1
|
Kim D, Sung M, Park M, Sun E, Yoon S, Yoo KH, Radhakrishnan K, Jung SY, Bae W, Cho S, Chung I. Galectin 3-binding protein (LGALS3BP) depletion attenuates hepatic fibrosis by reducing transforming growth factor-β1 (TGF-β1) availability and inhibits hepatocarcinogenesis. Cancer Commun (Lond) 2024; 44:1106-1129. [PMID: 39073023 PMCID: PMC11483554 DOI: 10.1002/cac2.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-β1 (TGF-β1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-β1 signaling pathway. METHODS The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-β1 axis. The effects of altered TGF-β1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice. RESULTS In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-β1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-β1 activated JunB transcription factor, which in turn promoted the TGF-β1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-β1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-β1. CONCLUSION LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-β1 signaling pathway, making it a promising therapeutic target in TGF-β1-related diseases.
Collapse
Affiliation(s)
- Dae‐Hwan Kim
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Minjeong Sung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Myong‐Suk Park
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Eun‐Gene Sun
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Sumin Yoon
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | - Kyung Hyun Yoo
- Department of Biological ScienceSookmyung Women's UniversitySeoulSouth Korea
| | | | - Sung Yun Jung
- Department of Biochemistry and Molecular PharmacologyBaylor College of MedicineHoustonTexasUSA
| | - Woo‐Kyun Bae
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
- BioMedical Sciences Graduate ProgramChonnam National UniversityHwasunSouth Korea
| | - Sang‐Hee Cho
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| | - Ik‐Joo Chung
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Medical SchoolHwasunSouth Korea
- Department of Internal MedicineDivision of Hematology and OncologyChonnam National University Hwasun HospitalHwasunSouth Korea
- Combinatorial Tumor Immunotherapy MRC CenterChonnam National University Medical SchoolHwasunSouth Korea
- National Immunotherapy Innovation CenterHwasunSouth Korea
| |
Collapse
|
2
|
Arutyunov A, Durán-Laforet V, Ai S, Ferrari L, Murphy R, Schafer DP, Klein RS. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules 2024; 14:808. [PMID: 39062523 PMCID: PMC11274721 DOI: 10.3390/biom14070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.
Collapse
Affiliation(s)
- Artem Arutyunov
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Shenjian Ai
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robert Murphy
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robyn S. Klein
- Department of Microbiology & Immunology, Western Institute of Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, 100 Perth Dr, London, ON N6A 5K8, Canada
| |
Collapse
|
3
|
Kim YA, Choi Y, Kim TG, Jeong J, Yu S, Kim T, Sheen K, Lee Y, Choi T, Park YH, Kang MS, Kim MS. Multi-System-Level Analysis with RNA-Seq on Pterygium Inflammation Discovers Association between Inflammatory Responses, Oxidative Stress, and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:4789. [PMID: 38732006 PMCID: PMC11083828 DOI: 10.3390/ijms25094789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
A pterygium is a common conjunctival degeneration and inflammatory condition. It grows onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-known risk factor for the development of a pterygium, although its pathogenesis remains unclear, with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological samples) and retrieved publicly available data, including eight pterygium samples and eight controls. We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple analysis approaches from different perspectives. The increased expression of antioxidant genes in response to oxidative stress and DNA damage implies an association between these factors and pterygium development. Also, our comparative analysis revealed both similarities and differences between Asian and European pterygiums. The decrease in gene expressions involved in the three primary inflammatory signaling pathways-JAK/STAT, MAPK, and NF-kappa B signaling-suggests a connection between pathway dysfunction and pterygium development. We also observed relatively higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited more pronounced stress responses against oxidative stress. These differences could potentially be necessitated by energy-associated pathways, specifically oxidative phosphorylation.
Collapse
Affiliation(s)
- Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Tae Gi Kim
- Department of Ophthalmology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sanghyeon Yu
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Taeyoon Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kisung Sheen
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| | - Taesoo Choi
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Min Seok Kang
- Department of Ophthalmology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| |
Collapse
|
4
|
Samare-Najaf M, Samareh A, Savardashtaki A, Khajehyar N, Tajbakhsh A, Vakili S, Moghadam D, Rastegar S, Mohsenizadeh M, Jahromi BN, Vafadar A, Zarei R. Non-apoptotic cell death programs in cervical cancer with an emphasis on ferroptosis. Crit Rev Oncol Hematol 2024; 194:104249. [PMID: 38145831 DOI: 10.1016/j.critrevonc.2023.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Cervical cancer, a pernicious gynecological malignancy, causes the mortality of hundreds of thousands of females worldwide. Despite a considerable decline in mortality, the surging incidence rate among younger women has raised serious concerns. Immortality is the most important characteristic of tumor cells, hence the carcinogenesis of cervical cancer cells pivotally requires compromising with cell death mechanisms. METHODS The current study comprehensively reviewed the mechanisms of non-apoptotic cell death programs to provide possible disease management strategies. RESULTS Comprehensive evidence has stated that focusing on necroptosis, pyroptosis, and autophagy for disease management is associated with significant limitations such as insufficient understanding, contradictory functions, dependence on disease stage, and complexity of intracellular pathways. However, ferroptosis represents a predictable role in cervix carcinogenesis, and ferroptosis-related genes demonstrate a remarkable correlation with patient survival and clinical outcomes. CONCLUSION Ferroptosis may be an appropriate option for disease management strategies from predicting prognosis to treatment.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran.
