1
|
Tam E, Choo JPS, Rao P, Webb WR, Carruthers JDA, Rahman E. A Systematic Review on the Effectiveness and Safety of Combining Biostimulators with Botulinum Toxin, Dermal Fillers, and Energy-Based Devices. Aesthetic Plast Surg 2024:10.1007/s00266-024-04627-5. [PMID: 39719485 DOI: 10.1007/s00266-024-04627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/04/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION Aesthetic medicine has evolved towards minimally invasive procedures, with biostimulators like Poly-L-Lactic Acid (PLLA), Calcium Hydroxylapatite (CaHA), and Polycaprolactone (PCL) gaining attention for their role in collagen induction, improving skin texture, elasticity, and volume. Combining these agents with other treatments-such as botulinum toxin, dermal fillers, and energy-based devices (e.g. laser and radiofrequency therapies)-is hypothesised to provide enhanced aesthetic outcomes. However, studies on the efficacy and safety of these combinations remain sparse and methodologically varied, posing challenges in establishing definitive recommendations. METHODS This systematic review adhered to PRISMA guidelines, involving a thorough literature search across PubMed, MEDLINE, Embase, and Cochrane databases. The search included terms related to biostimulators and combination treatments. Studies meeting inclusion criteria reported clinical outcomes of combined biostimulator treatments, including effectiveness, safety, patient satisfaction, and adverse effects. Key parameters extracted included treatment area, combination protocols, and outcomes. Data synthesis used a narrative approach due to variability in methodologies, treatment protocols, and outcome metrics. RESULTS Out of 1,237 studies initially identified, 29 met the inclusion criteria. These studies included various combinations of biostimulators with botulinum toxin, dermal fillers, and energy-based devices, with sample sizes ranging from 10 to 350 subjects. Treatments combining CaHA or PLLA with energy-based modalities like high-intensity focused ultrasound (HIFU), fractional lasers, and microneedling demonstrated notable improvements in skin texture, elasticity, and contouring, particularly in areas with ageing signs. Adverse events included erythema, bruising, and nodules in 15-30% of cases, with rare but severe complications such as granulomas and vascular occlusions. Management protocols for these events involved corticosteroids, hyaluronidase, or surgical intervention. The review also found a lack of molecular understanding of the synergistic mechanisms. CONCLUSION The review underscores the potential benefits of combined treatments in aesthetic outcomes, though limitations like heterogeneous methodologies, small sample sizes, and inconsistent protocols impact the reliability of findings. Current literature lacks a molecular understanding of the mechanisms underlying these combinations, limiting insights into the longevity and safety of results. Future studies with standardised protocols, objective outcome measures, and detailed molecular analyses are essential for developing evidence-based recommendations for combining biostimulators with other treatments in aesthetic practice. LEVEL OF EVIDENCE IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
| | | | - Parinitha Rao
- The Skin Address, Aesthetic Dermatology Practice, Bengaluru, India
| | | | - Jean D A Carruthers
- Carruthers Cosmetic, Vancouver, BC, Canada
- Department of Ophthalmology, University of British Columbia, Vancouver, BC, Canada
| | - Eqram Rahman
- Research and Innovation Hub, Innovation Aesthetics, London, WC2H 9JQ, UK.
| |
Collapse
|
2
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2024:10.1038/s41582-024-01046-7. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Niazi SK, Magoola M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products-A Prospective Analysis. Int J Mol Sci 2024; 25:12883. [PMID: 39684593 DOI: 10.3390/ijms252312883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
MicroRNAs (miRNAs) maintain cellular homeostasis by blocking mRNAs by binding with them to fine-tune the expression of genes across numerous biological pathways. The 2024 Nobel Prize in Medicine and Physiology for discovering miRNAs was long overdue. We anticipate a deluge of research work involving miRNAs to repeat the history of prizes awarded for research on other RNAs. Although miRNA therapies are included for several complex diseases, the realization that miRNAs regulate genes and their roles in addressing therapies for hundreds of diseases are expected; but with advancement in drug discovery tools, we anticipate even faster entry of new drugs. To promote this, we provide details of the current science, logic, intellectual property, formulations, and regulatory process with anticipation that many more researchers will introduce novel therapies based on the discussion and advice provided in this paper.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60612, USA
| | | |
Collapse
|
4
|
Choi JY, Seok HJ, Lee DH, Kwon J, Shin US, Shin I, Bae IH. miR-1226-5p is involved in radioresistance of colorectal cancer by activating M2 macrophages through suppressing IRF1. J Transl Med 2024; 22:980. [PMID: 39472937 PMCID: PMC11523791 DOI: 10.1186/s12967-024-05797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Although the representative treatment for colorectal cancer (CRC) is radiotherapy, cancer cells survive due to inherent radioresistance or resistance acquired after radiation treatment, accelerating tumor malignancy and causing local recurrence and metastasis. However, the detailed mechanisms of malignancy induced after radiotherapy are not well understood. To develop more effective and improved radiotherapy and diagnostic methods, it is necessary to clearly identify the mechanisms of radioresistance and discover related biomarkers. METHODS To analyze the expression pattern of miRNAs in radioresistant CRC, sequence analysis was performed in radioresistant HCT116 cells using Gene Expression Omnibus, and then miR-1226-5p, which had the highest expression in resistant cells compared to parental cells, was selected. To confirm the effect of miR-1226-5 on tumorigenicity, Western blot, qRT-PCR, transwell migration, and invasion assays were performed to confirm the expression of EMT factors, cell mobility and invasiveness. Additionally, the tumorigenic ability of miR-1226-5p was confirmed in organoids derived from colorectal cancer patients. In CRC cells, IRF1, a target gene of miR-1226-5p, and circSLC43A1, which acts as a sponge for miR-1226-5p, were discovered and the mechanism was analyzed by confirming the tumorigenic phenotype. To analyze the effect of tumor-derived miR-1226-5p on macrophages, the expression of M2 marker in co-cultured cells and CRC patient tissues were confirmed by qRT-PCR and immunohistochemical (IHC) staining analyses. RESULTS This study found that overexpressed miR-1226-5p in radioresistant CRC dramatically promoted epithelial-mesenchymal transition (EMT), migration, invasion, and tumor growth by suppressing the expression of its target gene, IRF1. Additionally, we discovered circSLC43A1, a factor that acts as a sponge for miR-1226-5p and suppresses its expression, and verified that EMT, migration, invasion, and tumor growth are suppressed by circSLC43A1 in radioresistant CRC cells. Resistant CRC cells-derived miR-1226-5p was transferred to macrophages and contributed to tumorigenicity by inducing M2 polarization and secretion of TGF-β. CONCLUSIONS This study showed that the circSLC43A1/miR-1226-5p/IRF1 axis is involved in radioresistance and cancer aggressiveness in CRC. It was suggested that the discovered signaling factors could be used as potential biomarkers for diagnosis and treatment of radioresistant CRC.
Collapse
Affiliation(s)
- Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea
| | - Junhye Kwon
- Medical Sciences Substantiation Center, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ui Sup Shin
- Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-Ro, Nowon-Gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
5
|
Bąska P, Majewska A, Zygner W, Długosz E, Wiśniewski M. Fasciola hepatica Excretory-Secretory Products ( Fh-ES) Either Do Not Affect miRNA Expression Profile in THP-1 Macrophages or the Changes Are Undetectable by a Microarray Technique. Pathogens 2024; 13:854. [PMID: 39452725 PMCID: PMC11510385 DOI: 10.3390/pathogens13100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Fasciola hepatica is a liver fluke that resides in the bile ducts of various mammals. The parasitosis leads to economic losses in animal production estimated at USD 3.2 billion annually. It is also considered a zoonosis of great significance and a problem for public health affecting 2.4 million people worldwide. Nevertheless, besides the negative aspects of infestation, the antigens released by the fluke, F. hepatica Excretory-Secretory Products (Fh-ES) contain several immunomodulatory molecules that may be beneficial during the course of type I diabetes, multiple sclerosis, ulcerative colitis, or septic shock. This phenomenon is based on the natural abilities of adult F. hepatica to suppress proinflammatory responses. To underline the molecular basis of these mechanisms and determine the role of microRNA (miRNA) in the process, lipopolysaccharide (LPS)-activated THP-1 macrophages were stimulated with Fh-ES, followed by miRNA microarray analyses. Surprisingly, no results indicating changes in the miRNA expression profile were noted (p < 0.05). We discuss potential reasons for these results, which may be due to insufficient sensitivity to detect slight changes in miRNA expression or the possibility that these changes are not regulated by miRNA. Despite the negative data, this work may contribute to the future planning of experiments by other researchers.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland
| | - Alicja Majewska
- Department of Physiological Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159b, 02-776 Warsaw, Poland;
| | - Wojciech Zygner
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| | - Ewa Długosz
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| | - Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-786 Warsaw, Poland; (W.Z.); (E.D.); (M.W.)
| |
Collapse
|
6
|
Park S, Rahaman KA, Kim YC, Jeon H, Han HS. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater 2024; 40:345-365. [PMID: 38978804 PMCID: PMC11228556 DOI: 10.1016/j.bioactmat.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.
Collapse
Affiliation(s)
- Soyeon Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
7
|
Yang S, Li D. Role of microRNAs in triple‑negative breast cancer and new therapeutic concepts (Review). Oncol Lett 2024; 28:431. [PMID: 39049985 PMCID: PMC11268089 DOI: 10.3892/ol.2024.14565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Breast cancer has surpassed lung cancer as the most prevalent malignancy affecting women worldwide. Triple-negative breast cancer (TNBC) is the type of breast cancer with the worst prognosis. As a heterogeneous disease, TNBC has a pathogenesis that involves multiple oncogenic pathways, including involvement of gene mutations and alterations in signaling pathways. MicroRNAs (miRNAs) are small endogenous, single-stranded non-coding RNAs that bind to the 3' untranslated region of target cell mRNAs to negatively regulate the gene expression of these specific mRNAs. Therefore, miRNAs are involved in cell growth, development, division and differentiation stages. miRNAs are also involved in gene targeting in tumorigenesis, tumor growth and the regulation of metastasis, including in breast cancer. Meanwhile, miRNAs also regulate components of signaling pathways. In this review, the role of miRNAs in the TNBC signaling pathway discovered in recent years is described in detail. The new concept of bi-targeted therapy for breast cancer using miRNA and artificial intelligence is also discussed.
