1
|
Shastak Y, Pelletier W. Exploring the role of riboflavin in swine well-being: a literature review. Porcine Health Manag 2024; 10:46. [PMID: 39482748 PMCID: PMC11526614 DOI: 10.1186/s40813-024-00399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Riboflavin (vitamin B2) is an essential B-vitamin crucial for the metabolism, development, and overall well-being of porcine species. As pig production intensifies, understanding the micronutrient needs of swine, particularly riboflavin, becomes increasingly vital. Riboflavin acts as a precursor for coenzymes involved in key redox reactions essential for energy production, growth, and immune regulation. Ariboflavinosis can disrupt metabolic functions, leading to impaired growth, reproductive issues, decreased feed efficiency, compromised immune function, ocular problems, and liver dysfunction. To ensure optimal growth and health, pig diets are consistently supplemented with riboflavin-enriched supplements. This review explores the diverse functions of riboflavin in swine metabolism, focusing on biochemical basics, metabolic pathways, riboflavin uptake and distribution, consequences of deficiency, and benefits of adequate intake. It emphasizes the need for optimized riboflavin supplementation strategies tailored to different production stages and environmental conditions. According to recommendations from four major breeding companies, the dietary riboflavin levels for swine are advised to range between 7.5 and 15 mg/kg for piglets, 3.5 to 8.0 mg/kg for finishing gilts and barrows, 4 to 10 mg/kg for gestating sows, and 5 to 10 mg/kg for lactating sows. Advances in precision nutrition, microbial production of riboflavin, and the development of functional feed additives are potential innovations to enhance swine health, growth performance, and sustainability. Comprehensive studies on the long-term effects of subclinical riboflavin deficiency and the broader health and welfare implications of supplementation are also needed. Addressing knowledge gaps and embracing future trends and innovations will be key to optimizing riboflavin supplementation and advancing the swine industry.
Collapse
Affiliation(s)
- Yauheni Shastak
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany.
| | - Wolf Pelletier
- BASF SE, Nutrition & Health Division, 67063, Ludwigshafen am Rhein, Germany
| |
Collapse
|
2
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
3
|
Kearns R. The Kynurenine Pathway in Gut Permeability and Inflammation. Inflammation 2024:10.1007/s10753-024-02135-x. [PMID: 39256304 DOI: 10.1007/s10753-024-02135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
The gut-brain axis (GBA) is a crucial communication network linking the gastrointestinal (GI) tract and the central nervous system (CNS). The gut microbiota significantly influences metabolic, immune, and neural functions by generating a diverse array of bioactive compounds that modulate brain function and maintain homeostasis. A pivotal mechanism in this communication is the kynurenine pathway, which metabolises tryptophan into various derivatives, including neuroactive and neurotoxic compounds. Alterations in gut microbiota composition can increase gut permeability, triggering inflammation and neuroinflammation, and contributing to neuropsychiatric disorders. This review elucidates the mechanisms by which changes in gut permeability may lead to systemic inflammation and neuroinflammation, with a focus on the kynurenine pathway. We explore how probiotics can modulate the kynurenine pathway and reduce neuroinflammation, highlighting their potential as therapeutic interventions for neuropsychiatric disorders. The review integrates experimental data, discusses the balance between neurotoxic and neuroprotective kynurenine metabolites, and examines the role of probiotics in regulating inflammation, cognitive development, and gut-brain axis functions. The insights provided aim to guide future research and therapeutic strategies for mitigating GI complaints and their neurological consequences.
Collapse
Affiliation(s)
- Rowan Kearns
- Ulster University, Life and Health Sciences, Newry, Northern Ireland, United Kingdom.
| |
Collapse
|
4
|
Chen Y, Jiang B, Qu C, Jiang C, Zhang C, Wang Y, Chen F, Sun X, Su L, Luo Y. Genetically predicted metabolites mediate the causal associations between autoimmune thyroiditis and immune cells. Front Endocrinol (Lausanne) 2024; 15:1424957. [PMID: 39045270 PMCID: PMC11263034 DOI: 10.3389/fendo.2024.1424957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction We aimed to comprehensively investigate the causal relationship between 731 immune cell traits and autoimmune thyroiditis (AIT) and to identify and quantify the role of 1400 metabolic traits as potential mediators in between. Methods Using summary-level data from genome-wide association studies (GWAS) we performed a two-sample bidirectional Mendelian randomization (MR) analysis of genetically predicted AIT and 731 immune cell traits. Furthermore, we used a two-step MR analysis to quantify the proportion of the total effects (that the immune cells exerted on the risk of AIT) mediated by potential metabolites. Results We identified 24 immune cell traits (with odds ratio (OR) ranging from 1.3166 6 to 0.6323) and 10 metabolic traits (with OR ranging from 1.7954 to 0.6158) to be causally associated with AIT, respectively. Five immune cell traits (including CD38 on IgD+ CD24-, CD28 on CD28+ CD45RA+ CD8br, HLA DR+ CD4+ AC, TD CD4+ %CD4+, and CD8 on EM CD8br) were found to be associated with the risk of AIT, which were partially mediated by metabolites (including glycolithocholate sulfate, 5alpha-androstan-3alpha,17beta-diol disulfate, arachidonoylcholine, X-15486, and kynurenine). The proportion of genetically predicted AIT mediated by the identified metabolites could range from 5.58% to 17.7%. Discussion Our study identified causal associations between AIT and immune cells which were partially mediated by metabolites, thus providing guidance for future clinical and basic research.
Collapse
Affiliation(s)
- Yongzhao Chen
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Cheng Qu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chaoyu Jiang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Chen Zhang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanxue Wang
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fei Chen
- General Surgery Center, Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xitai Sun
- Division of Pancreas and Metabolism Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Su
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuqian Luo
- Clinical Medicine Research Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
5
|
Gusdon AM, Savarraj JPJ, Feng D, Starkman A, Li G, Bodanapally U, Zimmerman W, Ryan AS, Choi HA, Badjatia N. Identification of metabolites associated with preserved muscle volume after aneurysmal subarachnoid hemorrhage due to high protein supplementation and neuromuscular electrical stimulation. Sci Rep 2024; 14:15071. [PMID: 38956192 PMCID: PMC11219968 DOI: 10.1038/s41598-024-64666-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve outcomes after aneurysmal subarachnoid hemorrhage We sought to identify specific metabolites mediating these effects. Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N = 12) or HPRO + NMES (N = 12) and at 7 days. Untargeted metabolomics were performed for each plasma sample. Sparse partial least squared discriminant analysis identified metabolites differentiating each group. Correlation coefficients were calculated between each metabolite and total protein per day and muscle volume. Multivariable models determined associations between metabolites and muscle volume. Unique metabolites (18) were identified differentiating SOC from HPRO + NMES. Of these, 9 had significant positive correlations with protein intake. In multivariable models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95% CI 1.01, 1.16)] and quadricep [OR 1.08 (95% CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95% CI 1.01, 1.09)] and quadricep [OR 1.04 (95% CI 1.00, 1.07)] muscle volume. N-acetylserine and β-hydroxyisovaleroylcarnitine were associated with preserved temporalis or quadricep volume. Metabolites defining HPRO + NMES had strong correlations with protein intake and were associated with preserved muscle volume.
Collapse
Affiliation(s)
- Aaron M Gusdon
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Jude P J Savarraj
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Diana Feng
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Adam Starkman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guoyan Li
- Division of Gerontology, Geriatric, and Palliative Medicine, Department of Medicine, Geriatric Research, Education, and Clinical Center (GRECC), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Uttam Bodanapally
- Department of Radiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William Zimmerman
- Program in Trauma, Shock Trauma Neurocritical Care and Department of Neurology, University of Maryland School of Medicine, 22 S. Greene Street, G7K19, Baltimore, MD, 21201, USA
| | - Alice S Ryan
- Division of Gerontology, Geriatric, and Palliative Medicine, Department of Medicine, Geriatric Research, Education, and Clinical Center (GRECC), University of Maryland School of Medicine, Baltimore, MD, USA
| | - Huimahn A Choi
- Division of Neurocritical Care, Department of Neurosurgery, McGovern School of Medicine, University of Texas Health Science Center, Houston, TX, USA
| | - Neeraj Badjatia
- Program in Trauma, Shock Trauma Neurocritical Care and Department of Neurology, University of Maryland School of Medicine, 22 S. Greene Street, G7K19, Baltimore, MD, 21201, USA.
| |
Collapse
|
6
|
Anlar GG, Anwardeen N, Al Ashmar S, Pedersen S, Elrayess MA, Zeidan A. Metabolomics Profiling of Stages of Coronary Artery Disease Progression. Metabolites 2024; 14:292. [PMID: 38921428 PMCID: PMC11205943 DOI: 10.3390/metabo14060292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
Coronary artery disease (CAD) and atherosclerosis pose significant global health challenges, with intricate molecular changes influencing disease progression. Hypercholesterolemia (HC), hypertension (HT), and diabetes are key contributors to CAD development. Metabolomics, with its comprehensive analysis of metabolites, offers a unique perspective on cardiovascular diseases. This study leveraged metabolomics profiling to investigate the progression of CAD, focusing on the interplay of hypercholesterolemia, hypertension, and diabetes. We performed a metabolomic analysis on 221 participants from four different groups: (I) healthy individuals, (II) individuals with hypercholesterolemia (HC), (III) individuals with both HC and hypertension (HT) or diabetes, and (IV) patients with self-reported coronary artery disease (CAD). Utilizing data from the Qatar Biobank, we combined clinical information, metabolomic profiling, and statistical analyses to identify key metabolites associated with CAD risk. Our data identified distinct metabolite profiles across the study groups, indicating changes in carbohydrate and lipid metabolism linked to CAD risk. Specifically, levels of mannitol/sorbitol, mannose, glucose, and ribitol increased, while pregnenediol sulfate, oleoylcarnitine, and quinolinate decreased with higher CAD risk. These findings suggest a significant role of sugar, steroid, and fatty acid metabolism in CAD progression and point to the need for further research on the correlation between quinolinate levels and CAD risk, potentially guiding targeted treatments for atherosclerosis. This study provides novel insights into the metabolomic changes associated with CAD progression, emphasizing the potential of metabolites as predictive biomarkers.
