1
|
Li Y, Ji L, Liu C, Li J, Wen D, Li Z, Yu L, Guo M, Zhang S, Duan W, Yi L, Bi Y, Bu H, Li C, Liu Y. TBK1 is involved in M-CSF-induced macrophage polarization through mediating the IRF5/IRF4 axis. FEBS J 2024. [PMID: 39434428 DOI: 10.1111/febs.17297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
TANK binding kinase 1 (TBK1) is an important kinase that is involved in innate immunity and tumor development. Macrophage colony-stimulating factor (M-CSF) regulates the differentiation and function of macrophages towards the immunosuppressive M2 phenotype in the glioblastoma multiforme microenvironment. The role of TBK1 in macrophages, especially in regulating macrophage polarization in response to M-CSF stimulation, remains unclear. Here, we found high TBK1 expression in human glioma-infiltrating myeloid cells and that phosphorylated TBK1 was highly expressed in M-CSF-stimulated macrophages but not in granulocyte-macrophage CSF-induced macrophages (granulocyte-macrophage-CSF is involved in the polarization of M1 macrophages). Conditional deletion of TBK1 in myeloid cells induced M-CSF-stimulated bone marrow-derived macrophages to exhibit a proinflammatory M1-like phenotype with increased protein expression of CD86, interleukin-1β and tumor necrosis factor-α, as well as decreased expression of arginase 1. Mechanistically, TBK1 deletion or inhibition by amlexanox or GSK8612 reduced the expression of the transcription factor interferon-regulatory factor (IRF)4 and increased the level of IRF5 activation in macrophages stimulated with M-CSF, leading to an M1-like profile with highly proinflammatory factors. IRF5 deletion reversed the effect of TBK1 inhibition on M-CSF-mediated macrophage polarization. Our findings suggest that TBK1 contributes to the regulation of macrophage polarization in response to M-CSF stimulation partly through the IRF5/IRF4 axis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Ji
- Department of Neurosurgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Juanjuan Li
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Zhongyao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Lishuang Yu
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Moran Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Shaoran Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Weisong Duan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Le Yi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yue Bi
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Hui Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Chunyan Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| | - Yakun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- Key Laboratory of Neurology (Hebei Medical University), Ministry of Education, Shijiazhuang, China
| |
Collapse
|
2
|
Han J, Dong L, Wu M, Ma F. Dynamic polarization of tumor-associated macrophages and their interaction with intratumoral T cells in an inflamed tumor microenvironment: from mechanistic insights to therapeutic opportunities. Front Immunol 2023; 14:1160340. [PMID: 37251409 PMCID: PMC10219223 DOI: 10.3389/fimmu.2023.1160340] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023] Open
Abstract
Immunotherapy has brought a paradigm shift in the treatment of tumors in recent decades. However, a significant proportion of patients remain unresponsive, largely due to the immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) play crucial roles in shaping the TME by exhibiting dual identities as both mediators and responders of inflammation. TAMs closely interact with intratumoral T cells, regulating their infiltration, activation, expansion, effector function, and exhaustion through multiple secretory and surface factors. Nevertheless, the heterogeneous and plastic nature of TAMs renders the targeting of any of these factors alone inadequate and poses significant challenges for mechanistic studies and clinical translation of corresponding therapies. In this review, we present a comprehensive summary of the mechanisms by which TAMs dynamically polarize to influence intratumoral T cells, with a focus on their interaction with other TME cells and metabolic competition. For each mechanism, we also discuss relevant therapeutic opportunities, including non-specific and targeted approaches in combination with checkpoint inhibitors and cellular therapies. Our ultimate goal is to develop macrophage-centered therapies that can fine-tune tumor inflammation and empower immunotherapy.
Collapse
Affiliation(s)
- Jiashu Han
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Luochu Dong
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Fei Ma
- Center for National Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wolf AJ. Peptidoglycan-induced modulation of metabolic and inflammatory responses. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00024. [PMID: 37128291 PMCID: PMC10144284 DOI: 10.1097/in9.0000000000000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Bacterial cell wall peptidoglycan is composed of innate immune ligands and, due to its important structural role, also regulates access to many other innate immune ligands contained within the bacteria. There is a growing body of literature demonstrating how innate immune recognition impacts the metabolic functions of immune cells and how metabolic changes are not only important to inflammatory responses but are often essential. Peptidoglycan is primarily sensed in the context of the whole bacteria during lysosomal degradation; consequently, the innate immune receptors for peptidoglycan are primarily intracellular cytosolic innate immune sensors. However, during bacterial growth, peptidoglycan fragments are shed and can be found in the bloodstream of humans and mice, not only during infection but also derived from the abundant bacterial component of the gut microbiota. These peptidoglycan fragments influence cells throughout the body and are important for regulating inflammation and whole-body metabolic function. Therefore, it is important to understand how peptidoglycan-induced signals in innate immune cells and cells throughout the body interact to regulate how the body responds to both pathogenic and nonpathogenic bacteria. This mini-review will highlight key research regarding how cellular metabolism shifts in response to peptidoglycan and how systemic peptidoglycan sensing impacts whole-body metabolic function.