| | - Ali Samareh
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Nastaran Khajehyar
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Delaram Moghadam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Rastegar
- Department of Microbiology and Virology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Mohsenizadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Kerman Regional Blood Transfusion Center, Kerman, Iran
| | | | - Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Zarei
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Yin Z, Gong G, Liu X, Yin J. Mechanism of regulating macrophages/osteoclasts in attenuating wear particle-induced aseptic osteolysis. Front Immunol 2023; 14:1274679. [PMID: 37860014 PMCID: PMC10582964 DOI: 10.3389/fimmu.2023.1274679] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023] Open
Abstract
Joint replacement surgery is the most effective treatment for end-stage arthritis. Aseptic loosening caused by periprosthetic osteolysis is a common complication after joint replacement. Inflammation induced by wear particles derived from prosthetic biomaterials is a major cause of osteolysis. We emphasize that bone marrow-derived macrophages and their fusion-derived osteoclasts play a key role in this pathological process. Researchers have developed multiple intervention approaches to regulate macrophage/osteoclast activation. Aiming at wear particle-induced periprosthetic aseptic osteolysis, this review separately discusses the molecular mechanism of regulation of ROS formation and inflammatory response through intervention of macrophage/osteoclast RANKL-MAPKs-NF-κB pathway. These molecular mechanisms regulate osteoclast activation in different ways, but they are not isolated from each other. There is also a lot of crosstalk among the different mechanisms. In addition, other bone and joint diseases related to osteoclast activation are also briefly introduced. Therefore, we discuss these new findings in the context of existing work with a view to developing new strategies for wear particle-associated osteolysis based on the regulation of macrophages/osteoclasts.
Collapse
Affiliation(s)
- Zhaoyang Yin
- Department of Orthopedics, The Affiliated Lianyungang Hospital of Xuzhou Medical University (The First People’s Hospital of Lianyungang), Lianyungang, China
| | - Ge Gong
- Department of Geriatrics, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xinhui Liu
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Iakovliev A, McGurnaghan SJ, Hayward C, Colombo M, Lipschutz D, Spiliopoulou A, Colhoun HM, McKeigue PM. Genome-wide aggregated trans-effects on risk of type 1 diabetes: A test of the "omnigenic" sparse effector hypothesis of complex trait genetics. Am J Hum Genet 2023; 110:913-926. [PMID: 37164005 PMCID: PMC10257008 DOI: 10.1016/j.ajhg.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/12/2023] [Indexed: 05/12/2023] Open
Abstract
The "omnigenic" hypothesis postulates that the polygenic effects of common SNPs on a typical complex trait are mediated through trans-effects on expression of a relatively sparse set of effector ("core") genes. We tested this hypothesis in a study of 4,964 cases of type 1 diabetes (T1D) and 7,497 controls by using summary statistics to calculate aggregated (excluding the HLA region) trans-scores for gene expression in blood. From associations of T1D with aggregated trans-scores, nine putative core genes were identified, of which three-STAT1, CTLA4 and FOXP3-are genes in which variants cause monogenic forms of autoimmune diabetes. Seven of these genes affect the activity of regulatory T cells, and two are involved in immune responses to microbial lipids. Four T1D-associated genomic regions could be identified as master regulators via trans-effects on gene expression. These results support the sparse effector hypothesis and reshape our understanding of the genetic architecture of T1D.
Collapse
Affiliation(s)
- Andrii Iakovliev
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Stuart J McGurnaghan
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XUC, Scotland
| | - Caroline Hayward
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XUC, Scotland
| | - Marco Colombo
- University of Leipzig, Medical Faculty, University Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig, Germany
| | - Debby Lipschutz
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XUC, Scotland
| | - Athina Spiliopoulou
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland
| | - Helen M Colhoun
- Institute of Genetics and Cancer, College of Medicine and Veterinary Medicine, University of Edinburgh, Western General Hospital Campus, Crewe Road, Edinburgh EH4 2XUC, Scotland
| | - Paul M McKeigue
- Usher Institute, College of Medicine and Veterinary Medicine, University of Edinburgh, Teviot Place, Edinburgh EH8 9AG, Scotland.
| |
Collapse
|
7
|
Guo K, Shi J, Tang Z, Lai C, Liu C, Li K, Li Z, Xu K. Circular RNA circARHGEF28 inhibited the progression of prostate cancer via the miR-671-5p/LGALS3BP/NF-κB axis. Cancer Sci 2023. [PMID: 37186007 DOI: 10.1111/cas.15820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Circular RNAs (circRNAs) play crucial roles in various biological processes, including prostate cancer (PCa). However, the precise roles and mechanism of circRNAs are complicated. Hence, we studied the function of a circRNA that might be involved in the progression of PCa. In this study, we found that circARHGEF28 was frequently downregulated in PCa tissues and cell lines. Furthermore, gain- and loss-of function experiments in vitro showed that circARHGEF28 inhibited proliferation, migration, and invasion of PCa. Additionally, circARHGEF28 suppressed PCa progression in vivo. Bioinformatics analysis and RNA pull-down and capture assay found that circARHGEF28 sponged miR-671-5p in PCa cells. Importantly, qRT-PCR and dual luciferase assays found that Lectin galactoside-binding soluble 3 binding protein (LGALS3BP) was downstream of miR-671-5p, and western blot analysis further confirmed that LGALS3BP negatively regulated the nuclear factor kappa-B (NF-κB) pathway. These results demonstrated that circARHGEF28 abolished the degradation of LGALS3BP by sponging miR-671-5p, thus blocking the activation of the NF-κB pathway. Our findings revealed that circARHGEF28/miR-671-5p/LGALS3BP/NF-κB may be an important axis that regulates PCa progression.
