clinical trials have demonstrated safety and efficiency. In future, further investigations in clinical trials phases III and IV are essential to compare this combinatorial treatment with standard treatment and assess long-term side effects in patients.
Collapse
Affiliation(s)
- Ali Razaghi
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mickaël Durand-Dubief
- Discovery & Front-End Innovation, Lesaffre Institute of Science & Technology, Lesaffre International, Marcq-en-Baroeul, France
| | - Nele Brusselaers
- Global Health Institute, Antwerp University, Antwerp, Belgium
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Karolinska Hospital, Stockholm, Sweden
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Mikael Björnstedt
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Tsaktanis T, Linnerbauer M, Lößlein L, Farrenkopf D, Vandrey O, Peter A, Cirac A, Beyer T, Nirschl L, Grummel V, Mühlau M, Bussas M, Hemmer B, Quintana FJ, Rothhammer V. Regulation of the programmed cell death protein 1/programmed cell death ligand 1 axis in relapsing-remitting multiple sclerosis. Brain Commun 2023; 5:fcad206. [PMID: 37564830 PMCID: PMC10411318 DOI: 10.1093/braincomms/fcad206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
The programmed cell death protein 1/programmed cell death ligand 1 axis plays an important role in the adaptive immune system and has influence on neoplastic and inflammatory diseases, while its role in multiple sclerosis is unclear. Here, we aimed to analyse expression patterns of programmed cell death protein 1 and programmed cell death ligand 1 on peripheral blood mononuclear cells and their soluble variants in multiple sclerosis patients and controls, to determine their correlation with clinical disability and disease activity. In a cross-sectional study, we performed in-depth flow cytometric immunophenotyping of peripheral blood mononuclear cells and analysed soluble programmed cell death protein 1 and programmed cell death ligand 1 serum levels in patients with relapsing-remitting multiple sclerosis and controls. In comparison to control subjects, relapsing-remitting multiple sclerosis patients displayed distinct cellular programmed cell death protein 1/programmed cell death ligand 1 expression patterns in immune cell subsets and increased soluble programmed cell death ligand 1 levels, which correlated with clinical measures of disability and MRI activity over time. This study extends our knowledge of how programmed cell death protein 1 and programmed cell death ligand 1 are expressed in the membranes of patients with relapsing-remitting multiple sclerosis and describes for the first time the elevation of soluble programmed cell death ligand 1 in the blood of multiple sclerosis patients. The distinct expression pattern of membrane-bound programmed cell death protein 1 and programmed cell death ligand 1 and the correlation between soluble programmed cell death ligand 1, membrane-bound programmed cell death ligand 1, disease and clinical factors may offer therapeutic potential in the setting of multiple sclerosis and might improve future diagnosis and clinical decision-making.
Collapse
Affiliation(s)
- Thanos Tsaktanis
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Mathias Linnerbauer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Daniel Farrenkopf
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Verena Grummel
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Mark Mühlau
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Matthias Bussas
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich 81377, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Eli and Edythe L Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Veit Rothhammer
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen 91054, Germany
| |
Collapse
|
10
|
Prebensen C, Lefol Y, Myhre PL, Lüders T, Jonassen C, Blomfeldt A, Omland T, Nilsen H, Berdal JE. Longitudinal whole blood transcriptomic analysis characterizes neutrophil activation and interferon signaling in moderate and severe COVID-19. Sci Rep 2023; 13:10368. [PMID: 37365222 PMCID: PMC10293211 DOI: 10.1038/s41598-023-37606-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/24/2023] [Indexed: 06/28/2023] Open
Abstract
A maladaptive inflammatory response has been implicated in the pathogenesis of severe COVID-19. This study aimed to characterize the temporal dynamics of this response and investigate whether severe disease is associated with distinct gene expression patterns. We performed microarray analysis of serial whole blood RNA samples from 17 patients with severe COVID-19, 15 patients with moderate disease and 11 healthy controls. All study subjects were unvaccinated. We assessed whole blood gene expression patterns by differential gene expression analysis, gene set enrichment, two clustering methods and estimated relative leukocyte abundance using CIBERSORT. Neutrophils, platelets, cytokine signaling, and the coagulation system were activated in COVID-19, and this broad immune activation was more pronounced in severe vs. moderate disease. We observed two different trajectories of neutrophil-associated genes, indicating the emergence of a more immature neutrophil phenotype over time. Interferon-associated genes were strongly enriched in early COVID-19 before falling markedly, with modest severity-associated differences in trajectory. In conclusion, COVID-19 necessitating hospitalization is associated with a broad inflammatory response, which is more pronounced in severe disease. Our data suggest a progressively more immature circulating neutrophil phenotype over time. Interferon signaling is enriched in COVID-19 but does not seem to drive severe disease.
Collapse
Affiliation(s)
- Christian Prebensen
- Department of Infectious Diseases, Oslo University Hospital, Kirkeveien 166, 0450, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Yohan Lefol
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Peder L Myhre
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Akershus University Hospital, Lørenskog, Norway
| | - Torben Lüders
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| | | | - Anita Blomfeldt
- Department of Microbiology and Infection Control, Akershus University Hospital, Lørenskog, Norway
| | - Torbjørn Omland
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Akershus University Hospital, Lørenskog, Norway
| | - Hilde Nilsen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Microbiology, University of Oslo, Oslo, Norway
| | - Jan-Erik Berdal
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Infectious Diseases, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
11
|
Wang R, Yang JF, Senay TE, Liu W, You J. Characterization of the Impact of Merkel Cell Polyomavirus-Induced Interferon Signaling on Viral Infection. J Virol 2023; 97:e0190722. [PMID: 36946735 PMCID: PMC10134799 DOI: 10.1128/jvi.01907-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/05/2023] [Indexed: 03/23/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) has been associated with approximately 80% of Merkel cell carcinoma (MCC), an aggressive and increasingly incident skin cancer. The link between host innate immunity, viral load control, and carcinogenesis has been established but poorly characterized. We previously established the importance of the STING and NF-κB pathways in the host innate immune response to viral infection. In this study, we further discovered that MCPyV infection of human dermal fibroblasts (HDFs) induces the expression of type I and III interferons (IFNs), which in turn stimulate robust expression of IFN-stimulated genes (ISGs). Blocking type I IFN downstream signaling using an IFN-β antibody, JAK inhibitors, and CRISPR knockout of the receptor dramatically repressed MCPyV infection-induced ISG expression but did not significantly restore viral replication activities. These findings suggest that IFN-mediated induction of ISGs in response to MCPyV infection is not crucial to viral control. Instead, we found that type I IFN exerts a more direct effect on MCPyV infection postentry by repressing early viral transcription. We further demonstrated that growth factors normally upregulated in wounded or UV-irradiated human skin can significantly stimulate MCPyV gene expression and replication. Together, these data suggest that in healthy individuals, host antiviral responses, such as IFN production induced by viral activity, may restrict viral propagation to reduce MCPyV burden. Meanwhile, growth factors induced by skin abrasion or UV irradiation may stimulate infected dermal fibroblasts to promote MCPyV propagation. A delicate balance of these mutually antagonizing factors provides a mechanism to support persistent MCPyV infection. IMPORTANCE Merkel cell carcinoma is an aggressive skin cancer that is particularly lethal to immunocompromised individuals. Though rare, MCC incidence has increased significantly in recent years. There are no lasting and effective treatments for metastatic disease, highlighting the need for additional treatment and prevention strategies. By investigating how the host innate immune system interfaces with Merkel cell polyomavirus, the etiological agent of most of these cancers, our studies identified key factors necessary for viral control, as well as conditions that support viral propagation. These studies provide new insights for understanding how the virus balances the effects of the host immune defenses and of growth factor stimulation to achieve persistent infection. Since virus-positive MCC requires the expression of viral oncogenes to survive, our observation that type I IFN can repress viral oncogene transcription indicates that these cytokines could be explored as a viable therapeutic option for treating patients with virus-positive MCC.
Collapse
Affiliation(s)
- Ranran Wang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - June F. Yang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Taylor E. Senay
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wei Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jianxin You
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Mei KC, Stiepel RT, Bonacquisti E, Jasiewicz NE, Chaudhari AP, Tiwade PB, Bachelder EM, Ainslie KM, Fenton OS, Nguyen J. Single-tailed heterocyclic carboxamide lipids for macrophage immune-modulation. Biomater Sci 2023; 11:2693-2698. [PMID: 36994921 PMCID: PMC10388338 DOI: 10.1039/d2bm01804g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The discovery of new immune-modulating biomaterials is of significant value to immuno-engineering and therapy development. Here, we discovered that single-tailed heterocyclic carboxamide lipids preferentially modulated macrophages - but not dendritic cells - by interfering with sphingosine-1-phosphate-related pathways, consequently increasing interferon alpha expression. We further performed extensive downstream correlation analysis and determined key factors in physicochemical properties likely to modulate pro-inflammatory and anti-inflammatory immune responses. These properties will be useful for the rational design of the next generation of cell type-specific immune-modulating lipids.