Collapse
Affiliation(s)
- Andrea J. Wolf
- The Karsh Division of Gastroenterology and Hepatology, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Gil Gonzalez L, Fernandez-Marrero Y, Norris PAA, Tawhidi Z, Shan Y, Cruz-Leal Y, Won KD, Frias-Boligan K, Branch DR, Lazarus AH. THP-1 cells transduced with CD16A utilize Fcγ receptor I and III in the phagocytosis of IgG-sensitized human erythrocytes and platelets. PLoS One 2022; 17:e0278365. [PMID: 36516219 PMCID: PMC9749970 DOI: 10.1371/journal.pone.0278365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Fc gamma receptors (FcγRs) are critical effector receptors for immunoglobulin G (IgG) antibodies. On macrophages, FcγRs mediate multiple effector functions, including phagocytosis, but the individual contribution of specific FcγRs to phagocytosis has not been fully characterized. Primary human macrophage populations, such as splenic macrophages, can express FcγRI, FcγRIIA, and FcγRIIIA. However, there is currently no widely available monocyte or macrophage cell line expressing all these receptors. Common sources of monocytes for differentiation into macrophages, such as human peripheral blood monocytes and the monocytic leukemia cell line THP-1, generally lack the expression of FcγRIIIA (CD16A). Here, we utilized a lentiviral system to generate THP-1 cells stably expressing human FcγRIIIA (CD16F158). THP-1-CD16A cells treated with phorbol 12-myristate 13-acetate for 24 hours phagocytosed anti-D-opsonized human red blood cells primarily utilizing FcγRI with a lesser but significant contribution of IIIA while phagocytosis of antibody-opsonized human platelets equally utilized FcγRI and Fcγ IIIA. Despite the well-known ability of FcγRIIA to bind IgG in cell free systems, this receptor did not appear to be involved in either RBC or platelet phagocytosis. These transgenic cells may constitute a valuable tool for studying macrophage FcγR utilization and function.
Collapse
Affiliation(s)
- Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
| | | | - Peter Alan Albert Norris
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zoya Tawhidi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yuexin Shan
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
| | - Yoelys Cruz-Leal
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Kevin Doyoon Won
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Kayluz Frias-Boligan
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
| | - Donald R. Branch
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alan H. Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto ON, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- * E-mail:
| |
Collapse
|
5
|
Udompornpitak K, Charoensappakit A, Sae-Khow K, Bhunyakarnjanarat T, Dang CP, Saisorn W, Visitchanakun P, Phuengmaung P, Palaga T, Ritprajak P, Tungsanga S, Leelahavanichkul A. Obesity Exacerbates Lupus Activity in Fc Gamma Receptor IIb Deficient Lupus Mice Partly through Saturated Fatty Acid-Induced Gut Barrier Defect and Systemic Inflammation. J Innate Immun 2022; 15:240-261. [PMID: 36219976 PMCID: PMC10643905 DOI: 10.1159/000526206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/19/2022] Open
Abstract
The prevalence of obesity is increasing, and the coexistence of obesity and systemic lupus erythematosus (lupus) is possible. A high-fat diet (HFD) was orally administered for 6 months in female 8-week-old Fc gamma receptor IIb deficient (FcgRIIb-/-) lupus or age and gender-matched wild-type (WT) mice. Lupus nephritis (anti-dsDNA, proteinuria, and increased creatinine), gut barrier defect (fluorescein isothiocyanate dextran), serum lipopolysaccharide (LPS), serum interleukin (IL)-6, liver injury (alanine transaminase), organ fibrosis (liver and kidney pathology), spleen apoptosis (activated caspase 3), and aorta thickness (but not weight gain and lipid profiles) were more prominent in HFD-administered FcgRIIb-/- mice than the obese WT, without injury in regular diet-administered mice (both FcgRIIb-/- and WT). In parallel, combined palmitic acid (PA; a saturated fatty acid) with LPS (PA + LPS) induced higher tumor necrotic factor-α, IL-6, and IL-10 in the supernatant, inflammatory genes (inducible nitric oxide synthase and IL-1β), reactive oxygen species (dihydroethidium), and glycolysis with reduced mitochondrial activity (extracellular flux analysis) when compared with the activation by each molecule alone in both FcgRIIb-/- and WT macrophages. However, the alterations of these parameters were more prominent in PA + LPS-administered FcgRIIb-/- than in the WT cells. In conclusion, obesity accelerated inflammation in FcgRIIb-/- mice, partly due to the more potent responses from the loss of inhibitory FcgRIIb against PA + LPS with obesity-induced gut barrier defect.
Collapse
Affiliation(s)
- Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Awirut Charoensappakit
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kritsanawan Sae-Khow
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Cong Phi Dang
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Peerapat Visitchanakun
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Somkanya Tungsanga
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of General Internal Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
6
|
Li M, Vultorius C, Bethi M, Yu Y. Spatial Organization of Dectin-1 and TLR2 during Synergistic Crosstalk Revealed by Super-resolution Imaging. J Phys Chem B 2022; 126:5781-5792. [PMID: 35913832 PMCID: PMC10636754 DOI: 10.1021/acs.jpcb.2c03557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Innate immune cells recognize and elicit responses against pathogens by integrating signals from different types of cell-surface receptors. How the receptors interact in the membrane to enable their signaling crosstalk is poorly understood. Here, we reveal the nanoscale organization of TLR2 and Dectin-1, a receptor pair known to cooperate in regulating antifungal immunity, through their synergistic signaling crosstalk at macrophage cell membranes. Using super-resolution single-molecule localization microscopy, we show that discrete noncolocalized nanoclusters of Dectin-1 and TLR2 are partially overlapped during their synergistic crosstalk. Compared to when one type of receptor is activated alone, the simultaneous activation of Dectin-1 and TLR2 leads to a higher percentage of both receptors being activated by their specific ligands and consequently an increased level of tyrosine phosphorylation. Our results depict, in nanoscale detail, how Dectin-1 and TLR2 achieve synergistic signaling through the spatial organization of their receptor nanoclusters.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Christopher Vultorius
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Manisha Bethi
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
7
|
Li M, Lee S, Zahedian M, Ding C, Yan J, Yu Y. Immobile ligands enhance FcγR-TLR2/1 crosstalk by promoting interface overlap of receptor clusters. Biophys J 2022; 121:966-976. [PMID: 35150619 PMCID: PMC8943811 DOI: 10.1016/j.bpj.2022.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/09/2022] [Accepted: 02/07/2022] [Indexed: 01/02/2023] Open
Abstract
Innate immune cells detect pathogens through simultaneous stimulation of multiple receptors, but how cells use the receptor crosstalk to elicit context-appropriate responses is unclear. Here, we reveal that the inflammatory response of macrophages from FcγR-TLR2/1 crosstalk inversely depends on the ligand mobility within a model pathogen membrane. The mechanism is that FcγR and TLR2/1 form separate nanoclusters that interact at their interfaces during crosstalk. Less mobile ligands induce stronger interactions and more overlap between the receptor nanoclusters, leading to enhanced signaling. Different from the prevailing view that immune receptors colocalize to synergize their signaling, our results show that FcγR-TLR2/1 crosstalk occurs through interface interactions between non-colocalizing receptor nanoclusters, which are modulated by ligand mobility. This suggests a mechanism by which innate immune cells could use physical properties of ligands to fine-tune host responses.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Seonik Lee
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Maryam Zahedian
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | - Chuanlin Ding
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Jun Yan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, Indiana.