Collapse
Affiliation(s)
- Gulsen Guliz Anlar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Najeha Anwardeen
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Sarah Al Ashmar
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Shona Pedersen
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| | - Mohamed A. Elrayess
- Biomedical Research Center (BRC), QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (N.A.); (M.A.E.)
| | - Asad Zeidan
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (G.G.A.); (S.A.A.); (S.P.)
| |
Collapse
|
7
|
Fongsaran C, Dineley KT, Paessler S, Cisneros IE. VEEV TC-83 Triggers Dysregulation of the Tryptophan-Kynurenine Pathway in the Central Nervous System That Correlates with Cognitive Impairment in Tg2576 Mice. Pathogens 2024; 13:397. [PMID: 38787249 PMCID: PMC11124172 DOI: 10.3390/pathogens13050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Neurodegenerative diseases are chronic conditions affecting the central nervous system (CNS). Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid beta in the limbic and cortical brain regions. AD is presumed to result from genetic abnormalities or environmental factors, including viral infections, which may have deleterious, long-term effects. In this study, we demonstrate that the Venezuelan equine encephalitis virus (VEEV) commonly induces neurodegeneration and long-term neurological or cognitive sequelae. Notably, the effects of VEEV infection can persistently influence gene expression in the mouse brain, suggesting a potential link between the observed neurodegenerative outcomes and long-term alterations in gene expression. Additionally, we show that alphavirus encephalitis exacerbates the neuropathological profile of AD through crosstalk between inflammatory and kynurenine pathways, generating a range of metabolites with potent effects. Using a mouse model for β-amyloidosis, Tg2576 mice, we found that cognitive deficits and brain pathology were more severe in Tg2576 mice infected with VEEV TC-83 compared to mock-infected controls. Thus, during immune activation, the kynurenine pathway plays a more active role in the VEEV TC-83-infected cells, leading to increases in the abundance of transcripts related to the kynurenine pathway of tryptophan metabolism. This pathway generates several metabolites with potent effects on neurotransmitter systems as well as on inflammation, as observed in VEEV TC-83-infected animals.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (C.F.); (S.P.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Kelly T. Dineley
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (C.F.); (S.P.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Irma E. Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (C.F.); (S.P.)
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Sandvig HV, Aam S, Alme KN, Lydersen S, Magne Ueland P, Ulvik A, Wethal T, Saltvedt I, Knapskog AB. Neopterin, kynurenine metabolites, and indexes related to vitamin B6 are associated with post-stroke cognitive impairment: The Nor-COAST study. Brain Behav Immun 2024; 118:167-177. [PMID: 38428649 DOI: 10.1016/j.bbi.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/24/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND AND AIMS We have previously shown that systemic inflammation was associated with post-stroke cognitive impairment (PSCI). Because neopterin, kynurenine pathway (KP) metabolites, and B6 vitamers are linked to inflammation, in our study we investigated whether those biomarkers were associated with PSCI. MATERIAL AND METHODS The Norwegian Cognitive Impairment After Stroke study is a prospective multicenter cohort study of patients with acute stroke recruited from May 2015 through March 2017. Plasma samples of 422 participants (59 % male) with ischemic stroke from the index hospital stay and 3 months post-stroke were available for analyses of neopterin, KP metabolites, and B6 vitamers using liquid chromatography-tandem mass spectrometry. Mixed linear regression analyses adjusted for age, sex, and creatinine, were used to assess whether there were associations between those biomarkers and cognitive outcomes, measured by the Montreal Cognitive Assessment scale (MoCA) at 3-, 18-, and 36-month follow-up. RESULTS Participants had a mean (SD) age of 72 (12) years, with a mean (SD) National Institutes of HealthStroke Scale score of 2.7 (3.6) at Day 1. Higher baseline values of quinolinic acid, PAr (i.e., an inflammatory marker based on vitamin B6 metabolites), and HKr (i.e., a marker of functional vitamin B6 status based on selected KP metabolites) were associated with lower MoCA score at 3, 18, and 36 months post-stroke (p < 0.01). Higher baseline concentrations of neopterin and 3-hydroxykynurenine were associated with lower MoCA scores at 18 and 36 months, and higher concentrations of xanthurenic acid were associated with higher MoCA score at 36 months (p < 0.01). At 3 months post-stroke, higher concentrations of neopterin and lower values of pyridoxal 5́-phosphate were associated with lower MoCA scores at 18- and 36-month follow-up, while lower concentrations of picolinic acid were associated with a lower MoCA score at 36 months (p < 0.01). CONCLUSION Biomarkers and metabolites of systemic inflammation, including biomarkers of cellular immune activation, indexes of vitamin B6 homeostasis, and several neuroactive metabolites of the KP pathway, were associated with PSCI. TRIAL REGISTRATION ClinicalTrials.gov: NCT02650531.
Collapse
Affiliation(s)
- Heidi Vihovde Sandvig
- Department of Medicine, Kristiansund Hospital, Møre og Romsdal Hospital Trust, Kristiansund, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Stina Aam
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Katinka N Alme
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Stian Lydersen
- Department of Mental Health, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5021 Bergen, Norway
| | - Torgeir Wethal
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Stroke, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ingvild Saltvedt
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway; Department of Geriatric Medicine, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, Oslo University Hospital, Ullevaal, Oslo, Norway
| |
Collapse
|
9
|
Basson C, Serem JC, Bipath P, Hlophe YN. L-kynurenine and quinolinic acid inhibited markers of cell survival in B16 F10 melanoma cells in vitro. Cell Biol Int 2024. [PMID: 38570921 DOI: 10.1002/cbin.12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Melanoma is an aggressive malignancy and remains a major cause of skin cancer mortality, highlighting the need for new treatment strategies. Recent findings revealed that L-kynurenine and quinolinic acid induce cytotoxicity and morphological changes in B16 F10 melanoma cells in vitro. This paper highlights the effects of L-kynurenine and quinolinic acid at previously determined half-maximal inhibitory concentrations on cell cycle progression, cell death and extracellular signal-regulated protein kinase inhibition. Melanoma, B16 F10 and murine macrophages, RAW 264.7 cells were used in this study, as both cell lines express all the enzymes associated with the kynurenine pathway. Post exposure to the compounds at half-maximal inhibitory concentrations, transmission electron microscopy was used to assess intracellular morphological changes. Flow cytometry was used to analyse cell cycle progression and quantify apoptosis via the dual staining of Annexin V and propidium iodide and cell survival via extracellular signal-regulated protein kinase. L-kynurenine and quinolinic acid at half-maximal inhibitory concentrations induced intracellular morphological changes representative of cell death. Flow cytometry revealed alterations in cell cycle distribution, increased apoptosis and significantly inhibition of cell survival. L-kynurenine and quinolinic acid are exogenous kynurenine compounds which inhibited cell survival through extracellular signal-regulated protein kinase inhibition, induced cell cycle alterations and induced apoptosis in B16 F10 melanoma cells.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
10
|
Lonati C, Berezhnoy G, Lawler N, Masuda R, Kulkarni A, Sala S, Nitschke P, Zizmare L, Bucci D, Cannet C, Schäfer H, Singh Y, Gray N, Lodge S, Nicholson J, Merle U, Wist J, Trautwein C. Urinary phenotyping of SARS-CoV-2 infection connects clinical diagnostics with metabolomics and uncovers impaired NAD + pathway and SIRT1 activation. Clin Chem Lab Med 2024; 62:770-788. [PMID: 37955280 DOI: 10.1515/cclm-2023-1017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/22/2023] [Indexed: 11/14/2023]
Abstract
OBJECTIVES The stratification of individuals suffering from acute and post-acute SARS-CoV-2 infection remains a critical challenge. Notably, biomarkers able to specifically monitor viral progression, providing details about patient clinical status, are still not available. Herein, quantitative metabolomics is progressively recognized as a useful tool to describe the consequences of virus-host interactions considering also clinical metadata. METHODS The present study characterized the urinary metabolic profile of 243 infected individuals by quantitative nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography mass spectrometry (LC-MS). Results were compared with a historical cohort of noninfected subjects. Moreover, we assessed the concentration of recently identified antiviral nucleosides and their association with other metabolites and clinical data. RESULTS Urinary metabolomics can stratify patients into classes of disease severity, with a discrimination ability comparable to that of clinical biomarkers. Kynurenines showed the highest fold change in clinically-deteriorated patients and higher-risk subjects. Unique metabolite clusters were also generated based on age, sex, and body mass index (BMI). Changes in the concentration of antiviral nucleosides were associated with either other metabolites or clinical variables. Increased kynurenines and reduced trigonelline excretion indicated a disrupted nicotinamide adenine nucleotide (NAD+) and sirtuin 1 (SIRT1) pathway. CONCLUSIONS Our results confirm the potential of urinary metabolomics for noninvasive diagnostic/prognostic screening and show that the antiviral nucleosides could represent novel biomarkers linking viral load, immune response, and metabolism. Moreover, we established for the first time a casual link between kynurenine accumulation and deranged NAD+/SIRT1, offering a novel mechanism through which SARS-CoV-2 manipulates host physiology.
