1
|
Lei WT, Lo YF, Tsumura M, Ding JY, Lo CC, Lin YN, Wang CW, Liu LH, Shih HP, Peng JJ, Wu TY, Chan YP, Kang CX, Wang SY, Kuo CY, Tu KH, Yeh CF, Hsieh YJ, Asano T, Chung WH, Okada S, Ku CL. Immunophenotyping and Therapeutic Insights from Chronic Mucocutaneous Candidiasis Cases with STAT1 Gain-of-Function Mutations. J Clin Immunol 2024; 44:184. [PMID: 39177867 DOI: 10.1007/s10875-024-01776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Heterozygous STAT1 Gain-of-Function (GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC) among Inborn Errors of Immunity. Clinically, these mutations manifest as a broad spectrum of immune dysregulation, including autoimmune diseases, vascular disorders, and malignancies. The pathogenic mechanisms of immune dysregulation and its impact on immune cells are not yet fully understood. In treatment, JAK inhibitors have shown therapeutic effectiveness in some patients. METHODS We analyzed clinical presentations, cellular phenotypes, and functional impacts in five Taiwanese patients with STAT1 GOF. RESULTS We identified two novel GOF mutations in 5 patients from 2 Taiwanese families, presenting with symptoms of CMC, late-onset rosacea, and autoimmunity. The enhanced phosphorylation and delayed dephosphorylation were displayed by the patients' cells. There are alterations in both innate and adaptive immune cells, including expansion of CD38+HLADR +CD8+ T cells, a skewed activated Tfh cells toward Th1, reduction of memory, marginal zone and anergic B cells, all main functional dendritic cell lineages, and a reduction in classical monocyte. Baricitinib showed therapeutic effectiveness without side effects. CONCLUSION Our study provides the first comprehensive clinical and molecular characteristics in STAT1 GOF patient in Taiwan and highlights the dysregulated T and B cells subsets which may hinge the autoimmunity in STAT1 GOF patients. It also demonstrated the therapeutic safety and efficacy of baricitinib in pediatric patient. Further research is needed to delineate how the aberrant STAT1 signaling lead to the changes in cellular populations as well as to better link to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei and Keelung, Linkou, Taiwan
- Chang Gung Immunology Consortium, CGMH and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Lu-Hang Liu
- Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Yu-Pei Chan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Chen-Xuan Kang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Medical Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Ju Hsieh
- Department of Dermatology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei and Keelung, Linkou, Taiwan
- Chang Gung Immunology Consortium, CGMH and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan.
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Ma C, Hoffmann FW, Shay AE, Koo I, Green KA, Green WR, Hoffmann PR. Upregulated selenoprotein I during lipopolysaccharide-induced B cell activation promotes lipidomic changes and is required for effective differentiation into IgM-secreting plasma B cells. J Leukoc Biol 2024; 116:6-17. [PMID: 38289835 PMCID: PMC11212798 DOI: 10.1093/jleuko/qiae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/01/2024] Open
Abstract
The mechanisms driving metabolic reprogramming during B cell activation are unclear, particularly roles for enzymatic pathways involved in lipid remodeling. We found that murine B cell activation with lipopolysaccharide (LPS) led to a 1.6-fold increase in total lipids that included higher levels of phosphatidylethanolamine (PE) and plasmenyl PE. Selenoprotein I (SELENOI) is an ethanolamine phospholipid transferase involved in the synthesis of both PE and plasmenyl PE, and SELENOI expression was also upregulated during activation. Selenoi knockout (KO) B cells exhibited decreased levels of plasmenyl PE, which plays an important antioxidant role. Lipid peroxidation was measured and found to increase ∼2-fold in KO vs. wild-type (WT) B cells. Cell death was not impacted by KO in LPS-treated B cells and proliferation was only slightly reduced, but differentiation into CD138 + Blimp-1+ plasma B cells was decreased ∼2-fold. This led to examination of B cell receptors important for differentiation that recognize the ligand B cell activating factor, and levels of TACI (transmembrane activator, calcium-modulator, and cytophilin ligand interactor) (CD267) were significantly decreased on KO B cells compared with WT control cells. Vaccination with ovalbumin/adjuvant led to decreased ovalbumin-specific immunoglobulin M (IgM) levels in sera of KO mice compared with WT mice. Real-time polymerase chain reaction analyses revealed a decreased switch from surface to secreted IgM in spleens of KO mice induced by vaccination or LP-BM5 retrovirus infection. Overall, these findings detail the lipidomic response of B cells to LPS activation and reveal the importance of upregulated SELENOI for promoting differentiation into IgM-secreting plasma B cells.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, United States
| | - FuKun W Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, United States
| | - Ashley E Shay
- Huck Institutes of the Life Sciences, The Pennsylvania State University, 101 Huck Life Sciences Building, University Park, PA 16802, United States
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, 107 Animal, Veterinary, and Biomedical Sciences Building, University Park, PA 16802, United States
| | - Kathy A Green
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, One Medical Center Drive HB7556, Lebanon, NH 03756, United States
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, One Medical Center Drive HB7556, Lebanon, NH 03756, United States
| | - Peter R Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, United States
| |
Collapse
|
3
|
Narasipura EA, Fenton OS. Advances in non-viral mRNA delivery to the spleen. Biomater Sci 2024; 12:3027-3044. [PMID: 38712531 PMCID: PMC11175841 DOI: 10.1039/d4bm00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Developing safe and effective delivery strategies for localizing messenger RNA (mRNA) payloads to the spleen is an important goal in the field of genetic medicine. Accomplishing this goal is challenging due to the instability, size, and charge of mRNA payloads. Here, we provide an analysis of non-viral delivery technologies that have been developed to deliver mRNA payloads to the spleen. Specifically, our review begins by outlining the unique anatomy and potential targets for mRNA delivery within the spleen. Next, we describe approaches in mRNA sequence engineering that can be used to improve mRNA delivery to the spleen. Then, we describe advances in non-viral carrier systems that can package and deliver mRNA payloads to the spleen, highlighting key advances in the literature in lipid nanoparticle (LNP) and polymer nanoparticle (PNP) technology platforms. Finally, we provide commentary and outlook on how splenic mRNA delivery may afford next-generation treatments for autoimmune disorders and cancers. In undertaking this approach, our goal with this review is to both establish a fundamental understanding of drug delivery challenges associated with localizing mRNA payloads to the spleen, while also broadly highlighting the potential to use these genetic medicines to treat disease.
Collapse
Affiliation(s)
- Eshan A Narasipura
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Owen S Fenton
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Tubman VN, Maysonet D, Estrada N, Halder T, Ramos L, Bhamidipati S, Carisey AF, Minard CG, Allen CE. Unswitched memory B cell deficiency in children with sickle cell disease and response to pneumococcal polysaccharide vaccine. Am J Hematol 2024; 99:1084-1094. [PMID: 38708915 DOI: 10.1002/ajh.27319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 05/07/2024]
Abstract
Early mortality in sickle cell disease (SCD) is attributed to increased infections due to loss of splenic function. Marginal zone B cells are important for initial opsonization of pathogens and can be absent in spleen histopathology in SCD. The frequency of unswitched memory B cells (UMBC), the circulating correlate of marginal zone B cells, reflects the immunologic function of the spleen. We hypothesized that asplenia in SCD is associated with alterations in the peripheral blood lymphocyte population and explored whether UMBC deficiency was associated with a clinical phenotype. We analyzed B cell subsets and clinical history for 238 children with SCD and 63 controls. The median proportion of UMBCs was lower in children with SCD compared with controls (4.7% vs. 6.6%, p < .001). Naïve B cells were higher in SCD compared with controls (80.6 vs. 76.3%, respectively, p = .02). UMBC frequency declined by 3.4% per year increase in age in SCD (95% CI: 2%, 4.7%, p < .001), but not in controls. A majority of children in all cohorts had an IgM concentration in the normal range for age and there were no differences between groups (p = .13). Subjects developed titers adequate for long-term protection to fewer serotypes in the polysaccharide vaccine than controls (14.7 vs. 19.4, p < .001). In this cohort, bacteremia was rare and specific clinical complications were not associated with UMBC proportion. In summary, UMBC deficiency occurs in SCD and is associated with age. Future studies should investigate B cell subsets prospectively and identify the mechanism of B cell loss in the spleen.
Collapse
Affiliation(s)
- Venée N Tubman
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, Texas, USA
- The William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel Maysonet
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Norma Estrada
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Tripti Halder
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Lindsey Ramos
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Alexandre F Carisey
- The William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Charles G Minard
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas, USA
| | - Carl E Allen
- Texas Children's Cancer and Hematology Centers, Texas Children's Hospital, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
5
|
Wang H, Lan L, Wang J, Chen J, Xiao L, Han F. Alterations of B-Cell subsets in Peripheral Blood from Adult Patients with Idiopathic Membranous Nephropathy. Immunol Lett 2024; 266:106838. [PMID: 38278305 DOI: 10.1016/j.imlet.2024.106838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVES Idiopathic membranous nephropathy (MN) is an autoimmune disease characterized by specific antibodies. However, the underlying mechanisms by which lymphocytes promote the development of MN remain poorly understood. This study aims to determine the changes of B-cell subsets and their clinical significance in MN patients. METHODS We included a cohort of 21 idiopathic MN patients with new onset or a relapse, 19 healthy controls (HCs) and 10 patients with minimal change disease (MCD). Immunohistochemistry and flow cytometry were performed to assess the B-cell infiltration in renal biopsy tissues and peripheral blood, respectively. RESULTS Idiopathic MN patients (including new-onset and relapse groups) had lower percentages of marginal-zone B (MZB) and non-switched memory B cells, and higher percentages of plasmablasts than HCs (P < 0.01). Particularly, the new-onset group had lower percentages of switched memory B cells and MZB cells, and higher percentages of Naïve B cells than HCs (P<0.05). Interestingly, the percentage of plasmablasts was significantly correlated with urine protein to creatinine ratio, serum albumin, IgG, anti-M-type phospholipase A2 receptor antibody level and age in MN patients (P < 0.05). MN with Ehrenreich-Churg stage Ⅱ-Ⅳ had a lower median percentage of MZB and non-switched memory B cells, while a higher median percentage of plasmablasts than those in MN patients with stage Ehrenreich-Churg I (P < 0.05). CONCLUSION Idiopathic MN patients had specific changes in B-cell subsets proportions in peripheral blood. Further studies are needed to precisely determine the roles of B-cell subsets in MN.
Collapse
Affiliation(s)
- Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China; Department of Rheumatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lan Lan
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jiahui Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China
| | - Liang Xiao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China.