Collapse
Affiliation(s)
- Shaofeng Yang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| | - Donghai Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China
| |
Collapse
|
8
|
Bai H, Feng L, Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp Cell Res 2024; 442:114198. [PMID: 39103071 DOI: 10.1016/j.yexcr.2024.114198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Macrophages play crucial roles in the tumor microenvironment (TME), exerting diverse functions ranging from promoting tumor growth and metastasis to orchestrating anti-tumor immune responses. Their plasticity allows them to adopt distinct activation states, often called M1-like (pro-inflammatory) and M2-like (anti-inflammatory or pro-tumoral), significantly influencing tumor progression and response to therapy. Harnessing the potential of macrophages in cancer immunotherapy has emerged as a promising strategy, with increasing interest in targeting these cells directly or modulating their functions within the TME. This review explores the intricate interplay between macrophages, the TME, and immunotherapeutic approaches. We discuss the dynamic phenotypic and functional heterogeneity of tumor-associated macrophages (TAMs), their impact on disease progression, and the mechanisms underlying their response to immunotherapy. Furthermore, we highlight recent advancements in macrophage-based immunotherapeutic strategies, including macrophage-targeting agents, adoptive cell transfer, and engineering approaches. Understanding the complex crosstalk between macrophages and the TME is essential for developing effective immunotherapeutic interventions that exploit the immunomodulatory functions of macrophages to enhance anti-tumor immunity and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Haotian Bai
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, 215316, China; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| | - Li Feng
- Emergency Department, People's Hospital Affiliated to Shandong First Medical University, Jinan, 271100, Shandong Province, China.
| | - Felix Schmid
- School of Biomedical Sciences, Carleton University, Ottawa, Canada.
| |
Collapse
|
9
|
Toledo B, Zhu Chen L, Paniagua-Sancho M, Marchal JA, Perán M, Giovannetti E. Deciphering the performance of macrophages in tumour microenvironment: a call for precision immunotherapy. J Hematol Oncol 2024; 17:44. [PMID: 38863020 PMCID: PMC11167803 DOI: 10.1186/s13045-024-01559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Macrophages infiltrating tumour tissues or residing in the microenvironment of solid tumours are known as tumour-associated macrophages (TAMs). These specialized immune cells play crucial roles in tumour growth, angiogenesis, immune regulation, metastasis, and chemoresistance. TAMs encompass various subpopulations, primarily classified into M1 and M2 subtypes based on their differentiation and activities. M1 macrophages, characterized by a pro-inflammatory phenotype, exert anti-tumoural effects, while M2 macrophages, with an anti-inflammatory phenotype, function as protumoural regulators. These highly versatile cells respond to stimuli from tumour cells and other constituents within the tumour microenvironment (TME), such as growth factors, cytokines, chemokines, and enzymes. These stimuli induce their polarization towards one phenotype or another, leading to complex interactions with TME components and influencing both pro-tumour and anti-tumour processes.This review comprehensively and deeply covers the literature on macrophages, their origin and function as well as the intricate interplay between macrophages and the TME, influencing the dual nature of TAMs in promoting both pro- and anti-tumour processes. Moreover, the review delves into the primary pathways implicated in macrophage polarization, examining the diverse stimuli that regulate this process. These stimuli play a crucial role in shaping the phenotype and functions of macrophages. In addition, the advantages and limitations of current macrophage based clinical interventions are reviewed, including enhancing TAM phagocytosis, inducing TAM exhaustion, inhibiting TAM recruitment, and polarizing TAMs towards an M1-like phenotype. In conclusion, while the treatment strategies targeting macrophages in precision medicine show promise, overcoming several obstacles is still necessary to achieve an accessible and efficient immunotherapy.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Linrui Zhu Chen
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - María Paniagua-Sancho
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, E-18071, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, E-18016, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus Lagunillas, Jaén, E-23071, Spain.
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, E-18100, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, E-18016, Spain.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam UMC, VU University, Amsterdam, The Netherlands.
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, San Giuliano, Pisa, 56017, Italy.
| |
Collapse
|
10
|
Moradimotlagh A, Brar HK, Chen S, Moon KM, Foster LJ, Reiner N, Nandan D. Characterization of Argonaute-containing protein complexes in Leishmania-infected human macrophages. PLoS One 2024; 19:e0303686. [PMID: 38781128 PMCID: PMC11115314 DOI: 10.1371/journal.pone.0303686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
The intracellular protozoan parasite Leishmania causes leishmaniasis in humans, leading to serious illness and death in tropical and subtropical areas worldwide. Unfortunately, due to the unavailability of approved vaccines for humans and the limited efficacy of available drugs, leishmaniasis is on the rise. A comprehensive understanding of host-pathogen interactions at the molecular level could pave the way to counter leishmaniasis. There is growing evidence that several intracellular pathogens target RNA interference (RNAi) pathways in host cells to facilitate their persistence. The core elements of the RNAi system are complexes of Argonaute (Ago) proteins with small non-coding RNAs, also known as RNA-induced silencing complexes (RISCs). Recently, we have shown that Leishmania modulates Ago1 protein of host macrophages for its survival. In this study, we biochemically characterize the Ago proteins' interactome in Leishmania-infected macrophages compared to non-infected cells. For this, a quantitative proteomic approach using stable isotope labelling by amino acids in cell culture (SILAC) was employed, followed by purification of host Ago-complexes using a short TNRC6 protein-derived peptide fused to glutathione S-transferase beads as an affinity matrix. Proteomic-based detailed biochemical analysis revealed Leishmania modulated host macrophage RISC composition during infection. This analysis identified 51 Ago-interacting proteins with a broad range of biological activities. Strikingly, Leishmania proteins were detected as part of host Ago-containing complexes in infected cells. Our results present the first report of comprehensive quantitative proteomics of Ago-containing complexes isolated from Leishmania-infected macrophages and suggest targeting the effector complex of host RNAi machinery. Additionally, these results expand knowledge of RISC in the context of host-pathogen interactions in parasitology in general.
Collapse
Affiliation(s)
- Atieh Moradimotlagh
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Harsimran Kaur Brar
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Stella Chen
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C, Canada
| | - Neil Reiner
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| | - Devki Nandan
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, B.C, Canada
| |
Collapse
|
11
|
van Griensven M, Balmayor ER. Extracellular vesicles are key players in mesenchymal stem cells' dual potential to regenerate and modulate the immune system. Adv Drug Deliv Rev 2024; 207:115203. [PMID: 38342242 DOI: 10.1016/j.addr.2024.115203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/15/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
MSCs are used for treatment of inflammatory conditions or for regenerative purposes. MSCs are complete cells and allogenic transplantation is in principle possible, but mostly autologous use is preferred. In recent years, it was discovered that cells secrete extracellular vesicles. These are active budded off vesicles that carry a cargo. The cargo can be miRNA, protein, lipids etc. The extracellular vesicles can be transported through the body and fuse with target cells. Thereby, they influence the phenotype and modulate the disease. The extracellular vesicles have, like the MSCs, immunomodulatory or regenerative capacities. This review will focus on those features of extracellular vesicles and discuss their dual role. Besides the immunomodulation, the regeneration will concentrate on bone, cartilage, tendon, vessels and nerves. Current clinical trials with extracellular vesicles for immunomodulation and regeneration that started in the last five years are highlighted as well. In summary, extracellular vesicles have a great potential as disease modulating entity and treatment. Their dual characteristics need to be taken into account and often are both important for having the best effect.
Collapse
Affiliation(s)
- Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, 6229 ER Maastricht, the Netherlands; Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | - Elizabeth R Balmayor
- Musculoskeletal Gene Therapy Laboratory, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN 55905, USA; Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
12
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
13
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
14
|
Li Y, Li X, Guo D, Meng L, Feng X, Zhang Y, Pan S. Immune dysregulation and macrophage polarization in peri-implantitis. Front Bioeng Biotechnol 2024; 12:1291880. [PMID: 38347915 PMCID: PMC10859439 DOI: 10.3389/fbioe.2024.1291880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The term "peri-implantitis" (peri-implantitis) refers to an inflammatory lesion of the mucosa surrounding an endosseous implant and a progressive loss of the peri-implant bone that supports the implant. Recently, it has been suggested that the increased sensitivity of implants to infection and the quick elimination of supporting tissue after infection may be caused by a dysregulated peri-implant mucosal immune response. Macrophages are polarized in response to environmental signals and play multiple roles in peri-implantitis. In peri-implantitis lesion samples, recent investigations have discovered a considerable increase in M1 type macrophages, with M1 type macrophages contributing to the pro-inflammatory response brought on by bacteria, whereas M2 type macrophages contribute to inflammation remission and tissue repair. In an effort to better understand the pathogenesis of peri-implantitis and suggest potential immunomodulatory treatments for peri-implantitis in the direction of macrophage polarization patterns, this review summarizes the research findings related to macrophage polarization in peri-implantitis and compares them with periodontitis.
Collapse
Affiliation(s)
- Yue Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xue Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Danni Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lingwei Meng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xianghui Feng
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shaoxia Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
15
|
Macvanin MT, Gluvic ZM, Klisic AN, Manojlovic MS, Suri JS, Rizzo M, Isenovic ER. The Link between miRNAs and PCKS9 in Atherosclerosis. Curr Med Chem 2024; 31:6926-6956. [PMID: 37990898 DOI: 10.2174/0109298673262124231102042914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/23/2023]
Abstract
Cardiovascular disease (CDV) represents the major cause of death globally. Atherosclerosis, as the primary cause of CVD, is a chronic immune-inflammatory disorder with complex multifactorial pathophysiology encompassing oxidative stress, enhanced immune-inflammatory cascade, endothelial dysfunction, and thrombosis. An initiating event in atherosclerosis is the subendothelial accumulation of low-density lipoprotein (LDL), followed by the localization of macrophages to fatty deposits on blood vessel walls, forming lipid-laden macrophages (foam cells) that secrete compounds involved in plaque formation. Given the fact that foam cells are one of the key culprits that underlie the pathophysiology of atherosclerosis, special attention has been paid to the investigation of the efficient therapeutic approach to overcome the dysregulation of metabolism of cholesterol in macrophages, decrease the foam cell formation and/or to force its degradation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine proteinase that has emerged as a significant regulator of the lipid metabolism pathway. PCSK9 activation leads to the degradation of LDL receptors (LDLRs), increasing LDL cholesterol (LDL-C) levels in the circulation. PCSK9 pathway dysregulation has been identified as one of the mechanisms involved in atherosclerosis. In addition, microRNAs (miRNAs) are investigated as important epigenetic factors in the pathophysiology of atherosclerosis and dysregulation of lipid metabolism. This review article summarizes the recent findings connecting the role of PCSK9 in atherosclerosis and the involvement of various miRNAs in regulating the expression of PCSK9-related genes. We also discuss PCSK9 pathway-targeting therapeutic interventions based on PCSK9 inhibition, and miRNA levels manipulation by therapeutic agents.