Collapse
Affiliation(s)
- Kaixuan Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Juanyi Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhuang Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cong Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Cheng Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kuiqing Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Zhuohang Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| | - Kewei Xu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou, China
| |
Collapse
|
8
|
Sun EG, Vijayan V, Park MR, Yoo KH, Cho SH, Bae WK, Shim HJ, Hwang JE, Park IK, Chung IJ. Suppression of triple-negative breast cancer aggressiveness by LGALS3BP via inhibition of the TNF-α-TAK1-MMP9 axis. Cell Death Discov 2023; 9:122. [PMID: 37041137 PMCID: PMC10090165 DOI: 10.1038/s41420-023-01419-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Transforming growth factor-β-activated kinase 1 (TAK1), which is highly expressed and aberrantly activated in triple-negative breast cancer (TNBC), plays a pivotal role in metastasis and progression. This makes it a potential therapeutic target for TNBC. Previously, we reported lectin galactoside-binding soluble 3 binding protein (LGALS3BP) as a negative regulator of TAK1 signaling in the inflammatory response and inflammation-associated cancer progression. However, the role of LGALS3BP and its molecular interaction with TAK1 in TNBC remain unclear. This study aimed to investigate the function and underlying mechanism of action of LGALS3BP in TNBC progression and determine the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC. We found that LGALS3BP overexpression suppressed the overall aggressive phenotype of TNBC cells in vitro and in vivo. LGALS3BP inhibited TNF-α-mediated gene expression of matrix metalloproteinase 9 (MMP9), which encodes a protein crucial for lung metastasis in TNBC patients. Mechanistically, LGALS3BP suppressed TNF-α-mediated activation of TAK1, a key kinase linking TNF-α stimulation and MMP9 expression in TNBC. Nanoparticle-mediated delivery enabled tumor-specific targeting and inhibited TAK1 phosphorylation and MMP9 expression in tumor tissues, suppressing primary tumor growth and lung metastasis in vivo. Our findings reveal a novel role of LGALS3BP in TNBC progression and demonstrate the therapeutic potential of nanoparticle-mediated delivery of LGALS3BP in TNBC.
Collapse
Affiliation(s)
- Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Veena Vijayan
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kyung Hyun Yoo
- Department of Biological Science, Sookmyung Women's University, Seoul, Republic of Korea
| | - Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and Center for Global Future Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
9
|
Rovira M, Miserocchi M, Montanari A, Hammou L, Chomette L, Pozo J, Imbault V, Bisteau X, Wittamer V. Zebrafish Galectin 3 binding protein is the target antigen of the microglial 4C4 monoclonal antibody. Dev Dyn 2023; 252:400-414. [PMID: 36285351 DOI: 10.1002/dvdy.549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 10/16/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Two decades ago, the fish-specific monoclonal antibody 4C4 was found to be highly reactive to zebrafish microglia, the macrophages of the central nervous system. This has resulted in 4C4 being widely used, in combination with available fluorescent transgenic reporters to identify and isolate microglia. However, the target protein of 4C4 remains unidentified, which represents a major caveat. In addition, whether the 4C4 expression pattern is strictly restricted to microglial cells in zebrafish has never been investigated. RESULTS Having demonstrated that 4C4 is able to capture its native antigen from adult brain lysates, we used immunoprecipitation/mass-spectrometry, coupled to recombinant expression analyses, to identify its target. The cognate antigen was found to be a paralog of Galectin 3 binding protein (Lgals3bpb), known as MAC2-binding protein in mammals. Notably, 4C4 did not recognize other paralogs, demonstrating specificity. Moreover, our data show that Lgals3bpb expression, while ubiquitous in microglia, also identifies leukocytes in the periphery, including populations of gut and liver macrophages. CONCLUSIONS The 4C4 monoclonal antibody recognizes Lgals3bpb, a predicted highly glycosylated protein whose function in the microglial lineage is currently unknown. Identification of Lgals3bpb as a new pan-microglia marker will be fundamental in forthcoming studies using the zebrafish model.
Collapse
Affiliation(s)
- Mireia Rovira
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Magali Miserocchi
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Alice Montanari
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Latifa Hammou
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Laura Chomette
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Jennifer Pozo
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Virginie Imbault
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Xavier Bisteau
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Valérie Wittamer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
- ULB Neuroscience Institute (UNI), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| |
Collapse
|
10
|
Long noncoding RNA TARL promotes antibacterial activity and prevents bacterial escape in Miichthys miiuy through suppression of TAK1 downregulation. SCIENCE CHINA. LIFE SCIENCES 2023:10.1007/s11427-022-2254-6. [PMID: 36738431 DOI: 10.1007/s11427-022-2254-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/07/2022] [Indexed: 02/05/2023]
Abstract
Noncoding RNA (ncRNA) is an important regulatory factor that plays a major role in innate immunity. However, most studies on ncRNA have focused on mammals, resulting in a knowledge gap on ncRNA in lower vertebrates such as teleost fish. In this study, we identified a new long noncoding RNA (lncRNA), termed TAK1-related lncRNA (TARL), which can play a positive role in the antibacterial immunity of Miichthys miiuy to Vibrio anguillarum and V. harveyi. We also found a novel microRNA miR-2188-3p that could target TAK1 and inhibit the host antibacterial response and promote bacterial escape. We further found that the antibacterial effect inhibited by miR-2188-3p could be reversed with TARL. Moreover, V. anguillarum and V. harveyi are the two most susceptible Gram-negative pathogens of aquaculture fish, and the economic losses caused by these two bacteria are immeasurable every year. This study is the first to report on the ability of lncRNA to prevent the escape of V. anguillarum and V. harveyi in fish through the competing endogenous RNA (ceRNA) mechanism. Our results not only elucidate the ceRNA mechanism of the lncRNA in antibacterial immune responses but also provide new insights into the impact of lncRNA on host immunity and bacterial escape.