Collapse
Affiliation(s)
- Caterina Lonati
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Nathan Lawler
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Reika Masuda
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Aditi Kulkarni
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Samuele Sala
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Philipp Nitschke
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Laimdota Zizmare
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Daniele Bucci
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Claire Cannet
- Bruker BioSpin GmbH, AIC Division, Ettlingen, Germany
| | | | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, University Hospital Tübingen, Tübingen, Germany
| | - Nicola Gray
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Samantha Lodge
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Jeremy Nicholson
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Julien Wist
- Australian National Phenome Centre and Computational and Systems Medicine, Health Futures Institute, Murdoch University Perth, Australia
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Verma K, Amitabh, Prasad DN, Reddy MPK, Kohli E. Kynurenines Dynamics in the Periphery and Central Nervous System Steers Behavioral Deficits in Rats under Hypobaric Hypoxia. ACS Chem Neurosci 2024; 15:1084-1095. [PMID: 38462729 DOI: 10.1021/acschemneuro.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
People travel to high-altitude regions as tourists, workers, and military personnel on duty. Despite the consistent 21% oxygen content in the atmosphere, ascending to higher altitudes results in a decrease in the partial pressure of oxygen, inducing a state known as hypobaric hypoxia (HH). HH is an environmental stress that is responsible for neuroinflammation and behavioral deficits (anxiety, depression, mood disturbance, etc.), but little is known about its metabolic pathways. The kynurenine pathway (KP) is a promising candidate to uncover the mysteries of HH stress, as it is an important regulator of the immune system and is associated with behavioral deficits. To investigate the role of KP under HH, the levels of KP metabolites in the serum, cerebrospinal fluid (CSF), and brain tissue (prefrontal cortex-PFC, neocortex, and hippocampus) of male Sprague-Dawley rats exposed to HH at 7620 m for 1, 3, and 7 days were estimated utilizing high-performance liquid chromatography (HPLC). The behavioral analogs for anxiety-like and depression-like behavior were assessed using the open field test and forced swim test, respectively. Upon HH exposure, crosstalk between the periphery and central nervous system and KP metabolite region-dependent differential expression in the brain were observed. KP metabolites showed a positive correlation with behavioral parameters. The results of our study are indicative that KP can be proposed as the etiology of behavioral deficits, and KP metabolite levels in serum or CSF can be used as plausible markers for anxiety-like and depression-like behaviors under HH stress with a scope of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kalyani Verma
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - Amitabh
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - Dipti N Prasad
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| | - M Prasanna Kumar Reddy
- Department of Applied Physiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur, Delhi 110054, India
| | - Ekta Kohli
- Department of Neurobiology, Defence Institute of Physiology and Allied Sciences, DRDO, Timarpur,Delhi 110054, India
| |
Collapse
|
12
|
Gliozzi M, Coppoletta AR, Cardamone A, Musolino V, Carresi C, Nucera S, Ruga S, Scarano F, Bosco F, Guarnieri L, Macrì R, Mollace R, Belzung C, Mollace V. The dangerous "West Coast Swing" by hyperglycaemia and chronic stress in the mouse hippocampus: Role of kynurenine catabolism. Pharmacol Res 2024; 201:107087. [PMID: 38301816 DOI: 10.1016/j.phrs.2024.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Growing epidemiological studies highlight a bi-directional relationship between depressive symptoms and diabetes mellitus. However, the detrimental impact of their co-existence on mental health suggests the need to treat this comorbidity as a separate entity rather than the two different pathologies. Herein, we characterized the peculiar mechanisms activated in mouse hippocampus from the concurrent development of hyperglycaemia, characterizing the different diabetes subtypes, and chronic stress, recognized as a possible factor predisposing to major depression. Our work demonstrates that kynurenine overproduction, leading to apoptosis in the hippocampus, is triggered in a different way depending on hyperglycaemia or chronic stress. Indeed, in the former, kynurenine appears produced by infiltered macrophages whereas, in the latter, peripheral kynurenine preferentially promotes resident microglia activation. In this scenario, QA, derived from kynurenine catabolism, appears a key mediator causing glutamatergic synapse dysfunction and apoptosis, thus contributing to brain atrophy. We demonstrated that the coexistence of hyperglycaemia and chronic stress worsened hippocampal damage through alternative mechanisms, such as GLUT-4 and BDNF down-expression, denoting mitochondrial dysfunction and apoptosis on one hand and evoking the compromission of neurogenesis on the other. Overall, in the degeneration of neurovascular unit, hyperglycaemia and chronic stress interacted each other as the partners of a "West Coast Swing" in which the leading role can be assumed alternatively by each partner of the dance. The comprehension of these mechanisms can open novel perspectives in the management of diabetic/depressed patients, but also in the understanding the pathogenesis of other neurodegenerative disease characterized by the compromission of hippocampal function.
Collapse
Affiliation(s)
- Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
| | - Anna Rita Coppoletta
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Cardamone
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health IRC-FSH, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy.
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Saverio Nucera
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Stefano Ruga
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Bosco
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Lorenza Guarnieri
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| | - Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Catherine Belzung
- UMR 1253, iBrain, Inserm, Université de Tours, CEDEX 1, 37032 Tours, France
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
14
|
Gusdon AM, Savarraj JP, Feng D, Starkman A, Li G, Bodanapally U, Zimmerman WD, Ryan AS, Choi HA, Badjatia N. High-Protein Supplementation and Neuromuscular Electric Stimulation after Aneurysmal Subarachnoid Hemorrhage Increases Systemic Amino Acid and Oxidative Metabolism: A Plasma Metabolomics Approach. RESEARCH SQUARE 2023:rs.3.rs-3600439. [PMID: 38014126 PMCID: PMC10680941 DOI: 10.21203/rs.3.rs-3600439/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background The INSPIRE randomized clinical trial demonstrated that a high protein diet (HPRO) combined with neuromuscular electrical stimulation (NMES) attenuates muscle atrophy and may improve functional outcomes after aSAH. Using an untargeted metabolomics approach, we sought to identify specific metabolites mediating these effects. Methods Blood samples were collected from subjects on admission prior to randomization to either standard of care (SOC; N=12) or HPRO+NMES (N=12) and at 7 days as part of the INSPIRE protocol. Untargeted metabolomics were performed for each plasma sample. Paired fold changes were calculated for each metabolite among subjects in the HPRO+NMES group at baseline and 7 days after intervention. Changes in metabolites from baseline to 7 days were compared for the HPRO+NMES and SOC groups. Sparse partial least squared discriminant analysis (sPLS-DA) identified metabolites discriminating each group. Pearson's correlation coefficients were calculated between each metabolite and total protein per day, nitrogen balance, and muscle volume Multivariable models were developed to determine associations between each metabolite and muscle volume. Results A total of 18 unique metabolites were identified including pre and post treatment and differentiating SOC vs HPRO+NMES. Of these, 9 had significant positive correlations with protein intake: N-acetylserine (ρ=0.61, P =1.56x10 -3 ), N-acetylleucine (ρ=0.58, P =2.97x10 -3 ), β-hydroxyisovaleroylcarnitine (ρ=0.53, P =8.35x10 -3 ), tiglyl carnitine (ρ=0.48, P =0.0168), N-acetylisoleucine (ρ=0.48, P =0.0183), N-acetylthreonine (ρ=0.47, P =0.0218), N-acetylkynurenine (ρ=0.45, P =0.0263), N-acetylvaline (ρ=0.44, P =0.0306), and urea (ρ=0.43, P =0.0381). In multivariable regression models, N-acetylleucine was significantly associated with preserved temporalis [OR 1.08 (95%CI 1.01, 1.16)] and quadricep [OR 1.08 (95%CI 1.02, 1.15)] muscle volume. Quinolinate was also significantly associated with preserved temporalis [OR 1.05 (95%CI 1.01, 1.09)] and quadricep [OR 1.04 (95%CI 1.00, 1.07)] muscle volume. N-acetylserine, N-acetylcitrulline, and b-hydroxyisovaleroylcarnitine were also associated with preserved temporalis or quadricep volume. Conclusions Metabolites defining the HPRO+NMES intervention mainly consisted of amino acid derivatives. These metabolites had strong correlations with protein intake and were associated with preserved muscle volume.