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, China; Zhejiang Clinical Research Center of Kidney and Urinary System Disease, China; Institute of Nephrology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
6
|
Harrison J, Newland SA, Jiang W, Giakomidi D, Zhao X, Clement M, Masters L, Corovic A, Zhang X, Drago F, Ma M, Ozsvar Kozma M, Yasin F, Saady Y, Kothari H, Zhao TX, Shi GP, McNamara CA, Binder CJ, Sage AP, Tarkin JM, Mallat Z, Nus M. Marginal zone B cells produce 'natural' atheroprotective IgM antibodies in a T cell-dependent manner. Cardiovasc Res 2024; 120:318-328. [PMID: 38381113 PMCID: PMC10939463 DOI: 10.1093/cvr/cvae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 12/12/2023] [Indexed: 02/22/2024] Open
Abstract
AIMS The adaptive immune response plays an important role in atherosclerosis. In response to a high-fat/high-cholesterol (HF/HC) diet, marginal zone B (MZB) cells activate an atheroprotective programme by regulating the differentiation and accumulation of 'poorly differentiated' T follicular helper (Tfh) cells. On the other hand, Tfh cells activate the germinal centre response, which promotes atherosclerosis through the production of class-switched high-affinity antibodies. We therefore investigated the direct role of Tfh cells and the role of IL18 in Tfh differentiation in atherosclerosis. METHODS AND RESULTS We generated atherosclerotic mouse models with selective genetic deletion of Tfh cells, MZB cells, or IL18 signalling in Tfh cells. Surprisingly, mice lacking Tfh cells had increased atherosclerosis. Lack of Tfh not only reduced class-switched IgG antibodies against oxidation-specific epitopes (OSEs) but also reduced atheroprotective natural IgM-type anti-phosphorylcholine (PC) antibodies, despite no alteration of natural B1 cells. Moreover, the absence of Tfh cells was associated with an accumulation of MZB cells with substantially reduced ability to secrete antibodies. In the same manner, MZB cell deficiency in Ldlr-/- mice was associated with a significant decrease in atheroprotective IgM antibodies, including natural anti-PC IgM antibodies. In humans, we found a positive correlation between circulating MZB-like cells and anti-OSE IgM antibodies. Finally, we identified an important role for IL18 signalling in HF/HC diet-induced Tfh. CONCLUSION Our findings reveal a previously unsuspected role of MZB cells in regulating atheroprotective 'natural' IgM antibody production in a Tfh-dependent manner, which could have important pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- James Harrison
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Stephen A Newland
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Wei Jiang
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Despoina Giakomidi
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Xiaohui Zhao
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Marc Clement
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- Laboratory for Vascular Translational Sciences (LVTS), Université de Paris, INSERM U1148, Paris, France
| | - Leanne Masters
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrej Corovic
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Xian Zhang
- Department of Medicine, Brigham and Woman’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fabrizio Drago
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Marcella Ma
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, UK
| | - Maria Ozsvar Kozma
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Froher Yasin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Yuta Saady
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Hema Kothari
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tian X Zhao
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Woman’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Coleen A McNamara
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andrew P Sage
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Jason M Tarkin
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Ziad Mallat
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- PARCC Inserm U970, Universite de Paris, Paris, France
| | - Meritxell Nus
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
7
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
8
|
McGettigan SE, Aira LE, Kumar G, Ballet R, Butcher EC, Baumgarth N, Debes GF. Secreted IgM modulates IL-10 expression in B cells. Nat Commun 2024; 15:324. [PMID: 38182585 PMCID: PMC10773282 DOI: 10.1038/s41467-023-44382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
IL-10+ B cells are critical for immune homeostasis and restraining immune responses in infection, cancer, and inflammation; however, the signals that govern IL-10+ B cell differentiation are ill-defined. Here we find that IL-10+ B cells expand in mice lacking secreted IgM ((s)IgM-/-) up to 10-fold relative to wildtype (WT) among all major B cell and regulatory B cell subsets. The IL-10+ B cell increase is polyclonal and presents within 24 hours of birth. In WT mice, sIgM is produced prenatally and limits the expansion of IL-10+ B cells. Lack of the high affinity receptor for sIgM, FcμR, in B cells translates into an intermediate IL-10+ B cell phenotype relative to WT or sIgM-/- mice. Our study thus shows that sIgM regulates IL-10 programming in B cells in part via B cell-expressed FcμR, thereby revealing a function of sIgM in regulating immune homeostasis.
Collapse
Affiliation(s)
- Shannon Eileen McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Lazaro Emilio Aira
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Romain Ballet
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugene C Butcher
- Palo Alto Veterans Institute for Research, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Dept. Pathology, Microbiology & Immunology, University of California Davis, Davis, CA, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Gudrun F Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
9
|
Sarkar SK, Willson AML, Jordan MA. The Plasticity of Immune Cell Response Complicates Dissecting the Underlying Pathology of Multiple Sclerosis. J Immunol Res 2024; 2024:5383099. [PMID: 38213874 PMCID: PMC10783990 DOI: 10.1155/2024/5383099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease characterized by the destruction of the myelin sheath of the neuronal axon in the central nervous system. Many risk factors, including environmental, epigenetic, genetic, and lifestyle factors, are responsible for the development of MS. It has long been thought that only adaptive immune cells, especially autoreactive T cells, are responsible for the pathophysiology; however, recent evidence has indicated that innate immune cells are also highly involved in disease initiation and progression. Here, we compile the available data regarding the role immune cells play in MS, drawn from both human and animal research. While T and B lymphocytes, chiefly enhance MS pathology, regulatory T cells (Tregs) may serve a more protective role, as can B cells, depending on context and location. Cells chiefly involved in innate immunity, including macrophages, microglia, astrocytes, dendritic cells, natural killer (NK) cells, eosinophils, and mast cells, play varied roles. In addition, there is evidence regarding the involvement of innate-like immune cells, such as γδ T cells, NKT cells, MAIT cells, and innate-like B cells as crucial contributors to MS pathophysiology. It is unclear which of these cell subsets are involved in the onset or progression of disease or in protective mechanisms due to their plastic nature, which can change their properties and functions depending on microenvironmental exposure and the response of neural networks in damage control. This highlights the need for a multipronged approach, combining stringently designed clinical data with carefully controlled in vitro and in vivo research findings, to identify the underlying mechanisms so that more effective therapeutics can be developed.
Collapse
Affiliation(s)
- Sujan Kumar Sarkar
- Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Annie M. L. Willson
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| | - Margaret A. Jordan
- Biomedical Sciences and Molecular Biology, CPHMVS, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
10
|
Cormier M, Burnett E, Mo A, Notley C, Tijet N, Christie-Holmes N, Hough C, Lillicrap D. Mice possess a more limited natural antihuman factor VIII antibody repertoire than humans that is produced disproportionately by marginal zone B cells. J Thromb Haemost 2024; 22:76-89. [PMID: 37678547 PMCID: PMC10872961 DOI: 10.1016/j.jtha.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND One-third of patients with severe hemophilia A develop neutralizing antibodies to the factor VIII (FVIII) protein in response to intravenous replacement therapy. Patients may also generate natural, nonneutralizing antibodies to FVIII before FVIII exposure. These patients are at increased risk of developing neutralizing antibodies to FVIII. However, natural anti-FVIII antibodies are also present in healthy human donors. OBJECTIVES To further characterize the natural antihuman (h) FVIII antibody repertoire in mice and humans. METHODS An in-house ELISA was developed using a purified polyclonal immunoglobulin (Ig) standard to quantify anti-hFVIII Ig in cell culture supernatant or plasma from mice (wild-type and FVIII-/-) and adult human donors. RESULTS All naïve wild-type and FVIII-/- mice, as well as healthy human donors, possess natural anti-hFVIII antibodies. Mice only have natural anti-hFVIII IgM, which is present in germ-free mice, suggesting that they are germline encoded. Although murine marginal zone B cells (MZBs) contribute 44% to all circulating natural IgM, they contribute disproportionately to the anti-hFVIII IgM repertoire (82%). This naturally occurring murine MZB-derived IgM is not B-domain specific and is reduced by intravenously administered hFVIII, suggesting that it may form immune complexes immediately upon hFVIII administration. Natural anti-hFVIII antibodies of IgG, IgM, and IgA isotypes can be detected in adult human donors. There were increased levels of B-domain-favoring anti-hFVIII IgG in 14% of healthy donors, which were markedly different from the rest of the "low-titer" population. CONCLUSIONS There is a preponderance of natural anti-hFVIII antibodies in both mice and healthy adult human donors.
Collapse
Affiliation(s)
- Matthew Cormier
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| | - Erin Burnett
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Aomei Mo
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Colleen Notley
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nathalie Tijet
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Natasha Christie-Holmes
- Emerging & Pandemic Infections Consortium, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christine Hough
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
11
|
Seitz L, Gaitan D, Berkemeier CM, Berger CT, Recher M. Cluster analysis of flowcytometric immunophenotyping with extended T cell subsets in suspected immunodeficiency. Immun Inflamm Dis 2023; 11:e1106. [PMID: 38156376 PMCID: PMC10698832 DOI: 10.1002/iid3.1106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Patients with immunodeficiencies commonly experience diagnostic delays resulting in morbidity. There is an unmet need to identify patients earlier, especially those with high risk for complications. Compared to immunoglobulin quantification and flowcytometric B cell subset analysis, expanded T cell subset analysis is rarely performed in the initial evaluation of patients with suspected immunodeficiency. The simultaneous interpretation of multiple immune variables, including lymphocyte subsets, is challenging. OBJECTIVE To evaluate the diagnostic value of cluster analyses of immune variables in patients with suspected immunodeficiency. METHODS Retrospective analysis of 38 immune system variables, including seven B cell and sixteen T cell subpopulations, in 107 adult patients (73 with immunodeficiency, 34 without) evaluated at a tertiary outpatient immunology clinic. Correlation analyses of individual variables, k-means cluster analysis with evaluation of the classification into "no immunodeficiency" versus "immunodeficiency" and visual analyses of hierarchical heatmaps were performed. RESULTS Binary classification of patients into groups with and without immunodeficiency was correct in 54% of cases with the full data set and increased to 69% and 75% of cases, respectively, when only 16 variables with moderate (p < .05) or 7 variables with strong evidence (p < .01) for a difference between groups were included. In a cluster heatmap with all patients but only moderately differing variables and a heatmap with only immunodeficient patients restricted to T cell variables alone, segregation of most patients with common variable immunodeficiency and combined immunodeficiency was observed. CONCLUSION Cluster analyses of immune variables, including detailed lymphocyte flowcytometry with T cell subpopulations, may support clinical decision making for suspected immunodeficiency in daily practice.