Collapse
|
11
|
Yang M, Qi X, Li N, Kaifi JT, Chen S, Wheeler AA, Kimchi ET, Ericsson AC, Rector RS, Staveley-O'Carroll KF, Li G. Western diet contributes to the pathogenesis of non-alcoholic steatohepatitis in male mice via remodeling gut microbiota and increasing production of 2-oleoylglycerol. Nat Commun 2023; 14:228. [PMID: 36646715 PMCID: PMC9842745 DOI: 10.1038/s41467-023-35861-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The interplay between western diet and gut microbiota drives the development of non-alcoholic fatty liver disease and its progression to non-alcoholic steatohepatitis. However, the specific microbial and metabolic mediators contributing to non-alcoholic steatohepatitis remain to be identified. Here, a choline-low high-fat and high-sugar diet, representing a typical western diet, named CL-HFS, successfully induces male mouse non-alcoholic steatohepatitis with some features of the human disease, such as hepatic inflammation, steatosis, and fibrosis. Metataxonomic and metabolomic studies identify Blautia producta and 2-oleoylglycerol as clinically relevant bacterial and metabolic mediators contributing to CL-HFS-induced non-alcoholic steatohepatitis. In vivo studies validate that both Blautia producta and 2-oleoylglycerol promote liver inflammation and hepatic fibrosis in normal diet- or CL-HFS-fed mice. Cellular and molecular studies reveal that the GPR119/TAK1/NF-κB/TGF-β1 signaling pathway mediates 2-oleoylglycerol-induced macrophage priming and subsequent hepatic stellate cell activation. These findings advance our understanding of non-alcoholic steatohepatitis pathogenesis and provide targets for developing microbiome/metabolite-based therapeutic strategies against non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Nan Li
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, 110001, China
| | - Jussuf T Kaifi
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, 65201, USA
| | - Shiyou Chen
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Andrew A Wheeler
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
| | - Eric T Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, 65201, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - R Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, 65212, USA
- Department of Medicine-Gastroenterology and Hepatology, University of Missouri, Columbia, MO, 65212, USA
| | - Kevin F Staveley-O'Carroll
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA.
- Harry S. Truman Memorial VA Hospital, Columbia, MO, 65201, USA.
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA.
- Harry S. Truman Memorial VA Hospital, Columbia, MO, 65201, USA.
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
12
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
13
|
Fraszczyk E, Spijkerman AMW, Zhang Y, Brandmaier S, Day FR, Zhou L, Wackers P, Dollé MET, Bloks VW, Gào X, Gieger C, Kooner J, Kriebel J, Picavet HSJ, Rathmann W, Schöttker B, Loh M, Verschuren WMM, van Vliet-Ostaptchouk JV, Wareham NJ, Chambers JC, Ong KK, Grallert H, Brenner H, Luijten M, Snieder H. Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts. Diabetologia 2022; 65:763-776. [PMID: 35169870 PMCID: PMC8960572 DOI: 10.1007/s00125-022-05652-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 11/15/2021] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts. METHODS We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK). RESULTS The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation. CONCLUSIONS/INTERPRETATION By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Annemieke M W Spijkerman
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Brandmaier
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Felix R Day
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Li Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Paul Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, Section of Molecular Metabolism and Nutrition, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jaspal Kooner
- Department of Cardiology, Ealing Hospital, Ealing, UK
- Imperial College Healthcare NHS Trust, London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Jennifer Kriebel
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - H Susan J Picavet
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wolfgang Rathmann
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Biometrics and Epidemiology, German Diabetes Center, Auf'm Hennekamp, Duesseldorf, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - W M Monique Verschuren
- Centre for Nutrition, Prevention and Health services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Genomics Coordination Center, Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Department of Paediatrics, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Harald Grallert
- Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
14
|
Li N, An P, Wang J, Zhang T, Qing X, Wu B, Sun L, Ding X, Niu L, Xie Z, Zhang M, Guo X, Chen X, Cai T, Luo J, Wang F, Yang F. Plasma proteome profiling combined with clinical and genetic features reveals the pathophysiological characteristics of β-thalassemia. iScience 2022; 25:104091. [PMID: 35378860 PMCID: PMC8976145 DOI: 10.1016/j.isci.2022.104091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/17/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022] Open
Abstract