Collapse
Affiliation(s)
- Kuo-Ching Mei
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Binghamton, Binghamton, NY, 13790, USA.
| | - Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Emily Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Ameya Pravin Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Palas B Tiwade
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 29599, USA.
| |
Collapse
|
13
|
Xu J, Li S, Yin CC, Patel KP, Tang G, Wang W, Miranda RN, Garces S, Tang Z, Lin P, Medeiros LJ. Classic Hodgkin lymphoma with marked granulomatous reaction: A clinicopathologic study of 20 cases. Hum Pathol 2023; 134:114-123. [PMID: 36584716 DOI: 10.1016/j.humpath.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Granulomatous reactions can be associated with various types of lymphoma, most commonly classic Hodgkin lymphoma (CHL). In some cases, the granulomatous reaction is extensive, obscuring the presence of neoplastic cells and potentially leading to delayed diagnosis and treatment. It is unknown if this subgroup of CHL has any unique clinicopathologic features. Here, we assessed the clinical and pathological features of 20 cases of CHL with a marked granulomatous reaction, defined in this study as granulomas representing ≥50% of the total cellularity/space of the specimen. This cohort of patients showed a male predominance (M:F ratio = 1.9:1) and 75% of patients were older than 40 years. Nineteen (95%) patients presented with lymphadenopathy with the neck/supraclavicular areas being most commonly involved (11/19; 58%). Advanced stage (III-IV) disease and B symptoms were present in 69% and 64% of patients, respectively. The morphologic features of these neoplasms fit best with mixed cellularity type. The Hodgkin and Reed-Sternberg (HRS) cells were positive for CD30, PAX5 (weak), pSTAT3 (80%), CD15 (70%), PD-L1 (67%), EBV-encoded small RNA (EBER)/LMP1 (50%) and CD20 (42%), and were negative for CD3, CD5, CD45, ALK and pERK. The histiocytes of the granulomas were positive for PD-L1 (67%), pSTAT3 (50%), and were negative for pERK and cyclin D1. Next generation sequencing using a 162-gene panel was negative for mutations in 4 cases. With a median follow-up of 58.9 months (range, 3.4-199.2 months), the median overall survival was 111 months and the 5-year overall survival was 78%. In summary, patients with CHL and a marked granulomatous reaction can present a diagnostic challenge and the pathologist must be alert to the possible presence of CHL to avert potential misdiagnosis. The histiocytes in the granulomas frequently express PD-L1, likely through the activation of the JAK/STAT pathway, suggesting a potential role for PD-1 blockade therapy in these patients.
Collapse
Affiliation(s)
- Jie Xu
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shaoying Li
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sofia Garces
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Zhenya Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Pei Lin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
14
|
Zhu Y, Yu Q, Su G, Shao N, Feng J, Xiang L, Zhou C, Yang P. Interferon-α2a induces CD4+ T cell apoptosis and suppresses Th1/Th17 responses via upregulating IRF1-mediated PDL1 expression in dendritic cells from Behcet's uveitis. Clin Immunol 2023; 250:109303. [PMID: 36997038 DOI: 10.1016/j.clim.2023.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Recombinant interferon-α2a (IFNα2a) has been widely used in the treatment of Behcet's uveitis (BU). However, the mechanism underlying its effects remains poorly understood. In this study, we investigated its effect on dendritic cells (DCs) and CD4+ T cells, which are essential for the development of BU. Our results showed that the expression of PDL1 and IRF1 was significantly decreased in DCs from active BU patients, and IFNα2a could significantly upregulate PDL1 expression in an IRF1-dependent manner. IFNα2a-treated DCs induced CD4+ T cells apoptosis and inhibited the Th1/Th17 immune response in association with reduced secretion of IFN-γ and IL-17. We also found that IFNα2a promoted Th1 cell differentiation and IL-10 secretion by CD4+ T cells. Finally, a comparison of patients before and after IFNα2a therapy revealed that the frequencies of Th1/Th17 cells significantly decreased in association with remission of uveitis after IFNα2a therapy. Collectively, these results show that IFNα2a could exert its effects by modulating the function of DCs and CD4+ T cells in BU.
Collapse
|
15
|
PD-L1: expression regulation. BLOOD SCIENCE 2023; 5:77-91. [DOI: 10.1097/bs9.0000000000000149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023] Open
|
16
|
Kuzmenko O, Sorochan P, Balaka S. Hematological and immune disorders in colorectal cancer patients with liver metastases after radiofrequency ablation. УКРАЇНСЬКИЙ РАДІОЛОГІЧНИЙ ТА ОНКОЛОГІЧНИЙ ЖУРНАЛ 2022. [DOI: 10.46879/ukroj.3.2022.54-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background. Colorectal cancer (CRC) is one of the most common malignant neoplasms in the world. It ranks third in the structure of oncological morbidity and second in the structure of mortality. The liver is the most common site of metastatic spread of CR and 14 to 18% of patients have liver metastases at diagnosis. Radiofrequency ablation is currently the most promising method of treating metastatic lesions.
Рurpose – to study quantitative changes in hematoimmunological indicators and their influence on antitumor reactivity in patients with colorectal cancer after RFA of liver metastases.
Materials and Methods. Clinical and laboratory examination was carried out in 12 patients with colorectal cancer with metastases in the liver, the majority of patients were over 60 years old. Adenocarcinoma was histologically determined in all patients, and most of them had a moderate degree of malignancy (G2). The study was carried out in three stages: I – one day before radiofrequency ablation (RFA), II – 3 days after RFA, III – 14 days after RFA of liver metastases.
Results. Immune and hematological indicators of the development of the inflammatory response after RFA in patients with colorectal cancer with liver metastases were established. On the 3rd day (II stage) after RFA, a significant increase in the total number of leukocytes, the ratio of neutrophils to lymphocytes, the number of eosinophils, a violation of the balance of CD4+ and CD8+ lymphocytes, a decrease in the number of NK- and NKT-cells, an increase in the percentage of CD3+ HLA-Dr -, CD4 +PD1+, CD8+PD1+ lymphocytes. On the 14th day (stage III), most of the parameters were close to those determined before the treatment, except for the reduced number of NK and NKT cells and the increase in the level of platelets.
Conclusions. A number of hematological changes on the 3rd day after RFA related to the inflammatory reaction were identified: an increase in the total number of leukocytes, an increase in the ratio of neutrophils/lymphocytes from 1.72 to 4.12, a significant decrease in the relative and absolute number of eosinophils. But on the 14th day, after the inflammatory reaction subsided, the normalization of most of the studied indicators was observed. A violation of the subpopulation composition of lymphocytes was established in patients with CR metastases in the liver, on the 3rd day after RFA. Those that had taken place even before the intervention (low number of CD8+ lymphocytes and NK cells) and additional ones appeared (increased CD4+/CD8+ ratio, increased percentage of CD3+ cells HLA-Dr+, CD4+ and CD8+ lymphocytes PD1+ (CD279+), decrease in the number of NKT cells). On the 14th day, the picture approached the initial one, with the exception of the number of NK and NKT cells. We believe that timely correction of inflammatory immunosuppression in the early days after RFA can shorten the period of vulnerability to recurrence of CR, and in the long term potentiate the positive effect of RFA on antitumor reactivity.
Collapse
|
17
|
Mu W, Rezek V, Martin H, Carrillo MA, Tomer S, Hamid P, Lizarraga MA, Tibbe TD, Yang OO, Jamieson BD, Kitchen SG, Zhen A. Autophagy inducer rapamycin treatment reduces IFN-I-mediated Inflammation and improves anti-HIV-1 T cell response in vivo. JCI Insight 2022; 7:e159136. [PMID: 36509289 PMCID: PMC9746825 DOI: 10.1172/jci.insight.159136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, even in patients treated with antiretroviral therapy (ART). Chronic inflammation drives HIV-1 pathogenesis, leading to loss of CD4+ T cells and exhaustion of antiviral immunity. Therefore, strategies to safely reduce systematic inflammation are needed to halt disease progression and restore defective immune responses. Autophagy is a cellular mechanism for disposal of damaged organelles and elimination of intracellular pathogens. Autophagy is pivotal for energy homeostasis and plays critical roles in regulating immunity. However, how it regulates inflammation and antiviral T cell responses during HIV infection is unclear. Here, we demonstrate that autophagy is directly linked to IFN-I signaling, which is a key driver of immune activation and T cell exhaustion during chronic HIV infection. Impairment of autophagy leads to spontaneous IFN-I signaling, and autophagy induction reduces IFN-I signaling in monocytic cells. Importantly, in HIV-1-infected humanized mice, autophagy inducer rapamycin treatment significantly reduced persistent IFN-I-mediated inflammation and improved antiviral T cell responses. Cotreatment of rapamycin with ART led to significantly reduced viral rebound after ART withdrawal. Taken together, our data suggest that therapeutically targeting autophagy is a promising approach to treat persistent inflammation and improve immune control of HIV replication.
Collapse
Affiliation(s)
- Wenli Mu
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Valerie Rezek
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Heather Martin
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Mayra A. Carrillo
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Shallu Tomer
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Philip Hamid
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Miguel A. Lizarraga
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Tristan D. Tibbe
- Statistic Core, Department of Medicine at UCLA, Los Angeles, California, USA
| | - Otto O. Yang
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Division of Infectious Disease and
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | - Scott G. Kitchen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Anjie Zhen
- Division of Hematology/Oncology, Department of Medicine and
- UCLA AIDS Institute and the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
18
|
Chen W, Teo JMN, Yau SW, Wong MYM, Lok CN, Che CM, Javed A, Huang Y, Ma S, Ling GS. Chronic type I interferon signaling promotes lipid-peroxidation-driven terminal CD8+ T cell exhaustion and curtails anti-PD-1 efficacy. Cell Rep 2022; 41:111647. [DOI: 10.1016/j.celrep.2022.111647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022] Open
|
19
|
Huang L, Xie T, Zhao F, Feng Y, Zhu H, Tang L, Han X, Shi Y. DLX2 Is a Potential Immune-Related Prognostic Indicator Associated with Remodeling of Tumor Microenvironment in Lung Squamous Cell Carcinoma: An Integrated Bioinformatical Analysis. DISEASE MARKERS 2022; 2022:6512300. [PMID: 36317140 PMCID: PMC9617027 DOI: 10.1155/2022/6512300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 08/22/2023]
Abstract
BACKGROUND It is still an unmet clinical need to identify potent biomarkers for immunotherapy on patients with lung squamous cell carcinoma (LUSC). METHODS In this study, we explored the differentially expressed genes (DEGs) that were simultaneously correlated with four pathways (i.e. CD8+ αβT cell proliferation/differentiation/activation pathways and ferroptosis pathway) and possibly related to the remodeling of tumor microenvironment via the TCGA-LUSC dataset. Besides, four GEO datasets (GSE157009, GSE157010, GSE19188, and GSE126045) and IMvigor210 dataset were utilized for confirmation and validation. RESULTS The co-downregulated DEG DLX2 was selected for further analysis. Function enrichment analysis revealed that low-expression of DLX2 was closely related to various immune-related pathways like T/B/NK cell mediated immunity, interferon gamma/alpha response, and various autoimmune disease. DLX2-downregulated group was enriched in more immune-activating cells and lower tumor immune dysfunction and exclusion (TIDE) score. Via the Cancer Immunome Atlas (TCIA) database, lower expression of DLX2 was also found to be associated with better IPS score of PD-1/PD-L1 blockade (p < 0.001) as well as CTLA-4 combined with PD-1/PD-L1 blockade (p < 0.001). Furthermore, patients in DLX2-low group were found to have significant longer median OS than those in DLX2-high group in IMvigor210 dataset (10.8 vs 7.4 months; hazard ratio [HR]=0.74, 95% confidence interval [95%CI] 0.57-0.96; p = 0.024). CONCLUSIONS Our study on an integrated bioinformatical analysis implied that DLX2 could be served as a promising indicator for remodeling tumor microenvironment status and predicting ICI response of patients with LUSC.