Collapse
|
15
|
Parveen S, Shen J, Lun S, Zhao L, Alt J, Koleske B, Leone RD, Rais R, Powell JD, Murphy JR, Slusher BS, Bishai WR. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. Nat Commun 2023; 14:7427. [PMID: 37973991 PMCID: PMC10654700 DOI: 10.1038/s41467-023-43304-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomic analysis of lungs from JHU083-treated Mtb-infected mice reveals citrulline accumulation, suggesting elevated nitric oxide (NO) synthesis, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. JHU083-treated macrophages also produce more NO potentiating their antibacterial activity. When tested in an immunocompromised mouse model of Mtb infection, JHU083 loses its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
Collapse
Affiliation(s)
- Sadiya Parveen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jessica Shen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jesse Alt
- Johns Hopkins University, Baltimore, MD, USA
| | - Benjamin Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Calico, South San Francisco, CA, USA
| | - John R Murphy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins University, Baltimore, MD, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Wang B, Yang W, Tong Y, Sun M, Quan S, Zhu J, Zhang Q, Qin Z, Ni Y, Zhao Y, Wang K, Zhang C, Zhang Y, Wang Z, Song Z, Liu H, Fang H, Kong Z, Ding C, Guo W. Integrative proteomics and metabolomics study reveal enhanced immune responses by COVID-19 vaccine booster shot against Omicron SARS-CoV-2 infection. J Med Virol 2023; 95:e29219. [PMID: 37966997 DOI: 10.1002/jmv.29219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/17/2023]
Abstract
Since its outbreak in late 2021, the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been widely reported to be able to evade neutralizing antibodies, becoming more transmissible while causing milder symptoms than previous SARS-CoV-2 strains. Understanding the underlying molecular changes of Omicron SARS-CoV-2 infection and corresponding host responses are important to the control of Omicron COVID-19 pandemic. In this study, we report an integrative proteomics and metabolomics investigation of serum samples from 80 COVID-19 patients infected with Omicron SARS-CoV-2, as well as 160 control serum samples from 80 healthy individuals and 80 patients who had flu-like symptoms but were negative for SARS-CoV-2 infection. The multiomics results indicated that Omicron SARS-CoV-2 infection caused significant changes to host serum proteome and metabolome comparing to the healthy controls and patients who had flu-like symptoms without COVID-19. Protein and metabolite changes also pointed to liver dysfunctions and potential damage to other host organs by Omicron SARS-CoV-2 infection. The Omicron COVID-19 patients could be roughly divided into two subgroups based on their proteome differences. Interestingly, the subgroup who mostly had received full vaccination with booster shot had fewer coughing symptom, changed sphingomyelin lipid metabolism, and stronger immune responses including higher numbers of lymphocytes, monocytes, neutrophils, and upregulated proteins related to CD4+ T cells, CD8+ effector memory T cells (Tem), and conventional dendritic cells, revealing beneficial effects of full COVID-19 vaccination against Omicron SARS-CoV-2 infection through molecular changes.
Collapse
Affiliation(s)
- Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yexin Tong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Mingjun Sun
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Sheng Quan
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianwen Zhang
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yanxia Ni
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying Zhao
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kouqiong Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Yichi Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenxin Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenju Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
- Department of Emergency Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| | - Huafen Liu
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Hao Fang
- Department of Anesthesiology, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziqing Kong
- Calibra Lab at DIAN Diagnostics, Hangzhou, Zhejiang, China
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
- Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Human Phenome Institute, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Basson C, Serem JC, Hlophe YN, Bipath P. An in vitro investigation of l-kynurenine, quinolinic acid, and kynurenic acid on B16 F10 melanoma cell cytotoxicity and morphology. Cell Biochem Funct 2023; 41:912-922. [PMID: 37661337 DOI: 10.1002/cbf.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The metastatic behavior of melanoma has accentuated the need for specific therapy targets. Compounds, namely l-kynurenine ( l-kyn), quinolinic acid (Quin), and kynurenic acid (KA) previously displayed antiproliferative and cytotoxic effects in vitro against cancer cells. Despite the growing interest in these compounds there are limited studies examining the in vitro effects on melanoma. In B16 F10 melanoma cells, RAW 264.7 macrophage cells, and HaCat keratinocyte cells, postexposure to the compounds, crystal violet staining was used to determine the half-maximal inhibitory concentration (IC50 ), whereas polarization-optical transmitted light differential interference contrast and light microscopy after hematoxylin and eosin (H&E) staining was used to assess morphological changes. l-kyn, Quin, and KA-induced cytotoxicity in all cell lines, with l-kyn being the most cytotoxic compound. l-kyn and KA at IC50 -induced morphological changes in B16 F10, RAW 264.7, and HaCat cell lines, whereas Quin had effects on B16 F10 and RAW 264.7 cells but did not affect HaCat cells. l-kyn, Quin, and KA each display different levels of cytotoxicity, which were cell line specific. l-kyn was shown to be the most potent compound against all cell lines and may offer future treatment strategies when combined with other viable treatments against melanoma.
Collapse
Affiliation(s)
- Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - June Cheptoo Serem
- Department of Anatomy, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Yvette Nkondo Hlophe
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Priyesh Bipath
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
18
|
Badawy AB. The kynurenine pathway of tryptophan metabolism: a neglected therapeutic target of COVID-19 pathophysiology and immunotherapy. Biosci Rep 2023; 43:BSR20230595. [PMID: 37486805 PMCID: PMC10407158 DOI: 10.1042/bsr20230595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
SARS-CoV-2 (COVID-19) exerts profound changes in the kynurenine (Kyn) pathway (KP) of tryptophan (Trp) metabolism that may underpin its pathophysiology. The KP is the main source of the vital cellular effector NAD+ and intermediate metabolites that modulate immune and neuronal functions. Trp metabolism is the top pathway influenced by COVID-19. Sixteen studies established virus-induced activation of the KP mediated mainly by induction of indoleamine 2,3-dioxygenase (IDO1) in most affected tissues and of IDO2 in lung by the increased release of proinflammatory cytokines but could additionally involve increased flux of plasma free Trp and induction of Trp 2,3-dioxygenase (TDO) by cortisol. The major Kyn metabolite targeted by COVID-19 is kynurenic acid (KA), the Kyn metabolite with the greatest affinity for the aryl hydrocarbon receptor (AhR), which is also activated by COVID-19. AhR activation initiates two important series of events: a vicious circle involving IDO1 induction, KA accumulation and further AhR activation, and activation of poly (ADP-ribose) polymerase (PARP) leading to NAD+ depletion and cell death. The virus further deprives the host of NAD+ by inhibiting its main biosynthetic pathway from quinolinic acid, while simultaneously acquiring NAD+ by promoting its synthesis from nicotinamide in the salvage pathway. Additionally, the protective effects of sirtuin 1 are minimised by the PARP activation. KP dysfunction may also underpin the mood and neurological disorders acutely and during 'long COVID'. More studies of potential effects of vaccination therapy on the KP are required and exploration of therapeutic strategies involving modulation of the KP changes are proposed.
Collapse
Affiliation(s)
- Abdulla Abu-Bakr Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
19
|
Tang C, Xie AX, Liu EM, Kuo F, Kim M, DiNatale RG, Golkaram M, Chen YB, Gupta S, Motzer RJ, Russo P, Coleman J, Carlo MI, Voss MH, Kotecha RR, Lee CH, Tansey W, Schultz N, Hakimi AA, Reznik E. Immunometabolic coevolution defines unique microenvironmental niches in ccRCC. Cell Metab 2023; 35:1424-1440.e5. [PMID: 37413991 PMCID: PMC10603615 DOI: 10.1016/j.cmet.2023.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/10/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023]
Abstract
Tumor cell phenotypes and anti-tumor immune responses are shaped by local metabolite availability, but intratumoral metabolite heterogeneity (IMH) and its phenotypic consequences remain poorly understood. To study IMH, we profiled tumor/normal regions from clear cell renal cell carcinoma (ccRCC) patients. A common pattern of IMH transcended all patients, characterized by correlated fluctuations in the abundance of metabolites and processes associated with ferroptosis. Analysis of intratumoral metabolite-RNA covariation revealed that the immune composition of the microenvironment, especially the abundance of myeloid cells, drove intratumoral metabolite variation. Motivated by the strength of RNA-metabolite covariation and the clinical significance of RNA biomarkers in ccRCC, we inferred metabolomic profiles from the RNA sequencing data of ccRCC patients enrolled in 7 clinical trials, and we ultimately identifyied metabolite biomarkers associated with response to anti-angiogenic agents. Local metabolic phenotypes, therefore, emerge in tandem with the immune microenvironment, influence ongoing tumor evolution, and are associated with therapeutic sensitivity.