| |
Collapse
|
8
|
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, Liu E, Gao B, Liu T, Shao P. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol 2021; 12:779787. [PMID: 34899740 PMCID: PMC8651870 DOI: 10.3389/fimmu.2021.779787] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/02/2021] [Indexed: 01/10/2023] Open
Abstract
Rheumatoid arthritis (RA) is a classic autoimmune disease characterized by uncontrolled synovial proliferation, pannus formation, cartilage injury, and bone destruction. The specific pathogenesis of RA, a chronic inflammatory disease, remains unclear. However, both key glycolysis rate-limiting enzymes, hexokinase-II (HK-II), phosphofructokinase-1 (PFK-1), and pyruvate kinase M2 (PKM2), as well as indirect rate-limiting enzymes, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), are thought to participate in the pathogenesis of RA. In here, we review the latest literature on the pathogenesis of RA, introduce the pathophysiological characteristics of HK-II, PFK-1/PFKFB3, and PKM2 and their expression characteristics in this autoimmune disease, and systematically assess the association between the glycolytic rate-limiting enzymes and RA from a molecular level. Moreover, we highlight HK-II, PFK-1/PFKFB3, and PKM2 as potential targets for the clinical treatment of RA. There is great potential to develop new anti-rheumatic therapies through safe inhibition or overexpression of glycolysis rate-limiting enzymes.
Collapse
Affiliation(s)
- Jianlin Zuo
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinshuo Tang
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meng Lu
- Department of Nursing, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhongsheng Zhou
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hao Tian
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Enbo Liu
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baoying Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pu Shao
- Department of Orthopeadics, China-Japan Union Hospital of Jilin University, Changchun, China
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Geyer CE, Newling M, Sritharan L, Griffith GR, Chen HJ, Baeten DLP, den Dunnen J. C-Reactive Protein Controls IL-23 Production by Human Monocytes. Int J Mol Sci 2021; 22:ijms222111638. [PMID: 34769069 PMCID: PMC8583945 DOI: 10.3390/ijms222111638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.
Collapse
Affiliation(s)
- Chiara E. Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Melissa Newling
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lathees Sritharan
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Dominique L. P. Baeten
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
10
|
Macri C, Morgan H, Villadangos JA, Mintern JD. Regulation of dendritic cell function by Fc-γ-receptors and the neonatal Fc receptor. Mol Immunol 2021; 139:193-201. [PMID: 34560415 DOI: 10.1016/j.molimm.2021.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
Dendritic cells (DCs) express receptors to sense pathogens and/or tissue damage and to communicate with other immune cells. Among those receptors, Fc receptors (FcRs) are triggered by the Fc region of antibodies produced during adaptive immunity. In this review, the role of FcγR and neonatal Fc receptor (FcRn) in DC immunity will be discussed. Their expression in DC subsets and impact on antigen uptake and presentation, DC maturation and polarisation of T cell responses will be described. Lastly, we will discuss the importance of FcR-mediated DC function in the context of immunity during viral infection, inflammatory disease, cancer and immunotherapy.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia
| | - Huw Morgan
- ACRF Translational Research Laboratory, The Royal Melbourne Hospital, Parkville, Melbourne, Victoria, 3050, Australia; Department of Medicine, University of Melbourne, Parkville, Melbourne, Victoria, 3010, Australia
| | - Jose A Villadangos
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
11
|
Monocytes Exposed to Immune Complexes Reduce pDC Type 1 Interferon Response to Vidutolimod. Vaccines (Basel) 2021; 9:vaccines9090982. [PMID: 34579220 PMCID: PMC8473335 DOI: 10.3390/vaccines9090982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
Vidutolimod, also known as CMP-001, is a virus-like particle composed of the Qβ bacteriophage coat protein encasing a TLR9 agonist. Vidutolimod injected intratumorally is showing promise in early phase clinical trials based on its ability to alter the tumor microenvironment and induce an anti-tumor immune response. We previously demonstrated that the in vivo efficacy of vidutolimod is dependent on the presence of anti-Qβ antibodies that enhance opsonization and uptake of vidutolimod by TLR9-expressing plasmacytoid dendritic cells (pDCs). Here, we evaluated the effect of immune complexes, including anti-Qβ-coated vidutolimod, on induction of Type 1 Interferon production by peripheral blood mononuclear cells in response to vidutolimod and soluble TLR9 agonists. Immune complexes, including but not limited to anti-Qβ-coated vidutolimod, indirectly suppressed TLR9-mediated Type 1 Interferon production by pDCs in a monocyte-dependent manner. These findings indicate that anti-Qβ-coated vidutolimod has effects in addition to those mediated by TLR9 that could have important clinical implications for understanding the mechanism of action of this exciting new approach to in situ immunization and cancer immunotherapy.