The phenotype of β-thalassemia underlies multigene interactions, making clinical stratification complicated. An increasing number of genetic modifiers affecting the disease severity have been identified, but are still unable to meet the demand of precision diagnosis. Here, we systematically conducted a comparative plasma proteomic profiling on patients with β-thalassemia and healthy controls. Among 246 dysregulated proteins, 13 core protein signatures with excellent biomarker potential are proposed. The combination of proteome and patients' clinical data revealed patients with codons 41/42 -TTCT mutations have an elevated risk of higher iron burden, dysplasia, and osteoporosis than patients with other genotypes. Notably, 85 proteins correlating to fetal hemoglobin (Hb F) were identified, among which the abundance of 27 proteins may affect the transfusion burden in patients with β-thalassemia. The current study thus provides protein signatures as potential diagnostic biomarkers or therapeutic clues for β-thalassemia. 246 dysregulated proteins are detected in plasma of patients with β-thalassemia 13 potential biomarkers and 27 proteins related to disease progression are found Variations in plasma proteome reveal the disease pathophysiological characteristics Codons 41/42 -TTCT carriers have higher ferritin levels compared to non-carriers
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqing Qing
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Wu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Luo
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 China
| | - Fudi Wang
- The Fourth Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058 , China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Yehya N, Fazelinia H, Taylor DM, Lawrence GG, Spruce LA, Thompson JM, Margulies SS, Seeholzer SH, Worthen GS. Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics. Am J Physiol Lung Cell Mol Physiol 2022; 322:L365-L372. [PMID: 34984927 PMCID: PMC8873032 DOI: 10.1152/ajplung.00164.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both sepsis and acute respiratory distress syndrome (ARDS) rely on imprecise clinical definitions leading to heterogeneity, which has contributed to negative trials. Because circulating protein/DNA complexes have been implicated in sepsis and ARDS, we aimed to develop a proteomic signature of DNA-bound proteins to discriminate between children with sepsis with and without ARDS. We performed a prospective case-control study in 12 children with sepsis with ARDS matched to 12 children with sepsis without ARDS on age, severity of illness score, and source of infection. We performed co-immunoprecipitation and downstream proteomics in plasma collected ≤ 24 h of intensive care unit admission. Expression profiles were generated, and a random forest classifier was used on differentially expressed proteins to develop a signature which discriminated ARDS. The classifier was tested in six independent blinded samples. Neutrophil and nucleosome proteins were over-represented in ARDS, including two S100A proteins, superoxide dismutase (SOD), and three histones. Random forest produced a 10-protein signature that accurately discriminated between children with sepsis with and without ARDS. This classifier perfectly assigned six independent blinded samples as having ARDS or not. We validated higher expression of the most informative discriminating protein, galectin-3-binding protein, in children with ARDS. Our methodology has applicability to isolation of DNA-bound proteins from plasma. Our results support the premise of a molecular definition of ARDS, and give preliminary insight into why some children with sepsis, but not others, develop ARDS.
Collapse
Affiliation(s)
- Nadir Yehya
- 1Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hossein Fazelinia
- 2Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Deanne M. Taylor
- 3Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,6Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gladys G. Lawrence
- 4Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn A. Spruce
- 2Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jill M. Thompson
- 1Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan S. Margulies
- 5Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Steven H. Seeholzer
- 2Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - G. Scott Worthen
- 6Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Mathien S, Tesnière C, Meloche S. Regulation of Mitogen-Activated Protein Kinase Signaling Pathways by the Ubiquitin-Proteasome System and Its Pharmacological Potential. Pharmacol Rev 2021; 73:263-296. [PMID: 34732541 DOI: 10.1124/pharmrev.120.000170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signaling pathways that play essential roles in transducing extracellular environmental signals into diverse cellular responses to maintain homeostasis. These pathways are classically organized into an architecture of three sequentially acting protein kinases: a MAPK kinase kinase that phosphorylates and activates a MAPK kinase, which in turn phosphorylates and activates the effector MAPK. The activity of MAPKs is tightly regulated by phosphorylation of their activation loop, which can be modulated by positive and negative feedback mechanisms to control the amplitude and duration of the signal. The signaling outcomes of MAPK pathways are further regulated by interactions of MAPKs with scaffolding and regulatory proteins. Accumulating evidence indicates that, in addition to these mechanisms, MAPK signaling is commonly regulated by ubiquitin-proteasome system (UPS)-mediated control of the stability and abundance of MAPK pathway components. Notably, the biologic activity of some MAPKs appears to be regulated mainly at the level of protein turnover. Recent studies have started to explore the potential of targeted protein degradation as a powerful strategy to investigate the biologic functions of individual MAPK pathway components and as a new therapeutic approach to overcome resistance to current small-molecule kinase inhibitors. Here, we comprehensively review the mechanisms, physiologic importance, and pharmacological potential of UPS-mediated protein degradation in the control of MAPK signaling. SIGNIFICANCE STATEMENT: Accumulating evidence highlights the importance of targeted protein degradation by the ubiquitin-proteasome system in regulating and fine-tuning the signaling output of mitogen-activated protein kinase (MAPK) pathways. Manipulating protein levels of MAPK cascade components may provide a novel approach for the development of selective pharmacological tools and therapeutics.