Collapse
Affiliation(s)
- Cerise Tang
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Amy X Xie
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Minsoo Kim
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renzo G DiNatale
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahdi Golkaram
- Illumina, Inc., 5200 Illumina Way, San Diego, CA 92122, USA
| | - Ying-Bei Chen
- Department of Pathology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sounak Gupta
- Department of Pathology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul Russo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Coleman
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Maria I Carlo
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ritesh R Kotecha
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wesley Tansey
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nikolaus Schultz
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Ed Reznik
- Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Benedetti E, Liu EM, Tang C, Kuo F, Buyukozkan M, Park T, Park J, Correa F, Hakimi AA, Intlekofer AM, Krumsiek J, Reznik E. A multimodal atlas of tumour metabolism reveals the architecture of gene-metabolite covariation. Nat Metab 2023; 5:1029-1044. [PMID: 37337120 PMCID: PMC10290959 DOI: 10.1038/s42255-023-00817-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/09/2023] [Indexed: 06/21/2023]
Abstract
Tumour metabolism is controlled by coordinated changes in metabolite abundance and gene expression, but simultaneous quantification of metabolites and transcripts in primary tissue is rare. To overcome this limitation and to study gene-metabolite covariation in cancer, we assemble the Cancer Atlas of Metabolic Profiles of metabolomic and transcriptomic data from 988 tumour and control specimens spanning 11 cancer types in published and newly generated datasets. Meta-analysis of the Cancer Atlas of Metabolic Profiles reveals two classes of gene-metabolite covariation that transcend cancer types. The first corresponds to gene-metabolite pairs engaged in direct enzyme-substrate interactions, identifying putative genes controlling metabolite pool sizes. A second class of gene-metabolite covariation represents a small number of hub metabolites, including quinolinate and nicotinamide adenine dinucleotide, which correlate to many genes specifically expressed in immune cell populations. These results provide evidence that gene-metabolite covariation in cellularly heterogeneous tissue arises, in part, from both mechanistic interactions between genes and metabolites, and from remodelling of the bulk metabolome in specific immune microenvironments.
Collapse
Affiliation(s)
- Elisa Benedetti
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Eric Minwei Liu
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cerise Tang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mustafa Buyukozkan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Tricia Park
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinsung Park
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fabian Correa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Ari Hakimi
- Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew M Intlekofer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA.
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Ed Reznik
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Auyeung A, Wang HC, Aravagiri K, Knezevic NN. Kynurenine Pathway Metabolites as Potential Biomarkers in Chronic Pain. Pharmaceuticals (Basel) 2023; 16:681. [PMID: 37242464 PMCID: PMC10224279 DOI: 10.3390/ph16050681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Chronic pain is a pressing medical and socioeconomic issue worldwide. It is debilitating for individual patients and places a major burden on society in the forms of direct medical costs and lost work productivity. Various biochemical pathways have been explored to explain the pathophysiology of chronic pain in order to identify biomarkers that can potentially serve as both evaluators of and guides for therapeutic effectiveness. The kynurenine pathway has recently been a source of interest due to its suspected role in the development and sustainment of chronic pain conditions. The kynurenine pathway is the primary pathway responsible for the metabolization of tryptophan and generates nicotinamide adenine dinucleotide (NAD+), in addition to the metabolites kynurenine (KYN), kynurenic acid (KA), and quinolinic acid (QA). Dysregulation of this pathway and changes in the ratios of these metabolites have been associated with numerous neurotoxic and inflammatory states, many of which present simultaneously with chronic pain symptoms. While further studies utilizing biomarkers to elucidate the kynurenine pathway's role in chronic pain are needed, the metabolites and receptors involved in its processes nevertheless present researchers with promising sources of novel and personalized disease-modifying treatments.
Collapse
Affiliation(s)
- Andrew Auyeung
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Hank C. Wang
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kannan Aravagiri
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
| | - Nebojsa Nick Knezevic
- Advocate Illinois Masonic Medical Center, Department of Anesthesiology, Chicago, IL 60657, USA; (A.A.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Tezcan D, Onmaz DE, Sivrikaya A, Körez MK, Hakbilen S, Gülcemal S, Yılmaz S. Kynurenine pathway of tryptophan metabolism in patients with familial Mediterranean fever. Mod Rheumatol 2023; 33:398-407. [PMID: 35139221 DOI: 10.1093/mr/roac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Familial Mediterranean fever (FMF) is an autoinflammatory syndrome characterized by recurrent episodes of fever and aseptic polyserositis. Subclinical inflammation generates a hidden threat to the development of FMF complications such as amyloidosis in attack-free intervals. The kynurenine pathway (KP) has been considered an important player in inflammation and immune response. The study was aimed to measure serum levels of KP metabolites in patients with FMF in the attack-free period. METHODS A total of 161 participants were recruited from the rheumatology department in this single-centre, case-control study. Participants meeting the eligibility criteria were divided into healthy controls (n = 80) and FMF (n = 81). The laboratory data were obtained from the electronic registration database. Serum tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid, 3-hydroxykynurenine (3HK), and quinolinic acid (QUIN) concentrations were measured with tandem mass spectrometry. Laboratory findings of FMF patients and healthy controls subjects were compared and evaluated. RESULTS Serum TRP and KYNA levels were significantly decreased in both FMF groups compared to the control group, while the levels of KYN, QUIN, 3HK, the KYN/TRP ratio, and red cell distribution width were higher. CONCLUSION TRP degradation by the KP is increased in patients with FMF. KP metabolites can be useful in demonstrating subclinical inflammation.
Collapse
Affiliation(s)
- Dilek Tezcan
- Department of Internal Medicine, Division of Rheumatology, Gülhane Faculty of Medicine, University of Health Sciences Turkey, Ankara, Turkey
| | - Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Muslu Kazım Körez
- Division of Biostatistics, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Selda Hakbilen
- Division of Rheumatology, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Semral Gülcemal
- Division of Rheumatology, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| | - Sema Yılmaz
- Division of Rheumatology, Selcuk University Faculty of Medicine, Selcuklu, Konya, Turkey
| |
Collapse
|
23
|
Li J, Zhao Y, Mi J, Yi Z, Holyoak GR, Wu R, Wang Z, Zhu Y, Zeng S. Comparative Proteome Analysis of Serum Uncovers Differential Expression of Proteins in Donkeys (Equus Asinus) With Endometritis Caused by Escherichia Coli. J Equine Vet Sci 2023; 122:104221. [PMID: 36623579 DOI: 10.1016/j.jevs.2023.104221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/03/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Endometritis is a common disease in donkeys that causes economic losses to donkey farms and the common cause is bacterial infection. Uterine flush fluid proteomics has been used to study protein biomarkers associated with endometritis in mares. As a convenient diagnostic tool, serum proteomics has not been studied yet in equine species with endometritis. This study is aiming to evaluate the serum proteomics in jennies with and without endometritis and identify potential proteins as biomarker for endometritis diagnosis. Nine donkeys recruited into this study were diagnosed of bacterial (Escherichia coli) endometritis and nine healthy jennies were selected as control. Blood samples of each donkey was collected, and serum was separated from each sample. Peptides samples extracted from the serum were analyzed using nano-ultrahigh-performance liquid chromatography-tandem mass spectrometry in data-independent acquisition mode. Protein identification and quantification were performed followed by differential and functional analysis. Of 579 proteins identified in all jennies, 12 proteins were exclusively identified in jennies with endometritis (group E) including myeloperoxidase and Ras-related protein Rab-1B, which might be associated with bacterial infection. There were 11 differentially expressed proteins detected between the two groups of jennies with 4 downregulated proteins and 7 upregulated proteins in jennies with endometritis. Some upregulated proteins along with the GO and KEGG annotation indicated inflammatory response against uterine infection. Characteristic serum proteins identified in jennies with endometritis were associated with inflammation or bacterial infection. These proteins might be potential biomarkers for endometritis diagnosis in jennies.