Collapse
|
12
|
Zhou Y, Cheng L, Lei YL, Ren B, Zhou X. The Interactions Between Candida albicans and Mucosal Immunity. Front Microbiol 2021; 12:652725. [PMID: 34234752 PMCID: PMC8255368 DOI: 10.3389/fmicb.2021.652725] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Mucosa protects the body against external pathogen invasion. However, pathogen colonies on the mucosa can invade the mucosa when the immunosurveillance is compromised, causing mucosal infection and subsequent diseases. Therefore, it is necessary to timely and effectively monitor and control pathogenic microorganisms through mucosal immunity. Candida albicans is the most prevalent fungi on the mucosa. The C. albicans colonies proliferate and increase their virulence, causing severe infectious diseases and even death, especially in immunocompromised patients. The normal host mucosal immune defense inhibits pathogenic C. albicans through stepwise processes, such as pathogen recognition, cytokine production, and immune cell phagocytosis. Herein, the current advances in the interactions between C. albicans and host mucosal immune defenses have been summarized to improve understanding on the immune mechanisms against fungal infections.
Collapse
Affiliation(s)
- Yujie Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Yu L. Lei
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, University of Michigan Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Hoepel W, Chen HJ, Geyer CE, Allahverdiyeva S, Manz XD, de Taeye SW, Aman J, Mes L, Steenhuis M, Griffith GR, Bonta PI, Brouwer PJM, Caniels TG, van der Straten K, Golebski K, Jonkers RE, Larsen MD, Linty F, Nouta J, van Roomen CPAA, van Baarle FEHP, van Drunen CM, Wolbink G, Vlaar APJ, de Bree GJ, Sanders RW, Willemsen L, Neele AE, van de Beek D, Rispens T, Wuhrer M, Bogaard HJ, van Gils MJ, Vidarsson G, de Winther M, den Dunnen J. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci Transl Med 2021; 13:eabf8654. [PMID: 33979301 PMCID: PMC8158960 DOI: 10.1126/scitranslmed.abf8654] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Patients diagnosed with coronavirus disease 2019 (COVID-19) become critically ill primarily around the time of activation of the adaptive immune response. Here, we provide evidence that antibodies play a role in the worsening of disease at the time of seroconversion. We show that early-phase severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) spike protein-specific immunoglobulin G (IgG) in serum of critically ill COVID-19 patients induces excessive inflammatory responses by human alveolar macrophages. We identified that this excessive inflammatory response is dependent on two antibody features that are specific for patients with severe COVID-19. First, inflammation is driven by high titers of anti-spike IgG, a hallmark of severe disease. Second, we found that anti-spike IgG from patients with severe COVID-19 is intrinsically more proinflammatory because of different glycosylation, particularly low fucosylation, of the antibody Fc tail. Low fucosylation of anti-spike IgG was normalized in a few weeks after initial infection with SARS-CoV-2, indicating that the increased antibody-dependent inflammation mainly occurs at the time of seroconversion. We identified Fcγ receptor (FcγR) IIa and FcγRIII as the two primary IgG receptors that are responsible for the induction of key COVID-19-associated cytokines such as interleukin-6 and tumor necrosis factor. In addition, we show that anti-spike IgG-activated human macrophages can subsequently break pulmonary endothelial barrier integrity and induce microvascular thrombosis in vitro. Last, we demonstrate that the inflammatory response induced by anti-spike IgG can be specifically counteracted by fostamatinib, an FDA- and EMA-approved therapeutic small-molecule inhibitor of Syk kinase.
Collapse
Affiliation(s)
- Willianne Hoepel
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Chiara E Geyer
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Sona Allahverdiyeva
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Xue D Manz
- Department of Pulmonary Medicine, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Jurjan Aman
- Department of Pulmonary Medicine, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Lynn Mes
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Peter I Bonta
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Philip J M Brouwer
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Tom G Caniels
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Karlijn van der Straten
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Korneliusz Golebski
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - René E Jonkers
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Mads D Larsen
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Federica Linty
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 AZ Leiden, Netherlands
| | - Cindy P A A van Roomen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Frank E H P van Baarle
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Gertjan Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Admiraal Helfrichstraat 1, 1056 AA Amsterdam, Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Godelieve J de Bree
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
- Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Lisa Willemsen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Diederik van de Beek
- Departments of Neurology and Neuroscience, University of Amsterdam, Meibergdreef, Amsterdam UMC, Amsterdam, Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, 2333 AZ Leiden, Netherlands
| | - Harm Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC, location VUMC, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Netherlands
| | - Menno de Winther
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection and Immunity, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands.
| | - Jeroen den Dunnen
- Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Amsterdam Rheumatology and Immunology Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands.