Collapse
Affiliation(s)
- Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran M Gluvic
- Department of Endocrinology and Diabetes, School of Medicine, University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandra N Klisic
- Faculty of Medicine, Center for Laboratory Diagnostic, Primary Health Care Center, University of Montenegro, Podgorica, Montenegro
| | - Mia S Manojlovic
- Faculty of Medicine Novi Sad, University of Novi Sad, Novi Sad, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, Athero- Point™, Roseville, CA95661, USA
| | - Manfredi Rizzo
- Department of Health Promotion, School of Medicine, Mother and Child Care and Medical Specialties (Promise), University of Palermo, Palermo, Italy
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
16
|
Tominaga Y, Kawamura T, Ito E, Takeda M, Harada A, Torigata K, Sakaniwa R, Sawa Y, Miyagawa S. Pleiotropic effects of extracellular vesicles from induced pluripotent stem cell-derived cardiomyocytes on ischemic cardiomyopathy: A preclinical study. J Heart Lung Transplant 2024; 43:85-99. [PMID: 37611882 DOI: 10.1016/j.healun.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Stem cell-secreted extracellular vesicles (EVs) play essential roles in intercellular communication and restore cardiac function in animal models of ischemic heart disease. However, few studies have used EVs derived from clinical-grade stem cells and their derivatives with stable quality. Moreover, there is little information on the mechanism and time course of the multifactorial effect of EV therapy from the acute to the chronic phase, the affected cells, and whether the effects are direct or indirect. METHODS Induced pluripotent stem cell-derived cardiomyocytes (iPSCM) were produced using a clinical-grade differentiation induction system. EVs were isolated from the conditioned medium by ultracentrifugation and characterized in silico, in vitro, and in vivo. A rat model of myocardial infarction was established by left anterior descending artery ligation and treated with iPSCM-derived EVs. RESULTS iPSCM-derived EVs contained microRNAs and proteins associated with angiogenesis, antifibrosis, promotion of M2 macrophage polarization, cell proliferation, and antiapoptosis. iPSCM-derived EV treatment improved left ventricular function and reduced mortality in the rat model by improving vascularization and suppressing fibrosis and chronic inflammation in the heart. EVs were uptaken by cardiomyocytes, endothelial cells, fibroblasts, and macrophages in the cardiac tissues. The pleiotropic effects occurred due to the direct effects of microRNAs and proteins encapsulated in EVs and indirect paracrine effects on M2 macrophages. CONCLUSIONS Clinical-grade iPSCM-derived EVs improve cardiac function by regulating various genes and pathways in various cell types and may have clinical potential for treating ischemic heart disease.
Collapse
Affiliation(s)
- Yuji Tominaga
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuji Kawamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Emiko Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maki Takeda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Torigata
- Department of Frontier Regenerative Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryoto Sakaniwa
- Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Future Medicine, Division of Health Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
17
|
Sais D, Chowdhury S, Dalton JP, Tran N, Donnelly S. Both host and parasite non-coding RNAs co-ordinate the regulation of macrophage gene expression to reduce pro-inflammatory immune responses and promote tissue repair pathways during infection with fasciola hepatica. RNA Biol 2024; 21:62-77. [PMID: 39344634 PMCID: PMC11445894 DOI: 10.1080/15476286.2024.2408706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Parasitic worms (helminths) establish chronic infection within mammalian hosts by strategically regulating their host's immune responses. Deciphering the mechanisms by which host non-coding RNAs (ncRNA) co-ordinate the activation and regulation of immune cells is essential to understanding host immunity and immune-related pathology. It is also important to comprehend how pathogens secrete specific ncRNAs to manipulate gene expression of host immune cells and influence their response to infection. To investigate the contribution of both host and helminth derived ncRNAs to the activation and/or regulation of innate immune responses during a parasite infection, we examined ncRNA expression in the peritoneal macrophages from mice infected with Fasciola hepatica. We discovered the presence of several parasitic-derived miRNAs within host macrophages at 6 hrs and 18 hrs post infection. Target prediction analysis showed that these Fasciola miRNAs regulate host genes associated with the activation of host pro-inflammatory macrophages. Concomitantly, there was a distinct shift in host ncRNA expression, which was significant at 5 days post-infection. Prediction analysis suggested that these host ncRNAs target a different cohort of host genes compared to the parasite miRNAs, although the functional outcome was predicted to be similar i.e. reduced pro-inflammatory response and the promotion of a reparative/tolerant phenotype. Taken together, these observations uncover the interplay between host and parasitic ncRNAs and reveal a complementary regulation of the immune response that allows the parasite to evade immune detection and promote tissue repair for the host. These findings will provide a new understanding of the molecular interaction between parasites and host.
Collapse
Affiliation(s)
- Dayna Sais
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sumaiya Chowdhury
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
| | - John. P. Dalton
- Molecular Parasitology Laboratory, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Technology Sydney, Ultimo, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, The University of Technology Sydney, Ultimo, NSW, Australia
- Molecular Parasitology Laboratory, School of Natural Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
18
|
Dordoe C, Huang W, Bwalya C, Wang X, Shen B, Wang H, Wang J, Ye S, Wang P, Xiaoyan B, Li X, Lin L. The role of microglial activation on ischemic stroke: Modulation by fibroblast growth factors. Cytokine Growth Factor Rev 2023; 74:122-133. [PMID: 37573252 DOI: 10.1016/j.cytogfr.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Stroke is one of the devastating clinical conditions that causes death and permanent disability. Its occurrence causes the reduction of oxygen and glucose supply, resulting in events such as inflammatory response, oxidative stress, and apoptosis in the brain. Microglia are brain-resident immune cells in the central nervous system (CNS) that exert diverse roles and respond to pathological process after an ischemic insult. The discovery of fibroblast growth factors (FGFs) in mammals, resulted to the findings that they can treat experimental models of stroke in animals effectively. FGFs function as homeostatic factors that control cells and hormones involved in metabolism, and they also regulate the secretion of proinflammatory (M1) and anti-inflammatory (M2) cytokines after stroke. In this review, we outline current evidence of microglia activation in experimental models of stroke focusing on its ability to exacerbate damage or repair tissue. Also, our review sheds light on the pharmacological actions of FGFs on multiple targets to regulate microglial modulation and highlighted their theoretical molecular mechanisms to provide possible therapeutic targets, as well as their limitations for the treatment of stroke. DATA AVAILABILITY: Not applicable.
Collapse
Affiliation(s)
- Confidence Dordoe
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wenting Huang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Canol Bwalya
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xue Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bixin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shasha Ye
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Bao Xiaoyan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| | - Li Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
19
|
Yeoh WJ, Krebs P. SHIP1 and its role for innate immune regulation-Novel targets for immunotherapy. Eur J Immunol 2023; 53:e2350446. [PMID: 37742135 DOI: 10.1002/eji.202350446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Phosphoinositide-3-kinase/AKT (PI3K/AKT) signaling plays key roles in the regulation of cellular activity in both health and disease. In immune cells, this PI3K/AKT pathway is critically regulated by the phosphoinositide phosphatase SHIP1, which has been reported to modulate the function of most immune subsets. In this review, we summarize our current knowledge of SHIP1 with a focus on innate immune cells, where we reflect on the most pertinent aspects described in the current literature. We also present several small-molecule agonists and antagonists of SHIP1 developed over the last two decades, which have led to improved outcomes in several preclinical models of disease. We outline these promising findings and put them in relation to human diseases with unmet medical needs, where we discuss the most attractive targets for immune therapies based on SHIP1 modulation.
Collapse
Affiliation(s)
- Wen Jie Yeoh
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Katkar G, Ghosh P. Macrophage states: there's a method in the madness. Trends Immunol 2023; 44:954-964. [PMID: 37945504 PMCID: PMC11266835 DOI: 10.1016/j.it.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Single-cell approaches have shone a spotlight on discrete context-specific tissue macrophage states, deconstructed to their most minute details. Machine-learning (ML) approaches have recently challenged that dogma by revealing a context-agnostic continuum of states shared across tissues. Both approaches agree that 'brake' and 'accelerator' macrophage subpopulations must be balanced to achieve homeostasis. Both approaches also highlight the importance of ensemble fluidity as subpopulations switch between wide ranges of accelerator and brake phenotypes to mount the most optimal wholistic response to any threat. A full comprehension of the rules that govern these brake and accelerator states is a promising avenue because it can help formulate precise macrophage re-education therapeutic strategies that might selectively boost or suppress disease-associated states and phenotypes across various tissues.
Collapse
Affiliation(s)
- Gajanan Katkar
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093, USA.
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California, San Diego, CA, 92093, USA; Department of Medicine, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
21
|
Duan C, Liu H, Yang X, Liu J, Deng Y, Wang T, Xing J, Hu Z, Xu H. Sirtuin1 inhibits calcium oxalate crystal-induced kidney injury by regulating TLR4 signaling and macrophage-mediated inflammatory activation. Cell Signal 2023; 112:110887. [PMID: 37717713 DOI: 10.1016/j.cellsig.2023.110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 09/19/2023]
Abstract
Sirtuin1 (Sirt1) activation significantly attenuated calcium oxalate (CaOx) crystal deposition and renal inflammatory injury by regulating renal immune microenvironment. Here, to elucidate the molecular mechanism underlying the therapeutic effects of Sirt1 on macrophage related inflammation and tubular epithelial cells (TECs) necrosis, we constructed a macrophage and CaOx monohydrate (COM)-stimulated tubular cell co-culture system to mimic immune microenvironment in kidney and established a mouse model of CaOx nephrocalcinosis in wild-type and myeloid-specific Sirt1 knockout mice. Target prediction analyses of Gene Expression Omnibus Datasets showed that only miR-34b-5p is regulated by lipopolysaccharides and upregulated by SRT1720 and targets the TLR4 3'-untranslated region. In vitro, SRT1720 suppressed TLR4 expression and M1 macrophage polarization and decreased reactive oxygen species (ROS) production and mitochondrial damage in COM-stimulated TECs by targeting miR-34b-5p. Mechanically, Sirt1 promoted miR-34b-5p expression by suppressing the tri-methylation of H3K27, which directly bound to the miR-34b-5p promoter and abolished the miR-34b-5p transcription. Furthermore, loss of Sirt1 aggravated CaOx nephrocalcinosis-induced inflammatory and oxidative kidney injury, while AgomiR-34b reversed these effects. Therefore, our data suggested that Sirt1 inhibited TLR4 signaling and M1 macrophage polarization and decreased inflammatory and oxidative injury of TECs in vitro and in vivo.
Collapse
Affiliation(s)
- Chen Duan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Haoran Liu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, 230000 Hefei, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China
| | - Jianhe Liu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 650000 Kunming, China
| | - Yaoliang Deng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, 530000 Nanning, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, 361000 Xiamen, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430000 Wuhan, China.
| | - Hua Xu
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, 430000 Wuhan, China; Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China; Department of Urology, Zhongnan Hospital of Wuhan University, 430000 Wuhan, China.; Taikang Center for Life and Medical Sciences, Wuhan University, 430000 Wuhan, China.
| |
Collapse
|
22
|
Wang C, Wang X, Zhang D, Sun X, Wu Y, Wang J, Li Q, Jiang G. The macrophage polarization by miRNAs and its potential role in the treatment of tumor and inflammation (Review). Oncol Rep 2023; 50:190. [PMID: 37711048 PMCID: PMC10523439 DOI: 10.3892/or.2023.8627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
The characteristics of monocyte/macrophage lineage are diversity and plasticity, mainly manifested by M1 and M2 subtypes in the body tissues, and playing different roles in the immunity. In the polarization process of macrophages, the classic molecular mechanism is related to sequential transcription factors. Whether in tumor or inflammatory local microenvironment, the pathological factors of the local microenvironment often affect the polarization of M1 and M2 macrophages, and participate in the occurrence and development of these pathological processes. In recent years, a growing number of research results demonstrated that non‑coding RNA (ncRNA) also participates in the polarization process of macrophages, in addition to traditional cytokines and transcriptional regulation signal pathway molecules. Among numerous ncRNAs, microRNAs (miRNAs) have attracted more attention from scholars both domestically and internationally, and significant progress has been made in basic and clinical research. Therefore, for improved understanding of the molecular mechanism of miRNAs in macrophage polarization and analysis of the potential value of this regulatory pathway in tumor and inflammatory intervention therapy, a comprehensive review of the progress of relevant literature research was conducted and some viewpoints and perspectives were proposed.