Collapse
Affiliation(s)
- Luca Seitz
- Immunodeficiency Laboratory, Department of BiomedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- Department of Rheumatology and Immunology, Inselspital, University Hospital BernUniversity of BernBernSwitzerland
| | - Daniel Gaitan
- Immunodeficiency Laboratory, Department of BiomedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
| | - Caroline M. Berkemeier
- Division of Medical Immunology, Laboratory MedicineUniversity Hospital BaselBaselSwitzerland
| | - Christoph T. Berger
- University Center for ImmunologyUniversity Hospital BaselBaselSwitzerland
- Translational Immunology, Department of BiomedicineUniversity of BaselBaselSwitzerland
| | - Mike Recher
- Immunodeficiency Laboratory, Department of BiomedicineUniversity Hospital Basel and University of BaselBaselSwitzerland
- University Center for ImmunologyUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
12
|
Huang L, Lin W, Liu Y, Zhu J, Li Y, Zheng Z, Tang C. Combination treatment with telitacicept, cyclophosphamide and glucocorticoids for severe Granulomatous polyangiitis: a case report and literature review. Front Immunol 2023; 14:1298650. [PMID: 38106422 PMCID: PMC10722187 DOI: 10.3389/fimmu.2023.1298650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/26/2023] [Indexed: 12/19/2023] Open
Abstract
Granulomatous polyangiitis (GPA) is a rare autoimmune disease that can involve multiple systems throughout the body, including the ear, nose, upper and lower respiratory tracts. It is classified as an antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Telitacicept is a novel recombinant fusion protein targeting B-lymphocyte stimulator (BLyS). Telitacicept can inhibit the development and maturation of abnormal B cells by blocking BLyS, and inhibit the production of antibodies by abnormal plasma cells by blocking APRIL (A proliferation-inducing ligand), which is expected to become a new drug for the treatment of GPA. We report a 64-year-old man diagnosed at our hospital with GPA involving multiple systems including kidneys, lungs, nose and ears. Renal involvement was severe, with a clinical characteristic of rapidly progressive glomerulonephritis and a pathologic manifestation of crescentic nephritis with plasma cell infiltration. The patient was treated with hormones, immunoglobulins and cyclophosphamide (CYC) with the addition of telitacicept and a rapid reduction in hormone dosage. The patient's renal function improved significantly within a short period of time, and his hearing and lung lesions improved significantly. At the same time, he did not develop serious infections and other related complications. Our report suggests that short-term control of the patient's conditions is necessary in GPA patients with organ-threatening disease. Telitacicept combined with CYC and glucocorticoids may be an induction therapy with safety and feasibility. However, more clinical trials are needed to validate the efficacy and safety of the therapeutic regimen.
Collapse
Affiliation(s)
- Liqi Huang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Wenjian Lin
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yu Liu
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Junfeng Zhu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yun Li
- Department of Thoracic Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
13
|
Pattarabanjird T, Nguyen AT, McSkimming C, Dinh HQ, Marshall MA, Ghosheh Y, Gulati R, Durant C, Vallejo J, Saigusa R, Drago F, Guy TV, Premo K, Taylor AM, Paul S, Kundu B, Berr S, Gonen A, Tsimikas S, Miller Y, Pillai S, Ley K, Hedrick CC, McNamara CA. Human circulating CD24 hi marginal zone B cells produce IgM targeting atherogenic antigens and confer protection from vascular disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1003-1014. [PMID: 39196097 DOI: 10.1038/s44161-023-00356-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 09/26/2023] [Indexed: 08/29/2024]
Abstract
IgMs that inactivate oxidation-specific epitopes (IgMOSE), which are secondary products of lipid peroxidization, protect against inflammatory diseases, including diet-induced atherosclerosis. However, the human B cell subtype that produces IgMOSE remains unknown. In this study, we used single-cell mass cytometry and adoptive transfer of B cell subtypes to NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice to identify B27+IgM+CD24hi cells as the major producers of IgMOSE in humans. Notably, these cells have characteristics of human circulatory marginal zone B (MZB) cells, which are known to be atheoroprotective IgM producers in mice. CD24 antibody treatment to reduce MZB cells and IgM in a hyperlipidemic humanized mouse model provides the evidence that MZB cells protect against vascular inflammation. Consistent with these findings, the frequency of B27+IgM+CD24hi cells (MZB) in patients inversely correlates with coronary artery disease severity.
Collapse
Affiliation(s)
- Tanyaporn Pattarabanjird
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Anh Tram Nguyen
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Chantel McSkimming
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Huy Q Dinh
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine, Madison, WI, USA
| | - Melissa A Marshall
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | | | | - Fabrizio Drago
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Thomas V Guy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Angela M Taylor
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Soumen Paul
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Bijoy Kundu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Stuart Berr
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA
| | - Ayelet Gonen
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sotirios Tsimikas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yury Miller
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Klaus Ley
- Medical College of Georgia at Augusta University, Augusta, GA, USA
| | | | - Coleen A McNamara
- Carter Immunology Center, University of Virginia, Charlottesville, VA, USA.
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Division of Cardiovascular Medicine/Department of Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
14
|
Houtman BM, Walraven I, de Grouw E, van der Maazen RWM, Kremer LCM, van Dulmen-den Broeder E, van den Heuvel-Eibrink MM, Tissing WJE, Bresters D, van der Pal HJH, de Vries ACH, Louwerens M, van der Heiden-van der Loo M, Neggers SJC, Janssens GO, Blijlevens NMA, Lambeck AJA, Preijers F, Loonen JJ. The Value of IgM Memory B-Cells in the Assessment of Splenic Function in Childhood Cancer Survivors at Risk for Splenic Dysfunction: A DCCSS-LATER Study. J Immunol Res 2023; 2023:5863995. [PMID: 37901347 PMCID: PMC10611543 DOI: 10.1155/2023/5863995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 10/31/2023] Open
Abstract
Background Childhood cancer survivors (CCS) who received radiotherapy involving the spleen or total body irradiation (TBI) might be at risk for splenic dysfunction. A comprehensive screening test for examining splenic dysfunction is lacking. Objective We investigated whether IgM memory B-cells could be used to assess splenic dysfunction in CCS who received a splenectomy, radiotherapy involving the spleen, or TBI. Methods All CCS were enrolled from the DCCSS-LATER cohort. We analyzed differences in IgM memory B-cells and Howell-Jolly bodies (HJB) in CCS who had a splenectomy (n = 9), received radiotherapy involving the spleen (n = 36), or TBI (n = 15). IgM memory B-cells < 9 cells/µL was defined as abnormal. Results We observed a higher median number of IgM memory B-cells in CCS who received radiotherapy involving the spleen (31 cells/µL, p=0.06) or TBI (55 cells/µL, p = 0.03) compared to CCS who received splenectomy (20 cells/µL). However, only two CCS had IgM memory B-cells below the lower limit of normal. No difference in IgM memory B-cells was observed between CCS with HJB present and absent (35 cells/µL vs. 44 cells/µL). Conclusion Although the number of IgM memory B-cells differed between splenectomized CCS and CCS who received radiotherapy involving the spleen or TBI, only two CCS showed abnormal values. Therefore, this assessment cannot be used to screen for splenic dysfunction.
Collapse
Affiliation(s)
- Bente M. Houtman
- Department of Hematology, Center of Expertise for Cancer Survivorship, Radboud University Medical Center, Nijmegen, Netherlands
| | - Iris Walraven
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elke de Grouw
- Department of Laboratory Medicine—Radboudumc Laboratory of Diagnostics, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Leontien C. M. Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, University of Amsterdam, Amsterdam, Netherlands
| | | | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, Netherlands
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Wim J. E. Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Pediatric Oncology/Hematology, Beatrix Children's Hospital/University of Groningen/University Medical Center Groningen, Groningen, Netherlands
| | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Andrica C. H. de Vries
- Department of Pediatric Oncology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marloes Louwerens
- Department of Internal Medicine, Leiden University Medical Center, Leiden, Netherlands
| | | | - Sebastian J. C. Neggers
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Medicine, Section Endocrinology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Geert O. Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Annechien J. A. Lambeck
- Department of Laboratory Medicine, University Medical Center Groningen, Groningen, Netherlands
| | - Frank Preijers
- Department of Laboratory Medicine—Laboratory for Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jacqueline J. Loonen
- Department of Hematology, Center of Expertise for Cancer Survivorship, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
15
|
Vitallé J, Zenarruzabeitia O, Merino-Pérez A, Terrén I, Orrantia A, Pacho de Lucas A, Iribarren JA, García-Fraile LJ, Balsalobre L, Amo L, de Andrés B, Borrego F. Human IgM hiCD300a + B Cells Are Circulating Marginal Zone Memory B Cells That Respond to Pneumococcal Polysaccharides and Their Frequency Is Decreased in People Living with HIV. Int J Mol Sci 2023; 24:13754. [PMID: 37762055 PMCID: PMC10530418 DOI: 10.3390/ijms241813754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
CD300a is differentially expressed among B cell subsets, although its expression in immunoglobulin (Ig)M+ B cells is not well known. We identified a B cell subset expressing CD300a and high levels of IgM (IgMhiCD300a+). The results showed that IgMhiCD300a+ B cells were CD10-CD27+CD25+IgDloCD21hiCD23-CD38loCD1chi, suggesting that they are circulating marginal zone (MZ) IgM memory B cells. Regarding the immunoglobulin repertoire, IgMhiCD300a+ B cells exhibited a higher mutation rate and usage of the IgH-VDJ genes than the IgM+CD300a- counterpart. Moreover, the shorter complementarity-determining region 3 (CDR3) amino acid (AA) length from IgMhiCD300a+ B cells together with the predicted antigen experience repertoire indicates that this B cell subset has a memory phenotype. IgM memory B cells are important in T cell-independent responses. Accordingly, we demonstrate that this particular subset secretes higher amounts of IgM after stimulation with pneumococcal polysaccharides or a toll-like receptor 9 (TLR9) agonist than IgM+CD300a- cells. Finally, the frequency of IgMhiCD300a+ B cells was lower in people living with HIV-1 (PLWH) and it was inversely correlated with the years with HIV infection. Altogether, these data help to identify a memory B cell subset that contributes to T cell-independent responses to pneumococcal infections and may explain the increase in severe pneumococcal infections and the impaired responses to pneumococcal vaccination in PLWH.
Collapse
Affiliation(s)
- Joana Vitallé
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Instituto de Biomedicina de Sevilla (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, 41013 Seville, Spain
| | - Olatz Zenarruzabeitia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Aitana Merino-Pérez
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Iñigo Terrén
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Ane Orrantia
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
| | - Arantza Pacho de Lucas
- Regulation of the Immune System Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain;
- Immunology Service, Cruces University Hospital, 48903 Barakaldo, Spain
| | - José A. Iribarren
- Department of Infectious Diseases, Donostia University Hospital, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
| | - Lucio J. García-Fraile
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Department of Internal Medicine, La Princesa University Hospital, 28006 Madrid, Spain
| | - Luz Balsalobre
- Laboratory of Microbiology, UR Salud, Infanta Sofía University Hospital, 28702 Madrid, Spain;
| | - Laura Amo
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Belén de Andrés
- Immunobiology Department, Carlos III Health Institute, 28220 Madrid, Spain;
| | - Francisco Borrego
- Immunopathology Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (O.Z.); (A.M.-P.); (I.T.); (A.O.); (L.A.)