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection and Immunity Institute, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands
| |
Collapse
|
14
|
Geyer CE, Mes L, Newling M, den Dunnen J, Hoepel W. Physiological and Pathological Inflammation Induced by Antibodies and Pentraxins. Cells 2021; 10:1175. [PMID: 34065953 PMCID: PMC8150799 DOI: 10.3390/cells10051175] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages play a key role in induction of inflammatory responses. These inflammatory responses are mostly considered to be instigated by activation of pattern recognition receptors (PRRs) or cytokine receptors. However, recently it has become clear that also antibodies and pentraxins, which can both activate Fc receptors (FcRs), induce very powerful inflammatory responses by macrophages that can even be an order of magnitude greater than PRRs. While the physiological function of this antibody-dependent inflammation (ADI) is to counteract infections, undesired activation or over-activation of this mechanism will lead to pathology, as observed in a variety of disorders, including viral infections such as COVID-19, chronic inflammatory disorders such as Crohn's disease, and autoimmune diseases such as rheumatoid arthritis. In this review we discuss how physiological ADI provides host defense by inducing pathogen-specific immunity, and how erroneous activation of this mechanism leads to pathology. Moreover, we will provide an overview of the currently known signaling and metabolic pathways that underlie ADI, and how these can be targeted to counteract pathological inflammation.
Collapse
Affiliation(s)
- Chiara Elisabeth Geyer
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Lynn Mes
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Melissa Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam UMC, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Infection and Immunity Institute, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
15
|
Vecellio M, Chen L, Cohen CJ, Cortes A, Li Y, Bonham S, Selmi C, Brown MA, Fischer R, Knight JC, Wordsworth BP. Functional Genomic Analysis of a RUNX3 Polymorphism Associated With Ankylosing Spondylitis. Arthritis Rheumatol 2021; 73:980-990. [PMID: 33369221 PMCID: PMC8251554 DOI: 10.1002/art.41628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 09/28/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate the functional consequences of the single-nucleotide polymorphism rs4648889 in a putative enhancer upstream of the RUNX3 promoter associated with susceptibility to ankylosing spondylitis (AS). METHODS Using nuclear extracts from Jurkat cells and primary human CD8+ T cells, the effects of rs4648889 on allele-specific transcription factor (TF) binding were investigated by DNA pull-down assay and quantitative mass spectrometry (qMS), with validation by electrophoretic mobility shift assay (EMSA), Western blotting of the pulled-down eluates, and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction (qPCR) analysis. Further functional effects were tested by small interfering RNA knockdown of the gene for interferon regulatory factor 5 (IRF5), followed by reverse transcription-qPCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) to measure the levels of IFNγ messenger RNA (mRNA) and protein, respectively. RESULTS In nuclear extracts from CD8+ T cells, results of qMS showed that relative TF binding to the AS-risk A allele of rs4648889 was increased 3.7-fold (P < 0.03) for Ikaros family zinc-finger protein 3 (IKZF3; Aiolos) and components of the NuRD complex, including chromodomain helicase DNA binding protein 4 (CHD4) (3.6-fold increase; P < 0.05) and retinoblastoma binding protein 4 (RBBP4) (4.1-fold increase; P < 0.03). In contrast, IRF5 bound significantly more to the AS-protective G allele compared to the AS-risk A allele (fold change 8.2; P = 0.003). Validation with Western blotting, EMSA, and ChIP-qPCR confirmed the differential allelic binding of IKZF3, CHD4, RBBP4, and IRF5. Silencing of IRF5 in CD8+ T cells increased the levels of IFNγ mRNA as measured by RT-qPCR (P = 0.03) and IFNγ protein as measured by ELISA (P = 0.02). CONCLUSION These findings suggest that the association of rs4648889 with AS reflects allele-specific binding of this enhancer-like region to certain TFs, including IRF5, IKZF3, and members of the NuRD complex. IRF5 may have crucial influences on the functions of CD8+ lymphocytes, a finding that could reveal new therapeutic targets for the management of AS.
Collapse
Affiliation(s)
- Matteo Vecellio
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Liye Chen
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Carla J Cohen
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Adrian Cortes
- John Radcliffe Hospital, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Yan Li
- The First Affiliated Hospital of Xiamen University and Xiamen University School of Medicine, Xiamen, China
| | - Sarah Bonham
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Carlo Selmi
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Matthew A Brown
- NIHR Guy's and St. Thomas' Biomedical Research Centre, London, UK, and University of Queensland, Brisbane, Queensland, Australia
| | - Roman Fischer
- Target Discovery Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - B Paul Wordsworth
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Botnar Research Centre, Nuffield Orthopaedic Centre, NIHR Oxford Comprehensive Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Li M, Wang H, Li W, Xu XG, Yu Y. Macrophage activation on "phagocytic synapse" arrays: Spacing of nanoclustered ligands directs TLR1/2 signaling with an intrinsic limit. SCIENCE ADVANCES 2020; 6:eabc8482. [PMID: 33268354 PMCID: PMC7821875 DOI: 10.1126/sciadv.abc8482] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/19/2020] [Indexed: 05/02/2023]
Abstract
The activation of Toll-like receptor heterodimer 1/2 (TLR1/2) by microbial components plays a critical role in host immune responses against pathogens. TLR1/2 signaling is sensitive to the chemical structure of ligands, but its dependence on the spatial distribution of ligands on microbial surfaces remains unexplored. Here, we reveal the quantitative relationship between TLR1/2-triggered immune responses and the spacing of ligand clusters by designing an artificial "phagocytic synapse" nanoarray platform to mimic the cell-microbe interface. The ligand spacing dictates the proximity of receptor clusters on the cell surface and consequently the pro-inflammatory responses of macrophages. However, cell responses reach their maximum at small ligand spacings when the receptor nanoclusters become adjacent to one another. Our study demonstrates the feasibility of using spatially patterned ligands to modulate innate immunity. It shows that the receptor clusters of TLR1/2 act as a driver in integrating the spatial cues of ligands into cell-level activation events.