Collapse
Affiliation(s)
- Liling Huang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Fuqiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yu Feng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Haohua Zhu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing 100021, China
| |
Collapse
|
20
|
Tamburini BAJ. Contributions of PD-L1 reverse signaling to dendritic cell trafficking. FEBS J 2022; 289:6256-6266. [PMID: 34146376 PMCID: PMC8684559 DOI: 10.1111/febs.16084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/27/2022]
Abstract
Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) interactions are critical for dampening the immune response to both self and foreign antigens. The signaling of PD-L1 via its cytoplasmic domain, rather than through its interactions with PD-1 via the extracellular domain, has been termed PD-L1 reverse signaling. While this signaling is beneficial for cancer progression, little is understood about the consequences of PD-L1 reverse signaling in immune cells that express PD-L1 at steady state or in response to infection. Loss of PD-L1 during infection leads to unchecked T-cell proliferation and increased autoimmune T-cell responses. While the T-cell intrinsic role of PD-1 for inhibiting T-cell responses has been well explored, little to no effort has been directed at investigating the consequences of PD-L1 reverse signaling on the DCs interacting with PD-1+ T cells. We recently reported a defect in dendritic cell (DC) trafficking from the skin to the draining lymph node (LN) following immunization or infection in the absence of PD-L1. We demonstrated that a region within the cytoplasmic tail was responsible for the defect in DC trafficking. Here, we review the processes involved in DC trafficking and highlight what we know about PD-L1 expression, PD-L1 post-translational modifications, PD-L1 intracellular interactions, and PD-L1 extracellular interactions.
Collapse
Affiliation(s)
- Beth Ann Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado School of Medicine Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
21
|
Abstract
The identification and characterization of tumor antigens are central objectives in developing anti-cancer immunotherapy. Traditionally, tumor-associated antigens (TAAs) are considered relatively restricted to tumor cells (i.e., overexpressed proteins in tumor cells), whereas tumor-specific antigens (TSAs) are considered unique to tumor cells. Recent studies have focused on identifying patient-specific neoantigens, which might be highly immunogenic because they are not expressed in normal tissues. The opposite strategy has emerged with the discovery of anti-regulatory T cells (anti-Tregs) that recognize and attack many cell types in the tumor microenvironment, such as regulatory immune cells, in addition to tumor cells. The term proposed in this review is "tumor microenvironment antigens" (TMAs) to describe the antigens that draw this attack. As therapeutic targets, TMAs offer several advantages that differentiate them from more traditional tumor antigens. Targeting TMAs leads not only to a direct attack on tumor cells but also to modulation of the tumor microenvironment, rendering it immunocompetent and tumor-hostile. Of note, in contrast to TAAs and TSAs, TMAs also are expressed in non-transformed cells with consistent human leukocyte antigen (HLA) expression. Inflammation often induces HLA expression in malignant cells, so that targeting TMAs could additionally affect tumors with no or very low levels of surface HLA expression. This review defines the characteristics, differences, and advantages of TMAs compared with traditional tumor antigens and discusses the use of these antigens in immune modulatory vaccines as an attractive approach to immunotherapy. Different TMAs are expressed by different cells and could be combined in anti-cancer immunotherapies to attack tumor cells directly and modulate local immune cells to create a tumor-hostile microenvironment and inhibit tumor angiogenesis. Immune modulatory vaccines offer an approach for combinatorial therapy with additional immunotherapy including checkpoint blockade, cellular therapy, or traditional cancer vaccines. These combinations would increase the number of patients who can benefit from such therapeutic measures, which all have optimal efficiency in inflamed tumors.
Collapse
Affiliation(s)
- Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Borgmester Ib Juuls Vej 25C, 5th floor, DK-2730, Herlev, Denmark.
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
22
|
Pujantell M, Altfeld M. Consequences of sex differences in Type I IFN responses for the regulation of antiviral immunity. Front Immunol 2022; 13:986840. [PMID: 36189206 PMCID: PMC9522975 DOI: 10.3389/fimmu.2022.986840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
The immune system protects us from pathogens, such as viruses. Antiviral immune mechanisms aim to limit viral replication, and must maintain immunological homeostasis to avoid excessive inflammation and damage to the host. Sex differences in the manifestation and progression of immune-mediated disease point to sex-specific factors modulating antiviral immunity. The exact mechanisms regulating these immunological differences between females and males are still insufficiently understood. Females are known to display stronger Type I IFN responses and are less susceptible to viral infections compared to males, indicating that Type I IFN responses might contribute to the sexual dimorphisms observed in antiviral responses. Here, we review the impact of sex hormones and X chromosome-encoded genes on differences in Type I IFN responses between females and males; and discuss the consequences of sex differences in Type I IFN responses for the regulation of antiviral immune responses.
Collapse
Affiliation(s)
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
23
|
Svanberg C, Nyström S, Govender M, Bhattacharya P, Che KF, Ellegård R, Shankar EM, Larsson M. HIV-1 induction of tolerogenic dendritic cells is mediated by cellular interaction with suppressive T cells. Front Immunol 2022; 13:790276. [PMID: 36032117 PMCID: PMC9399885 DOI: 10.3389/fimmu.2022.790276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-1 infection gives rise to a multi-layered immune impairment in most infected individuals. The chronic presence of HIV-1 during the priming and activation of T cells by dendritic cells (DCs) promotes the expansion of suppressive T cells in a contact-dependent manner. The mechanism behind the T cell side of this HIV-induced impairment is well studied, whereas little is known about the reverse effects exerted on the DCs. Herein we assessed the phenotype and transcriptome profile of mature DCs that have been in contact with suppressive T cells. The HIV exposed DCs from cocultures between DCs and T cells resulted in a more tolerogenic phenotype with increased expression of e.g., PDL1, Gal-9, HVEM, and B7H3, mediated by interaction with T cells. Transcriptomic analysis of the DCs separated from the DC-T cell coculture revealed a type I IFN response profile as well as an activation of pathways involved in T cell exhaustion. Taken together, our data indicate that the prolonged and strong type I IFN signaling in DCs, induced by the presence of HIV during DC-T cell cross talk, could play an important role in the induction of tolerogenic DCs and suppressed immune responses seen in HIV-1 infected individuals.
Collapse
Affiliation(s)
- Cecilia Svanberg
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Sofia Nyström
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Immunology and Transfusion Medicine, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Melissa Govender
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Pradyot Bhattacharya
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Karlhans F. Che
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Rada Ellegård
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Division of Clinical Genetics, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Marie Larsson
- Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Marie Larsson,
| |
Collapse
|
24
|
Bekić M, Vasiljević M, Stojanović D, Kokol V, Mihajlović D, Vučević D, Uskoković P, Čolić M, Tomić S. Phosphonate-Modified Cellulose Nanocrystals Potentiate the Th1 Polarising Capacity of Monocyte-Derived Dendritic Cells via GABA-B Receptor. Int J Nanomedicine 2022; 17:3191-3216. [PMID: 35909813 PMCID: PMC9329576 DOI: 10.2147/ijn.s362038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phosphonates, like 3-AminoPropylphosphonic Acid (ApA), possess a great potential for the therapy of bone tumours, and their delivery via cellulose nanocrystals (CNCs) seems a promising approach for their increased efficacy in target tissues. However, the immunological effects of CNC-phosphonates have not been investigated thoroughly. The main aim was to examine how the modification of CNCs with phosphonate affects their immunomodulatory properties in human cells. Methods Wood-based native (n) CNCs were modified via oxidation (ox-CNCs) and subsequent conjugation with ApA (ApA-CNCs). CNCs were characterised by atomic force microscopy (AFM) and nanoindentation. Cytotoxicity and immunomodulatory potential of CNCs were investigated in cultures of human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs)/T cells co-cultures by monitoring phenotype, cytokines production, allostimulatory and Th/Treg polarisation capacity. Results AFM showed an increase in CNCs' thickens, elasticity modulus and hardness during the modification with ApA. When applied at non-toxic doses, nCNCs showed a tolerogenic potential upon internalisation by MoDCs, as judged by their increased capacity to up-regulate tolerogenic markers and induce regulatory T cells (Treg), especially when present during the differentiation of MoDCs. In contrast, ox- and ApA-CNCs induced oxidative stress and autophagy in MoDCs, which correlated with their stimulatory effect on the maturation of MoDCs, but also inhibition of MoDCs differentiation. ApA-CNC-treated MoDCs displayed the highest allostimulatory and Th1/CTL polarising activity in co-cultures with T cells. These effects of ApA-CNCs were mediated via GABA-B receptor-induced lowering of cAMP levels in MoDCs, and they could be blocked by GABA-B receptor inhibitor. Moreover, the Th1 polarising and allostimulatory capacity of MoDCs differentiated with ApA-CNC were largely preserved upon the maturation of MoDCs, whereas nCNC- and ox-CNC-differentiated MoDCs displayed an increased tolerogenic potential. Conclusion The delivery of ApA via CNCs induces potent DC-mediated Th1 polarisation, which could be beneficial in their potential application in tumour therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dušica Stojanović
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Vanja Kokol
- Department of Textile Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Petar Uskoković
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
26
|
The integration of systemic and tumor PD-L1 as a predictive biomarker of clinical outcomes in patients with advanced NSCLC treated with PD-(L)1blockade agents. Cancer Immunol Immunother 2022; 71:1823-1835. [PMID: 34984538 DOI: 10.1007/s00262-021-03107-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Tumor PD-L1 expression is a predictive biomarker for patients with NSCLC receiving PD-(L)1 blockade agents. However, although increased tumor PD-L1 expression predicts responsiveness, clinical benefit has been observed regardless of tumor PD-L1 expression, suggesting the existence of other PD-L1 sources. The aim of our study was to analyze whether integrating systemic and tumor PD-L1 is more predictive of efficacy in patients with advanced NSCLC receiving PD-(L)1 blockade agents. MATERIAL AND METHODS Twenty-nine healthy donors and 119 consecutive patients with advanced NSCLC treated with PD-(L)1 drug were prospectively included. Pretreatment blood samples were collected to evaluate PD-L1 levels on circulating immune cells, platelets (PLTs), platelet microparticles (PMPs), and the plasma soluble PD-L1 concentration (sPD-L1). Tumor PD-L1 status was assessed by immunohistochemistry. The percentages of circulating PD-L1 + leukocytes, sPD-L1 levels, and tumor PD-L1 were correlated with efficacy. RESULTS No differences in the percentages of circulating PD-L1 + leukocytes were observed according to tumor PD-L1 expression. Significantly longer progression-free survival was observed in patients with higher percentages of PD-L1 + CD14 + , PD-L1 + neutrophils, PD-L1 + PLTs, and PD-L1 + PMPs and significantly longer overall survival was observed in patients with higher percentages of PD-L1 + CD14 + and high tumor PD-L1 expression. Integrating the PD-L1 data of circulating and tumor PD-L1 results significantly stratified patients according to the efficacy of PD-(L1) blockade agents. CONCLUSIONS Our results suggest that integrating circulating PD-L1 + leukocytes, PLT, PMPs, and sPD-L1 and tumor PD-L1 expression may be helpful to decide on the best treatment strategy in patients with advanced NSCLC who are candidates for PD-(L)1 blockade agents.