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
16
|
Alejandra WP, Miriam Irene JP, Fabio Antonio GS, Patricia RGR, Elizabeth TA, Juan Pablo AA, Rebeca GV. Production of monoclonal antibodies for therapeutic purposes: A review. Int Immunopharmacol 2023; 120:110376. [PMID: 37244118 DOI: 10.1016/j.intimp.2023.110376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Monoclonal antibodies (mAbs) have been used in the development of immunotherapies that target a variety of diseases, such as cancer, autoimmune diseases, and even viral infections; they play a key role in immunization and are expected after vaccination. However, some conditions do not promote the development of neutralizing antibodies. Production and use of mAbs, generated in biofactories, represent vast potential as aids in immunological responses when the organism cannot produce them on their own, these convey unique specificity by recognizing and targeting specific antigen. Antibodies can be defined as heterotetrametric glycoproteins of symmetric nature, and they participate as effector proteins in humoral responses. Additionally, there are different types of mAbs (murine, chimeric, humanized, human, mAbs as Antibody-drug conjugates and bispecific mAbs) discussed in the present work. When these molecules are produced in vitro as mAbs, several common techniques, such as hybridomas or phage display are used. There are several preferred cell lines that function as biofactories, for the production of mAbs, the selection of which rely on the variation of adaptability, productivity and both phenotypic and genotypic shifts. After the cell expression systems and culture techniques are used, there are diverse specialized downstream processes to achieve desired yield and isolation as well as product quality and characterization. Novel perspectives regarding these protocols represent a potential improvement for mAbs high-scale production.
Collapse
Affiliation(s)
- Waller-Pulido Alejandra
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Jiménez-Pérez Miriam Irene
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | - Gonzalez-Sanchez Fabio Antonio
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico
| | | | | | - Aleman-Aguilar Juan Pablo
- Tecnologico de Monterrey, School of Medicine and Health Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| | - Garcia-Varela Rebeca
- Tecnologico de Monterrey, School of Engineering and Science, Ave. General Ramon Corona 2514, 45138 Zapopan, Jalisco, Mexico.
| |
Collapse
|
17
|
Böröcz K, Kinyó Á, Simon D, Erdő-Bonyár S, Németh P, Berki T. Complexity of the Immune Response Elicited by Different COVID-19 Vaccines, in the Light of Natural Autoantibodies and Immunomodulatory Therapies. Int J Mol Sci 2023; 24:ijms24076439. [PMID: 37047412 PMCID: PMC10094397 DOI: 10.3390/ijms24076439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Despite the abundance of data on the COVID-19 vaccine-induced immune activation, the impact of natural autoantibodies (nAAbs) on these processes is less well defined. Therefore, we investigated potential connections between vaccine efficacy and nAAb levels. We were also interested in the impact of immunomodulatory therapies on vaccine efficacy. Clinical residual samples were used for the assessment of the COVID-19 vaccine-elicited immune response (IR) (n=255), as well as for the investigation of the immunization-associated expansion of the nAAb pool (n=185). In order to study the potential interaction between immunomodulatory therapies and the vaccine-induced IR, untreated, healthy individuals and patients receiving anti-TNFα or anti-IL-17 therapies were compared (n total =45). In-house ELISAs (anticitrate synthase, anti-HSP60 and-70) and commercial ELISAs (anti-SARS-CoV-2 ELISAs IgG, IgA, NeutraLISA and IFN-γ release assay 'IGRA') were applied. We found significant differences in the IR given to different vaccines. Moreover, nAAb levels showed plasticity in response to anti-COVID-19 immunization. We conclude that our findings may support the theorem about the non-specific beneficial 'side effects' of vaccination, including the broadening of the nAAb repertoire. Considering immunomodulation, we suggest that anti-TNFα and anti-IL17 treatments may interfere negatively with MALT-associated IR, manifested as decreased IgA titers; however, the modest sample numbers of the herein presented model might be a limiting factor of reaching a more comprehensive conclusion.
Collapse
Affiliation(s)
- Katalin Böröcz
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Ágnes Kinyó
- Department of Dermatology, Venereology and Oncodermatology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Szabina Erdő-Bonyár
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, 7624 Pécs, Hungary
| |
Collapse
|
18
|
Frede N, Lorenzetti R, Hüppe JM, Janowska I, Troilo A, Schleyer MT, Venhoff AC, Voll RE, Thiel J, Venhoff N, Rizzi M. JAK inhibitors differentially modulate B cell activation, maturation and function: A comparative analysis of five JAK inhibitors in an in-vitro B cell differentiation model and in patients with rheumatoid arthritis. Front Immunol 2023; 14:1087986. [PMID: 36776828 PMCID: PMC9908612 DOI: 10.3389/fimmu.2023.1087986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Background Janus kinase (JAK) inhibitors have been approved for the treatment of several immune-mediated diseases (IMIDs) including rheumatoid arthritis (RA) and psoriatic arthritis and are in clinical trials for numerous other IMIDs. However, detailed studies investigating the effects of different JAK inhibitors on B cells are missing. Within this study, we therefore aimed to characterize the effect of JAK inhibition on the B cell compartment. Methods To this end, we investigated the B cell compartment under JAK inhibition and compared the specific effects of the different JAK inhibitors tofacitinib (pan-JAK), baricitinib (JAK1/2), ruxolitinib (JAK1/2), upadacitinib (JAK1/2) as well as filgotinib (selective JAK1) on in-vitro B cell activation, proliferation, and class switch recombination and involved pathways. Results While B cell phenotyping of RA patients showed an increase in marginal zone (MZ) B cells under JAK inhibition, comparison with healthy donors revealed that the relative frequency of MZ B cells was still lower compared to healthy controls. In an in-vitro model of T-cell-independent B cell activation we observed that JAK1/2 and selective JAK1 inhibitor treatment led to a dose-dependent decrease of total B cell numbers. We detected an altered B cell differentiation with a significant increase in MZ-like B cells and an increase in plasmablast differentiation in the first days of culture, most pronounced with the pan-JAK inhibitor tofacitinib, although there was no increase in immunoglobulin secretion in-vitro. Notably, we further observed a profound reduction of switched memory B cell formation, especially with JAK1/2 inhibition. JAK inhibitor treatment led to a dose-dependent reduction of STAT3 expression and phosphorylation as well as STAT3 target gene expression and modulated the secretion of pro- and anti-inflammatory cytokines by B cells. Conclusion JAK inhibition has a major effect on B cell activation and differentiation, with differential outcomes between JAK inhibitors hinting towards distinct and unique effects on B cell homeostasis.
Collapse
Affiliation(s)
- Natalie Frede
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raquel Lorenzetti
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Janika M Hüppe
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marei-Theresa Schleyer
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ana C Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Thiel
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Division of Rheumatology and Clinical Immunology, Medical University Graz, Graz, Austria
| | - Nils Venhoff
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
19
|
Nazarian A, Loika Y, He L, Culminskaya I, Kulminski AM. Genome-wide analysis identified abundant genetic modulators of contributions of the apolipoprotein E alleles to Alzheimer's disease risk. Alzheimers Dement 2022; 18:2067-2078. [PMID: 34978151 PMCID: PMC9250541 DOI: 10.1002/alz.12540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The apolipoprotein E (APOE) ε2 and ε4 alleles have beneficial and adverse impacts on Alzheimer's disease (AD), respectively, with incomplete penetrance, which may be modulated by other genetic variants. METHODS We examined whether the associations of the APOE alleles with other polymorphisms in the genome can be sensitive to AD-affection status. RESULTS We identified associations of the ε2 and ε4 alleles with 314 and 232 polymorphisms, respectively. Of them, 35 and 31 polymorphisms had significantly different effects in AD-affected and -unaffected groups, suggesting their potential involvement in the AD pathogenesis by modulating the effects of the ε2 and ε4 alleles, respectively. Our survival-type analysis of the AD risk supported modulating roles of multiple group-specific polymorphisms. Our functional analysis identified gene enrichment in multiple immune-related biological processes, for example, B cell function. DISCUSSION These findings suggest involvement of local and inter-chromosomal modulators of the effects of the APOE alleles on the AD risk.
Collapse
Affiliation(s)
- Alireza Nazarian
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Liang He
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Irina Culminskaya
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Epigenetic regulation of B cells and its role in autoimmune pathogenesis. Cell Mol Immunol 2022; 19:1215-1234. [PMID: 36220996 PMCID: PMC9622816 DOI: 10.1038/s41423-022-00933-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
B cells play a pivotal role in the pathogenesis of autoimmune diseases. Although previous studies have shown many genetic polymorphisms associated with B-cell activation in patients with various autoimmune disorders, progress in epigenetic research has revealed new mechanisms leading to B-cell hyperactivation. Epigenetic mechanisms, including those involving histone modifications, DNA methylation, and noncoding RNAs, regulate B-cell responses, and their dysregulation can contribute to the pathogenesis of autoimmune diseases. Patients with autoimmune diseases show epigenetic alterations that lead to the initiation and perpetuation of autoimmune inflammation. Moreover, many clinical and animal model studies have shown the promising potential of epigenetic therapies for patients. In this review, we present an up-to-date overview of epigenetic mechanisms with a focus on their roles in regulating functional B-cell subsets. Furthermore, we discuss epigenetic dysregulation in B cells and highlight its contribution to the development of autoimmune diseases. Based on clinical and preclinical evidence, we discuss novel epigenetic biomarkers and therapies for patients with autoimmune disorders.
Collapse
|
21
|
Lowin T, Laaser SA, Kok C, Bruneau E, Pongratz G. Cannabidiol: Influence on B Cells, Peripheral Blood Mononuclear Cells, and Peripheral Blood Mononuclear Cell/Rheumatoid Arthritis Synovial Fibroblast Cocultures. Cannabis Cannabinoid Res 2022; 8:321-334. [PMID: 35920857 DOI: 10.1089/can.2021.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Cannabidiol (CBD), one major nonintoxicating phytocannabinoid from Cannabis sativa demonstrated anti-inflammatory effects in animal models of several inflammatory conditions, including arthritis. However, it is still unknown which cell types mediate these anti-inflammatory effects of CBD, and, since CBD binds to a plethora of receptors and enzymes, it is complicated to pinpoint its mechanism of action. In this study, we elucidate the effects of CBD on B cells and peripheral blood mononuclear cells (PBMCs) in respect to survival, calcium mobilization, drug uptake, and cytokine (IL-6, IL-10, and TNF) and immunoglobulin production. Methods: Modulation of intracellular calcium and drug uptake in B cells was determined by using the fluorescent dyes Cal-520 and PoPo3, respectively. Cytokine and immunoglobulin production was evaluated by enzyme-linked immunosorbent assay. PBMC composition and B cell survival after CBD treatment was assessed by flow cytometry. Results: B cells express two major target receptors for CBD, TRPV2 (transient receptor potential vanilloid 2) and TRPA1 (transient receptor potential ankyrin 1), which are not regulated by B cell activation. CBD increased intracellular calcium levels in mouse and human B cells, which was accompanied by enhanced uptake of PoPo3. These effects were not dependent on transient receptor potential channel activation. CBD increased the number of early apoptotic B cells at the expense of viable cells and diminished interleukin (IL)-10 and tumor necrosis factor (TNF) production when activated T cell independently. In PBMCs, CBD increased IL-10 production when B cells were activated T cell dependent, while decreasing TNF levels when activated T cell independently. In PBMC/rheumatoid synovial fibroblast cocultures, CBD reduced IL-10 production when B cells were activated T cell independently. Immunoglobulin M production was augmented by CBD when B cells were activated with CpG. Conclusion: CBD is able to provide pro- and anti-inflammatory effects in isolated B cells and PBMCs. This is dependent on the activating stimulus (T cell dependent or independent) and concentration of CBD. Therefore, CBD might be used to dampen B cell activity in autoimmune conditions such as rheumatoid arthritis, in which B cells are activated by specific autoantigens.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sofia Anna Laaser
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christina Kok
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Eileen Bruneau
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Georg Pongratz
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
22
|
Burton H, McLaughlin L, Shiu KY, Shaw O, Mamode N, Spencer J, Dorling A. The phenotype of HLA-binding B cells from sensitized kidney transplant recipients correlates with clinically prognostic patterns of interferon-γ production against purified HLA proteins. Kidney Int 2022; 102:355-369. [PMID: 35483526 DOI: 10.1016/j.kint.2022.02.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
B cells play crucial roles in cell-mediated alloimmune responses. In vitro, B cells can support or regulate indirect T-cell alloreactivity in response to donor antigens on ELISpot and these patterns associate with clinical outcome. Previous reports of associations between B-cell phenotype and function have examined global phenotypes and responses to polyclonal stimuli. We hypothesized that studying antigen-specific B cells, using samples from sensitized patients, would inform further study to identify novel targets for intervention. Using biotinylated HLA proteins, which bind HLA-specific B cells via the B-cell receptor in a dose-dependent fashion, we report the specific phenotype of HLA-binding B cells and define how they associated with patterns of anti-HLA response in interferon-γ ELISpot. HLA-binding class-switched and IgM+CD27+ memory cells associated strongly with B-dependent interferon-γ production and appeared not suppressible by endogenous Tregs. When the predominant HLA-binding phenotype was naïve B cells, the associated functional ELISpot phenotype was determined by other cells present. High numbers of non-HLA-binding transitional cells associated with B-suppressed interferon-γ production, especially if Tregs were present. However, high frequencies of HLA-binding marginal-zone precursors associated with B-dependent interferon-γ production that appeared suppressible by Tregs. Finally, non-HLA-binding marginal zone precursors may also suppress interferon-γ production, though this association only emerged when Tregs were absent from the ELISpot. Thus, our novel data provide a foundation on which to further define the complexities of interactions between HLA-specific T and B cells and identify new targets for intervention in new therapies for chronic rejection.