Collapse
Affiliation(s)
- Miao Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Wenqian Li
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Xiaoji G Xu
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Yan Yu
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
17
|
Kost-Alimova M, Sidhom EH, Satyam A, Chamberlain BT, Dvela-Levitt M, Melanson M, Alper SL, Santos J, Gutierrez J, Subramanian A, Byrne PJ, Grinkevich E, Reyes-Bricio E, Kim C, Clark AR, Watts AJ, Thompson R, Marshall J, Pablo JL, Coraor J, Roignot J, Vernon KA, Keller K, Campbell A, Emani M, Racette M, Bazua-Valenti S, Padovano V, Weins A, McAdoo SP, Tam FW, Ronco L, Wagner F, Tsokos GC, Shaw JL, Greka A. A High-Content Screen for Mucin-1-Reducing Compounds Identifies Fostamatinib as a Candidate for Rapid Repurposing for Acute Lung Injury. Cell Rep Med 2020; 1:100137. [PMID: 33294858 PMCID: PMC7691435 DOI: 10.1016/j.xcrm.2020.100137] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
Drug repurposing has the advantage of identifying potential treatments on a shortened timescale. In response to the pandemic spread of SARS-CoV-2, we took advantage of a high-content screen of 3,713 compounds at different stages of clinical development to identify FDA-approved compounds that reduce mucin-1 (MUC1) protein abundance. Elevated MUC1 levels predict the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) and correlate with poor clinical outcomes. Our screen identifies fostamatinib (R788), an inhibitor of spleen tyrosine kinase (SYK) approved for the treatment of chronic immune thrombocytopenia, as a repurposing candidate for the treatment of ALI. In vivo, fostamatinib reduces MUC1 abundance in lung epithelial cells in a mouse model of ALI. In vitro, SYK inhibition by the active metabolite R406 promotes MUC1 removal from the cell surface. Our work suggests fostamatinib as a repurposing drug candidate for ALI.
Collapse
Affiliation(s)
| | - Eriene-Heidi Sidhom
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhigyan Satyam
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Moran Dvela-Levitt
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Seth L. Alper
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Jean Santos
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Juan Gutierrez
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Choah Kim
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Abbe R. Clark
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J.B. Watts
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jamie Marshall
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Juliana Coraor
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Roignot
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Katherine A. Vernon
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Keith Keller
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alissa Campbell
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Silvana Bazua-Valenti
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Astrid Weins
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen P. McAdoo
- Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital, London, UK
| | - Frederick W.K. Tam
- Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital, London, UK
| | - Luciene Ronco
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - George C. Tsokos
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | - Anna Greka
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Hoepel W, Allahverdiyeva S, Harbiye H, de Taeye SW, van der Ham AJ, de Boer L, Zaat SAJ, van Weeghel M, Baeten DLP, Houtkooper RH, Everts B, Vidarsson G, den Dunnen J. IgG Subclasses Shape Cytokine Responses by Human Myeloid Immune Cells through Differential Metabolic Reprogramming. THE JOURNAL OF IMMUNOLOGY 2020; 205:3400-3407. [PMID: 33188071 DOI: 10.4049/jimmunol.2000263] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
IgG Abs are crucial for various immune functions, including neutralization, phagocytosis, and Ab-dependent cellular cytotoxicity. In this study, we identified another function of IgG by showing that IgG immune complexes elicit distinct cytokine profiles by human myeloid immune cells, which are dependent on FcγR activation by the different IgG subclasses. Using monoclonal IgG subclasses with identical Ag specificity, our data demonstrate that the production of Th17-inducing cytokines, such as TNF, IL-1β, and IL-23, is particularly dependent on IgG2, whereas type I IFN responses are controlled by IgG3, and IgG1 is able to regulate both. In addition, we identified that subclass-specific cytokine production is orchestrated at the posttranscriptional level through distinct glycolytic reprogramming of human myeloid immune cells. Combined, these data identify that IgG subclasses provide pathogen- and cell type-specific immunity through differential metabolic reprogramming by FcγRs. These findings may be relevant for future design of Ab-related therapies in the context of infectious diseases, chronic inflammation, and cancer.
Collapse
Affiliation(s)
- Willianne Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sona Allahverdiyeva
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Haneen Harbiye
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunohematology, Sanquin Research, 1066 CX Amsterdam, the Netherlands
| | - Alwin J van der Ham
- Department of Parasitology, Leiden University Medical Center, University of Leiden, 2333 ZA Leiden, the Netherlands
| | - Leonie de Boer
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sebastiaan A J Zaat
- Department of Medical Microbiology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, 1105 AZ Amsterdam, the Netherlands; and.,Core Facility Metabolomics, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, 1105 AZ Amsterdam, the Netherlands; and
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, University of Leiden, 2333 ZA Leiden, the Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, 1066 CX Amsterdam, the Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; .,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
19
|
van der Poel M, Hoepel W, Hamann J, Huitinga I, Dunnen JD. IgG Immune Complexes Break Immune Tolerance of Human Microglia. THE JOURNAL OF IMMUNOLOGY 2020; 205:2511-2518. [PMID: 32967931 DOI: 10.4049/jimmunol.2000130] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022]
Abstract
Microglia are phagocytic cells involved in homeostasis of the brain and are key players in the pathogenesis of multiple sclerosis (MS). A hallmark of MS diagnosis is the presence of IgG Abs, which appear as oligoclonal bands in the cerebrospinal fluid. In this study, we demonstrate that myelin obtained post mortem from 8 out of 11 MS brain donors is bound by IgG Abs. Importantly, we show that IgG immune complexes strongly potentiate activation of primary human microglia by breaking their tolerance for microbial stimuli, such as LPS and Poly I:C, resulting in increased production of key proinflammatory cytokines, such as TNF and IL-1β. We identified FcγRI and FcγRIIa as the two main responsible IgG receptors for the breaking of immune tolerance of microglia. Combined, these data indicate that IgG immune complexes potentiate inflammation by human microglia, which may play an important role in MS-associated inflammation and the formation of demyelinating lesions.