Collapse
Affiliation(s)
- Jing Li
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yufei Zhao
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Junpeng Mi
- School of Veterinary Science, University of Sydney, Sydney, Australia
| | - Ziwen Yi
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gibert Reed Holyoak
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Rongzheng Wu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zixuan Wang
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yiping Zhu
- Equine Clinical Diagnostic Center, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
24
|
Scully TW, Jiao W, Mittelstädt G, Parker EJ. Structure, mechanism and inhibition of anthranilate phosphoribosyltransferase. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220039. [PMID: 36633281 PMCID: PMC9835598 DOI: 10.1098/rstb.2022.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anthranilate phosphoribosyltransferase catalyses the second reaction in the biosynthesis of tryptophan from chorismate in microorganisms and plants. The enzyme is homodimeric with the active site located in the hinge region between two domains. A range of structures in complex with the substrates, substrate analogues and inhibitors have been determined, and these have provided insights into the catalytic mechanism of this enzyme. Substrate 5-phospho-d-ribose 1-diphosphate (PRPP) binds to the C-terminal domain and coordinates to Mg2+, in a site completed by two flexible loops. Binding of the second substrate anthranilate is more complex, featuring multiple binding sites along an anthranilate channel. This multi-modal binding is consistent with the substrate inhibition observed at high concentrations of anthranilate. A series of structures predict a dissociative mechanism for the reaction, similar to the reaction mechanisms elucidated for other phosphoribosyltransferases. As this enzyme is essential for some pathogens, efforts have been made to develop inhibitors for this enzyme. To date, the best inhibitors exploit the multiple binding sites for anthranilate. This article is part of the theme issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Thomas W. Scully
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Gerd Mittelstädt
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Emily J. Parker
- Ferrier Research Institute, Victoria University of Wellington, Wellington 6140, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
25
|
Parveen S, Shen J, Lun S, Zhao L, Koleske B, Leone RD, Rais R, Powell JD, Murphy JR, Slusher BS, Bishai WR. Glutamine metabolism inhibition has dual immunomodulatory and antibacterial activities against Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529704. [PMID: 36865287 PMCID: PMC9980128 DOI: 10.1101/2023.02.23.529704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
As one of the most successful human pathogens, Mycobacterium tuberculosis (Mtb) has evolved a diverse array of determinants to subvert host immunity and alter host metabolic patterns. However, the mechanisms of pathogen interference with host metabolism remain poorly understood. Here we show that a novel glutamine metabolism antagonist, JHU083, inhibits Mtb proliferation in vitro and in vivo. JHU083-treated mice exhibit weight gain, improved survival, a 2.5 log lower lung bacillary burden at 35 days post-infection, and reduced lung pathology. JHU083 treatment also initiates earlier T-cell recruitment, increased proinflammatory myeloid cell infiltration, and a reduced frequency of immunosuppressive myeloid cells when compared to uninfected and rifampin-treated controls. Metabolomics analysis of lungs from JHU083-treated Mtb-infected mice revealed reduced glutamine levels, citrulline accumulation suggesting elevated NOS activity, and lowered levels of quinolinic acid which is derived from the immunosuppressive metabolite kynurenine. When tested in an immunocompromised mouse model of Mtb infection, JHU083 lost its therapeutic efficacy suggesting the drug's host-directed effects are likely to be predominant. Collectively, these data reveal that JHU083-mediated glutamine metabolism inhibition results in dual antibacterial and host-directed activity against tuberculosis.
Collapse
Affiliation(s)
- Sadiya Parveen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Jessica Shen
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Liang Zhao
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Koleske
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Robert D. Leone
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan D. Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - John R. Murphy
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
26
|
Lai W, Huang Z, Li S, Li XG, Luo D. Kynurenine pathway metabolites modulated the comorbidity of IBD and depressive symptoms through the immune response. Int Immunopharmacol 2023; 117:109840. [PMID: 36827928 DOI: 10.1016/j.intimp.2023.109840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/24/2023]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is defined as chronic inflammation in the gastrointestinal tract. Notably, more than 20% of people with IBD experience depressive symptoms. Understanding the immunological mechanism of chronic intestinal inflammation on cognitive behavior has become a key research focus. Previous studies have shown that a dysregulated immune response contributes to chronic inflammation and depressive symptoms. The tolerant phenotype exhibited by immune cells regulates the course of chronic inflammation in distinct ways. In addition, neuroglia, such as microglia and astrocytes specific to the brain, are also influenced by deregulated inflammation to mediate the development of depressive symptoms. The kynurenine pathway (KP), a significant tryptophan metabolic pathway, transforms tryptophan into a series of KP metabolites that modulate chronic inflammation and depressive symptoms. In particular, indoleamine 2,3-dioxygenase 1 (IDO1), a rate-limiting enzyme in the KP, is activated by chronic inflammation and leads to the production of kynurenine. In addition, disruption of the brain-gut axis induced by IBD allows kynurenine to cross the blood-brain barrier (BBB) and form a series of neuroactive kynurenine metabolites in glial cells. Among them, quinolinic acid continuously accumulates in the brain, indicating depression. Thus, KP metabolites are critical for driving the comorbidity of IBD and depressive symptoms. In this review, the pathological mechanism of KP metabolite-mediated chronic intestinal inflammation and depressive symptoms by regulating the immune response is summarized according to the latest reports.
Collapse
Affiliation(s)
- Weiming Lai
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ziheng Huang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Sheng Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ding Luo
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
27
|
Development of an Untargeted Metabolomics Strategy to Study the Metabolic Rewiring of Dendritic Cells upon Lipopolysaccharide Activation. Metabolites 2023; 13:metabo13030311. [PMID: 36984754 PMCID: PMC10058937 DOI: 10.3390/metabo13030311] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023] Open
Abstract
Dendritic cells (DCs) are essential immune cells for defense against external pathogens. Upon activation, DCs undergo profound metabolic alterations whose precise nature remains poorly studied at a large scale and is thus far from being fully understood. The goal of the present work was to develop a reliable and accurate untargeted metabolomics workflow to get a deeper insight into the metabolism of DCs when exposed to an infectious agent (lipopolysaccharide, LPS, was used to mimic bacterial infection). As DCs transition rapidly from a non-adherent to an adherent state upon LPS exposure, one of the leading analytical challenges was to implement a single protocol suitable for getting comparable metabolomic snapshots of those two cellular states. Thus, a thoroughly optimized and robust sample preparation method consisting of a one-pot solvent-assisted method for the simultaneous cell lysis/metabolism quenching and metabolite extraction was first implemented to measure intracellular DC metabolites in an unbiased manner. We also placed special emphasis on metabolome coverage and annotation by using a combination of hydrophilic interaction liquid chromatography and reverse phase columns coupled to high-resolution mass spectrometry in conjunction with an in-house developed spectral database to identify metabolites at a high confidence level. Overall, we were able to characterize up to 171 unique meaningful metabolites in DCs. We then preliminarily compared the metabolic profiles of DCs derived from monocytes of 12 healthy donors upon in vitro LPS activation in a time-course experiment. Interestingly, the resulting data revealed differential and time-dependent activation of some particular metabolic pathways, the most impacted being nucleotides, nucleotide sugars, polyamines pathways, the TCA cycle, and to a lesser extent, the arginine pathway.
Collapse
|
28
|
Gas Chromatography-Mass Spectrometry (GC-MS) Metabolites Analysis in Endometriosis Patients: A Prospective Observational Translational Study. J Clin Med 2023; 12:jcm12030922. [PMID: 36769570 PMCID: PMC9918082 DOI: 10.3390/jcm12030922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Endometriosis affects women of reproductive age, and its pathogenesis is still unclear. Typically, it overlaps other similar medical and surgical conditions, determining a delay in early diagnosis. Metabolomics allows studying metabolic changes in different physiological or pathological states to discover new potential biomarkers. We used the gas chromatography-mass spectrometer (GC-MS) to explore metabolic alterations in endometriosis to better understand its pathophysiology and find new biomarkers. METHODS Twenty-two serum samples of patients with symptomatic endometriosis and ten without it were collected and subjected to GC-MS analysis. Multivariate and univariate statistical analyses were performed, followed by pathway analysis. RESULTS Partial least squares discriminant analysis was performed to determine the differences between the two groups (p = 0.003). Threonic acid, 3-hydroxybutyric acid, and proline increased significantly in endometriosis patients, while alanine and valine decreased. ROC curves were built to test the diagnostic power of metabolites. The pathway analysis identified the synthesis and degradation of ketone bodies and the biosynthesis of phenylalanine, tyrosine, and tryptophan as the most altered pathways. CONCLUSIONS The metabolomic approach identifies metabolic alterations in women with endometriosis. These findings may improve our understanding of the pathophysiological mechanisms of disease and the discovery of new biomarkers.