Collapse
Affiliation(s)
- Hannah Burton
- Department of Inflammation Biology, King's College London, London, UK
| | - Laura McLaughlin
- Department of Inflammation Biology, King's College London, London, UK
| | - Kin Yee Shiu
- Department of Inflammation Biology, King's College London, London, UK; Department of Renal Medicine (UCL), Royal Free Hospital, London, UK
| | - Olivia Shaw
- Clinical Transplantation Laboratory, Guy's Hospital, London, UK
| | - Nizam Mamode
- Department of Inflammation Biology, King's College London, London, UK
| | - Jo Spencer
- Department of Immunobiology, King's College London, London, UK
| | - Anthony Dorling
- Department of Inflammation Biology, King's College London, London, UK.
| |
Collapse
|
23
|
B-Cell-Based Immunotherapy: A Promising New Alternative. Vaccines (Basel) 2022; 10:vaccines10060879. [PMID: 35746487 PMCID: PMC9227543 DOI: 10.3390/vaccines10060879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
The field of immunotherapy has undergone radical conceptual changes over the last decade. There are various examples of immunotherapy, including the use of monoclonal antibodies, cancer vaccines, tumor-infecting viruses, cytokines, adjuvants, and autologous T cells carrying chimeric antigen receptors (CARs) that can bind cancer-specific antigens known as adoptive immunotherapy. While a lot has been achieved in the field of T-cell immunotherapy, only a fraction of patients (20%) see lasting benefits from this mode of treatment, which is why there is a critical need to turn our attention to other immune cells. B cells have been shown to play both anti- and pro-tumorigenic roles in tumor tissue. In this review, we shed light on the dual nature of B cells in the tumor microenvironment. Furthermore, we discussed the different factors affecting the biology and function of B cells in tumors. In the third section, we described B-cell-based immunotherapies and their clinical applications and challenges. These current studies provide a springboard for carrying out future mechanistic studies to help us unleash the full potential of B cells in immunotherapy.
Collapse
|
24
|
Doan TA, Forward T, Tamburini BAJ. Trafficking and retention of protein antigens across systems and immune cell types. Cell Mol Life Sci 2022; 79:275. [PMID: 35505125 PMCID: PMC9063628 DOI: 10.1007/s00018-022-04303-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022]
Abstract
In response to infection or vaccination, the immune system initially responds non-specifically to the foreign insult (innate) and then develops a specific response to the foreign antigen (adaptive). The programming of the immune response is shaped by the dispersal and delivery of antigens. The antigen size, innate immune activation and location of the insult all determine how antigens are handled. In this review we outline which specific cell types are required for antigen trafficking, which processes require active compared to passive transport, the ability of specific cell types to retain antigens and the viruses (human immunodeficiency virus, influenza and Sendai virus, vesicular stomatitis virus, vaccinia virus) and pattern recognition receptor activation that can initiate antigen retention. Both where the protein antigen is localized and how long it remains are critically important in shaping protective immune responses. Therefore, understanding antigen trafficking and retention is necessary to understand the type and magnitude of the immune response and essential for the development of novel vaccine and therapeutic targets.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA.,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA
| | - Tadg Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, USA. .,Immunology Graduate Program, University of Colorado School of Medicine, Aurora, USA. .,Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
25
|
Broeren MGA, Wang JJ, Balzaretti G, Groenen PJTA, van Schaik BDC, Chataway T, Kaffa C, Bervoets S, Hebeda KM, Bounova G, Pruijn GJM, Gordon TP, De Vries N, Thurlings RM. Proteogenomic analysis of the autoreactive B cell repertoire in blood and tissues of patients with Sjögren's syndrome. Ann Rheum Dis 2022; 81:644-652. [PMID: 35144926 PMCID: PMC8995816 DOI: 10.1136/annrheumdis-2021-221604] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Objective To comparatively analyse the aberrant affinity maturation of the antinuclear and rheumatoid factor (RF) B cell repertoires in blood and tissues of patients with Sjögren’s syndrome (SjS) using an integrated omics workflow. Methods Peptide sequencing of anti-Ro60, anti-Ro52, anti-La and RF was combined with B cell repertoire analysis at the DNA, RNA and single cell level in blood B cell subsets, affected salivary gland and extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT) of patients with SjS. Results Affected tissues contained anti-Ro60, anti-Ro52, anti-La and RF clones as a small part of a polyclonal infiltrate. Anti-Ro60, anti-La and anti-Ro52 clones outnumbered RF clones. MALT lymphoma tissues contained monoclonal RF expansions. Autoreactive clones were not selected from a restricted repertoire in a circulating B cell subset. The antinuclear antibody (ANA) repertoires displayed similar antigen-dependent and immunoglobulin (Ig) G1-directed affinity maturation. RF clones displayed antigen-dependent, IgM-directed and more B cell receptor integrity-dependent affinity maturation. This coincided with extensive intra-clonal diversification in RF-derived lymphomas. Regeneration of clinical disease manifestations after rituximab coincided with large RF clones, which not necessarily belonged to the lymphoma clone, that displayed continuous affinity maturation and intra-clonal diversification. Conclusion The ANA and RF repertoires in patients with SjS display tissue-restricted, antigen-dependent and divergent affinity maturation. Affinity maturation of RF clones deviates further during RF clone derived lymphomagenesis and during regeneration of the autoreactive repertoire after temporary disruption by rituximab. These data give insight into the molecular mechanisms of autoreactive inflammation in SjS, assist MALT lymphoma diagnosis and allow tracking its response to rituximab.
Collapse
Affiliation(s)
- Mathijs G A Broeren
- Department of Rheumatology, Radboudumc, Nijmegen, The Netherlands.,Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Jing J Wang
- Department of Immunology, Flinders University, Adelaide, South Australia, Australia
| | - Giulia Balzaretti
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | | | - Barbera D C van Schaik
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Tim Chataway
- College of Medicine and Public Health, Flinders University of South Australia, Adelaide, South Australia, Australia
| | - Charlotte Kaffa
- Radboud Technology Center for Bioinformatics, Radboudumc, Nijmegen, The Netherlands
| | - Sander Bervoets
- Radboud Technology Center for Bioinformatics, Radboudumc, Nijmegen, The Netherlands
| | - Konnie M Hebeda
- Department of Pathology, Radboudumc, Nijmegen, The Netherlands
| | | | - Ger J M Pruijn
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Thomas P Gordon
- SA Pathology, Department of Immunology, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Niek De Vries
- Department of Clinical Immunology and Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
| | | |
Collapse
|
26
|
Merino-Vico A, van Hamburg JP, Tas SW. B Lineage Cells in ANCA-Associated Vasculitis. Int J Mol Sci 2021; 23:387. [PMID: 35008813 PMCID: PMC8745114 DOI: 10.3390/ijms23010387] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that affects small sized blood vessels and can lead to serious complications in the lungs and kidneys. The prominent presence of ANCA autoantibodies in this disease implicates B cells in its pathogenesis, as these are the precursors of the ANCA-producing plasma cells (PCs). Further evidence supporting the potential role of B lineage cells in vasculitis are the increased B cell cytokine levels and the dysregulated B cell populations in patients. Confirmation of the contribution of B cells to pathology arose from the beneficial effect of anti-CD20 therapy (i.e., rituximab) in AAV patients. These anti-CD20 antibodies deplete circulating B cells, which results in amelioration of disease. However, not all patients respond completely, and this treatment does not target PCs, which can maintain ANCA production. Hence, it is important to develop more specific therapies for AAV patients. Intracellular signalling pathways may be potential therapeutic targets as they can show (disease-specific) alterations in certain B lineage cells, including pathogenic B cells, and contribute to differentiation and survival of PCs. Preliminary data on the inhibition of certain signalling molecules downstream of receptors specific for B lineage cells show promising therapeutic effects. In this narrative review, B cell specific receptors and their downstream signalling molecules that may contribute to pathology in AAV are discussed, including the potential to therapeutically target these pathways.
Collapse
Affiliation(s)
- Ana Merino-Vico
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Piet van Hamburg
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Sander W. Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.M.-V.); (J.P.v.H.)
- Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
27
|
Jenks SA, Wei C, Bugrovsky R, Hill A, Wang X, Rossi FM, Cashman K, Woodruff MC, Aspey LD, Lim SS, Bao G, Drenkard C, Sanz I. B cell subset composition segments clinically and serologically distinct groups in chronic cutaneous lupus erythematosus. Ann Rheum Dis 2021; 80:1190-1200. [PMID: 34083207 PMCID: PMC8906255 DOI: 10.1136/annrheumdis-2021-220349] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/17/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE While the contribution of B-cells to SLE is well established, its role in chronic cutaneous lupus erythematosus (CCLE) remains unclear. Here, we compare B-cell and serum auto-antibody profiles between patients with systemic lupus erythematosus (SLE), CCLE, and overlap conditions. METHODS B-cells were compared by flow cytometry amongst healthy controls, CCLE without systemic lupus (CCLE+/SLE-) and SLE patients with (SLE+/CCLE+) or without CCLE (SLE+/CCLE-). Serum was analyed for autoreactive 9G4+, anti-double-stranded DNA, anti-chromatin and anti-RNA antibodies by ELISA and for anti-RNA binding proteins (RBP) by luciferase immunoprecipitation. RESULTS Patients with CCLE+/SLE- share B-cell abnormalities with SLE including decreased unswitched memory and increased effector B-cells albeit at a lower level than SLE patients. Similarly, both SLE and CCLE+/SLE- patients have elevated 9G4+ IgG autoantibodies despite lower levels of anti-nucleic acid and anti-RBP antibodies in CCLE+/SLE-. CCLE+/SLE- patients could be stratified into those with SLE-like B-cell profiles and a separate group with normal B-cell profiles. The former group was more serologically active and more likely to have disseminated skin lesions. CONCLUSION CCLE displays perturbations in B-cell homeostasis and partial B-cell tolerance breakdown. Our study demonstrates that this entity is immunologically heterogeneous and includes a disease segment whose B-cell compartment resembles SLE and is clinically associated with enhanced serological activity and more extensive skin disease. This picture suggests that SLE-like B-cell changes in primary CCLE may help identify patients at risk for subsequent development of SLE. B-cell profiling in CCLE might also indentify candidates who would benefit from B-cell targeted therapies.
Collapse
Affiliation(s)
- Scott A Jenks
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Chungwen Wei
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Regina Bugrovsky
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Aisha Hill
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Xiaoqian Wang
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Francesca M Rossi
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Kevin Cashman
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C Woodruff
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Laura D Aspey
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - S Sam Lim
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Gaobin Bao
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Cristina Drenkard
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Emory University School of Medicine, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
28
|
Hutcherson SM, Bedsaul JR, Pomerantz JL. Pathway-Specific Defects in T, B, and NK Cells and Age-Dependent Development of High IgE in Mice Heterozygous for a CADINS-Associated Dominant Negative CARD11 Allele. THE JOURNAL OF IMMUNOLOGY 2021; 207:1150-1164. [PMID: 34341167 DOI: 10.4049/jimmunol.2001233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
CARD11 is a multidomain scaffold protein required for normal activation of NF-κB, JNK, and mTOR during Ag receptor signaling. Germline CARD11 mutations cause at least three types of primary immunodeficiency including CARD11 deficiency, B cell expansion with NF-κB and T cell anergy (BENTA), and CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS). CADINS is uniquely caused by heterozygous loss-of-function CARD11 alleles that act as dominant negatives. CADINS patients present with frequent respiratory and skin infections, asthma, allergies, and atopic dermatitis. However, precisely how a heterozygous dominant negative CARD11 allele leads to the development of this CADINS-specific cluster of symptoms remains poorly understood. To address this, we generated mice expressing the CARD11 R30W allele originally identified in patients. We find that CARD11R30W/+ mice exhibit impaired signaling downstream of CARD11 that leads to defects in T, B, and NK cell function and immunodeficiency. CARD11R30W/+ mice develop elevated serum IgE levels with 50% penetrance that becomes more pronounced with age, but do not develop spontaneous atopic dermatitis. CARD11R30W/+ mice display reduced regulatory T cell numbers, but not the Th2 expansion observed in other mice with diminished CARD11 activity. Interestingly, the presence of mixed CARD11 oligomers in CARD11R30W/+ mice causes more severe signaling defects in T cells than in B cells, and specifically impacts IFN-γ production by NK cells, but not NK cell cytotoxicity. Our findings help explain the high susceptibility of CADINS patients to infection and suggest that the development of high serum IgE is not sufficient to induce overt atopic symptoms.
Collapse
Affiliation(s)
- Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacquelyn R Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
29
|
Rituximab-induced hypogammaglobulinemia and infection risk in pediatric patients. J Allergy Clin Immunol 2021; 148:523-532.e8. [PMID: 33862010 DOI: 10.1016/j.jaci.2021.03.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Rituximab is a B-cell depleting agent used in B-cell malignancies and autoimmune diseases. A subset of adult patients may develop prolonged and symptomatic hypogammaglobulinemia following rituximab treatment. However, this phenomenon has not been well delineated in the pediatric population. OBJECTIVES This study sought to determine the prevalence, risk factors, and clinical significance of hypogammaglobulinemia following rituximab therapy in children. METHODS This was a multicenter, retrospective cohort study that extracted clinical and immunological data from pediatric patients who received rituximab. RESULTS The cohort comprised 207 patients (median age, 12.0 years). Compared to baseline values, there was a significant increase in hypogammaglobulinemia post-rituximab therapy, with an increase in prevalence of hypo-IgG (28.7%-42.6%; P = .009), hypo-IgA (11.1%-20.4%; P = .02), and hypo-IgM (20.0%-62.0%; P < .0001). Additionally, low IgG levels at any time post-rituximab therapy were associated with a higher risk of serious infections (34.4% vs 18.9%; odds ratio, 2.3; 95% CI, 1.1-4.8; P = .03). Persistent IgG hypogammaglobulinemia was observed in 27 of 101 evaluable patients (26.7%). Significant risk factors for persistent IgG hypogammaglobulinemia included low IgG and IgA levels pre-rituximab therapy. Nine patients (4.3%) within the study were subsequently diagnosed with a primary immunodeficiency, 7 of which received rituximab for autoimmune cytopenias. CONCLUSIONS Hypogammaglobulinemia post-rituximab treatment is frequently diagnosed within the pediatric population. Low IgG levels are associated with a significant increase in serious infections, and underlying primary immunodeficiencies are relatively common in children receiving rituximab, thus highlighting the importance of immunologic monitoring both before and after rituximab therapy.
Collapse
|
30
|
Yang S, Jerome KR, Greninger AL, Schiffer JT, Goyal A. Endogenously Produced SARS-CoV-2 Specific IgG Antibodies May Have a Limited Impact on Clearing Nasal Shedding of Virus during Primary Infection in Humans. Viruses 2021; 13:516. [PMID: 33804667 PMCID: PMC8003723 DOI: 10.3390/v13030516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/23/2022] Open
Abstract
While SARS-CoV-2 specific neutralizing antibodies have been developed for therapeutic purposes, the specific viral triggers that drive the generation of SARS-CoV-2 specific IgG and IgM antibodies remain only partially characterized. Moreover, it is unknown whether endogenously derived antibodies drive viral clearance that might result in mitigation of clinical severity during natural infection. We developed a series of non-linear mathematical models to investigate whether SARS-CoV-2 viral and antibody kinetics are coupled or governed by separate processes. Patients with severe disease had a higher production rate of IgG but not IgM antibodies. Maximal levels of both isotypes were governed by their production rate rather than different saturation levels between people. Our results suggest that an exponential surge in IgG levels occurs approximately 5-10 days after symptom onset with no requirement for continual antigenic stimulation. SARS-CoV-2 specific IgG antibodies appear to have limited to no effect on viral dynamics but may enhance viral clearance late during primary infection resulting from the binding effect of antibody to virus, rather than neutralization. In conclusion, SARS-CoV-2 specific IgG antibodies may play only a limited role in clearing infection from the nasal passages despite providing long-term immunity against infection following vaccination or prior infection.
Collapse
Affiliation(s)
- Shuyi Yang
- Department of Data Science, University of California San Diego, La Jolla, CA 92093, USA;
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alexander L. Greninger
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98910, USA
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ashish Goyal
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (K.R.J.); (A.L.G.)
| |
Collapse
|
31
|
Palm AKE, Kleinau S. Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun 2021; 119:102627. [PMID: 33640662 DOI: 10.1016/j.jaut.2021.102627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells comprise a subset of innate-like B cells found predominantly in the spleen, but also in lymph nodes and blood. Their principal functions are participation in quick responses to blood-borne pathogens and secretion of natural antibodies. The latter is important for housekeeping functions such as clearance of apoptotic cell debris. MZ B cells have B cell receptors with low poly-/self-reactivity, but they are not pathogenic at steady state. However, if simultaneously stimulated with self-antigen and pathogen- and/or damage-associated molecular patterns (PAMPs/DAMPs), MZ B cells may participate in the initial steps towards breakage of immunological tolerance. This review summarizes what is known about the role of MZ B cells in autoimmunity, both in mouse models and human disease. We cover factors important for shaping the MZ B cell compartment, how the functional properties of MZ B cells may contribute to breaking tolerance, and how MZ B cells are being regulated.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
32
|
Granel J, Korkmaz B, Nouar D, Weiss SAI, Jenne DE, Lemoine R, Hoarau C. Pathogenicity of Proteinase 3-Anti-Neutrophil Cytoplasmic Antibody in Granulomatosis With Polyangiitis: Implications as Biomarker and Future Therapies. Front Immunol 2021; 12:571933. [PMID: 33679731 PMCID: PMC7930335 DOI: 10.3389/fimmu.2021.571933] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Granulomatosis with polyangiitis (GPA) is a rare but serious necrotizing auto-immune vasculitis. GPA is mostly associated with the presence of Anti-Neutrophil Cytoplasmic Antibody (ANCA) targeting proteinase 3 (PR3-ANCA), a serine protease contained in neutrophil granules but also exposed at the membrane. PR3-ANCAs have a proven fundamental role in GPA: they bind neutrophils allowing their auto-immune activation responsible for vasculitis lesions. PR3-ANCAs bind neutrophil surface on the one hand by their Fab binding PR3 and on the other by their Fc binding Fc gamma receptors. Despite current therapies, GPA is still a serious disease with an important mortality and a high risk of relapse. Furthermore, although PR3-ANCAs are a consistent biomarker for GPA diagnosis, relapse management currently based on their level is inconsistent. Indeed, PR3-ANCA level is not correlated with disease activity in 25% of patients suggesting that not all PR3-ANCAs are pathogenic. Therefore, the development of new biomarkers to evaluate disease activity and predict relapse and new therapies is necessary. Understanding factors influencing PR3-ANCA pathogenicity, i.e. their potential to induce auto-immune activation of neutrophils, offers interesting perspectives in order to improve GPA management. Most relevant factors influencing PR3-ANCA pathogenicity are involved in their interaction with neutrophils: level of PR3 autoantigen at neutrophil surface, epitope of PR3 recognized by PR3-ANCA, isotype and glycosylation of PR3-ANCA. We detailed in this review the advances in understanding these factors influencing PR3-ANCA pathogenicity in order to use them as biomarkers and develop new therapies in GPA as part of a personalized approach.