Collapse
Affiliation(s)
- Marlijn van der Poel
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Willianne Hoepel
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, University Medical Centers, 1105 AZ Amsterdam, the Netherlands.,Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, the Netherlands; and
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, University Medical Centers, 1105 AZ Amsterdam, the Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, 1090 GE Amsterdam, the Netherlands
| | - Jeroen den Dunnen
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, University Medical Centers, 1105 AZ Amsterdam, the Netherlands; .,Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, 1105 AZ Amsterdam, the Netherlands; and
| |
Collapse
|
20
|
Talotta R, Robertson E. Autoimmunity as the comet tail of COVID-19 pandemic. World J Clin Cases 2020; 8:3621-3644. [PMID: 32953841 PMCID: PMC7479552 DOI: 10.12998/wjcc.v8.i17.3621] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/29/2020] [Accepted: 08/26/2020] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can give rise to different clinical manifestations that are directly related to viral tissue damage or indirectly induced by the antiviral immune response. Hyper-activation of the immune system in an attempt to eradicate the infection may trigger autoimmunity. Several immune-mediated disorders have been described in SARS-CoV-2-infected individuals. These include cutaneous rashes and vasculitis, autoimmune cytopenia, anti-phospholipid syndrome, central or peripheral neuropathy, myositis and myocarditis. On the other hand, rheumatic patients were reported to have similar coronavirus disease 2019 (COVID-19) incidence, morbidity and mortality rates compared to general population. This opinion review will summarize the crucial immunologic steps which occur during SARS-CoV-2-infection that may link autoimmunity to COVID-19 and provides an opportunity for further discussion regarding this association.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU “Gaetano Martino”, University of Messina, Messina 98100, Italy
| | - Erle Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19014, United States
| |
Collapse
|
21
|
Hoepel W, Golebski K, van Drunen CM, den Dunnen J. Active control of mucosal tolerance and inflammation by human IgA and IgG antibodies. J Allergy Clin Immunol 2020; 146:273-275. [DOI: 10.1016/j.jaci.2020.04.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
|
22
|
Vargas-Hernández O, Ventura-Gallegos JL, Ventura-Ayala ML, Torres M, Zentella A, Pedraza-Sánchez S. THP-1 cells increase TNF-α production upon LPS + soluble human IgG co-stimulation supporting evidence for TLR4 and Fcγ receptors crosstalk. Cell Immunol 2020; 355:104146. [PMID: 32702524 DOI: 10.1016/j.cellimm.2020.104146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023]
Abstract
The lipopolysaccharide (LPS) of Gram-negative bacteria is recognized on human monocytes and macrophages by TLR4 and MD2 and induces the production of inflammatory cytokines; the LPS + IgG complexes co-stimulation increases the cytokine production, mediated by the Fc-γRIIa (CD32a). We stimulated human CD14 + monocytes or THP-1 cells with LPS or LPS + soluble human IgG (sIgG) and TNF-α transcription and production, assessed RT-qPCR, ELISA, or flow cytometry, was enhanced by 30% upon LPS + sIgG compared to LPS stimulation. LPS + sIgG co-stimulation affected the NF-κB pathway (p65 phosphorylation and nucleus translocation, and IkB- α degradation). The biochemical inhibition of IRAK 1/4 and Syk kinases suppressed the enhancer effect of LPS + sIgG on TNF- α production, suggesting the involvement of both MyD88 dependent and independent pathways. Our results suggest that during LPS activation, sIgG may participate in a TLR4 - Fc-γR crosstalk.
Collapse
Affiliation(s)
- Omar Vargas-Hernández
- Departamento de Medicina Genómica y Toxicología ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico
| | - María Laura Ventura-Ayala
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico
| | - Martha Torres
- Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas (INER), Mexico
| | - Alejandro Zentella
- Departamento de Medicina Genómica y Toxicología ambiental, Instituto de Investigaciones Biomédicas, UNAM, Mexico; Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico
| | - Sigifredo Pedraza-Sánchez
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico.
| |
Collapse
|
23
|
Liu Y, Duan Y, Li Y. Integrated Gene Expression Profiling Analysis Reveals Probable Molecular Mechanism and Candidate Biomarker in Anti-TNFα Non-Response IBD Patients. J Inflamm Res 2020; 13:81-95. [PMID: 32104045 PMCID: PMC7024800 DOI: 10.2147/jir.s236262] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose To explore the molecular mechanism and search for candidate biomarkers in the gene expression profile of IBD patients associated with the response to anti-TNFα agents. Methods Differentially expressed genes (DEGs) of response vs non-response IBD patients in datasets GSE12251, GSE16879, and GSE23597 were integrated using NetworkAnalyst. We conducted functional enrichment analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and extracted hub genes from the protein–protein interaction network. The proportion of immune cell types was estimated via CIBERSORT. ROC curve analysis and binomial Lasso regression were applied to assess the expression level of hub genes in datasets GSE12251, GSE16879, and GSE23597, and another two datasets GSE107865 and GSE42296. Results A total of 287 DEGs were obtained from the integrated dataset. They were enriched in 14 Gene Ontology terms and 11 KEGG pathways. Polarization from M2 to M1 macrophages was relatively high in non-response individuals. We found nine hub genes (TLR4, TLR1, TLR8, CCR1, CD86, CCL4, HCK, and FCGR2A), mainly related to the interaction between Toll-like Receptor (TLR) pathway and FcγR signaling in non-response anti-TNFα individuals. FCGR2A, HCK, TLR1, TLR4, TLR8, and CCL4 show great value for prediction in intestinal tissue. Besides, FCGR2A, HCK, and TLR8 might be candidate blood biomarkers of anti-TNFα non-response IBD patients. Conclusion Over-activated interaction between FcγR-TLR axis in the innate immune cells of IBD patients might be used to identify non-response individuals and increased our understanding of resistance to anti-TNFα therapy.