Collapse
|
29
|
Kurniati D, Hirai S, Egashira Y. Effect of apigenin on tryptophan metabolic key enzymes expression in lipopolysaccharide-induced microglial cells and its mechanism. Heliyon 2022; 9:e12743. [PMID: 36685364 PMCID: PMC9852672 DOI: 10.1016/j.heliyon.2022.e12743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/09/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
[Aims] Flavonoid apigenin (API) has a wide range of biological functions, particularly anti-inflammation. Indoleamine 2,3-dioxygenase (IDO) and 2-Amino-3-carboxymuconate-6-semialdehyde decarboxylase (ACMSD) are important tryptophan metabolic enzymes that play pivotal roles in the production of toxic metabolite quinolinic acid. However, the relationship between inflammation and ACMSD remains unclear. The present study investigated the relationship between inflammation and tryptophan metabolic key enzymes. Similarly, the anti-inflammatory effect of API on important tryptophan metabolic enzymes was examined in lipopolysaccharide (LPS)-treated microglial cells. [Main methods] MG6 cells were exposed to LPS with or without API treatment for 24-48 h. IDO and ACMSD mRNA expression and production of inflammatory mediators were analyzed. Activation of inflammatory signaling pathways, such as mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB), was also examined to study the mechanism of API in the inflammatory state. [Key findings] LPS suppressed ACMSD expression and enhanced IDO expression. However, API elevated ACMSD mRNA expression and suppressed IDO mRNA expression in LPS-treated MG6 cells. Furthermore, API suppressed interleukin-6 and nitric oxide production, whereas overproduction of inflammatory mediators enhanced IDO expression and assisted tryptophan degradation. API also inhibited activation of extracellular signal-regulated kinase (Erk) and jun N-terminal kinase (JNK) MAPK, and degradation of IκBα. [Significance] These results indicate alteration of ACMSD expression under inflammatory conditions. Moreover, API recovers expression of tryptophan metabolic key enzymes, which may be mediated by inhibition of proinflammatory mediator production via inactivation of Erk, JNK MAPK, and NF-κB pathways in LPS-stimulated microglial cells.
Collapse
Affiliation(s)
- Dian Kurniati
- Laboratory of Food and Nutrition, Division of Applied Biochemistry, Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo-shi, Chiba, 271-8510, Japan,Department of Food Technology, Faculty of Agricultural Industrial Technology, Universitas Padjadjaran, Sumedang KM. 21, Jatinangor, 40600, West Java, Indonesia
| | - Shizuka Hirai
- Laboratory of Food and Nutrition, Division of Applied Biochemistry, Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo-shi, Chiba, 271-8510, Japan
| | - Yukari Egashira
- Laboratory of Food and Nutrition, Division of Applied Biochemistry, Graduate School of Horticulture, Chiba University, 648, Matsudo, Matsudo-shi, Chiba, 271-8510, Japan,Corresponding author.
| |
Collapse
|
30
|
Saade MC, Clark AJ, Parikh SM. States of quinolinic acid excess in urine: A systematic review of human studies. Front Nutr 2022; 9:1070435. [PMID: 36590198 PMCID: PMC9800835 DOI: 10.3389/fnut.2022.1070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Quinolinic acid is an intermediate compound derived from the metabolism of dietary tryptophan. Its accumulation has been reported in patients suffering a broad spectrum of diseases and conditions. In this manuscript, we present the results of a systematic review of research studies assessing urinary quinolinic acid in health and disease. Methods We performed a literature review using PubMed, Cochrane, and Scopus databases of all studies reporting data on urinary quinolinic acid in human subjects from December 1949 to January 2022. Results Fifty-seven articles met the inclusion criteria. In most of the reported studies, compared to the control group, quinolinic acid was shown to be at increased concentration in urine of patients suffering from different diseases and conditions. This metabolite was also demonstrated to correlate with the severity of certain diseases including juvenile idiopathic inflammatory myopathies, graft vs. host disease, autism spectrum disorder, and prostate cancer. In critically ill patients, elevated quinolinic acid in urine predicted a spectrum of adverse outcomes including hospital mortality. Conclusion Quinolinic acid has been implicated in the pathophysiology of multiple conditions. Its urinary accumulation appears to be a feature of acute physiological stress and several chronic diseases. The exact significance of these findings is still under investigation, and further studies are needed to reveal the subsequent implications of this accumulation.
Collapse
Affiliation(s)
- Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX, United States
| | - Amanda J. Clark
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX, United States
- Division of Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX, United States
- Department of Pharmacology, University of Texas Southwestern, Dallas, TX, United States
| |
Collapse
|
31
|
Wang N, Pan D, Wang X, Su M, Wang X, Yan Q, Sun G, Wang S. NAPRT, but Not NAMPT, Provides Additional Support for NAD Synthesis in Esophageal Precancerous Lesions. Nutrients 2022; 14:4916. [PMID: 36432602 PMCID: PMC9695206 DOI: 10.3390/nu14224916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
It is hypothesized that esophageal precancerous lesions (EPLs) have a surge requirement for coenzyme I (NAD). The purpose of this study is to clarify the key control points of NAD synthesis in developing EPL by detecting related markers and the gene polymorphism of NAD synthesis and metabolism. This case-control study was conducted in Huai'an, China. In total, 100 healthy controls and 100 EPL cases matched by villages, gender, and age (±2 years) were included. The levels of plasma niacin and nicotinamide, and the protein concentration of NAMPT, NAPRT, and PARP-1 were quantitatively analyzed. PARP-1 gene polymorphism was detected to determine if the cases differed genetically in NAD synthesis. The levels of plasma niacin and nicotinamide and the concentrations of NAMPT were not related to the risk of EPL, but the over-expressions of NAPRT (p = 0.014, 0.001, and 0.016, respectively) and PARP-1 (p for trend = 0.021) were associated with the increased EPL risk. The frequency distribution of APRP-1 genotypes was found to not differ between the two groups, while the EPL group showed an increased frequency of the variant C allele. NAPRT, but not NAMPT, was found to be responsible for the stress of excess NAD synthesis in EPL. Focusing on the development of NAPRT inhibitors may be beneficial to prevent and control ESCC.
Collapse
Affiliation(s)
- Niannian Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Da Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xuemei Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ming Su
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Xin Wang
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Qingyang Yan
- Huai’an District Center for Disease Control and Prevention, Huai’an 223001, China
| | - Guiju Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shaokang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
- Department of Public Health, School of Medicine, Xizang Minzu University, Xianyang 712000, China
| |
Collapse
|
32
|
Aarsland TIM, Instanes JT, Posserud MBR, Ulvik A, Kessler U, Haavik J. Changes in Tryptophan-Kynurenine Metabolism in Patients with Depression Undergoing ECT-A Systematic Review. Pharmaceuticals (Basel) 2022; 15:1439. [PMID: 36422569 PMCID: PMC9694349 DOI: 10.3390/ph15111439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 10/29/2023] Open
Abstract
The kynurenine pathway of tryptophan (Trp) metabolism generates multiple biologically active metabolites (kynurenines) that have been implicated in neuropsychiatric disorders. It has been suggested that modulation of kynurenine metabolism could be involved in the therapeutic effect of electroconvulsive therapy (ECT). We performed a systematic review with aims of summarizing changes in Trp and/or kynurenines after ECT and assessing methodological issues. The inclusion criterium was measures of Trp and/or kynurenines before and after ECT. Animal studies and studies using Trp administration or Trp depletion were excluded. Embase, MEDLINE, PsycInfo and PubMed were searched, most recently in July 2022. Outcomes were levels of Trp, kynurenines and ratios before and after ECT. Data on factors affecting Trp metabolism and ECT were collected for interpretation and discussion of the reported changes. We included 17 studies with repeated measures for a total of 386 patients and 27 controls. Synthesis using vote counting based on the direction of effect found no evidence of effect of ECT on any outcome variable. There were considerable variations in design, patient characteristics and reported items. We suggest that future studies should include larger samples, assess important covariates and determine between- and within-subject variability. PROSPERO (CRD42020187003).
Collapse
Affiliation(s)
| | | | - Maj-Britt Rocio Posserud
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Arve Ulvik
- Bevital A/S, Laboratoriebygget, 5020 Bergen, Norway
| | - Ute Kessler
- Department of Clinical Medicine, University of Bergen, 5020 Bergen, Norway
- Division of Psychiatry, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
33
|
Mir FA, Ullah E, Mall R, Iskandarani A, Samra TA, Cyprian F, Parray A, Alkasem M, Abdalhakam I, Farooq F, Abou-Samra AB. Dysregulated Metabolic Pathways in Subjects with Obesity and Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23179821. [PMID: 36077214 PMCID: PMC9456113 DOI: 10.3390/ijms23179821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Obesity coexists with variable features of metabolic syndrome, which is associated with dysregulated metabolic pathways. We assessed potential associations between serum metabolites and features of metabolic syndrome in Arabic subjects with obesity. Methods: We analyzed a dataset of 39 subjects with obesity only (OBO, n = 18) age-matched to subjects with obesity and metabolic syndrome (OBM, n = 21). We measured 1069 serum metabolites and correlated them to clinical features. Results: A total of 83 metabolites, mostly lipids, were significantly different (p < 0.05) between the two groups. Among lipids, 22 sphingomyelins were decreased in OBM compared to OBO. Among non-lipids, quinolinate, kynurenine, and tryptophan were also decreased in OBM compared to OBO. Sphingomyelin is negatively correlated with glucose, HbA1C, insulin, and triglycerides but positively correlated with HDL, LDL, and cholesterol. Differentially enriched pathways include lysine degradation, amino sugar and nucleotide sugar metabolism, arginine and proline metabolism, fructose and mannose metabolism, and galactose metabolism. Conclusions: Metabolites and pathways associated with chronic inflammation are differentially expressed in subjects with obesity and metabolic syndrome compared to subjects with obesity but without the clinical features of metabolic syndrome.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Correspondence: (F.A.M.); (E.U.)
| | - Ehsan Ullah
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
- Correspondence: (F.A.M.); (E.U.)