Collapse
Affiliation(s)
- Chaozhe Wang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Xidi Wang
- Department of Laboratory Medicine, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Danfeng Zhang
- Department of Laboratory Medicine, Lixia People's Hospital, Jinan, Shandong 250013, P.R. China
| | - Xiaolin Sun
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Yunhua Wu
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
| | - Jing Wang
- Department of Immunology, Shandong Yinfeng Academy of Life Science, Jinan, Shandong 250013, P.R. China
| | - Qing Li
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| | - Guosheng Jiang
- Department of Immunology, College of Basic Medicine, Binzhou Medical University, Yantai, Shandong 2640032, P.R. China
- Department of Laboratory Medicine, Zibo First Hospital, Zibo, Shandong 255200, P.R. China
| |
Collapse
|
23
|
Yang X, Zeng X, Shu J, Bao H, Liu X. MiR-155 enhances phagocytosis of alveolar macrophages through the mTORC2/RhoA pathway. Medicine (Baltimore) 2023; 102:e34592. [PMID: 37657048 PMCID: PMC10476751 DOI: 10.1097/md.0000000000034592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/13/2023] [Indexed: 09/03/2023] Open
Abstract
Alveolar macrophage phagocytosis is significantly reduced in Chronic obstructive pulmonary disease, and cigarette smoke extract is one of the chief reasons for this decrease. Nevertheless, the specific underlying mechanism remains elusive. In this study, the role and possible mechanism of miR-155-5p/mTORC2/RhoA in the phagocytosis of mouse alveolar macrophages (MH-S) were explored. Our results revealed that cigarette smoke extract intervention reduced MH-S cell phagocytosis and miR-155-5p expression. Meanwhile, the dual-luciferase reporter assay validated that Rictor is a target of miR-155-5p. On the one hand, transfecting miR-155-5p mimic, mimic NC, miR-155-5p inhibitor, or inhibitor NC in MH-S cells overexpressing miR-155-5p increased the Alveolar macrophage phagocytotic rate, up-regulated the expression level of RhoA and p-RhoA, and down-regulated that of mTOR and Rictor mRNA and protein. On the other hand, inhibiting the expression of miR-155-5p lowered the phagocytotic rate, up-regulated the expression of mTOR, Rictor mRNA, and protein, and down-regulated the expression of RhoA and p-RhoA, which taken together, authenticated that miR-155-5p participates in macrophage phagocytosis via the mTORC2/RhoA pathway. Finally, confocal microscopy demonstrated that cells overexpressing miR-155-5p underwent cytoskeletal rearrangement during phagocytosis, and the phagocytic function of cells was enhanced, signaling that miR-155-5p participated in macrophage skeletal rearrangement and enhanced alveolar macrophage phagocytosis by targeting the expression of Rictor in the mTORC2/RhoA pathway.
Collapse
Affiliation(s)
- Xinna Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoli Zeng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Juan Shu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Hairong Bao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaoju Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gerontal Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
24
|
Houshmandfar S, Khodadadi A, Mahmoudian-Sani MR, Nashibi R, Rashno M. Comparing the expression of MiR-223-NLRP3-IL-1β axis and serum IL-1β levels in patients with severe COVID-19 and healthy individuals. Immunobiology 2023; 228:152710. [PMID: 37478686 DOI: 10.1016/j.imbio.2023.152710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/22/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND AND AIM The hyperactive nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a key factor for cytokine storm, chronic inflammation, and mortality in infected patients. On the subject of the regulation of the NLRP3-inflammasome activation, micro-ribonucleic acid (RNA)-223 (miR-223), among the major RNA molecules, has been thus far investigated in some inflammatory diseases along with interleukin-1 beta (IL-1β) and NLRP3. Against this background, the present study aimed to compare healthy individuals and patients with severe COVID-19 with reference to the alterations in the expression of the miR-223, NLRP3, and IL-1β axis and the serum IL-1β levels. METHODS In total, 40 patients with severe COVID-19, admitted to the Infectious Ward of Razi Hospital, Ahvaz, Iran, who were homogenous in terms of age (40 years old) and gender, were selected based on the inclusion and exclusion criteria. The real-time polymerase chain reaction (RT-PCR) technique was then applied to assess the expression of the miR-223, NLRP3, and IL-1β genes, and enzyme-linked immunosorbent assay (ELISA) was then utilized to evaluate the serum IL-1β levels, using patients' blood samples. Moreover, inflammatory biochemical markers of the participants were collected and recorded RESULTS: According to the study results, the IL-1β expression was 3.9 times higher in the patients with COVID-19, compared with the control group (p = 0.0005). The NLRP3 expression was also 6.04 times greater in the infected patients, compared with the healthy individuals (p < 0.0001). On the other hand, the miR-223 expression was 5.37 times lower in the case group, compared with the controls (p = 0.04). CONCLUSION The study findings indicated the potential role of miR-223 and the dysregulation of NLRP3 inflammasome followed by IL-1β, as a regulatory factor in the pathogenesis of COVID-19, like that in other inflammatory diseases.
Collapse
Affiliation(s)
- Sheyda Houshmandfar
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular & Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
25
|
Ren J, Xu B, Ren J, Liu Z, Cai L, Zhang X, Wang W, Li S, Jin L, Ding L. The Importance of M1-and M2-Polarized Macrophages in Glioma and as Potential Treatment Targets. Brain Sci 2023; 13:1269. [PMID: 37759870 PMCID: PMC10526262 DOI: 10.3390/brainsci13091269] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Glioma is the most common and malignant tumor of the central nervous system. Glioblastoma (GBM) is the most aggressive glioma, with a poor prognosis and no effective treatment because of its high invasiveness, metabolic rate, and heterogeneity. The tumor microenvironment (TME) contains many tumor-associated macrophages (TAMs), which play a critical role in tumor proliferation, invasion, metastasis, and angiogenesis and indirectly promote an immunosuppressive microenvironment. TAM is divided into tumor-suppressive M1-like (classic activation of macrophages) and tumor-supportive M2-like (alternatively activated macrophages) polarized cells. TAMs exhibit an M1-like phenotype in the initial stages of tumor progression, and along with the promotion of lysing tumors and the functions of T cells and NK cells, tumor growth is suppressed, and they rapidly transform into M2-like polarized macrophages, which promote tumor progression. In this review, we discuss the mechanism by which M1- and M2-polarized macrophages promote or inhibit the growth of glioblastoma and indicate the future directions for treatment.
Collapse
Affiliation(s)
- Jiangbin Ren
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Bangjie Xu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Jianghao Ren
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China;
| | - Zhichao Liu
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lingyu Cai
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Xiaotian Zhang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Weijie Wang
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Shaoxun Li
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Luhao Jin
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| | - Lianshu Ding
- Department of neurosurgery, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Nanjing Medical University, Huai’an 223000, China; (J.R.); (B.X.); (Z.L.); (L.C.); (X.Z.); (W.W.); (S.L.); (L.J.)
| |
Collapse
|
26
|
Khan MJ, Singh P, Jha P, Nayek A, Malik MZ, Bagler G, Kumar B, Ponnusamy K, Ali S, Chopra M, Dohare R, Singh IK, Syed MA. Investigating the link between miR-34a-5p and TLR6 signaling in sepsis-induced ARDS. 3 Biotech 2023; 13:282. [PMID: 37496978 PMCID: PMC10366072 DOI: 10.1007/s13205-023-03700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 07/28/2023] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) are lung complications diagnosed by impaired gaseous exchanges leading to mortality. From the diverse etiologies, sepsis is a prominent contributor to ALI/ARDS. In the present study, we retrieved sepsis-induced ARDS mRNA expression profile and identified 883 differentially expressed genes (DEGs). Next, we established an ARDS-specific weighted gene co-expression network (WGCN) and picked the blue module as our hub module based on highly correlated network properties. Later we subjected all hub module DEGs to form an ARDS-specific 3-node feed-forward loop (FFL) whose highest-order subnetwork motif revealed one TF (STAT6), one miRNA (miR-34a-5p), and one mRNA (TLR6). Thereafter, we screened a natural product library and identified three lead molecules that showed promising binding affinity against TLR6. We then performed molecular dynamics simulations to evaluate the stability and binding free energy of the TLR6-lead molecule complexes. Our results suggest these lead molecules may be potential therapeutic candidates for treating sepsis-induced ALI/ARDS. In-silico studies on clinical datasets for sepsis-induced ARDS indicate a possible positive interaction between miR-34a and TLR6 and an antagonizing effect on STAT6 to promote inflammation. Also, the translational study on septic mice lungs by IHC staining reveals a hike in the expression of TLR6. We report here that miR-34a actively augments the effect of sepsis on lung epithelial cell apoptosis. This study suggests that miR-34a promotes TLR6 to heighten inflammation in sepsis-induced ALI/ARDS. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03700-1.
Collapse
Affiliation(s)
- Mohd Junaid Khan
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Arnab Nayek
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Md. Zubbair Malik
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, 15462 Kuwait City, Kuwait
| | - Ganesh Bagler
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, 110020 India
| | - Bhupender Kumar
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, 110036 India
| | - Kalaiarasan Ponnusamy
- Biotechnology and Viral Hepatitis Division, National Centre for Disease Control, Sham Nath Marg, New Delhi, 110054 India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences Jamia Hamdard, New Delhi, 110062 India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, 110007 India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
- DBC i4 Center, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019 India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, 110025 India
| |
Collapse
|
27
|
Yuan S, Li G, Zhang J, Chen X, Su J, Zhou F. Mesenchymal Stromal Cells-Derived Extracellular Vesicles as Potential Treatments for Osteoarthritis. Pharmaceutics 2023; 15:1814. [PMID: 37514001 PMCID: PMC10385170 DOI: 10.3390/pharmaceutics15071814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease of the joints characterized by cartilage damage and severe pain. Despite various pharmacological and surgical interventions, current therapies fail to halt OA progression, leading to high morbidity and an economic burden. Thus, there is an urgent need for alternative therapeutic approaches that can effectively address the underlying pathophysiology of OA. Extracellular Vesicles (EVs) derived from mesenchymal stromal cells (MSCs) represent a new paradigm in OA treatment. MSC-EVs are small membranous particles released by MSCs during culture, both in vitro and in vivo. They possess regenerative properties and can attenuate inflammation, thereby promoting cartilage healing. Importantly, MSC-EVs have several advantages over MSCs as cell-based therapies, including lower risks of immune reactions and ethical issues. Researchers have recently explored different strategies, such as modifying EVs to enhance their delivery, targeting efficiency, and security, with promising results. This article reviews how MSC-EVs can help treat OA and how they might work. It also briefly discusses the benefits and challenges of using MSC-EVs and talks about the possibility of allogeneic and autologous MSC-EVs for medical use.