Collapse
Affiliation(s)
- Simon Mathien
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Chloé Tesnière
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer, Montreal, Quebec, Canada (S.Ma., C.T., S.Me.); and Molecular Biology Program, Faculty of Medicine (C.T., S.Me.) and Department of Pharmacology and Physiology (S.Me.), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Capone E, Iacobelli S, Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med 2021; 19:405. [PMID: 34565385 PMCID: PMC8474792 DOI: 10.1186/s12967-021-03085-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/19/2022] Open
Abstract
The lectin galactoside-binding soluble 3 binding protein (LGALS3BP) is a secreted, hyperglycosylated protein expressed by the majority of human cells. It was first identified as cancer and metastasis associated protein, while its role in innate immune response upon viral infection remains still to be clarified. Since its discovery dated in early 90 s, a large body of literature has been accumulating highlighting both a prognostic and functional role for LGALS3BP in cancer. Moreover, data from our group and other have strongly suggested that this protein is enriched in cancer-associated extracellular vesicles and may be considered a promising candidate for a targeted therapy in LGALS3BP positive cancers. Here, we extensively reviewed the literature relative to LGALS3BP role in cancer and its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Emily Capone
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100, Chieti, Italy
| | | | - Gianluca Sala
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100, Chieti, Italy. .,Center for Advanced Studies and Technology (CAST), Via Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
18
|
Zhang Y, Zhang H, Li Y, Wang M, Qian F. β-Caryophyllene attenuates lipopolysaccharide-induced acute lung injury via inhibition of the MAPK signalling pathway. J Pharm Pharmacol 2021; 73:1319-1329. [PMID: 34313776 DOI: 10.1093/jpp/rgab074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Acute lung injury (ALI) is a pulmonary manifestation of an acute systemic inflammatory response, which is associated with high morbidity and mortality. Accordingly, from the perspective of treating ALI, it is important to identify effective agents and elucidate the underlying modulatory mechanisms. β-Caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene that has anti-cancer and anti-inflammatory activities. However, the effects of BCP on ALI have yet to be ascertained. METHODS ALI was induced intratracheally, injected with 5 mg/kg LPS and treated with BCP. The bone marrow-derived macrophages (BMDMs) were obtained and cultured then challenged with 100 ng/ml LPS for 4 h, with or without BCP pre-treatment for 30 min. KEY FINDINGS BCP significantly ameliorates LPS-induced mouse ALI, which is related to an alleviation of neutrophil infiltration and reduction in cytokine production. In vitro, BCP was found to reduce the expression of interleukin-6, interleukin-1β and tumour necrosis factor-α, and suppresses the MAPK signalling pathway in BMDMs, which is associated with the inhibition of TAK1 phosphorylation and an enhancement of MKP-1 expression. CONCLUSIONS Our data indicate that BCP protects against inflammatory responses and is a potential therapeutic agent for the treatment of LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Haibo Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
| | - Muqun Wang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Feng Qian
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China.,Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Luo M, Zhang Q, Hu Y, Sun C, Sheng Y, Deng C. LGALS3BP: A Potential Plasma Biomarker Associated with Diagnosis and Prognosis in Patients with Sepsis. Infect Drug Resist 2021; 14:2863-2871. [PMID: 34335032 PMCID: PMC8318715 DOI: 10.2147/idr.s316402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose This study aimed to screen differentially expressed proteins (DEPs) in plasma of patients with sepsis through data-independent acquisition (DIA) and enzyme-linked immunosorbent assays (ELISAs), and provide convenient and accurate serum markers for determining the condition of septic patients. Methods A total of 53 septic patients and 16 normal controls who were admitted to the Affiliated Hospital of Southwest Medical University between January 2019 and December 2020 were enrolled in this study; 6 specimens from the normal group and 15 from the sepsis group were randomly selected for DIA-based quantitative proteomic analysis. The acquired data were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and a protein-protein interaction (PPI) network was constructed to screen potential markers. The selected proteins were further verified through ELISAs. The differences between control and sepsis groups and between survivors and non-survivors were analysed. Receiver operating characteristic (ROC) curves were drawn to explore their diagnostic value and prognostic efficacy. Results A total of 149 DEPs were identified by bioinformatics methods. The analyses showed that these proteins are mainly involved in biological processes such as cell movement, stress response, cell proliferation, and immune response. Functional pathway analysis showed that they are mainly involved in leukocyte transendothelial migration, protein synthesis and processing, and various bacterial infections. LGALS3BP was selected as a potential plasma biomarker and further verified through an ELISA. Its level in septic patients was significantly higher than that in normal controls, and its level in non-survivors was also higher than that in survivors. The ROC curves suggested its great diagnostic efficacy and prognostic ability in sepsis. Conclusion LGALS3BP levels were significantly different between the normal and sepsis groups; it has good diagnostic value in sepsis, and is related to patient prognosis; thus, it might be a biomarker for sepsis.