Collapse
|
27
|
Li Z, Ding XJ, Qiao X, Liu XM, Qiao X, Xie CZ, Liu RP, Xu JY. Thalidomide-based Pt(IV) prodrugs designed to exert synergistic effect of immunomodulation and chemotherapy. J Inorg Biochem 2022; 232:111842. [DOI: 10.1016/j.jinorgbio.2022.111842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/18/2022]
|
28
|
El-Sayes N, Walsh S, Vito A, Reihani A, Ask K, Wan Y, Mossman K. IFNAR blockade synergizes with oncolytic VSV to prevent virus-mediated PD-L1 expression and promote antitumor T cell activity. Mol Ther Oncolytics 2022; 25:16-30. [PMID: 35399605 PMCID: PMC8971726 DOI: 10.1016/j.omto.2022.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/13/2022] [Indexed: 11/23/2022] Open
Abstract
Oncolytic virotherapies have shown excellent promise in a variety of cancers by promoting antitumor immunity. However, the effects of oncolytic virus-mediated type I interferon (IFN-I) production on antitumor immunity remain unclear. Recent reports have highlighted immunosuppressive functions of IFN-I in the context of checkpoint inhibitor and cell-based therapies. In this study, we demonstrate that oncolytic virus-induced IFN-I promotes the expression of PD-L1 in tumor cells and leukocytes in a IFN receptor (IFNAR)-dependent manner. Inhibition of IFN-I signaling using a monoclonal IFNAR antibody decreased IFN-I-induced PD-L1 expression and promoted tumor-specific T cell effector responses when combined with oncolytic virotherapy. Furthermore, IFNAR blockade improved therapeutic response to oncolytic virotherapy in a manner comparable with PD-L1 blockade. Our study highlights a critical immunosuppressive role of IFN-I on antitumor immunity and uses a combination strategy that improves the response to oncolytic virotherapy.
Collapse
Affiliation(s)
- Nader El-Sayes
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Scott Walsh
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Faculty of Health Science, McMaster University, Hamilton, ON, Canada
| | - Amir Reihani
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Karen Mossman
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Corresponding author. Karen Mossman, Department of Medicine, McMaster Immunology Research Centre, McMaster University, 1280 Main Street West, MDCL 5026, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
29
|
Tsuji S, Reil K, Nelson K, Proclivo VH, McGuire KL, Giacalone MJ. Intravesical VAX014 Synergizes with PD-L1 Blockade to Enhance Local and Systemic Control of Bladder Cancer. Cancer Immunol Res 2022; 10:978-995. [PMID: 35679299 DOI: 10.1158/2326-6066.cir-21-0879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Emerging clinical evidence indicates that the combination of local administration of immunotherapy with systemic immune checkpoint blockade targeting the PD-1/PD-L1 pathway improves response rates in select solid tumor indications; however, limited clinical experience with this approach exists in advanced bladder cancer patients. VAX014 is a novel bacterial minicell-based, integrin-targeted oncolytic agent undergoing clinical investigation for intravesical (IVE) treatment of non-muscle invasive bladder cancer. Here, we demonstrated that the antitumor activity of VAX014 following IVE administration was dependent upon CD4+ and CD8+ T cells in two syngeneic orthotopic bladder tumor models (MB49 and MBT-2). PD-L1 upregulation was found to be an acquired immune-resistance mechanism in the MB49 model, and the combination of VAX014 with systemic PD-L1 blockade resulted in a significant improvement in bladder tumor clearance rates and development of protective antitumor immunologic memory. Combination treatment also led to enhanced systemic antitumor immune responses capable of clearing distal intradermal tumors and controlling pulmonary metastasis. Distal tumors actively responding to combination therapy demonstrated a phenotypic shift from Treg to Th1 in intratumoral CD4+ T cells, which was accompanied by a higher percentage of activated CD8+ T cells and higher IFNγ. Finally, VAX014's target integrins α3β1 and α5β1 were overexpressed in tumor biopsies from advanced stage bladder cancer patients, as well as in both the MB49 and MBT-2 orthotopic mouse models of bladder cancer. These collective findings provide rationale for clinical investigation of VAX014 and systemic PD-1/PD-L1 blockade in advanced stage bladder cancer.
Collapse
Affiliation(s)
- Shingo Tsuji
- Vaxiion Therapeutics (United States), San Diego, United States
| | - Katherine Reil
- Vaxiion Therapeutics and San Diego State University, San Diego, United States
| | - Kinsey Nelson
- Vaxiion Therapeutics and San Diego State University, San Diego, CA, United States
| | | | | | | |
Collapse
|
30
|
Chan ASH, Kangas TO, Qiu X, Uhlik MT, Fulton RB, Ottoson NR, Gorden KB, Yokoyama Y, Danielson ME, Jevne TM, Michel KS, Graff JR, Bose N. Imprime PGG Enhances Anti-Tumor Effects of Tumor-Targeting, Anti-Angiogenic, and Immune Checkpoint Inhibitor Antibodies. Front Oncol 2022; 12:869078. [PMID: 35692755 PMCID: PMC9178990 DOI: 10.3389/fonc.2022.869078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 12/21/2022] Open
Abstract
Imprime PGG (Imprime) is in late-stage clinical development as a combinatorial agent with several therapeutic modalities. Here we present pre-clinical mechanistic data supportive of Imprime, a soluble yeast β-1,3/1,6-glucan pathogen-associated molecular pattern able to prime innate immune cells in a Dectin-1dependent manner. In tumor-free mice, Imprime evoked broad innate immune responses (type I interferon signature, mobilization of myeloid cells, dendritic cell and monocyte/macrophage expression of co-stimulatory ligands like CD86, and activation of natural killer cells). Imprime-mediated activation of myeloid cells also resulted in functional priming of antigen-specific CD8 T cell response. In tumor-bearing mice, Imprime monotherapy further resulted in activation of systemic and tumor infiltrating macrophages and enhanced cytotoxic CD8 T cell trafficking. Imprime enhanced the anti-tumor activity of several combinatorial agents in mouse cancer models; anti-tyrosinase-related protein 1 antibody in B16F10 melanoma experimental lung metastasis model, anti-vascular endothelial growth factor receptor 2 antibody in H1299 and H441 lung cancer, and anti-programmed cell death protein 1 antibody in MC38 colon cancer models. Mechanistically, combining Imprime with these combinatorial therapeutic agents elicited enhanced innate immune activation, supporting immunological synergy. Finally, Imprime treatment induced similar in vitro phenotypic and functional activation of human innate immune cells. Collectively, these data demonstrate Imprime’s potential to orchestrate a broad, yet coordinated, anti-cancer immune response and complement existing cancer immunotherapies.