Collapse
Affiliation(s)
- Shunling Yuan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Guangfeng Li
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 200941, China
| | - Jinbo Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin 300110, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- Institute of Advanced Interdisciplinary Materials Science, Shanghai University, Shanghai 200444, China
- Organoid Research Center, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| |
Collapse
|
28
|
Rego N, Libisch MG, Rovira C, Tosar JP, Robello C. Comparative microRNA profiling of Trypanosoma cruzi infected human cells. Front Cell Infect Microbiol 2023; 13:1187375. [PMID: 37424776 PMCID: PMC10322668 DOI: 10.3389/fcimb.2023.1187375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Trypanosoma cruzi, the causative agent of Chagas disease, can infect almost any nucleated cell in the mammalian host. Although previous studies have described the transcriptomic changes that occur in host cells during parasite infection, the understanding of the role of post-transcriptional regulation in this process is limited. MicroRNAs, a class of short non-coding RNAs, are key players in regulating gene expression at the post-transcriptional level, and their involvement in the host-T. cruzi interplay is a growing area of research. However, to our knowledge, there are no comparative studies on the microRNA changes that occur in different cell types in response to T. cruzi infection. Methods and results Here we investigated microRNA changes in epithelial cells, cardiomyocytes and macrophages infected with T. cruzi for 24 hours, using small RNA sequencing followed by careful bioinformatics analysis. We show that, although microRNAs are highly cell type-specific, a signature of three microRNAs -miR-146a, miR-708 and miR-1246, emerges as consistently responsive to T. cruzi infection across representative human cell types. T. cruzi lacks canonical microRNA-induced silencing mechanisms and we confirm that it does not produce any small RNA that mimics known host microRNAs. We found that macrophages show a broad response to parasite infection, while microRNA changes in epithelial and cardiomyocytes are modest. Complementary data indicated that cardiomyocyte response may be greater at early time points of infection. Conclusions Our findings emphasize the significance of considering microRNA changes at the cellular level and complement previous studies conducted at higher organizational levels, such as heart samples. While miR-146a has been previously implicated in T. cruzi infection, similarly to its involvement in many other immunological responses, miR-1246 and miR-708 are demonstrated here for the first time. Given their expression in multiple cell types, we anticipate our work as a starting point for future investigations into their role in the post-transcriptional regulation of T. cruzi infected cells and their potential as biomarkers for Chagas disease.
Collapse
Affiliation(s)
- Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Laboratorio de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Rovira
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Juan Pablo Tosar
- Laboratorio de Genómica Funcional, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno/UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
29
|
Hosseinpour S, Dai H, Walsh LJ, Xu C. Mesoporous Core-Cone Silica Nanoparticles Can Deliver miRNA-26a to Macrophages to Exert Immunomodulatory Effects on Osteogenesis In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1755. [PMID: 37299658 PMCID: PMC10254425 DOI: 10.3390/nano13111755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Nanoparticles can play valuable roles in delivering nucleic acids, including microRNAs (miRNA), which are small, non-coding RNA segments. In this way, nanoparticles may exert post-transcriptional regulatory influences on various inflammatory conditions and bone disorders. This study used biocompatible, core-cone-structured, mesoporous silica nanoparticles (MSN-CC) to deliver miRNA-26a to macrophages in order to influence osteogenesis in vitro. The loaded nanoparticles (MSN-CC-miRNA-26) showed low-level toxicity towards macrophages (RAW 264.7 cells) and were internalized efficiently, causing the reduced expression of pro-inflammatory cytokines, as seen via real-time PCR and cytokine immunoassays. The conditioned macrophages created a favorable osteoimmune environment for MC3T3-E1 preosteoblasts, driving osteogenic differentiation with enhanced osteogenic marker expression, alkaline phosphatase (ALP) production, extracellular matrix formation, and calcium deposition. An indirect co-culture system revealed that direct osteogenic induction and immunomodulation by MSN-CC-miRNA-26a synergistically increased bone production due to the crosstalk between MSN-CC-miRNA-26a-conditioned macrophages and MSN-CC-miRNA-26a-treated preosteoblasts. These findings demonstrate the value of nanoparticle delivery of miR-NA-26a using MSN-CC for suppressing the production of pro-inflammatory cytokines with macrophages and for driving osteogenic differentiation in preosteoblasts via osteoimmune modulation.
Collapse
Affiliation(s)
| | | | | | - Chun Xu
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|
30
|
Li X, Chen H, Wang Y, Chen H, Gao Y. BODIPY-Based NO Probe for Macrophage-Targeted Immunotherapy Response Monitoring. Anal Chem 2023; 95:7320-7328. [PMID: 37113062 DOI: 10.1021/acs.analchem.3c00409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Precise and rapid detection of immune responses is critical for timely therapeutic regimen adjustment. Immunomodulation of tumor-associated macrophages (TAMs) from a protumorigenic phenotype (M2) to an antitumorigenic phenotype (M1) is crucial in macrophage-targeted immunotherapy. Herein, we developed a boron dipyrromethene (BODIPY)-based fluorescence probe BDP3 to detect the immune responses after immunotherapy by monitoring the nitric oxide (NO) released by M1 TAMs. With an aromatic primary monoamine structure and a p-methoxyanilin electron donor in the meso-position, BDP3 not only specifically activates stable and sensitive fluorescence by NO via a photoinduced electron transfer (PET) process but also achieves a long emission wavelength for efficient in vitro and in vivo imaging. Such NO-induced fluorescence signals of BDP3 are validated to correlate well with the phenotypes of TAMs detected in macrophage cell lines and tumor tissues. The distinct sensing effects toward two types of clinically used immunotherapeutic drugs further confirm the ability of BDP3 for specific monitoring of the M1/M2 switch in response to the macrophage-targeted immunotherapy. By virtue of good biocompatibility and appropriate tumor retention time, BDP3 could be a potential fluorescent probe for noninvasive evaluation of the immunotherapeutic efficacy of macrophage-targeted immunotherapy in living animals.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Hui Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yuran Wang
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- College of Chemistry, Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Centre, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
31
|
Hess NJ, Kink JA, Hematti P. Exosomes, MDSCs and Tregs: A new frontier for GVHD prevention and treatment. Front Immunol 2023; 14:1143381. [PMID: 37063900 PMCID: PMC10090348 DOI: 10.3389/fimmu.2023.1143381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
The development of graft versus host disease (GVHD) represents a long-standing complication of allogeneic hematopoietic cell transplantation (allo-HCT). Different approaches have been used to control the development of GVHD with most relying on variations of chemotherapy drugs to eliminate allo-reactive T cells. While these approaches have proven effective, it is generally accepted that safer, and less toxic GVHD prophylaxis drugs are required to reduce the health burden placed on allo-HCT recipients. In this review, we will summarize the emerging concepts revolving around three biologic-based therapies for GVHD using T regulatory cells (Tregs), myeloid-derived-suppressor-cells (MDSCs) and mesenchymal stromal cell (MSC) exosomes. This review will highlight how each specific modality is unique in its mechanism of action, but also share a common theme in their ability to preferentially activate and expand Treg populations in vivo. As these three GVHD prevention/treatment modalities continue their path toward clinical application, it is imperative the field understand both the biological advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Nicholas J. Hess
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - John A. Kink
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Peiman Hematti
- Division of Hematology, Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
32
|
Salehi R, Asare-Werehene M, Wyse BA, Abedini A, Pan B, Gutsol A, Jahangiri S, Szaraz P, Burns KD, Vanderhyden B, Li J, Burger D, Librach CL, Tsang BK. Granulosa cell-derived miR-379-5p regulates macrophage polarization in polycystic ovarian syndrome. Front Immunol 2023; 14:1104550. [PMID: 37033997 PMCID: PMC10081157 DOI: 10.3389/fimmu.2023.1104550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is associated with hyperandrogenemia and ovarian antral follicle growth arrest. We have previously demonstrated that androgen-induced exosomal release of miR-379-5p (miR379) from preantral follicle granulosa cells increases the proliferation of target cells via phosphoinositide-dependent kinase 1 (PDK1) upregulation. Androgen also increases inflammatory M1 macrophage abundance, but reduces anti-inflammatory M2 polarization in rat antral and preovulatory follicles. However, the role of small extracellular vesicles (sEVs; also known as exosomes) secretion in determining the cellular content and function of miRNAs in exosome-receiving cells is largely unknown. Our objectives were to determine: 1) the regulatory role of granulosa cells (GC)-derived exosomal miR379 on macrophage polarization and ovarian inflammation; 2) whether miR379-induced M1 polarization regulates GC proliferation; and 3) if this regulated process is follicular stage-specific. Compared with non-PCOS subjects, PCOS subjects had a higher M1/M2 ratio, supporting the concept that PCOS is an inflammatory condition. Ovarian overexpression of miR379 increased the number of M1 macrophages and the M1/M2 ratio in preantral follicles specifically. Transfection of macrophages with a miR379 mimic reduced the cellular content of PDK1 and induced M0→M1 polarization; whereas its inhibitor polarized M0→M2. Conditioned media from macrophages transfected with miR379 mimic and follicular fluid from PCOS subjects had higher galectin-3 content, a pro-inflammatory cytokine which specifically suppresses human antral follicle GC proliferation. These results indicate that miR379 inhibits M2 macrophage polarization, a condition which suppresses GC proliferation in a follicle stage-dependent manner, as exhibited in PCOS.
Collapse
Affiliation(s)
- Reza Salehi
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- CReATe Fertility Centre, Toronto, ON, Canada
| | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | | | - Atefeh Abedini
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bo Pan
- Department of Animal BioScience, University of Guelph, Guelph, ON, Canada
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Kevin D. Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Julang Li
- Department of Animal BioScience, University of Guelph, Guelph, ON, Canada
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Clifford L. Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Benjamin K. Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine and Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Nascimento C, Castro F, Domingues M, Lage A, Alves É, de Oliveira R, de Melo C, Eduardo Calzavara-Silva C, Sarmento B. Reprogramming of tumor-associated macrophages by polyaniline-coated iron oxide nanoparticles applied to treatment of breast cancer. Int J Pharm 2023; 636:122866. [PMID: 36934882 DOI: 10.1016/j.ijpharm.2023.122866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/03/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Breast cancer is the most commonly diagnosed type of cancer among the female population worldwide. It is a disease with a high incidence and geographic distribution that negatively impacts global public health and deleteriously affect the quality of life of cancer patients. Among the new approaches, cancer immunotherapy is the most promising trend in oncology by stimulating the host's own immune system to efficiently destroy cancer cells. Recent evidence has indicated that iron oxide nanoparticles can promote the reprograming of M2 into M1 macrophages with anti-tumor effects in the tumor microenvironment. Thus, the aim of the present work was to evaluate the ability of polyaniline-coated maghemite (Pani/γ-Fe2O3) nanoparticles to modulate human macrophages in 2D monolayers and 3D multicellular breast cancer models. It was observed that Pani/γ-Fe2O3 NPs re-educated IL-10-stimulated macrophages towards a pro-inflammatory profile, decreasing the proportion of CD163+ and increasing the CD86+ proportion in 2D models. NPs were successfully taken-up by macrophages presented in the 3D model and were also able to induce an increasing in their CD86+ proportion in triple MCTs model. Overall, our findings open new perspectives on the use of Pani/γ-Fe2O3 NPs as an immunomodulatory therapy for macrophage reprogramming towards an anti-tumor M1 phenotype, providing a new tool for breast cancer immunotherapies.