Collapse
Affiliation(s)
- Meiyan Luo
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Infection and Immunity Laboratory,The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Infection and Immunity Laboratory,The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China
| | - Yingchun Hu
- Department of Emergency, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China
| | - Changfeng Sun
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Infection and Immunity Laboratory,The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Infection and Immunity Laboratory,The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Department of Tuberculosis, The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China.,Infection and Immunity Laboratory,The Affiliated Hospital of Southwest Medical University, Louzhou, 646000, People's Republic of China
| |
Collapse
|
20
|
Ramirez Alvarez C, Kee C, Sharma AK, Thomas L, Schmidt FI, Stanifer ML, Boulant S, Herrmann C. The endogenous cellular protease inhibitor SPINT2 controls SARS-CoV-2 viral infection and is associated to disease severity. PLoS Pathog 2021; 17:e1009687. [PMID: 34181691 PMCID: PMC8270430 DOI: 10.1371/journal.ppat.1009687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/09/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 outbreak is the biggest threat to human health in recent history. Currently, there are over 1.5 million related deaths and 75 million people infected around the world (as of 22/12/2020). The identification of virulence factors which determine disease susceptibility and severity in different cell types remains an essential challenge. The serine protease TMPRSS2 has been shown to be important for S protein priming and viral entry, however, little is known about its regulation. SPINT2 is a member of the family of Kunitz type serine protease inhibitors and has been shown to inhibit TMPRSS2. Here, we explored the existence of a co-regulation between SPINT2/TMPRSS2 and found a tightly regulated protease/inhibitor expression balance across tissues. We found that SPINT2 negatively correlates with SARS-CoV-2 expression in Calu-3 and Caco-2 cell lines and was down-regulated in secretory cells from COVID-19 patients. We validated our findings using Calu-3 cell lines and observed a strong increase in viral load after SPINT2 knockdown, while overexpression lead to a drastic reduction of the viral load. Additionally, we evaluated the expression of SPINT2 in datasets from comorbid diseases using bulk and scRNA-seq data. We observed its down-regulation in colon, kidney and liver tumors as well as in alpha pancreatic islets cells from diabetes Type 2 patients, which could have implications for the observed comorbidities in COVID-19 patients suffering from chronic diseases.
Collapse
Affiliation(s)
| | - Carmon Kee
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashwini Kumar Sharma
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| | - Leonie Thomas
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| | - Florian I. Schmidt
- Institute of Innate Immunity, Medical Faculty, University of Bonn, Bonn, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- Research Group “Cellular Polarity and Viral Infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, Germany
| |
Collapse
|
21
|
Cho SH, Shim HJ, Park MR, Choi JN, Akanda MR, Hwang JE, Bae WK, Lee KH, Sun EG, Chung IJ. Lgals3bp suppresses colon inflammation and tumorigenesis through the downregulation of TAK1-NF-κB signaling. Cell Death Discov 2021; 7:65. [PMID: 33824294 PMCID: PMC8024364 DOI: 10.1038/s41420-021-00447-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Galectin 3-binding protein (LGALS3BP, also known as 90K) is a multifunctional glycoprotein involved in immunity and cancer. However, its precise role in colon inflammation and tumorigenesis remains unclear. Here, we showed that Lgals3bp-/- mice were highly susceptible to colitis and colon tumorigenesis, accompanied by the induction of inflammatory responses. In acute colitis, NF-κB was highly activated in the colon of Lgals3bp-/- mice, leading to the excessive production of pro-inflammatory cytokines, such as IL-6, TNFα, and IL-1β. Mechanistically, Lgals3bp suppressed NF-κB through the downregulation of TAK1 in colon epithelial cells. There was no significant difference in the pro-inflammatory cytokine levels between wild-type and Lgals3bp-/- mice in a chronic inflammatory state, during colon tumorigenesis. Instead, Lgals3bp-/- mice showed elevated levels of GM-CSF, compared to those in WT mice. We also found that GM-CSF promoted the accumulation of myeloid-derived suppressor cells and ultimately increased colon tumorigenesis in Lgals3bp-/- mice. Taken together, Lgals3bp plays a critical role in the suppression of colitis and colon tumorigenesis through the downregulation of the TAK1-NF-κB-cytokine axis. These findings suggest that LGALS3BP is a novel immunotherapeutic target for colon inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Sang-Hee Cho
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Hyun-Jeong Shim
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Mi-Ra Park
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Ji-Na Choi
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Md Rashedunnabi Akanda
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Jun-Eul Hwang
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Kyun Bae
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
| | - Kyung-Hwa Lee
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
- Combinatorial Tumor Immunotherapy MRC Center, Chonnam National University Medical School, Hwasun, Republic of Korea
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Eun-Gene Sun
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| | - Ik-Joo Chung
- Department of Hematology and Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
- Immunotherapy Innovation Center, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea.
| |
Collapse
|
22
|
Faust K, Freitag N, Barrientos G, Hartel C, Blois SM. Galectin-Levels Are Elevated in Infants Born Preterm Due to Amniotic Infection and Rapidly Decline in the Neonatal Period. Front Immunol 2021; 11:599104. [PMID: 33717050 PMCID: PMC7949913 DOI: 10.3389/fimmu.2020.599104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Galectin (gal)-1, -3, and -9 are members of a family of glycan binding proteins that mediate complex interactions between decidual, inflammatory and trophoblast cells modulating several processes during gestation, control of the maternal immune system, and parturition. Their immunomodulatory role in preterm birth and postnatal expression in preterm infants is unknown. We performed a single center prospective study of 170 preterm infants with a gestational age below 35 weeks. Peripheral venous blood samples were collected during the neonatal period and galectin-1, -3, and -9 were determined by ELISA. We noted a strong decline of circulating gal-1 and -3 levels but not gal-9 from birth to day 7 of life. There was an inverse correlation of gal-1 and -3 levels at birth with gestational age. Gal-1 levels were remarkably increased in infants born to amniotic infection syndrome (AIS), which was also observed for gal-9 levels. Infants who developed early-onset sepsis had higher levels of gal-3 at day 1 as compared to unaffected infants. Our observational data imply that galectin-1, -3, and -9 levels are elevated in preterm infants born in an inflammatory milieu such as AIS or EOS. Future studies need to address whether galectins mediate inflammation-induced preterm birth and could therefore be a target for clinical trials.