Collapse
Affiliation(s)
- Anissa S. H. Chan
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | - Takashi O. Kangas
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | - Xiaohong Qiu
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | - Mark T. Uhlik
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | | | | | | | - Yumi Yokoyama
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | - Michael E. Danielson
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | - Trinda M. Jevne
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | - Kyle S. Michel
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
| | | | - Nandita Bose
- HiberCell Inc., Roseville, MN, United States
- Biothera Pharmaceuticals Inc., Eagan, MN, United States
- *Correspondence: Nandita Bose,
| |
Collapse
|
31
|
Chang G, Chen Y, Liu Z, Wang Y, Ge W, Kang Y, Guo S. The PD-1 with PD-L1 Axis Is Pertinent with the Immune Modulation of Atrial Fibrillation by Regulating T Cell Excitation and Promoting the Secretion of Inflammatory Factors. J Immunol Res 2022; 2022:3647817. [PMID: 35600045 PMCID: PMC9119745 DOI: 10.1155/2022/3647817] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To analyze the role of PD-1/PD-L1 signaling pathway in regulating T cell activation and secretion of proinflammatory factors in atrial fibrillation. Methods Forty-five patients with atrial fibrillation admitted to the cardiology department of our hospital from July 2019 to March 2021 were selected to be included in the atrial fibrillation group, and another 45 healthy volunteers were selected as the control group to compare the changes of T cell CD69 and human leukocyte antigen-DR (HLA-DR) expression in the peripheral blood of the two study groups; compare the changes of programmed death factor-1 on CD4+ and CD8+ lymphocytes in the peripheral blood of the two groups (PD-1) expression changes and PD-L1 and PD-L2 expression changes on peripheral blood myeloid dendritic cells (mDCs) cells; compare the changes of interleukin-2, interleukin-6, interleukin-10, and interleukin-17A (IL-2, IL-6, IL-10, and IL-17), tumor necrosis factor (TNF), and interferon gamma (IFN-γ) concentrations on peripheral blood inflammatory factors in the two groups; and isolate the two groups of peripheral blood mDCs cells; α interferon upregulated PD-L1 expression in the cells and analyzed the effect of PD-L1 expression on the ability of mDCs to stimulate T cells to secrete cytokines. Results The positive expression rates of CD69 and HLA-DR on peripheral blood CD3+ T lymphocytes were significantly higher in patients in the atrial fibrillation group than in the control group, and the differences were statistically significant (P < 0.01). The positive expression rate of PD-1 on CD4+ lymphocytes was significantly lower in patients in the atrial fibrillation group than in the control group (P < 0.01). There was no statistically significant difference between the two groups in terms of PD-1 positive expression rate on CD8+ lymphocytes (P > 0.05). The positive expression rate of PD-L1 on mDCs cells was significantly lower in patients in the atrial fibrillation group than in the control group (P < 0.01), and there was no statistically significant difference between the two groups in the positive expression rate of PD-L2 on mDCs cells, PD-L1, and PD-L2 on CD4+ and CD8+ T cells (P > 0.05). The concentrations of IL-2, IL-6, IL-10, and IFN-γ in peripheral blood were significantly higher in patients in the atrial fibrillation group than in the control group (P < 0.05), and there was no statistically significant difference in the comparison of IL-17A and TNF concentrations in peripheral blood between the two groups (P > 0.05). In the atrial fibrillation group, the ability of mDCs to stimulate T cells to secrete IL-2 and IFN-γ was significantly higher, and the ability to secrete IL-10 was significantly lower compared with the control group (P < 0.05). After α interferon upregulated PD-L1 expression in cells, the ability of mDCs to stimulate T cells to secrete IL-2, IL-10, and IFN-γ cytokines was reversed in patients in the atrial fibrillation group, and the differences compared with the control group were not statistically significant (P > 0.05). Conclusion PD-1/PD-L1 signaling pathway may play an immunomodulatory role in the pathogenesis of atrial fibrillation by promoting increased secretion of inflammatory factors through regulating T cell activation.
Collapse
Affiliation(s)
- Guodong Chang
- Department of Cardiology, The First People's Hospital of Shangqiu, China
| | - Yingwei Chen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, China
| | - Zichang Liu
- Department of Cardiology, The First People's Hospital of Shangqiu, China
| | - Yong Wang
- Department of Cardiology, The First People's Hospital of Shangqiu, China
| | - Wenkun Ge
- Department of Cardiology, The First People's Hospital of Shangqiu, China
| | - Yongan Kang
- Department of Cardiology, The First People's Hospital of Shangqiu, China
| | - Shuling Guo
- Department of Cardiology, Xuchang Central Hospital, China
| |
Collapse
|
32
|
Barley TJ, Murphy PR, Wang X, Bowman BA, Mormol JM, Mager CE, Kirk SG, Cash CJ, Linn SC, Meng X, Nelin LD, Chen B, Hafner M, Zhang J, Liu Y. Mitogen-activated protein kinase phosphatase-1 controls PD-L1 expression by regulating type I interferon during systemic Escherichia coli infection. J Biol Chem 2022; 298:101938. [PMID: 35429501 PMCID: PMC9108994 DOI: 10.1016/j.jbc.2022.101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/21/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022] Open
Abstract
Mitogen-activated protein kinase phosphatase 1 (Mkp-1) KO mice produce elevated cytokines and exhibit increased mortality and bacterial burden following systemic Escherichia coli infection. To understand how Mkp-1 affects immune defense, we analyzed the RNA-Seq datasets previously generated from control and E. coli-infected Mkp-1+/+ and Mkp-1-/- mice. We found that E. coli infection markedly induced programmed death-ligand 1 (PD-L1) expression and that Mkp-1 deficiency further amplified PD-L1 expression. Administration of a PD-L1-neutralizing monoclonal antibody (mAb) to Mkp-1-/- mice increased the mortality of the animals following E. coli infection, although bacterial burden was decreased. In addition, the PD-L1-neutralizing mAb increased serum interferon (IFN)-γ and tumor necrosis factor alpha, as well as lung- and liver-inducible nitric oxide synthase levels, suggesting an enhanced inflammatory response. Interestingly, neutralization of IFN-α/β receptor 1 blocked PD-L1 induction in Mkp-1-/- mice following E. coli infection. PD-L1 was potently induced in macrophages by E. coli and lipopolysaccharide in vitro, and Mkp-1 deficiency exacerbated PD-L1 induction with little effect on the half-life of PD-L1 mRNA. In contrast, inhibitors of Janus kinase 1/2 and tyrosine kinase 2, as well as the IFN-α/β receptor 1-neutralizing mAb, markedly attenuated PD-L1 induction. These results suggest that the beneficial effect of type I IFNs in E. coli-infected Mkp-1-/- mice is, at least in part, mediated by Janus kinase/signal transducer and activator of transcription-driven PD-L1 induction. Our studies also support the notion that enhanced PD-L1 expression contributes to the bactericidal defect of Mkp-1-/- mice.
Collapse
Affiliation(s)
- Timothy J Barley
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Parker R Murphy
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Bridget A Bowman
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Justin M Mormol
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Carli E Mager
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sean G Kirk
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Charles J Cash
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sarah C Linn
- Combined Anatomic Pathology Residency/Graduate Program, Department of Veterinary Biosciences, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, USA; Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Xiaomei Meng
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Leif D Nelin
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Bernadette Chen
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, Maryland, USA
| | - Jian Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
33
|
Doshi AS, Cantin S, Prickett LB, Mele DA, Amiji M. Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy. J Control Release 2022; 345:721-733. [PMID: 35378213 DOI: 10.1016/j.jconrel.2022.03.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
Current methods of STING activation based on intra-tumoral injections of cyclic dinucleotides (CDNs) are not suitable for addressing tumor heterogeneity or for inaccessible, metastatic and abscopal tumors. In this study, we developed systemically administered CD103+ dendritic cell (DCs) targeted liposomal formulations and evaluated the anti-tumor efficacy with low dose. Liposomal CDN formulations were prepared using Clec9a targeting peptide and evaluated therapeutic efficacy in vitro and in vivo in subcutaneous MC38 and B16F10 tumor models. Targeted delivery of CDNs is expected to enhance anti-tumor immune response as well as reduce off-target toxicities. With intravenous 0.1 mg/kg systemic CDN dose of the targeted liposomal formulation, our results showed robust immune response with significant antitumor efficacy both as a monotherapy and in combination with anti-PD-L1 antibody. These results show that a CD103+ DC targeted CDN formulation can lead to potent immune stimulation upon systemic administration even in relatively "cold" tumors such as B16F10.
Collapse
Affiliation(s)
- Aatman S Doshi
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America; Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America
| | - Susan Cantin
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Laura B Prickett
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Deanna A Mele
- Bioscience, Oncology R&D, AstraZeneca, 35 Gatehouse Park, Waltham, MA 02451, United States of America
| | - Mansoor Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America; Department of Chemical Engineering, College of Engineering, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
34
|
Nihira NT, Miki Y. Regulation of Intrinsic Functions of PD-L1 by Post-Translational Modification in Tumors. Front Oncol 2022; 12:825284. [PMID: 35402280 PMCID: PMC8984111 DOI: 10.3389/fonc.2022.825284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells are eliminated by the immune system, including T lymphocytes and natural killer cells; however, many types of tumor cells acquire the immune tolerance by inhibiting T-cell activation and functions via immune checkpoint molecules. Immunotherapy targeting immune checkpoint molecules such as Programmed death receptor 1 (PD-1)/Programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) have shown successful outcomes for multiple cancer treatments, however some patients show the lack of durable responses. Thus, discovering the chemical compounds or drugs manipulating the expression or function of immune checkpoint molecules are anticipated to overcome the drug resistance of immune checkpoint inhibitors. Function of inhibitory immune checkpoint molecules is often dysregulated by the transcriptional and post-translational levels in tumors. Here, this review focuses on the post-translational modification of intrinsic PD-L1 functions and regulators for PD-L1 transcription.
Collapse
Affiliation(s)
- Naoe Taira Nihira
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
- *Correspondence: Naoe Taira Nihira,
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
35
|
Del Bianco P, Pinton L, Magri S, Canè S, Masetto E, Basso D, Padovan M, Volpin F, d'Avella D, Lombardi G, Zagonel V, Bronte V, Della Puppa A, Mandruzzato S. Myeloid Diagnostic and Prognostic Markers of Immune Suppression in the Blood of Glioma Patients. Front Immunol 2022; 12:809826. [PMID: 35069595 PMCID: PMC8777055 DOI: 10.3389/fimmu.2021.809826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 01/24/2023] Open
Abstract
Background Although gliomas are confined to the central nervous system, their negative influence over the immune system extends to peripheral circulation. The immune suppression exerted by myeloid cells can affect both response to therapy and disease outcome. We analyzed the expansion of several myeloid parameters in the blood of low- and high-grade gliomas and assessed their relevance as biomarkers of disease and clinical outcome. Methods Peripheral blood was obtained from 134 low- and high-grade glioma patients. CD14+, CD14+/p-STAT3+, CD14+/PD-L1+, CD15+ cells and four myeloid-derived suppressor cell (MDSC) subsets, were evaluated by flow cytometry. Arginase-1 (ARG1) quantity and activity was determined in the plasma. Multivariable logistic regression model was used to obtain a diagnostic score to discriminate glioma patients from healthy controls and between each glioma grade. A glioblastoma prognostic model was determined by multiple Cox regression using clinical and myeloid parameters. Results Changes in myeloid parameters associated with immune suppression allowed to define a diagnostic score calculating the risk of being a glioma patient. The same parameters, together with age, permit to calculate the risk score in differentiating each glioma grade. A prognostic model for glioblastoma patients stemmed out from a Cox multiple analysis, highlighting the role of MDSC, p-STAT3, and ARG1 activity together with clinical parameters in predicting patient’s outcome. Conclusions This work emphasizes the role of systemic immune suppression carried out by myeloid cells in gliomas. The identification of biomarkers associated with immune landscape, diagnosis, and outcome of glioblastoma patients lays the ground for their clinical use.