Collapse
Affiliation(s)
- Camila Nascimento
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Flávia Castro
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mariana Domingues
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP - Faculdade de Engenharia da Universidade do Porto, Rua Doutor Roberto Frias, 4200-465 Porto, Portugal
| | - Anna Lage
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Érica Alves
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Rodrigo de Oliveira
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Celso de Melo
- Grupo de Polímeros Não-Convencionais, Departamento de Física, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, Recife, PE 50670-901, Brazil
| | - Carlos Eduardo Calzavara-Silva
- Grupo de Pesquisa em Imunologia Celular e Molecular, Instituto René Rachou - Fiocruz Minas, Av. Augusto de Lima, 1715 - Barro Preto, Belo Horizonte, MG 30190-002, Brazil
| | - Bruno Sarmento
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - IUCS, Rua Central da Gandra, 137, 4585-116 Gandra, Portugal.
| |
Collapse
|
34
|
Lajqi T, Köstlin-Gille N, Bauer R, Zarogiannis SG, Lajqi E, Ajeti V, Dietz S, Kranig SA, Rühle J, Demaj A, Hebel J, Bartosova M, Frommhold D, Hudalla H, Gille C. Training vs. Tolerance: The Yin/Yang of the Innate Immune System. Biomedicines 2023; 11:766. [PMID: 36979747 PMCID: PMC10045728 DOI: 10.3390/biomedicines11030766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
For almost nearly a century, memory functions have been attributed only to acquired immune cells. Lately, this paradigm has been challenged by an increasing number of studies revealing that innate immune cells are capable of exhibiting memory-like features resulting in increased responsiveness to subsequent challenges, a process known as trained immunity (known also as innate memory). In contrast, the refractory state of endotoxin tolerance has been defined as an immunosuppressive state of myeloid cells portrayed by a significant reduction in the inflammatory capacity. Both training as well tolerance as adaptive features are reported to be accompanied by epigenetic and metabolic alterations occurring in cells. While training conveys proper protection against secondary infections, the induction of endotoxin tolerance promotes repairing mechanisms in the cells. Consequently, the inappropriate induction of these adaptive cues may trigger maladaptive effects, promoting an increased susceptibility to secondary infections-tolerance, or contribute to the progression of the inflammatory disorder-trained immunity. This review aims at the discussion of these opposing manners of innate immune and non-immune cells, describing the molecular, metabolic and epigenetic mechanisms involved and interpreting the clinical implications in various inflammatory pathologies.
Collapse
Affiliation(s)
- Trim Lajqi
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Natascha Köstlin-Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital, D-07745 Jena, Germany
| | - Sotirios G. Zarogiannis
- Department of Physiology, School of Health Sciences, Faculty of Medicine, University of Thessaly, GR-41500 Larissa, Greece
| | - Esra Lajqi
- Department of Radiation Oncology, Heidelberg University Hospital, D-69120 Heidelberg, Germany
| | - Valdrina Ajeti
- Department of Pharmacy, Alma Mater Europaea—Campus College Rezonanca, XK-10000 Pristina, Kosovo
| | - Stefanie Dietz
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Simon A. Kranig
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Jessica Rühle
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Ardian Demaj
- Faculty of Medical Sciences, University of Tetovo, MK-1200 Tetova, North Macedonia
| | - Janine Hebel
- Department of Neonatology, University of Tübingen, D-72076 Tübingen, Germany
| | - Maria Bartosova
- Center for Pediatric and Adolescent Medicine Heidelberg, University of Heidelberg, D-69120 Heidelberg, Germany
| | - David Frommhold
- Klinik für Kinderheilkunde und Jugendmedizin, D-87700 Memmingen, Germany
| | - Hannes Hudalla
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| | - Christian Gille
- Department of Neonatology, Heidelberg University Children’s Hospital, D-69120 Heidelberg, Germany
| |
Collapse
|
35
|
Wu L, Seon GM, Ju S, Choi SH, Jiang ES, Kim Y, Chung SH, Ahn JS, Yang HC. Synergistic effects of arginine-glycine-aspartic acid and phosphatidylserine on the surface immunomodulation and osseointegration of titanium implants. Biomater Sci 2023; 11:1358-1372. [PMID: 36594560 DOI: 10.1039/d2bm01589g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The control of macrophage polarization is important in bone tissue regeneration such as osseointegration. In this study, a coating method was developed to improve the osseointegration of titanium (Ti) implants by generating an immunomodulatory effect. The surface of the Ti discs was coated with a poly(lactide-co-glycolide)(PLGA) polymer, phosphatidylserine (PS), and arginine-glycine-aspartic acid (RGD) peptide conjugated phospholipid. In in vitro assay using mouse bone marrow-derived macrophages (BMDMs), the most significant expression of the M2 marker genes (Arg-1, YM-1, FIZZ1) and CD206, an M2 surface marker, was obtained with coatings containing 6 mol% RGD conjugates and phospholipids consisting of 50 mol% PS. The M2-inducing effect of RGD and PS was also verified in rat femurs where coated Ti rods were implanted. The RGD and PS coating significantly enhanced the osseointegration of the Ti implants. Moreover, a biomechanical push-out test showed that the RGD and PS coating increased the interfacial binding force between the bone and implants. These results indicate that PS and RGD can be applied to the solid surface of implantable biomedical devices to improve immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Lele Wu
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Gyeung Mi Seon
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Sungwon Ju
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Sang Hoon Choi
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - En-Shi Jiang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Yongjoon Kim
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Shin Hye Chung
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Jin-Soo Ahn
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| | - Hyeong-Cheol Yang
- Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101, Deahak-ro, Jongno-gu, Seoul 03080, South Korea.
| |
Collapse
|
36
|
miRNA-Induced Downregulation of IPMK in Macrophages Mediates Lipopolysaccharide-Triggered TLR4 Signaling. Biomolecules 2023; 13:biom13020332. [PMID: 36830701 PMCID: PMC9952907 DOI: 10.3390/biom13020332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Inositol polyphosphate multikinase (IPMK) is a pleiotropic enzyme responsible for the production of inositol polyphosphates and phosphoinositide. IPMK in macrophages was identified as a key factor for the full activation of the Toll-like receptor 4 (TLR4) signaling pathway and inflammation by directly interacting with tumor necrosis factor receptor-associated factor 6 (TRAF6). Here, dynamic changes of IPMK levels in lipopolysaccharide (LPS)-stimulated macrophages and their functional significance were investigated. Both the mRNA and protein levels of IPMK were acutely decreased in mouse and human macrophages when cells were stimulated with LPS for between 1 and 6 h. Analysis of the 3' untranslated region (UTR) of mouse IPMK mRNA revealed a highly conserved binding site for miR-181c. Transfection of miR-181c mimics into RAW 264.7 macrophages led to decreased IPMK 3'UTR-luciferase reporter activity and lowered endogenous IPMK levels. When the genomic deletion of a 33-bp fragment containing a putative miR-181c-binding site was introduced within the IPMK 3'UTR of RAW 264.7 macrophages (264.7Δ3'UTR), LPS-triggered downregulation of IPMK levels was prevented. LPS treatment in 264.7Δ3'UTR macrophages decreased TLR4-induced signaling and the expression of proinflammatory cytokines. In response to LPS stimulation, K63-linked ubiquitination of TRAF6 was impaired in 264.7Δ3'UTR macrophages, suggesting an action of IPMK in the suppression of TRAF6 activation. Therefore, our findings reveal that LPS-mediated suppression of IPMK regulates the full activation of TLR4 signaling and inflammation in macrophages.
Collapse
|
37
|
Doghish AS, Ismail A, El-Mahdy HA, Elkhawaga SY, Elsakka EGE, Mady EA, Elrebehy MA, Khalil MAF, El-Husseiny HM. miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life Sci 2023; 314:121321. [PMID: 36574943 DOI: 10.1016/j.lfs.2022.121321] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
Rheumatoid arthritis (RA) is a severe autoimmune inflammation that mostly affects the joints. It's a multifactorial disease. Its clinical picture depends on genetic and epigenetic factors such as miRNAs. The miRNAs are small noncoding molecules that are able to negatively or positively modulate their target gene expression. In RA, miRNAs are linked to its pathogenesis. They disrupt immunity balance by controlling granulocytes, triggering the release of several proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α, finally leading to synovium hyperplasia and inflammation. Besides, they also may trigger activation of some pathways as nuclear factor kappa-β disrupts the balance between osteoclast and osteoblast activity, leading to increased bone destruction. Moreover, miRNAs are also applied with efficiency in RA diagnosis and prognosis. Besides the significant association between miRNAs and RA response to treatment, they are also applied as a choice for treatment based on their effects on the immune system and inflammatory cytokines. Hence, the review aims to present an updated overview of miRNAs, their biogenesis, implications in RA pathogenesis, and finally, the role of miRNAs in RA treatment.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Eman A Mady
- Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukfh, Elqaliobiya 13736, Egypt; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A F Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| |
Collapse
|
38
|
Erdem JS, Závodná T, Ervik TK, Skare Ø, Hron T, Anmarkrud KH, Kuśnierczyk A, Catalán J, Ellingsen DG, Topinka J, Zienolddiny-Narui S. High aspect ratio nanomaterial-induced macrophage polarization is mediated by changes in miRNA levels. Front Immunol 2023; 14:1111123. [PMID: 36776851 PMCID: PMC9911541 DOI: 10.3389/fimmu.2023.1111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Inhalation of nanomaterials may induce inflammation in the lung which if left unresolved can manifest in pulmonary fibrosis. In these processes, alveolar macrophages have an essential role and timely modulation of the macrophage phenotype is imperative in the onset and resolution of inflammatory responses. This study aimed to investigate, the immunomodulating properties of two industrially relevant high aspect ratio nanomaterials, namely nanocellulose and multiwalled carbon nanotubes (MWCNT), in an alveolar macrophage model. Methods MH-S alveolar macrophages were exposed at air-liquid interface to cellulose nanocrystals (CNC), cellulose nanofibers (CNF) and two MWCNT (NM-400 and NM-401). Following exposure, changes in macrophage polarization markers and secretion of inflammatory cytokines were analyzed. Furthermore, the potential contribution of epigenetic regulation in nanomaterial-induced macrophage polarization was investigated by assessing changes in epigenetic regulatory enzymes, miRNAs, and rRNA modifications. Results Our data illustrate that the investigated nanomaterials trigger phenotypic changes in alveolar macrophages, where CNF exposure leads to enhanced M1 phenotype and MWCNT promotes M2 phenotype. Furthermore, MWCNT exposure induced more prominent epigenetic regulatory events with changes in the expression of histone modification and DNA methylation enzymes as well as in miRNA transcript levels. MWCNT-enhanced changes in the macrophage phenotype were correlated with prominent downregulation of the histone methyltransferases Kmt2a and Smyd5 and histone deacetylases Hdac4, Hdac9 and Sirt1 indicating that both histone methylation and acetylation events may be critical in the Th2 responses to MWCNT. Furthermore, MWCNT as well as CNF exposure led to altered miRNA levels, where miR-155-5p, miR-16-1-3p, miR-25-3p, and miR-27a-5p were significantly regulated by both materials. PANTHER pathway analysis of the identified miRNA targets showed that both materials affected growth factor (PDGF, EGF and FGF), Ras/MAPKs, CCKR, GnRH-R, integrin, and endothelin signaling pathways. These pathways are important in inflammation or in the activation, polarization, migration, and regulation of phagocytic capacity of macrophages. In addition, pathways involved in interleukin, WNT and TGFB signaling were highly enriched following MWCNT exposure. Conclusion Together, these data support the importance of macrophage phenotypic changes in the onset and resolution of inflammation and identify epigenetic patterns in macrophages which may be critical in nanomaterial-induced inflammation and fibrosis.