Collapse
Affiliation(s)
- Jérôme Granel
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Brice Korkmaz
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
| | - Dalila Nouar
- Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| | - Stefanie A I Weiss
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Dieter E Jenne
- Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research (DZL) Munich and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany
| | - Roxane Lemoine
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France
| | - Cyrille Hoarau
- Université de Tours, Plateforme B Cell Ressources (BCR) EA4245, Tours, France.,Service d'Immunologie Clinique et d'Allergologie, Centre Hospitalier Régional Universitaire, Tours, France
| |
Collapse
|
33
|
Trend S, Leffler J, Teige I, Frendéus B, Kermode AG, French MA, Hart PH. FcγRIIb Expression Is Decreased on Naive and Marginal Zone-Like B Cells From Females With Multiple Sclerosis. Front Immunol 2021; 11:614492. [PMID: 33505402 PMCID: PMC7832177 DOI: 10.3389/fimmu.2020.614492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
B cells are critical to the development of multiple sclerosis (MS), but the mechanisms by which they contribute to the disease are poorly defined. We hypothesised that the expression of CD32b (FcγRIIb), a receptor for the Fc region of IgG with inhibitory activities in B cells, is lower on B cell subsets from people with clinically isolated syndrome (CIS) or MS. CD32b expression was highest on post-naive IgM+ B cell subsets in healthy controls. For females with MS or CIS, significantly lower CD32b expression was identified on IgM+ B cell subsets, including naive and IgMhi MZ-like B cells, when compared with control females. Lower CD32b expression on these B cell subsets was associated with detectable anti-Epstein Barr Virus viral capsid antigen IgM antibodies, and higher serum levels of B cell activating factor. To investigate the effects of lower CD32b expression, B cells were polyclonally activated in the presence of IgG immune complexes, with or without a CD32b blocking antibody, and the expression of TNF and IL-10 in B cell subsets was assessed. The reduction of TNF but not IL-10 expression in controls mediated by IgG immune complexes was reversed by CD32b blockade in naive and IgMhi MZ-like B cells only. However, no consequence of lower CD32b expression on these cells from females with CIS or MS was detected. Our findings highlight a potential role for naive and marginal zone-like B cells in the immunopathogenesis of MS in females, which requires further investigation.
Collapse
Affiliation(s)
- Stephanie Trend
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia.,Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia
| | - Jonatan Leffler
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Ingrid Teige
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Björn Frendéus
- Demyelinating Diseases Research Group, BioInvent International AB, Lund, Sweden
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, University of Western Australia, Perth, WA, Australia.,Institute for Immunology and Infectious Disease, Murdoch University, Perth, WA, Australia
| | - Martyn A French
- Medical School and School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Prue H Hart
- Inflammation Laboratory, Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
34
|
van Dam LS, Oskam JM, Kamerling SWA, Arends EJ, Bredewold OW, Berkowska MA, van Dongen JJM, Rabelink TJ, van Kooten C, Teng YKO. Highly Sensitive Flow Cytometric Detection of Residual B-Cells After Rituximab in Anti-Neutrophil Cytoplasmic Antibodies-Associated Vasculitis Patients. Front Immunol 2020; 11:566732. [PMID: 33384685 PMCID: PMC7770159 DOI: 10.3389/fimmu.2020.566732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background B-cell depletion with rituximab (RTX) is an effective treatment for anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) patients. Nevertheless, relapses are frequent after RTX, often preceded by B-cell repopulation suggesting that residual autoreactive B-cells persist despite therapy. Therefore, this study aimed to identify minimal residual autoimmunity (MRA) in the B-cell compartment of AAV patients treated with RTX. Methods EuroFlow-based highly-sensitive flow cytometry (HSFC) was employed to study B-cell and plasma cell (PC) subsets in-depth in AAV patients before and after RTX treatment. Additionally, peripheral blood mononuclear cells (PBMCs) of these RTX-treated AAV patients were cultured and in vitro stimulated with CpG, IL-2, and IL-21 to induce antibody-secreting cells (ASC). (ANCA)-IgG was measured in these supernatants by ELISA. Results By employing EuroFlow-based HSFC, we detected circulating CD19+ B-cells at all timepoints after RTX treatment, in contrast to conventional low-sensitive flow cytometry. Pre-germinal center (Pre-GC) B-cells, memory B-cells and CD20+CD138− plasmablasts (PBs) were rapidly and strongly reduced, while CD20−CD138− PrePC and CD20-CD138+ mature (m)PCs were reduced slower and remained detectable. Both memory B-cells and CD20− PCs remained detectable after RTX. Serum ANCA-IgG decreased significantly upon RTX. Changes in ANCA levels strongly correlated with changes in naive, switched CD27+ and CD27− (double-negative) memory B-cells, but not with plasma cells. Lastly, we demonstrated in vitro ANCA production by AAV PBMCs, 24 and 48 weeks after RTX treatment reflecting MRA in the memory compartment of AAV patients. Conclusion We demonstrated that RTX induced strong reductions in circulating B-cells, but never resulted in complete B-cell depletion. Despite strongly reduced B-cell numbers after RTX, ANCA-specific memory B-cells were still detectable in AAV patients. Thus, MRA is identifiable in AAV and can provide a potential novel approach in personalizing RTX treatment in AAV patients.
Collapse
Affiliation(s)
- Laura S van Dam
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Jelle M Oskam
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Sylvia W A Kamerling
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Eline J Arends
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - O W Bredewold
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Magdalena A Berkowska
- Immunomonitoring group, Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jacques J M van Dongen
- Immunomonitoring group, Department of Immunohematology and Bloodtransfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ton J Rabelink
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Cees van Kooten
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| | - Y K Onno Teng
- Centre of Expertise for Lupus-, Vasculitis-, and Complement-Mediated Systemic Autoimmune Diseases (LuVaCs), Department of Internal Medicine, section Nephrology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
35
|
Increased Frequencies of Switched Memory B Cells and Plasmablasts in Peripheral Blood from Patients with ANCA-Associated Vasculitis. J Immunol Res 2020; 2020:8209737. [PMID: 33313327 PMCID: PMC7719539 DOI: 10.1155/2020/8209737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 11/04/2020] [Indexed: 11/17/2022] Open
Abstract
B cells are thought to play a central role in the pathogenesis of antineutrophil cytoplasmic antibody- (ANCA-) associated vasculitis (AAV). ANCAs have been proposed to cause vasculitis by activating primed neutrophils to damage small blood vessels. We studied a cohort of AAV patients of which a majority were in remission and diagnosed with granulomatosis with polyangiitis (GPA). Using flow cytometry, the frequencies of CD19+ B cells and subsets in peripheral blood from 106 patients with AAV and 134 healthy controls were assessed. B cells were divided into naive, preswitch memory, switched memory, and exhausted memory cells. Naive and switched memory cells were further subdivided into transitional cells and plasmablasts, respectively. In addition, serum concentrations of immunoglobulin A, G, and M were measured and clinical data were retrieved. AAV patients displayed, in relation to healthy controls, a decreased frequency of B cells of lymphocytes (5.1% vs. 8.3%) and total B cell number. For the subsets, a decrease in percentage of transitional B cells (0.7% vs. 4.4%) and expansions of switched memory B cells (22.3% vs. 16.5%) and plasmablasts (0.9% vs. 0.3%) were seen. A higher proportion of B cells was activated (CD95+) in patients (20.6% vs. 10.3%), and immunoglobulin levels were largely unaltered. No differences in B cell frequencies between patients in active disease and remission were observed. Patients in remission with a tendency to relapse had, compared to nonrelapsing patients, decreased frequencies of B cells (3.5% vs. 6.5%) and transitional B cells (0.1% vs. 1.1%) and an increased frequency of activated exhausted memory B cells (30.8% vs. 22.3%). AAV patients exhibit specific changes in frequencies of CD19+ B cells and their subsets in peripheral blood. These alterations could contribute to the autoantibody-driven inflammatory process in AAV.
Collapse
|
36
|
Elsadek NE, Emam SE, Abu Lila AS, Shimizu T, Ando H, Ishima Y, Ishida T. Pegfilgrastim (PEG-G-CSF) Induces Anti-polyethylene Glycol (PEG) IgM via a T Cell-Dependent Mechanism. Biol Pharm Bull 2020; 43:1393-1397. [DOI: 10.1248/bpb.b20-00345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Sherif E. Emam
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
| | - Amr S. Abu Lila
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University
- Department of Pharmaceutics, College of Pharmacy, Hail University
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| |
Collapse
|
37
|
Sawitzki B, Harden PN, Reinke P, Moreau A, Hutchinson JA, Game DS, Tang Q, Guinan EC, Battaglia M, Burlingham WJ, Roberts ISD, Streitz M, Josien R, Böger CA, Scottà C, Markmann JF, Hester JL, Juerchott K, Braudeau C, James B, Contreras-Ruiz L, van der Net JB, Bergler T, Caldara R, Petchey W, Edinger M, Dupas N, Kapinsky M, Mutzbauer I, Otto NM, Öllinger R, Hernandez-Fuentes MP, Issa F, Ahrens N, Meyenberg C, Karitzky S, Kunzendorf U, Knechtle SJ, Grinyó J, Morris PJ, Brent L, Bushell A, Turka LA, Bluestone JA, Lechler RI, Schlitt HJ, Cuturi MC, Schlickeiser S, Friend PJ, Miloud T, Scheffold A, Secchi A, Crisalli K, Kang SM, Hilton R, Banas B, Blancho G, Volk HD, Lombardi G, Wood KJ, Geissler EK. Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet 2020; 395:1627-1639. [PMID: 32446407 PMCID: PMC7613154 DOI: 10.1016/s0140-6736(20)30167-7] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Use of cell-based medicinal products (CBMPs) represents a state-of-the-art approach for reducing general immunosuppression in organ transplantation. We tested multiple regulatory CBMPs in kidney transplant trials to establish the safety of regulatory CBMPs when combined with reduced immunosuppressive treatment. METHODS The ONE Study consisted of seven investigator-led, single-arm trials done internationally at eight hospitals in France, Germany, Italy, the UK, and the USA (60 week follow-up). Included patients were living-donor kidney transplant recipients aged 18 years and older. The reference group trial (RGT) was a standard-of-care group given basiliximab, tapered steroids, mycophenolate mofetil, and tacrolimus. Six non-randomised phase 1/2A cell therapy group (CTG) trials were pooled and analysed, in which patients received one of six CBMPs containing regulatory T cells, dendritic cells, or macrophages; patient selection and immunosuppression mirrored the RGT, except basiliximab induction was substituted with CBMPs and mycophenolate mofetil tapering was allowed. None of the trials were randomised and none of the individuals involved were masked. The primary endpoint was biopsy-confirmed acute rejection (BCAR) within 60 weeks after transplantation; adverse event coding was centralised. The RTG and CTG trials are registered with ClinicalTrials.gov, NCT01656135, NCT02252055, NCT02085629, NCT02244801, NCT02371434, NCT02129881, and NCT02091232. FINDINGS The seven trials took place between Dec 11, 2012, and Nov 14, 2018. Of 782 patients assessed for eligibility, 130 (17%) patients were enrolled and 104 were treated and included in the analysis. The 66 patients who were treated in the RGT were 73% male and had a median age of 47 years. The 38 patients who were treated across six CTG trials were 71% male and had a median age of 45 years. Standard-of-care immunosuppression in the recipients in the RGT resulted in a 12% BCAR rate (expected range 3·2-18·0). The overall BCAR rate for the six parallel CTG trials was 16%. 15 (40%) patients given CBMPs were successfully weaned from mycophenolate mofetil and maintained on tacrolimus monotherapy. Combined adverse event data and BCAR episodes from all six CTG trials revealed no safety concerns when compared with the RGT. Fewer episodes of infections were registered in CTG trials versus the RGT. INTERPRETATION Regulatory cell therapy is achievable and safe in living-donor kidney transplant recipients, and is associated with fewer infectious complications, but similar rejection rates in the first year. Therefore, immune cell therapy is a potentially useful therapeutic approach in recipients of kidney transplant to minimise the burden of general immunosuppression. FUNDING The 7th EU Framework Programme.