Collapse
Affiliation(s)
- Paola Del Bianco
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Laura Pinton
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Stefania Canè
- University Hospital and Department of Medicine, Verona, Italy
| | - Elena Masetto
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesco Volpin
- University Hospital of Padova, Neurosurgery Department, Padova, Italy
| | - Domenico d'Avella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,University Hospital of Padova, Neurosurgery Department, Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vincenzo Bronte
- University Hospital and Department of Medicine, Verona, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, Careggi University Hospital, University of Florence, Florence, Italy
| | - Susanna Mandruzzato
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
36
|
Bazhin AV, von Ahn K, Fritz J, Bunge H, Maier C, Isayev O, Neff F, Siveke JT, Karakhanova S. Pivotal antitumor role of the immune checkpoint molecule B7-H1 in pancreatic cancer. Oncoimmunology 2022; 11:2043037. [PMID: 35251770 PMCID: PMC8890402 DOI: 10.1080/2162402x.2022.2043037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immune checkpoint molecule B7-H1 plays a decisive immune regulatory role in different pathologies including cancer, and manipulation of B7-H1 expression became an attractive approach in cancer immunotherapy. Pancreatic cancer (PDAC) is characterized by pronounced immunosuppressive environment and B7-H1 expression correlates with PDAC prognosis. However, the first attempts to diminish B7-H1 expression in patients were not so successful. This points the complicity of PDAC immunosuppressive network and requires further examinations. We investigated the effect of B7-H1 deficiency in PDAC. Our results clearly show that partial or complete B7-H1 inhibition in vivo let to reduced tumor volume and improved survival of PDAC-bearing mice. This oncological benefit is due to the abrogation of immunosuppression provided by MDSC, macrophages, DC and Treg, which resulted in simultaneous restoration of anti-tumor immune response, namely improved accumulation and functionality of effector-memory CD4 and CD8 T cells. Our results underline the potential of B7-H1 molecule to control immunosuppressive network in PDAC and provide new issues for further clinical investigations.
Collapse
Affiliation(s)
- Alexandr V. Bazhin
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Katharina von Ahn
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jasmin Fritz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Henriette Bunge
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Caroline Maier
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Orkhan Isayev
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Florian Neff
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site University Hospital Essen, Heidelberg, Germany
| | - Jens T. Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), partner site University Hospital Essen, Heidelberg, Germany
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Svetlana Karakhanova
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
37
|
Ma X, Guo Z, Wei X, Zhao G, Han D, Zhang T, Chen X, Cao F, Dong J, Zhao L, Yuan Z, Wang P, Pang Q, Yan C, Zhang W. Spatial Distribution and Predictive Significance of Dendritic Cells and Macrophages in Esophageal Cancer Treated With Combined Chemoradiotherapy and PD-1 Blockade. Front Immunol 2022; 12:786429. [PMID: 35046943 PMCID: PMC8761740 DOI: 10.3389/fimmu.2021.786429] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023] Open
Abstract
Background The first clinical study (NCT03671265) of first-line chemoradiotherapy combined with PD-1 blockade showed promising treatment outcomes in locally advanced esophageal squamous cell carcinoma (ESCC). However, partial patients did not respond to the combination treatment. The roles of dendritic cells (DCs) and macrophages in this combination treatment remain poorly understood. Methods We performed multiplexed immunofluorescence method to identify CD11c+ DCs, CD68+ macrophages, and their PD-L1- or PD-L1+ subpopulations in paired tumor biopsies (n = 36) collected at baseline and during the combination treatment (after radiation, 40 Gy) from the phase Ib trial (NCT03671265). We applied whole exome sequencing in the baseline tumor biopsies (n = 14) to estimate tumor mutation burden (TMB). We dynamically investigated the spatial distribution of DCs and macrophages under chemoradiotherapy combined with PD-1 blockade, and evaluated the association between their spatial distribution and combination outcome, and TMB. Results The results showed that high percentages of PD-L1- DCs and macrophages in the baseline tumor compartment, but not in the stromal compartment, predicted improved OS and PFS. Chemoradiotherapy combined with PD-1 blockade promoted DCs and macrophages to migrate closer to tumor cells. During combination treatment, PD-L1- tumor cells were nearest to PD-L1- DCs and macrophages, while PD-L1+ tumor cells were next to PD-L1+ DCs and macrophages. High TMB was closely associated with a shorter distance from tumor cells to DCs and macrophages. Shorter distance between PD-L1+ tumor cells and PD-L1+ DCs or PD-L1- macrophages during the combination was correlated with better OS. Shorter distance between PD-L1- tumor cells and PD-L1- macrophages during combination was associated with both longer OS and PFS. Conclusions PD-L1- or PD-L1+ DCs and macrophages exhibit distinct spatial distribution in ESCC. The close distance between tumor cells and these antigen-presenting cells (APCs) is critical to the clinical outcome in chemoradiotherapy combined with PD-1 blockade in ESCC patients. Our results highlight the predictive potential of spatial patterns of APCs in chemoradiotherapy combined with immunotherapy and reveal the underlying mechanism of APCs participating in chemoradiotherapy-induced antitumor immune response in ESCC.
Collapse
Affiliation(s)
- Xiaoxue Ma
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhoubo Guo
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaoying Wei
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dong Han
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Tian Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xi Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Fuliang Cao
- Department of Endoscopy Diagnosis and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jie Dong
- Department of Nutrition Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lujun Zhao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingsong Pang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Cihui Yan
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wencheng Zhang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
38
|
Mesenchymal stromal cells equipped by IFNα empower T cells with potent anti-tumor immunity. Oncogene 2022; 41:1866-1881. [PMID: 35145233 PMCID: PMC8956510 DOI: 10.1038/s41388-022-02201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/22/2021] [Accepted: 01/19/2022] [Indexed: 11/08/2022]
Abstract
Cancer treatments have been revolutionized by the emergence of immune checkpoint blockade therapies. However, only a minority of patients with various tumor types have benefited from such treatments. New strategies focusing on the immune contexture of the tumor tissue microenvironment hold great promises. Here, we created IFNα-overexpressing mesenchymal stromal cells (IFNα-MSCs). Upon direct injection into tumors, we found that these cells are powerful in eliminating several types of tumors. Interestingly, the intra-tumoral injection of IFNα-MSCs could also induce specific anti-tumor effects on distant tumors. These IFNα-MSCs promoted tumor cells to produce CXCL10, which in turn potentiates the infiltration of CD8+ T cells in the tumor site. Furthermore, IFNα-MSCs enhanced the expression of granzyme B (GZMB) in CD8+ T cells and invigorated their cytotoxicity in a Stat3-dependent manner. Genetic ablation of Stat3 in CD8+ T cells impaired the effect of IFNα-MSCs on GZMB expression. Importantly, the combination of IFNα-MSCs and PD-L1 blockade induced an even stronger anti-tumor immunity. Therefore, IFNα-MSCs represent a novel tumor immunotherapy strategy, especially when combined with PD-L1 blockade.
Collapse
|
39
|
Lin J, Xu A, Jin J, Zhang M, Lou J, Qian C, Zhu J, Wang Y, Yang Z, Li X, Yu W, Liu B, Tao H. MerTK-mediated efferocytosis promotes immune tolerance and tumor progression in osteosarcoma through enhancing M2 polarization and PD-L1 expression. Oncoimmunology 2022; 11:2024941. [PMID: 35036076 PMCID: PMC8757471 DOI: 10.1080/2162402x.2021.2024941] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The poor progress of immunotherapy on osteosarcoma patients requires deeper delineation of immune tolerance mechanisms in the osteosarcoma microenvironment and a new therapeutic strategy. Clearance of apoptotic cells by phagocytes, a process termed “efferocytosis,” is ubiquitous in tumors and mediates the suppression of innate immune inflammatory response. Considering the massive infiltrated macrophages in osteosarcoma, efferocytosis probably serves as a potential target, but is rarely studied in osteosarcoma. Here, we verified M2 polarization and PD-L1 expression of macrophages following efferocytosis. Pharmacological inhibition and genetic knockdown were used to explore the underlying pathway. Moreover, tumor progression and immune landscape were evaluated following inhibition of efferocytosis in osteosarcoma model. Our study indicated that efferocytosis promoted PD-L1 expression and M2 polarization of macrophages. Ëfferocytosis was mediated by MerTK receptor in osteosarcoma and regulated the phenotypes of macrophages through the p38/STAT3 pathway. By establishing the murine osteosarcoma model, we emphasized that inhibition of MerTK suppressed tumor growth and enhanced the T cell cytotoxic function by increasing the infiltration of CD8+ T cells and decreasing their exhaustion. Our findings demonstrate that MerTK-mediated efferocytosis promotes osteosarcoma progression by enhancing M2 polarization of macrophages and PD-L1-induced immune tolerance, which were regulated through the p38/STAT3 pathway.