Collapse
Affiliation(s)
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czechia
| | | | - Øivind Skare
- National Institute of Occupational Health, Oslo, Norway
| | - Tomáš Hron
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czechia
| | | | - Anna Kuśnierczyk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Proteomics and Modomics Experimental Core Facility and St. Olavs Hospital Central Staff, Trondheim, Norway
| | - Julia Catalán
- Department of Work Safety, Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, the Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
39
|
Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int J Mol Sci 2023; 24:ijms24021754. [PMID: 36675268 PMCID: PMC9861282 DOI: 10.3390/ijms24021754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.
Collapse
|
40
|
Longo V, Aloi N, Lo Presti E, Fiannaca A, Longo A, Adamo G, Urso A, Meraviglia S, Bongiovanni A, Cibella F, Colombo P. Impact of the flame retardant 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) in THP-1 macrophage-like cell function via small extracellular vesicles. Front Immunol 2023; 13:1069207. [PMID: 36685495 PMCID: PMC9852912 DOI: 10.3389/fimmu.2022.1069207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) is one of the most widespread environmental brominated flame-retardant congeners which has also been detected in animal and human tissues. Several studies have reported the effects of PBDEs on different health issues, including neurobehavioral and developmental disorders, reproductive health, and alterations of thyroid function. Much less is known about its immunotoxicity. The aim of our study was to investigate the effects that treatment of THP-1 macrophage-like cells with PBDE-47 could have on the content of small extracellular vesicles' (sEVs) microRNA (miRNA) cargo and their downstream effects on bystander macrophages. To achieve this, we purified sEVs from PBDE-47 treated M(LPS) THP-1 macrophage-like cells (sEVsPBDE+LPS) by means of ultra-centrifugation and characterized their miRNA cargo by microarray analysis detecting the modulation of 18 miRNAs. Furthermore, resting THP-1 derived M(0) macrophage-like cells were cultured with sEVsPBDE+LPS, showing that the treatment reshaped the miRNA profiles of 12 intracellular miRNAs. This dataset was studied in silico, identifying the biological pathways affected by these target genes. This analysis identified 12 pathways all involved in the maturation and polarization of macrophages. Therefore, to evaluate whether sEVsPBDE+LPS can have some immunomodulatory activity, naïve M(0) THP-1 macrophage-like cells cultured with purified sEVsPBDE+LPS were studied for IL-6, TNF-α and TGF-β mRNAs expression and immune stained with the HLA-DR, CD80, CCR7, CD38 and CD209 antigens and analyzed by flow cytometry. This analysis showed that the PBDE-47 treatment does not induce the expression of specific M1 and M2 cytokine markers of differentiation and may have impaired the ability to make immunological synapses and present antigens, down-regulating the expression of HLA-DR and CD209 antigens. Overall, our study supports the model that perturbation of miRNA cargo by PBDE-47 treatment contributes to the rewiring of cellular regulatory pathways capable of inducing perturbation of differentiation markers on naïve resting M(0) THP-1 macrophage-like cells.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Antonino Fiannaca
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Alfonso Urso
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy,*Correspondence: Paolo Colombo,
| |
Collapse
|
41
|
Mohamed AA, Abd-Elsalam S, Abdelghani A, Hassan MB, Ghaith D, Ezzat O, El-Damasy DA, Madbouli NN, Hamada M, Elkady MAK, Al-Tabbakh ASM, Eshra KAE, Baiomy N. Human ACE-2, MCP1 and micro-RNA 146 as Novel Markers for COVID- 19 Affection and Severity. Infect Disord Drug Targets 2023; 23:e290822208187. [PMID: 36043754 DOI: 10.2174/1871526522666220829153042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/12/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Coronavirus disease - 2019 (COVID-19) is a major pandemic that causes high morbidity and mortality rates. AIM OF THIS STUDY to detect the relations between many risk factors, ACE-2, MCP-1, Micro RNA 146 gene expression, and COVID-19 infection and disease severity. METHODS This study was carried out on 165 cases of COVID-19 and 138 controls. ACE2 and MCP1 levels were measured in COVID-19 cases and control by ELISA and micro-RNA-146 expression by PCR. RESULTS We found an increased blood level of ACE2 and MCP1 in COVID- 19 patients than in healthy persons and a significant down-regulation of micro-RNA 146 gene expression in cases than in controls. There was a significant correlation between increased blood level of ACE2, regulation of micro-RNA 146 gene expression and severity of lung affection, a significant correlation was found between increased blood level of MCP1 and thrombosis in COVID-19 patients. Neurological complications were significantly correlated with more viral load, more ACE2 blood level, and down regulation of micro RNA146 expression. CONCLUSION High viral load, increased blood level of ACE2, and down-regulation of micro-RNA 146 expression are associated with more severe lung injury and the presence of neurologic complications like convulsions and coma in COVID-19 Egyptian patients.
Collapse
Affiliation(s)
- Amal Ahmed Mohamed
- Department of Biochemistry and Molecular Biology, National Hepatology & Tropical Medicine Research Institute, Cairo, Egypt
| | - Sherief Abd-Elsalam
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Abdelghani
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Badr Hassan
- Department of Internal Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Doaa Ghaith
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omnia Ezzat
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Dalia Ali El-Damasy
- Department of Microbiology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | | | - Mohmoud Hamada
- Department of Internal Medicine, Faculty of Medicine, Benha University, Cairo, Egypt
| | | | - Al-Shaimaa M Al-Tabbakh
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Nivin Baiomy
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
42
|
Lin S, Wang Q, Huang X, Feng J, Wang Y, Shao T, Deng X, Cao Y, Chen X, Zhou M, Zhao C. Wounds under diabetic milieu: The role of immune cellar components and signaling pathways. Biomed Pharmacother 2023; 157:114052. [PMID: 36462313 DOI: 10.1016/j.biopha.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A major challenge in the field of diabetic wound healing is to confirm the body's intrinsic mechanism that could sense the immune system damage promptly and protect the wound from non-healing. Accumulating literature indicates that macrophage, a contributor to prolonged inflammation occurring at the wound site, might play such a role in hindering wound healing. Likewise, other immune cell dysfunctions, such as persistent neutrophils and T cell infection, may also lead to persistent oxidative stress and inflammatory reaction during diabetic wound healing. In this article, we discuss recent advances in the immune cellular components in wounds under the diabetic milieu, and the role of key signaling mechanisms that compromise the function of immune cells leading to persistent wound non-healing.
Collapse
Affiliation(s)
- Siyuan Lin
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xinghua Chen
- Jinshan Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
43
|
Kovaleva O, Sorokin M, Egorova A, Petrenko A, Shelekhova K, Gratchev A. Macrophage - tumor cell interaction beyond cytokines. Front Oncol 2023; 13:1078029. [PMID: 36910627 PMCID: PMC9995642 DOI: 10.3389/fonc.2023.1078029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Tumor cells communication with tumor associated macrophages is a highly important factor of tumor malignant potential development. For a long time, studies of this interaction were focused on a cytokine- and other soluble factors -mediated processes. Discovery of exosomes and regulatory RNAs as their cargo opened a broad field of research. Non-coding RNAs (ncRNAs) were demonstrated to contribute significantly to the development of macrophage phenotype, not only by regulating expression of certain genes, but also by providing for feedback loops of macrophage activation. Being a usual cargo of macrophage- or tumor cell-derived exosomes ncRNAs provide an important mechanism of tumor-stromal cell interaction that contributes significantly to the pathogenesis of various types of tumors. Despite the volume of ongoing research there are still many gaps that must be filled before the practical use of ncRNAs will be possible. In this review we discuss the role of regulatory RNAs in the development of macrophage phenotype. Further we review recent studies supporting the hypothesis that macrophages may affect the properties of tumor cells and vice versa tumor cells influence macrophage phenotype by miRNA and lncRNA transported between these cells by exosomes. We suggest that this mechanism of tumor cell - macrophage interaction is highly promising for the development of novel diagnostic and therapeutic strategies, though many problems are still to be solved.
Collapse
Affiliation(s)
- Olga Kovaleva
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Maxim Sorokin
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anastasija Egorova
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Anatoly Petrenko
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Ksenya Shelekhova
- Department of Pathology, Clinical Research and Practical Center for Specialized Oncological Care, St. Petersburg, Russia.,Pathology Department, SPb Medico-Social Institute, St. Petersburg, Russia
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow, Russia
| |
Collapse
|
44
|
MicroRNAs in T Cell-Immunotherapy. Int J Mol Sci 2022; 24:ijms24010250. [PMID: 36613706 PMCID: PMC9820302 DOI: 10.3390/ijms24010250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) act as master regulators of gene expression in homeostasis and disease. Despite the rapidly growing body of evidence on the theranostic potential of restoring miRNA levels in pre-clinical models, the translation into clinics remains limited. Here, we review the current knowledge of miRNAs as T-cell targeting immunotherapeutic tools, and we offer an overview of the recent advances in miRNA delivery strategies, clinical trials and future perspectives in RNA interference technologies.