Collapse
Affiliation(s)
- Kirstin Faust
- Department of Pediatrics, University of Luebeck, University Hospital of Schleswig-Holstein, Lübeck, Germany.,German Center for Infection Research, Lübeck, Germany
| | - Nancy Freitag
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Division of General Internal and Psychosomatic Medicine, Berlin, Germany
| | - Gabriela Barrientos
- Laboratorio de Medicina Experimental, Hospital Alemán-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Christoph Hartel
- German Center for Infection Research, Lübeck, Germany.,Department of Paediatrics, University of Würzburg, Würzburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Upadhya R, Madhu LN, Attaluri S, Gitaí DLG, Pinson MR, Kodali M, Shetty G, Zanirati G, Kumar S, Shuai B, Weintraub ST, Shetty AK. Extracellular vesicles from human iPSC-derived neural stem cells: miRNA and protein signatures, and anti-inflammatory and neurogenic properties. J Extracell Vesicles 2020; 9:1809064. [PMID: 32944193 PMCID: PMC7480597 DOI: 10.1080/20013078.2020.1809064] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Grafting of neural stem cells (NSCs) derived from human induced pluripotent stem cells (hiPSCs) has shown promise for brain repair after injury or disease, but safety issues have hindered their clinical application. Employing nano-sized extracellular vesicles (EVs) derived from hiPSC-NSCs appears to be a safer alternative because they likely have similar neuroreparative properties as NSCs and are amenable for non-invasive administration as an autologous or allogeneic off-the-shelf product. However, reliable methods for isolation, characterization and testing the biological properties of EVs are critically needed for translation. We investigated signatures of miRNAs and proteins and the biological activity of EVs, isolated from hiPSC-NSCs through a combination of anion-exchange chromatography (AEC) and size-exclusion chromatography (SEC). AEC and SEC facilitated the isolation of EVs with intact ultrastructure and expressing CD9, CD63, CD81, ALIX and TSG 101. Small RNA sequencing, proteomic analysis, pathway analysis and validation of select miRNAs and proteins revealed that EVs were enriched with miRNAs and proteins involved in neuroprotective, anti-apoptotic, antioxidant, anti-inflammatory, blood-brain barrier repairing, neurogenic and Aβ reducing activities. Besides, EVs comprised miRNAs and/or proteins capable of promoting synaptogenesis, synaptic plasticity and better cognitive function. Investigations using an in vitro macrophage assay and a mouse model of status epilepticus confirmed the anti-inflammatory activity of EVs. Furthermore, the intranasal administration of EVs resulted in the incorporation of EVs by neurons, microglia and astrocytes in virtually all adult rat and mouse brain regions, and enhancement of hippocampal neurogenesis. Thus, biologically active EVs containing miRNAs and proteins relevant to brain repair could be isolated from hiPSC-NSC cultures, making them a suitable biologic for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Daniel Leite Góes Gitaí
- Department of Cellular and Molecular Biology, Institute of Biological Sciences and Health, Federal University of Alagoas, Brazil
| | - Marisa R Pinson
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Geetha Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Gabriele Zanirati
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Smrithi Kumar
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA
| |
Collapse
|
24
|
Urban C, Welsch H, Heine K, Wüst S, Haas DA, Dächert C, Pandey A, Pichlmair A, Binder M. Persistent Innate Immune Stimulation Results in IRF3-Mediated but Caspase-Independent Cytostasis. Viruses 2020; 12:v12060635. [PMID: 32545331 PMCID: PMC7354422 DOI: 10.3390/v12060635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 01/19/2023] Open
Abstract
Persistent virus infection continuously produces non-self nucleic acids that activate cell-intrinsic immune responses. However, the antiviral defense evolved as a transient, acute phase response and the effects of persistently ongoing stimulation onto cellular homeostasis are not well understood. To study the consequences of long-term innate immune activation, we expressed the NS5B polymerase of Hepatitis C virus (HCV), which in absence of viral genomes continuously produces immune-stimulatory RNAs. Surprisingly, within 3 weeks, NS5B expression declined and the innate immune response ceased. Proteomics and functional analyses indicated a reduced proliferation of those cells most strongly stimulated, which was independent of interferon signaling but required mitochondrial antiviral signaling protein (MAVS) and interferon regulatory factor 3 (IRF3). Depletion of MAVS or IRF3, or overexpression of the MAVS-inactivating HCV NS3/4A protease not only blocked interferon responses but also restored cell growth in NS5B expressing cells. However, pan-caspase inhibition could not rescue the NS5B-induced cytostasis. Our results underline an active counter selection of cells with prolonged innate immune activation, which likely constitutes a cellular strategy to prevent persistent virus infections.
Collapse
Affiliation(s)
- Christian Urban
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.U.); (D.A.H.)
| | - Hendrik Welsch
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Katharina Heine
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
| | - Sandra Wüst
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
| | - Darya A. Haas
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.U.); (D.A.H.)
| | - Christopher Dächert
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
- Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - Aparna Pandey
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
| | - Andreas Pichlmair
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany; (C.U.); (D.A.H.)
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
- Correspondence: (A.P.); (M.B.)
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.W.); (K.H.); (S.W.); (C.D.); (A.P.)
- Correspondence: (A.P.); (M.B.)
| |
Collapse
|