Collapse
Affiliation(s)
- Yifan Liu
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yantao Duan
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, People's Republic of China
| |
Collapse
|
24
|
Newling M, Fiechter RH, Sritharan L, Hoepel W, van Burgsteden JA, Hak AE, van Vollenhoven RF, van de Sande MGH, Baeten DLP, den Dunnen J. Dysregulated Fcγ receptor IIa-induced cytokine production in dendritic cells of lupus nephritis patients. Clin Exp Immunol 2020; 199:39-49. [PMID: 31509231 PMCID: PMC6904640 DOI: 10.1111/cei.13371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease of unknown etiology. One of the key factors associated with SLE pathogenesis is excessive production of type I interferons (IFNs). This could result from increased activation of type I IFN-stimulating pathways, but also from decreased activation of type I IFN-inhibitory pathways. Recently, we have identified that immunoglobulin (Ig)G immune complexes strongly inhibit type I IFN production in healthy individuals by inhibitory signaling through Fcγ receptor IIa (FcγRIIa) on dendritic cells (DCs). Because, in SLE patients, immune complexes are characteristically present, we assessed whether FcγR-induced suppression of type I IFN is functional in DCs of SLE patients. We divided the SLE patients into one group without, and one group with, previous major organ involvement, for which we chose nephritis as a prototypical example. We show that DCs of lupus nephritis patients displayed impaired FcγR-mediated type I IFN inhibition compared to SLE patients without major organ involvement or healthy controls. We verified that this impaired type I IFN inhibition was not related to differences in disease activity, medication, FcγRIIa expression or expression of IFN regulatory transcription factors (IRF)1 and IRF5. In addition, we identified that DCs of lupus nephritis patients show increased FcγR-induced interleukin (IL)-1β production, which is another important cytokine that promotes kidney inflammation. Taken together, these data indicate that DCs of lupus nephritis patients display altered FcγR-mediated regulation of cytokine production, resulting in elevated levels of type I IFN and IL-1β. This dysregulation may contribute to the development of nephritis in SLE patients.
Collapse
Affiliation(s)
- M. Newling
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - R. H. Fiechter
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - L. Sritharan
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - W. Hoepel
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - J. A. van Burgsteden
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - A. E. Hak
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
| | - R. F. van Vollenhoven
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - M. G. H. van de Sande
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
| | - D. L. P. Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| | - J. den Dunnen
- Amsterdam Rheumatology and Immunology Center, Department of Rheumatology and Clinical ImmunologyAcademic Medical CenterAmsterdamthe Netherlands
- Department of Experimental ImmunologyAmsterdam Infection and Immunity InstituteAmsterdam UMCUniversity of AmsterdamAmsterdam
| |
Collapse
|
25
|
Hansen IS, Schoonejans JM, Sritharan L, van Burgsteden JA, Ambarus CA, Baeten DLP, den Dunnen J. ER stress abrogates the immunosuppressive effect of IL-10 on human macrophages through inhibition of STAT3 activation. Inflamm Res 2019; 68:775-785. [PMID: 31227842 PMCID: PMC6667425 DOI: 10.1007/s00011-019-01261-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/23/2019] [Accepted: 06/12/2019] [Indexed: 01/08/2023] Open
Abstract
Objective and design To determine whether ER stress affects the inhibitory pathways of the human immune system, particularly the immunosuppressive effect of IL-10 on macrophages. Material or subjects In vitro stimulation of human monocyte-derived macrophages. Treatment Cells were stimulated with TLR ligands and IL-10, while ER stress was induced using thapsigargin or tunicamycin. Methods mRNA expression was determined using qPCR, while cytokine protein production was measured using ELISA. Protein expression of receptors and transcription factors was determined using flow cytometry. Student’s t test was used for statistics. Results While under normal conditions IL-10 potently suppresses pro-inflammatory cytokine production by LPS-stimulated macrophages, we demonstrate that ER stress counteracts the immunosuppressive effects of IL-10, leading to increased pro-inflammatory cytokine production. We identified that ER stress directly interferes with IL-10R signaling by reducing STAT3 phosphorylation on Tyr705, which thereby inhibits the expression of SOCS3. Moreover, we show that ER stress also inhibits STAT3 activation induced by other receptors such as IL-6R. Conclusions Combined, these data uncover a new general mechanism by which ER stress promotes inflammation. Considering its potential involvement in the pathogenesis of diseases such as Crohn’s disease and spondyloarthritis, targeting of this mechanism may provide new opportunities to counteract inflammation.
Collapse
Affiliation(s)
- Ivo S Hansen
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Josca M Schoonejans
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lathees Sritharan
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johan A van Burgsteden
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Carmen A Ambarus
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Dominique L P Baeten
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jeroen den Dunnen
- Amsterdam Rheumatology and Immunology Center, Location Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|