Collapse
|
45
|
MicroRNA Modulation during Orthodontic Tooth Movement: A Promising Strategy for Novel Diagnostic and Personalized Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms232415501. [PMID: 36555142 PMCID: PMC9779831 DOI: 10.3390/ijms232415501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The Orthodontic Tooth Movement (OTM) is allowed through a mediated cell/tissue mechanism performed by applying a force or a pair of forces on the dental elements, and the tooth movement is a fundamental requirement during any orthodontic treatment. In this regard, it has been widely shown that each orthodontic treatment has a minimum duration required concerning numerous factors (age, patient compliance, type of technique used, etc.). In this regard, the aim of the following revision of the literature is to give readers a global vision of principal microRNAs (miRNAs) that are most frequently associated with OTM and their possible roles. Previously published studies of the last 15 years have been considered in the PubMed search using "OTM" and "miRNA" keywords for the present review article. In vitro and in vivo studies and clinical trials were mainly explored. Correlation between OTM and modulation of several miRNAs acting through post-transcriptional regulation on target genes was observed in the majority of previous studied. The expression analysis of miRNAs in biological samples, such as gingival crevicular fluid (GCF), can be considered a useful tool for novel diagnostic and/or prognostic approaches and for new personalized orthodontic treatments able to achieve a better clinical response rate. Although only a few studies have been published, the data obtained until now encourage further investigation of the role of miRNA modulation during orthodontic treatment. The aim of this study is to update the insights into the role and impact of principal micro-RNAs (miRNAs) that are most frequently associated during OTM.
Collapse
|
46
|
Molaaghaee‐Rouzbahani S, Asri N, Jahani‐Sherafat S, Amani D, Masotti A, Baghaei K, Yadegar A, Mirjalali H, Rostami‐Nejad M. The modulation of macrophage subsets in celiac disease pathogenesis. Immun Inflamm Dis 2022; 10:e741. [PMID: 36444633 PMCID: PMC9667199 DOI: 10.1002/iid3.741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND So far, limited studies have focused on the role of Macrophages (MQs) in the development or progression of celiac disease (CD). Researchers believe that increasing knowledge about the function of MQs in inflammatory disorders plays a critical role in finding a new treatment for these kinds of diseases. MAIN BODY CD is a permanent autoimmune intestinal disorder triggered by gluten exposure in predisposed individuals. This disorder happens due to the loss of intestinal epithelial barrier integrity characterized by dysregulated innate and adaptive immune responses. MQs are known as key players of the innate immune system that link innate and adaptive immunity. MQs of human intestinal lamina propria participate in maintaining tissue homeostasis, and also intestinal inflammation development. Previous studies suggested that gliadin triggers a proinflammatory phenotype (M1 MQ) in human primary MQs. Moreover, M2-related immunosuppressive mediators are also present in CD. In fact, CD patients present an impaired transition from pro-inflammatory to anti-inflammatory responses due to inappropriate responses to gliadin peptides. CONCLUSION The M1/M2 MQs polarization balancing regulators can be considered novel therapeutic targets for celiac disease.
Collapse
Affiliation(s)
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Somayeh Jahani‐Sherafat
- Laser Application in Medical Sciences Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Davar Amani
- Department of Immunology, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Andrea Masotti
- Bambino Gesù Children's Hospital‐IRCCSResearch LaboratoriesRomeItaly
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Rostami‐Nejad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
47
|
Pantazi P, Clements T, Venø M, Abrahams VM, Holder B. Distinct non-coding RNA cargo of extracellular vesicles from M1 and M2 human primary macrophages. J Extracell Vesicles 2022; 11:e12293. [PMID: 36544271 PMCID: PMC9772496 DOI: 10.1002/jev2.12293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Macrophages are important antigen presenting cells which can release extracellular vesicles (EVs) carrying functional cargo including non-coding RNAs. Macrophages can be broadly classified into M1 'classical' and M2 'alternatively-activated' macrophages. M1 macrophages have been linked with inflammation-associated pathologies, whereas a switch towards an M2 phenotype indicates resolution of inflammation and tissue regeneration. Here, we provide the first comprehensive analysis of the small RNA cargo of EVs from human M1 and M2 primary macrophages. Using small RNA sequencing, we identified several types of small non-coding RNAs in M1 and M2 macrophage EVs including miRNAs, isomiRs, tRNA fragments, piRNA, snRNA, snoRNA and Y-RNA fragments. Distinct differences were observed between M1 and M2 EVs, with higher relative abundance of miRNAs, and lower abundance of tRNA fragments in M1 compared to M2 EVs. MicroRNA-target enrichment analysis identified several gene targets involved in gene expression and inflammatory signalling pathways. EVs were also enriched in tRNA fragments, primarily originating from the 5' end or the internal region of the full length tRNAs, many of which were differentially abundant in M1 and M2 EVs. Similarly, several other small non-coding RNAs, namely snRNAs, snoRNAs and Y-RNA fragments, were differentially enriched in M1 and M2 EVs; we discuss their putative roles in macrophage EVs. In conclusion, we show that M1 and M2 macrophages release EVs with distinct RNA cargo, which has the potential to contribute to the unique effect of these cell subsets on their microenvironment.
Collapse
Affiliation(s)
- Paschalia Pantazi
- Institute of Reproductive and Developmental BiologyDepartment of Metabolism, Digestion, and ReproductionImperial College LondonLondonUK
| | - Toby Clements
- Institute of Reproductive and Developmental BiologyDepartment of Metabolism, Digestion, and ReproductionImperial College LondonLondonUK
| | | | - Vikki M. Abrahams
- Department of ObstetricsGynecology and Reproductive SciencesYale School of MedicineNew HavenConnecticutUSA
| | - Beth Holder
- Institute of Reproductive and Developmental BiologyDepartment of Metabolism, Digestion, and ReproductionImperial College LondonLondonUK
| |
Collapse
|
48
|
Vadevoo SMP, Gunassekaran GR, Yoo JD, Kwon TH, Hur K, Chae S, Lee B. Epigenetic therapy reprograms M2-type tumor-associated macrophages into an M1-like phenotype by upregulating miR-7083-5p. Front Immunol 2022; 13:976196. [PMID: 36483544 PMCID: PMC9724234 DOI: 10.3389/fimmu.2022.976196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reprogramming M2-type, pro-tumoral tumor-associated macrophages (TAMs) into M1-type, anti-tumoral macrophages is a key strategy in cancer therapy. In this study, we exploited epigenetic therapy using the DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) and the histone deacetylation inhibitor trichostatin A (TSA), to reprogram M2-type macrophages into an M1-like phenotype. Treatment of M2-type macrophages with the combination of 5-aza-dC and TSA decreased the levels of M2 macrophage cytokines while increasing those of M1 macrophage cytokines, as compared to the use of either therapy alone. Conditioned medium of M2 macrophages treated with the combination of 5-aza-dC and TSA sensitized the tumor cells to paclitaxel. Moreover, treatment with the combination inhibited tumor growth and improved anti-tumor immunity in the tumor microenvironment. Depletion of macrophages reduced the anti-tumor growth activity of the combination therapy. Profiling of miRNAs revealed that the expression of miR-7083-5p was remarkably upregulated in M2 macrophages, following treatment with 5-aza-dC and TSA. Transfection of miR-7083-5p reprogrammed the M2-type macrophages towards an M1-like phenotype, and adoptive transfer of M2 macrophages pre-treated with miR-7083-5p into mice inhibited tumor growth. miR-7083-5p inhibited the expression of colony-stimulating factor 2 receptor alpha and CD43 as candidate targets. These results show that epigenetic therapy upon treatment with the combination of 5-aza-dC and TSA skews M2-type TAMs towards the M1-like phenotype by upregulating miR-7083-5p, which contributes to the inhibition of tumor growth.
Collapse
Affiliation(s)
- Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea
| | - Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea
| | - Jae Do Yoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea,Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea,Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, South Korea
| | - Sehyun Chae
- Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea,Cell & Matrix Research Institute (CMRI), Kyungpook National University, Daegu, South Korea,Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu, South Korea,*Correspondence: Byungheon Lee,
| |
Collapse
|
49
|
Zhou X, Chen B, Zhang Z, Huang Y, Li J, Wei Q, Cao D, Ai J. Crosstalk between Tumor-Associated Macrophages and MicroRNAs: A Key Role in Tumor Microenvironment. Int J Mol Sci 2022; 23:13258. [PMID: 36362044 PMCID: PMC9653885 DOI: 10.3390/ijms232113258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
As an in-depth understanding of immunotherapy continues to grow, current anticancer therapy research is increasingly focused on the tumor microenvironment (TME). MicroRNAs (miRNAs) play crucial roles in the regulation of genetic information and expression and mediate interactions between tumor cells and components in the TME, such as tumor-associated macrophages (macrophages). Macrophages are abundant in the TME, and their different polarization directions can promote or inhibit tumor growth and progression. By regulating biological behaviors, such as macrophage recruitment, infiltration, and polarization, miRNAs can affect various molecular pathways to regulate tumor progression and treatment response. In this review, we discuss in detail the effects of macrophages on tumors and the multifaceted effects of miRNAs on macrophages. We also discuss the potential clinical applications and prospects of targeted therapy based on miRNAs, novel clinical biomarkers, and drug delivery systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehong Cao
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
50
|
Li J, Sang ER, Adeyemi O, Miller LC, Sang Y. Comparative transcriptomics reveals small RNA composition and differential microRNA responses underlying interferon-mediated antiviral regulation in porcine alveolar macrophages. Front Immunol 2022; 13:1016268. [PMID: 36389683 PMCID: PMC9651005 DOI: 10.3389/fimmu.2022.1016268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/03/2022] [Indexed: 09/12/2023] Open
Abstract
Previous studies have shown that interferon-mediated antiviral activity is subtype-dependent. Using a whole transcriptome procedure, we aimed to characterize the small RNA transcriptome (sRNA-Seq) and specifically the differential microRNA (miRNA) responses in porcine alveolar macrophages (PAMs) upon antiviral activation during viral infection and interferon (IFN) stimulation. Data showed that near 90% of the qualified reads of sRNA were miRNAs, and about 10% of the other sRNAs included rRNA, snoRNA, snRNA, and tRNA in order of enrichment. As the majority of sRNA (>98%) were commonly detected in all PAM samples under different treatments, about 2% sRNA were differentially expressed between the different antiviral treatments. Focusing on miRNA, 386 miRNA were profiled, including 331 known and 55 novel miRNA sequences, of which most were ascribed to miRNA families conserved among vertebrates, particularly mammalian species. Of the miRNA profiles comparably generated across the different treatments, in general, significantly differentially expressed miRNA (SEM) demonstrated that: (1) the wild-type and vaccine strains of a porcine arterivirus (a.k.a., PRRSV) induced nearly reversed patterns of up- or down-regulated SEMs; (2) similar SEM patterns were found among the treatments by the vaccine strain and antiviral IFN-α1/-ω5 subtypes; and (3) the weak antiviral IFN-ω1, however, remarked a suppressive SEM pattern as to SEMs upregulated in the antiviral treatments by the vaccine and IFN-α1/-ω5 subtypes. Further articulation identified SEMs commonly or uniquely expressed in different treatments, and experimentally validated that some SEMs including miR-10b and particularly miR-9-1 acted significantly in regulation of differential antiviral reactions stimulated by different IFN subtypes. Therefore, this study provides a general picture of porcine sRNA composition and pinpoints key SEMs underlying antiviral regulation in PAMs correlated to a typical respiratory RNA virus in pigs.
Collapse
Affiliation(s)
- Jiuyi Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Eric R. Sang
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Oluwaseun Adeyemi
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| | - Laura C. Miller
- USDA, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States
| |
Collapse
|