Collapse
Affiliation(s)
- Birgit Sawitzki
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Paul N Harden
- Oxford Transplantation Centre, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Petra Reinke
- BeCAT, BCRT, and Department of Nephrology & Intensive Care, Charité Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie, Nantes Université, Inserm, Nantes, France; Institute of Transplantation Urology Nephrology, Nantes, France
| | - James A Hutchinson
- Department of Surgery, University of Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - David S Game
- Guy's & St Thomas' NHS Foundation Trust, Guy's Hospital, London, UK
| | - Qizhi Tang
- Division of Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Eva C Guinan
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston MA, USA
| | - Manuela Battaglia
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - William J Burlingham
- Division of Transplantation, Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ian S D Roberts
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mathias Streitz
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité and Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Régis Josien
- Centre de Recherche en Transplantation et Immunologie, Nantes Université, Inserm, Nantes, France; Institute of Transplantation Urology Nephrology, Nantes, France; Laboratoire d'Immunologie, Cimna, Centre Hospitalier Universitaire, Nantes, France
| | - Carsten A Böger
- Department of Nephrology, University of Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Cristiano Scottà
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - James F Markmann
- Center for Transplantation Sciences, Mass General Hospital, Boston, MA, USA
| | - Joanna L Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Karsten Juerchott
- BIH Center for Regenerative Therapies, Charité and Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Cecile Braudeau
- Centre de Recherche en Transplantation et Immunologie, Nantes Université, Inserm, Nantes, France; Institute of Transplantation Urology Nephrology, Nantes, France; Laboratoire d'Immunologie, Cimna, Centre Hospitalier Universitaire, Nantes, France
| | - Ben James
- Department of Surgery, University of Regensburg, University Hospital Regensburg, Regensburg, Germany; Division of Personalized Tumor Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology, Regensburg, Germany
| | | | - Jeroen B van der Net
- Oxford Transplantation Centre, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Tobias Bergler
- Department of Nephrology, University of Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Rossana Caldara
- Transplant Medicine, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - William Petchey
- Oxford Transplantation Centre, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Matthias Edinger
- Department of Internal Medicine III, University of Regensburg, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Nathalie Dupas
- Beckman Coulter Life Sciences, Immunotech, Marseille, France
| | | | - Ingrid Mutzbauer
- Department of Surgery, University of Regensburg, University Hospital Regensburg, Regensburg, Germany; Division of Personalized Tumor Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology, Regensburg, Germany
| | - Natalie M Otto
- BeCAT, BCRT, and Department of Nephrology & Intensive Care, Charité Universitätsmedizin Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Öllinger
- Department of Surgery, Charité Campus Mitte, Campus Virchow Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Maria P Hernandez-Fuentes
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Norbert Ahrens
- Institute for Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University of Regensburg, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Ulrich Kunzendorf
- Clinic for Nephrology and Hypertension, Christian Albrechts University, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Duke University Medical Center, Durham, NC, USA
| | - Josep Grinyó
- Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, IDIBELL, Barcelona University, Barcelona, Spain
| | - Peter J Morris
- Centre for Evidence in Transplantation, Clinical Effectiveness Unit, Royal College of Surgeons of England, London, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Leslie Brent
- St Mary's Hospital Transplant Unit, Paddington, London, UK
| | - Andrew Bushell
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Laurence A Turka
- Center for Transplantation Sciences, Mass General Hospital, Boston, MA, USA
| | - Jeffrey A Bluestone
- UCSF Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Robert I Lechler
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Hans J Schlitt
- Department of Surgery, University of Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Maria C Cuturi
- Centre de Recherche en Transplantation et Immunologie, Nantes Université, Inserm, Nantes, France; Institute of Transplantation Urology Nephrology, Nantes, France
| | - Stephan Schlickeiser
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité and Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Peter J Friend
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Tewfik Miloud
- Beckman Coulter Life Sciences, Immunotech, Marseille, France
| | - Alexander Scheffold
- Institute for Immunology, Christian Albrechts University, University Clinic Schleswig-Holstein, Kiel, Germany
| | - Antonio Secchi
- Vita-Salute San Raffaele University Milan, Istituto di Ricovero e Cura a Carattere Scientifico, San Raffaele Scientific Institute, Milan, Italy
| | - Kerry Crisalli
- Center for Transplantation Sciences, Mass General Hospital, Boston, MA, USA
| | - Sang-Mo Kang
- Division of Transplantation, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Hilton
- Guy's & St Thomas' NHS Foundation Trust, Guy's Hospital, London, UK
| | - Bernhard Banas
- Department of Nephrology, University of Regensburg, University Hospital Regensburg, Regensburg, Germany
| | - Gilles Blancho
- Centre de Recherche en Transplantation et Immunologie, Nantes Université, Inserm, Nantes, France; Institute of Transplantation Urology Nephrology, Nantes, France
| | - Hans-Dieter Volk
- Institute of Medical Immunology, Charité, Universitätsmedizin Berlin, Berlin, Germany; BIH Center for Regenerative Therapies, Charité and Berlin Institute of Health, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Giovanna Lombardi
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Kathryn J Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Edward K Geissler
- Department of Surgery, University of Regensburg, University Hospital Regensburg, Regensburg, Germany; Division of Personalized Tumor Therapy, Fraunhofer Institute for Experimental Medicine and Toxicology, Regensburg, Germany; Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
38
|
Jiang SH, Stanley M, Vinuesa CG. Rare genetic variants in systemic autoimmunity. Immunol Cell Biol 2020; 98:490-499. [PMID: 32315078 DOI: 10.1111/imcb.12339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023]
Abstract
Autoimmune disease is a substantial cause of morbidity and is strongly influenced by genetic risk. Extensive efforts have characterized the overall genetic basis of many autoimmune diseases, typically by investigation of common variants. While these common variants have modest effects and may cumulatively predispose to disease, it is also increasingly apparent that rare variants have significantly greater effect on phenotype and are likely to contribute to autoimmune disease. Recent advances have illustrated the next fundamental step in elucidating the genetic basis of autoimmunity, moving beyond association to demonstrate the functional consequences of these variants.
Collapse
Affiliation(s)
- Simon H Jiang
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia.,Department of Renal Medicine, The Canberra Hospital, Garran, ACT, 2601, Australia
| | - Maurice Stanley
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Acton, ACT, 2601, Australia.,Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Acton, ACT, 2601, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, 200333, China
| |
Collapse
|
39
|
Stranavova L, Hruba P, Slatinska J, Sawitzki B, Reinke P, Volk HD, Viklicky O. Dialysis therapy is associated with peripheral marginal zone B-cell augmentation. Transpl Immunol 2020; 60:101289. [PMID: 32229239 DOI: 10.1016/j.trim.2020.101289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/17/2022]
Abstract
Chronic kidney disease stage 5 (CKD5) dialysis patients who stay long term in uremic environment often exhibit several, poorly defined, immune impairments. In this study, we assessed peripheral virus-specific effector/memory cells and subpopulations of T, B and DC cells using ELISPOT and FACS methods in 74 low-risk kidney transplant candidates without anti-HLA antibodies, prior to transplantation in pre-emptive (never experienced dialysis) and dialysis cohorts. There was difference in circulating marginal zone B cells (MZB) (IgDhighCD27high) between dialysis patients and those receiving kidney grafts pre-emptively (P = .002). Patients treated on dialysis >12 months had also 4.2-fold greater risk of increased absolute numbers of MZB (95%CI:1.6-11.2; P = .004). There were no other differences in B-, T- and DC-cell subsets. Numbers of effector/memory T cells reactive to major opportunistic virus-specific antigens (CMV, BKV and EBV) were not affected by dialysis. Non-sensitised dialysis-treated patients displayed significantly more circulating MZB compared to those CKD5 patients that had never undergone dialysis therapy.
Collapse
Affiliation(s)
- Lucia Stranavova
- Transplant Laboratory, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Janka Slatinska
- Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Birgit Sawitzki
- BIH Centre for Regenerative Therapies, Berlin Centre for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Petra Reinke
- BIH Centre for Regenerative Therapies, Berlin Centre for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- BIH Centre for Regenerative Therapies, Berlin Centre for Advanced Therapies, Charité University Medicine Berlin, Berlin, Germany
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic; Department of Nephrology, Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic.
| |
Collapse
|
40
|
Michaud E, Mastrandrea C, Rochereau N, Paul S. Human Secretory IgM: An Elusive Player in Mucosal Immunity. Trends Immunol 2020; 41:141-156. [PMID: 31928913 DOI: 10.1016/j.it.2019.12.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/29/2022]
Abstract
Secretory IgMs (SIgMs) were amongst the first identified immunoglobulins. However, their importance was not fully understood and recent advances have shown they play a key role in establishing and promoting commensal gut tolerance in mice and humans. The true interactions between SIgMs and the microbiota remain controversial and we aim to consolidate current knowledge in this review. Through comprehensive examination of SIgMs and their corresponding B cell secretors in several different pathological immunological contexts, we review the presumed role of these molecules in gut tolerance, inflammatory bowel diseases, and lung immunity. As SIgMs harbor a mostly tolerogenic function, we posit that their inclusion in further immunological research is paramount.
Collapse
Affiliation(s)
- Eva Michaud
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | | | - Nicolas Rochereau
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France
| | - Stéphane Paul
- GIMAP/EA3064, Université de Lyon, CIC 1408 Vaccinology, Saint-Etienne, France.
| |
Collapse
|
41
|
Blandino R, Baumgarth N. Secreted IgM: New tricks for an old molecule. J Leukoc Biol 2019; 106:1021-1034. [PMID: 31302940 PMCID: PMC6803036 DOI: 10.1002/jlb.3ri0519-161r] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 12/27/2022] Open
Abstract
Secreted IgM (sIgM) is a multifunctional evolutionary conserved antibody that is critical for the maintenance of tissue homeostasis as well as the development of fully protective humoral responses to pathogens. Constitutive secretion of self- and polyreactive natural IgM, produced mainly by B-1 cells, provides a circulating antibody that engages with autoantigens as well as invading pathogens, removing apoptotic and other cell debris and initiating strong immune responses. Pathogen-induced IgM production by B-1 and conventional B-2 cells strengthens this early, passive layer of IgM-mediated immune defense and regulates subsequent IgG production. The varied effects of secreted IgM on immune homeostasis and immune defense are facilitated through its binding to numerous different cell types via different receptors. Recent studies identified a novel function for pentameric IgM, namely as a transporter for the effector protein ″apoptosis-inhibitor of macrophages″ (AIM/CD5L). This review aims to provide a summary of the known functions and effects of sIgM on immune homeostasis and immune defense, and its interaction with its various receptors, and to highlight the many critical immune regulatory functions of this ancient and fascinating immunoglobulin.
Collapse
Affiliation(s)
- Rebecca Blandino
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
| | - Nicole Baumgarth
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis
- Center for Comparative Medicine and University of California, Davis
- Dept. Pathology, Microbiology & Immunology, University of California, Davis
| |
Collapse
|