Collapse
Affiliation(s)
- Jinti Lin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Ankai Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jiakang Jin
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Man Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jianan Lou
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Chao Qian
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Zhengming Yang
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Wei Yu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Bing Liu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, PR China.,Orthopedics Research Institute, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
40
|
Wu Y, Dutta P, Clayton S, McCloud A, Vadgama JV. Elevated Baseline Serum PD-L1 Level May Predict Poor Outcomes from Breast Cancer in African-American and Hispanic Women. J Clin Med 2022; 11:283. [PMID: 35053979 PMCID: PMC8779890 DOI: 10.3390/jcm11020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The therapeutic targeting of PD-1/PD-L1 has shown clinical efficacy in treating metastatic breast cancer. We investigated the clinical significance of measuring serum PD-L1 levels in African-American and Hispanic women with breast cancer. METHODS PD-L1 levels were measured with the ELISA method from the serum samples of 244 African-Americans and Hispanics with breast cancer and 155 women without cancers. The levels of INFα2 and TNFα were measured with a Luminex multiplex assay. The protein levels of pAkt and CD44/CD24 in tumor cells were tested with immunohistochemistry analysis. Cox regression was used to assess the predicting role of serum PD-L1 for disease-free survival (DFS). RESULTS PD-L1 levels were significantly elevated in breast cancer cases compared to non-cancer cases. The high PD-L1 levels were associated with HER2-positive and triple-negative breast cancer. PD-L1 level independently predicted DFS in both African-American and Hispanic women. The evaluated PD-L1 level was found to be associated with high IFNα2 and TNFα in breast cancer patients. CONCLUSIONS PD-L1 serum levels can predict DFS in African American and Hispanic women with breast cancer. Furthermore, a high level of PD-L1 is more likely to be associated with tumor loss PTEN and the activation of Akt or with breast cancer cells expressing CD44high/CD24low. Further validation studies are needed to determine if PD-L1 could serve as a biomarker for patient selection for anti-PD-L1 therapy and assess treatment outcomes.
Collapse
Affiliation(s)
- Yanyuan Wu
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Pranabananda Dutta
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
| | - Sheilah Clayton
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
| | - Amaya McCloud
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Department of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA; (P.D.); (S.C.); (A.M.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
41
|
Patel A, Skitzki J. Melanoma trials that defined surgical management: Brief overview of current/upcoming adjuvant/neoadjuvant trials. J Surg Oncol 2022; 125:38-45. [PMID: 34897704 DOI: 10.1002/jso.26746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
Adjuvant systemic therapy for cutaneous melanoma has experienced practice-changing shifts over the last decade. The successful results of immunotherapies and targeted therapies in the metastatic setting have allowed for investigative trials of the same therapies in the adjuvant and now neoadjuvant setting, with the potential for improved clinical outcomes in patients with high risk resected Stage III and IV melanoma.
Collapse
Affiliation(s)
- Ankit Patel
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Joseph Skitzki
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| |
Collapse
|
42
|
Vitiello GAF, Ferreira WAS, Cordeiro de Lima VC, Medina TDS. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment. Front Immunol 2021; 12:782852. [PMID: 34925363 PMCID: PMC8674309 DOI: 10.3389/fimmu.2021.782852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.
Collapse
Affiliation(s)
| | - Wallax Augusto Silva Ferreira
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute, Ananindeua, Brazil
| | | | - Tiago da Silva Medina
- Translational Immuno-Oncology Group, International Research Center, A.C. Camargo Cancer Center, São Paulo, Brazil
- National Institute of Science and Technology in Oncogenomics and Therapeutic Innovation, São Paulo, Brazil
| |
Collapse
|
43
|
Mi Y, Han J, Zhu J, Jin T. Role of the PD-1/PD-L1 Signaling in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Recent Insights and Future Directions. Mol Neurobiol 2021; 58:6249-6271. [PMID: 34480337 PMCID: PMC8639577 DOI: 10.1007/s12035-021-02495-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Multiple sclerosis (MS) is an autoimmunity-related chronic demyelination disease of the central nervous system (CNS), causing young disability. Currently, highly specific immunotherapies for MS are still lacking. Programmed cell death 1 (PD-1) is an immunosuppressive co-stimulatory molecule, which is expressed on activated T lymphocytes, B lymphocytes, natural killer cells, and other immune cells. PD-L1, the ligand of PD-1, is expressed on T lymphocytes, B lymphocytes, dendritic cells, and macrophages. PD-1/PD-L1 delivers negative regulatory signals to immune cells, maintaining immune tolerance and inhibiting autoimmunity. This review comprehensively summarizes current insights into the role of PD-1/PD-L1 signaling in MS and its animal model experimental autoimmune encephalomyelitis (EAE). The potentiality of PD-1/PD-L1 as biomarkers or therapeutic targets for MS will also be discussed.
Collapse
Affiliation(s)
- Yan Mi
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| | - Jinming Han
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Present Address: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Tao Jin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021 China
| |
Collapse
|
44
|
Wang Y, Shang K, Zhang N, Zhao J, Cao B. Tumor-Associated Macrophage-Derived Exosomes Promote the Progression of Gastric Cancer by Regulating the P38MAPK Signaling Pathway and the Immune Checkpoint PD-L1. Cancer Biother Radiopharm 2021. [PMID: 34698510 DOI: 10.1089/cbr.2021.0218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective: To investigate the effects of M2 macrophage-derived exosomes (M2-Exos) on proliferation, migration, and apoptosis of gastric cancer cells in the tumor microenvironment and to further explore their possible molecular mechanism. Materials and Methods: M2 macrophages were induced from THP-1 cells and identified by qRT-PCR. Exosomes were extracted by ultracentrifugation and identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blot analysis. Fluorescence labeling was used to detect the internalization of exosomes in receptors. The proliferation, migration, and invasion of AGS and HGC27 cells were determined by EdU and MTS, wound healing and Transwell assay, and flow cytometry, respectively. Proteins in the related pathway of M2-Exos affecting the progression of gastric cancer were detected by Western blot analysis. Results: In this study, M2 macrophages and M2-Exos were successfully obtained. The purified M2-Exos were observed as small round vesicles with diameters of 50-90 nm and positive expression of CD63, CD9, and TSG101. Besides, M2-Exos can be effectively taken up and internalized by AGS and HGC27 cells. Cell behavior studies showed that M2-Exos promoted proliferation and migration and inhibited the apoptosis of AGS and HGC27. Further research illustrated that M2-Exos promoted the phosphorylation of P38 and high expression of programmed death ligand 1 (PD-L1). Conclusions: This study demonstrated that M2-Exos promoted proliferation and migration and inhibited the apoptosis of gastric cancer cells. Mechanically, M2-Exos may promote gastric cancer progression through the P38MAPK signaling pathway and achieve immune escape through elevating the expression of PD-L1.
Collapse
Affiliation(s)
- Yusheng Wang
- Cancer Center, Capital Medical University-Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Kun Shang
- Cancer Center, Capital Medical University-Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| | - Ninggang Zhang
- Department of Gastrointestinal Oncology, Shanxi Provincial Cancer Hospital, Affiliated to Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jian Zhao
- Department of Gastrointestinal Oncology, Shanxi Provincial Cancer Hospital, Affiliated to Shanxi Medical University, Taiyuan, People's Republic of China
| | - Bangwei Cao
- Cancer Center, Capital Medical University-Affiliated Beijing Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
45
|
Erkhem-Ochir B, Tatsuishi W, Yokobori T, Gombodorj N, Saeki H, Shirabe K, Abe T. Immunohistochemical Detection of Bacteria in the Resected Valves was Associated with Stromal Immune Checkpoint Protein Expression that may Contribute to Calcific Aortic Stenosis. Semin Thorac Cardiovasc Surg 2021; 34:1170-1177. [PMID: 34688900 DOI: 10.1053/j.semtcvs.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Aortic stenosis (AS) is a disease characterized by narrowing of the aortic valve (AV) orifice. The purpose of this study was to clarify the significance of bacterial detection and clinicopathological factors, including valve-infiltrating immune cells and disease severity, in relation to AS. After obtaining the written informed consent form from 50 patients with AS, we performed immunohistochemical analysis of lipopolysaccharide (LPS) for gram-negative bacteria and lipoteichoic acid (LTA) for gram-positive bacteria on surgically resected-AVs. Moreover, we evaluated the relationships among the presence of bacteria, immune checkpoint protein PD-L1 expression, and immune cell infiltrations such as CD8-positive T lymphocytes, CD163-positive macrophages, and FOXP3-positive regulatory T cell (Treg) in resected-aortic valves. LPS detection in the resected-aortic valve tissues was significantly associated with stromal PD-L1 expression, valve calcification, and LTA existence in resected samples. We showed that the presence of LPS was significantly related to high PD-L1 expression only in calcified-AVs, not in non-calcified-AVs. Moreover, the high expression of PD-L1 in AS samples without LPS was significantly associated with positive infiltration of CD163-positive macrophages and FOXP3-positive Tregs. Immunohistochemical bacterial detection in resected-aortic valves was associated with PD-L1 accumulation and valve calcification. PD-L1 significantly accumulated only in calcified valves with LPS existence.
Collapse
Affiliation(s)
- Bilguun Erkhem-Ochir
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi Gunma, Japan; Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi Gunma, Japan
| | - Wataru Tatsuishi
- Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi Gunma, Japan
| | - Takehiko Yokobori
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi Gunma, Japan.
| | - Navchaa Gombodorj
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research (GIAR), Maebashi Gunma, Japan; Department of Radiation Oncology, National Cancer Center of Mongolia, Ulaanbaatar, Mongolia
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi Gunma, Japan
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi Gunma, Japan
| | - Tomonobu Abe
- Division of Cardiovascular Surgery, Department of General Surgical Science, Gunma University, Maebashi Gunma, Japan
| |
Collapse
|
46
|
Hay M, Kumar V, Ricaño-Ponce I. The role of the X chromosome in infectious diseases. Brief Funct Genomics 2021; 21:143-158. [PMID: 34651167 DOI: 10.1093/bfgp/elab039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023] Open
Abstract
Many infectious diseases in humans present with a sex bias. This bias arises from a combination of environmental factors, hormones and genetics. In this study, we review the contribution of the X chromosome to the genetic factor associated with infectious diseases. First, we give an overview of the X-linked genes that have been described in the context of infectious diseases and group them in four main pathways that seem to be dysregulated in infectious diseases: nuclear factor kappa-B, interleukin 2 and interferon γ cascade, toll-like receptors and programmed death ligand 1. Then, we review the infectious disease associations in existing genome-wide association studies (GWAS) from the GWAS Catalog and the Pan-UK Biobank, describing the main associations and their possible implications for the disease. Finally, we highlight the importance of including the X chromosome in GWAS analysis and the importance of sex-specific analysis.
Collapse
|
47
|
Lorenzi L, Lonardi S, Vairo D, Bernardelli A, Tomaselli M, Bugatti M, Licini S, Arisi M, Cerroni L, Tucci A, Vermi W, Giliani SC, Facchetti F. E-Cadherin Expression and Blunted Interferon Response in Blastic Plasmacytoid Dendritic Cell Neoplasm. Am J Surg Pathol 2021; 45:1428-1438. [PMID: 34081040 PMCID: PMC8428867 DOI: 10.1097/pas.0000000000001747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive neoplasm derived from plasmacytoid dendritic cells (pDCs). In this study, we investigated by immunohistochemical analysis the expression of E-cadherin (EC) on pDCs in reactive lymph nodes and tonsils, bone marrow, and in BPDCN. We compared the expression of EC in BPDCN to that in leukemia cutis (LC) and cutaneous lupus erythematosus (CLE), the latter typically featuring pDC activation. In BPDCN, we also assessed the immunomodulatory activity of malignant pDCs through the expression of several type I interferon (IFN-I) signaling effectors and downstream targets, PD-L1/CD274, and determined the extent of tumor infiltration by CD8-expressing T cells. In reactive lymph nodes and tonsils, pDCs expressed EC, whereas no reactivity was observed in bone marrow pDCs. BPDCN showed EC expression in the malignant pDCs in the vast majority of cutaneous (31/33 cases, 94%), nodal, and spleen localizations (3/3 cases, 100%), whereas it was more variable in the bone marrow (5/13, 38,5%), where tumor cells expressed EC similarly to the skin counterpart in 4 cases and differently in other 4. Notably, EC was undetectable in LC (n=30) and in juxta-epidermal pDCs in CLE (n=31). Contrary to CLE showing robust expression of IFN-I-induced proteins MX1 and ISG5 in 20/23 cases (87%), and STAT1 phosphorylation, BPDCN biopsies showed inconsistent levels of these proteins in most cases (85%). Expression of IFN-I-induced genes, IFI27, IFIT1, ISG15, RSAD2, and SIGLEC1, was also significantly (P<0.05) lower in BPDCN as compared with CLE. In BPDCN, a significantly blunted IFN-I response correlated with a poor CD8+T-cell infiltration and the lack of PD-L1/CD274 expression by the tumor cells. This study identifies EC as a novel pDC marker of diagnostic relevance in BPDCN. The results propose a scenario whereby malignant pDCs through EC-driven signaling promote the blunting of IFN-I signaling and, thereby, the establishment of a poorly immunogenic tumor microenvironment.
Collapse
Affiliation(s)
- Luisa Lorenzi
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Donatella Vairo
- Department of Molecular and Translational Medicine, A. Nocivelli Institute of Molecular Medicine, University of Brescia and Section of Medical Genetics, Spedali Civili
| | - Andrea Bernardelli
- Department of Molecular and Translational Medicine, Section of Pathology
| | | | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Sara Licini
- Pathology Unit, ASST Spedali Civili di Brescia
| | - Mariachiara Arisi
- Department of Clinical and Experimental Sciences, Section of Dermatology, University of Brescia
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Alessandra Tucci
- Haematology Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Silvia Clara Giliani
- Department of Molecular and Translational Medicine, A. Nocivelli Institute of Molecular Medicine, University of Brescia and Section of Medical Genetics, Spedali Civili
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Pathology
- Pathology Unit, ASST Spedali Civili di Brescia
| |
Collapse
|
48
|
Lucas ED, Schafer JB, Matsuda J, Kraus M, Burchill MA, Tamburini BAJ. PD-L1 Reverse Signaling in Dermal Dendritic Cells Promotes Dendritic Cell Migration Required for Skin Immunity. Cell Rep 2021; 33:108258. [PMID: 33053342 PMCID: PMC7688291 DOI: 10.1016/j.celrep.2020.108258] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/06/2020] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Although the function of the extracellular region of programmed death ligand 1 (PD-L1) through its interactions with PD-1 on T cells is well studied, little is understood regarding the intracellular domain of PD-L1. Here, we outline a major role for PD-L1 intracellular signaling in the control of dendritic cell (DC) migration from the skin to the draining lymph node (dLN). Using a mutant mouse model, we identify a TSS signaling motif within the intracellular domain of PD-L1. The TSS motif proves critical for chemokine-mediated DC migration to the dLN during inflammation. This loss of DC migration, in the PD-L1 TSS mutant, leads to a significant decline in T cell priming when DC trafficking is required for antigen delivery to the dLN. Finally, the TSS motif is required for chemokine receptor signaling downstream of the Gα subunit of the heterotrimeric G protein complex, ERK phosphorylation, and actin polymerization in DCs. Lucas et al. define three residues within the cytoplasmic tail of PD-L1 that are required for proper dendritic cell migration from the skin to the lymph node. These three-amino-acid residues promote chemokine signaling in dendritic cells and productive T cell responses to skin infections.
Collapse
Affiliation(s)
- Erin D Lucas
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | | | - Madison Kraus
- Gates Summer Research Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Matthew A Burchill
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA.
| |
Collapse
|
49
|
Zhang H, Zhu Y, Wang J, Weng S, Zuo F, Li C, Zhu T. PKCι regulates the expression of PDL1 through multiple pathways to modulate immune suppression of pancreatic cancer cells. Cell Signal 2021; 86:110115. [PMID: 34375670 DOI: 10.1016/j.cellsig.2021.110115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 10/20/2022]
Abstract
To investigate the impact of oncogenic protein kinase C isoform ι (PKCι) on the microenvironment and the immunogenic properties of pancreatic tumors, we prohibit PKCι activity in various pancreatic ductal adenocarcinoma (PDAC) cell lines and co-culture them with human natural killer NK92 cells. The results demonstrate that PKCι suppression enhances the susceptibility of PDAC to NK cytotoxicity and promotes the degranulation and cytolytic activity of co-cultured NK92 cells. Mechanistic studies pinpoint that downstream of KRAS, both YAP1 and STAT3 are recruited by oncogenic PKCι to elevate the expression of PDL1, contributing to constitute an immune suppressive microenvironment in PDAC. Co-culture with NK92 further induces PDL1 upregulation via STAT3 to stimulate immune escape of PDAC cells. Subsequently, inhibition of PKCι in PDAC alleviates the immune suppression and enhances the cytotoxicity of NK92 towards PDAC through restraining PDL1 overexpression. Combined with PD1/PDL1 blocker, PKCι inhibitor remarkably elevates the cytotoxicity of NK92 against PDAC cells in vitro, establishing PKCι inhibitor as a promising candidate for boosting the immunotherapy of PDAC.
Collapse
Affiliation(s)
- Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Yue Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Sijia Weng
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Fengqiong Zuo
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Changlong Li
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, 3-17 Renmin South Road, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
50
|
Jia DD, Niu Y, Zhu H, Wang S, Ma T, Li T. Prior Therapy With Pegylated-Interferon Alfa-2b Improves the Efficacy of Adjuvant Pembrolizumab in Resectable Advanced Melanoma. Front Oncol 2021; 11:675873. [PMID: 34221994 PMCID: PMC8243982 DOI: 10.3389/fonc.2021.675873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Combination immunotherapy can overcome the limited objective response rates of PD-1 blockade. Interferon alpha (IFN-α) has been proven to be effective in modulating immune responses and may enhance the clinical responses to PD-1 blockade. According to clinical practice guidelines, IFN-α was recommended as adjuvant therapy for stage IIB/C melanoma patients. However, the impact of prior IFN-α therapy on the efficacy of subsequent PD-1 blockade in melanoma has not been previously reported. Therefore, we performed a retrospective analysis for melanoma patients and addressed whether prior IFN-α therapy enhanced adjuvant pembrolizumab as later-line treatment. Fifty-six patients with resectable stage III/IV melanoma who received adjuvant therapy with pembrolizumab were retrospectively enrolled in this study. Notably, 25 patients received adjuvant pegylated IFN-α (PEG-IFN-α) in the prior line of treatment while 31 patients did not receive prior PEG-IFN-α therapy. Cox regression analysis showed that prior PEG-IFN-α therapy was associated with the efficacy of later-line adjuvant pembrolizumab (hazard ratio=0.37, 95% CI 0.16-0.89; P = 0.026). The recurrence rates after treatment with adjuvant pembrolizumab were significantly reduced in the prior PEG-IFN-α group (P < 0.001). The Kaplan-Meier analysis also showed that recurrence-free survival (RFS) after adjuvant pembrolizumab therapy was prolonged by prior PEG-IFN-α treatment (median RFSPem 8.5 months vs. 4.5 months; P = 0.0372). These findings indicated that prior PEG-IFN-α could enhance the efficacy of adjuvant pembrolizumab. The long-lasting effects of PEG-IFN-α provide a new rationale for designing combination or sequential immunotherapy.
Collapse
Affiliation(s)
- Dong-Dong Jia
- Department of Bone and Soft-tissue Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanling Niu
- Department of Translational Medicine, Genetron Health (Beijing) Co., Ltd., Beijing, China
| | - Honglin Zhu
- Department of Translational Medicine, Genetron Health (Beijing) Co., Ltd., Beijing, China
| | - Sizhen Wang
- Department of Translational Medicine, Genetron Health (Beijing) Co., Ltd., Beijing, China
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health (Beijing) Co., Ltd., Beijing, China
| | - Tao Li
- Department of Bone and Soft-tissue Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|