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38104, USA
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tareq A. Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Aijaz Parray
- Qatar Neuroscience Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Faisal Farooq
- Qatar Computing Research Institute (QCRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
34
|
Wang Z, Yin L, Qi Y, Zhang J, Zhu H, Tang J. Intestinal Flora-Derived Kynurenic Acid Protects Against Intestinal Damage Caused by Candida albicans Infection via Activation of Aryl Hydrocarbon Receptor. Front Microbiol 2022; 13:934786. [PMID: 35923391 PMCID: PMC9339982 DOI: 10.3389/fmicb.2022.934786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 12/25/2022] Open
Abstract
Colonization of the intestinal tract by Candida albicans (C. albicans) can lead to invasive candidiasis. Therefore, a functional intestinal epithelial barrier is critical for protecting against invasive C. albicans infections. We collected fecal samples from patients with Candida albicans bloodstream infection and healthy people. Through intestinal flora 16sRNA sequencing and intestinal metabolomic analysis, we found that C. albicans infection resulted in a significant decrease in the expression of the metabolite kynurenic acid (KynA). We used a repeated C. albicans intestinal infection mouse model, established following intake of 3% dextran sulfate sodium salt (DSS) for 9 days, and found that KynA, a tryptophan metabolite, inhibited inflammation, promoted expression of intestinal tight junction proteins, and protected from intestinal barrier damage caused by invasive Candida infections. We also demonstrated that KynA activated aryl hydrocarbon receptor (AHR) repressor in vivo and in vitro. Using Caco-2 cells co-cultured with C. albicans, we showed that KynA activated AHR, inhibited the myosin light chain kinase-phospho-myosin light chain (MLCK-pMLC) signaling pathway, and promoted tristetraprolin (TTP) expression to alleviate intestinal inflammation. Our findings suggest that the metabolite KynA which is differently expressed in patients with C. albicans infection and has a protective effect on the intestinal epithelium, via activating AHR, could be explored to provide new potential therapeutic strategies for invasive C. albicans infections.
Collapse
Affiliation(s)
- Zetian Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yue Qi
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jiali Zhang
- Department of Central Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Haiyan Zhu,
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- *Correspondence: Jianguo Tang,
| |
Collapse
|
35
|
Jamshed L, Debnath A, Jamshed S, Wish JV, Raine JC, Tomy GT, Thomas PJ, Holloway AC. An Emerging Cross-Species Marker for Organismal Health: Tryptophan-Kynurenine Pathway. Int J Mol Sci 2022; 23:6300. [PMID: 35682980 PMCID: PMC9181223 DOI: 10.3390/ijms23116300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Tryptophan (TRP) is an essential dietary amino acid that, unless otherwise committed to protein synthesis, undergoes metabolism via the Tryptophan-Kynurenine (TRP-KYN) pathway in vertebrate organisms. TRP and its metabolites have key roles in diverse physiological processes including cell growth and maintenance, immunity, disease states and the coordination of adaptive responses to environmental and dietary cues. Changes in TRP metabolism can alter the availability of TRP for protein and serotonin biosynthesis as well as alter levels of the immune-active KYN pathway metabolites. There is now considerable evidence which has shown that the TRP-KYN pathway can be influenced by various stressors including glucocorticoids (marker of chronic stress), infection, inflammation and oxidative stress, and environmental toxicants. While there is little known regarding the role of TRP metabolism following exposure to environmental contaminants, there is evidence of linkages between chemically induced metabolic perturbations and altered TRP enzymes and KYN metabolites. Moreover, the TRP-KYN pathway is conserved across vertebrate species and can be influenced by exposure to xenobiotics, therefore, understanding how this pathway is regulated may have broader implications for environmental and wildlife toxicology. The goal of this narrative review is to (1) identify key pathways affecting Trp-Kyn metabolism in vertebrates and (2) highlight consequences of altered tryptophan metabolism in mammals, birds, amphibians, and fish. We discuss current literature available across species, highlight gaps in the current state of knowledge, and further postulate that the kynurenine to tryptophan ratio can be used as a novel biomarker for assessing organismal and, more broadly, ecosystem health.
Collapse
Affiliation(s)
- Laiba Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Amrita Debnath
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Shanza Jamshed
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| | - Jade V. Wish
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Jason C. Raine
- Quesnel River Research Centre, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada;
| | - Gregg T. Tomy
- Department of Chemistry, Centre for Oil and Gas Research and Development (COGRAD), University of Manitoba, 586 Parker Building, 144 Dysart Rd., Winnipeg, MB R3T 2N2, Canada; (J.V.W.); (G.T.T.)
| | - Philippe J. Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, ON K1A 0H3, Canada;
| | - Alison C. Holloway
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON L8S 4K1, Canada; (L.J.); (A.D.); (S.J.)
| |
Collapse
|
36
|
Eryavuz Onmaz D, Tezcan D, Abusoglu S, Sivrikaya A, Kuzu M, Yerlikaya FH, Yilmaz S, Unlu A. Elevated serum levels of kynurenine pathway metabolites in patients with Behçet disease. Amino Acids 2022; 54:877-887. [PMID: 35604497 DOI: 10.1007/s00726-022-03170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/06/2022] [Indexed: 11/01/2022]
Abstract
Behçet disease (BD) is an inflammatory, multisystemic vasculitis of unknown etiopathogenesis. However, innate and adaptive immune system involvement and immune-mediated networks play a vital role in the inflammatory cascade. Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states and catalyzes the first and rate-limiting step of tryptophan (TRP) metabolism along the kynurenine pathway (KP). The study aimed to measure KP metabolites levels in patients with BD and investigate the relationship between disease activity and clinical findings with these metabolites. The study included 120 patients with BD and 120 healthy volunteers. Serum TRP, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxyanthranilic acid (3HAA), 3-hydroxykynurenine (3HK), and quinolinic acid (QUIN) levels were measured with the tandem mass spectrometric method. Demographic data, clinical manifestations, and disease activity score (BDCAF) were recorded. Serum KYN, KYNA, 3HK, 3HAA, QUIN levels, and KYN/TRP ratio were higher (p < 0.05) in patients with BD compared to the control group, while TRP levels were lower (p < 0.05). KYN/TRP ratio and QUIN levels were significantly higher in the presence of neuro-Behçet, while serum KYN levels were significantly higher in the presence of arthritis (p < 0.05). In addition, serum QUIN levels were significantly higher in the presence of thrombosis (p < 0.05). BDCAF score positively correlated with KYN/TRP ratio. Our findings showed that serum KP metabolite levels were elevated in patients with BD, and there is a relationship between these metabolites with disease activity, clinical findings, and inflammatory burden.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey.
| | - Dilek Tezcan
- Division of Rheumatology, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Sedat Abusoglu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Menekse Kuzu
- Department of Biochemistry, Faculty of Pharmacy, Biruni University, 34020, Istanbul, Turkey
| | | | - Sema Yilmaz
- Division of Rheumatology, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| | - Ali Unlu
- Department of Biochemistry, Faculty of Medicine, Selcuk University, 42130, Konya, Turkey
| |
Collapse
|
37
|
Zhao L, Jiang Y, Zhao Z, Wang K, Zhang X, Hong Q, Qiu J, He J. Biodegradation of Quinolinic acid by a Newly Isolated Bacterium Alcaligenes faecalis Strain JQ191. FEMS Microbiol Lett 2022; 369:6567840. [PMID: 35416242 DOI: 10.1093/femsle/fnac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Quinolinic acid (QA) is a pyridine derivative that can be found in many organisms and is widely used in the chemical industry. However, QA possesses excitotoxic properties. To date, the catabolism of QA mediated by microorganisms has rarely been reported. In this study, a QA-degrading strain (JQ191) was isolated from sewage sludge. Based on phenotypic and 16S rRNA gene phylogenetic analysis, the strain was identified as Alcaligenes faecalis. Strain JQ191 was able to utilize QA as the sole source of carbon and nitrogen for growth. QA-cultured cells of JQ191 completely degrade 200 mg/L QA within 2 days in a mineral salt medium, whereas the LB-cultured cells experienced a 2-day lag period before degrading QA, indicating that the catabolic enzymes involved in QA degradation were induced by QA. 6-Hydroxypicolinic acid (6HPA) was identified as an intermediate of QA degradation by strain JQ191. A 6HPA monooxygenase gene picB was cloned, genetically disrupted, and heterologously expressed, and the results show that picB was responsible for catalyzing 6HPA to 3,6DHPA in JQ191. A new QA mineralization pathway was proposed. This study identifies a new bacterium candidate that has a potential application prospect in the bioremediation of QA-polluted environment, as well as provides new insights into the bacterial catabolism of QA.
Collapse
Affiliation(s)
- Lingling Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinhu Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenyang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kexin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Hong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
38
|
Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, Li R, Han Z, Wang J, Chen L, Shu Y, Cheng G, Sun C. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog 2022; 18:e1010366. [PMID: 35235615 PMCID: PMC8920235 DOI: 10.1371/journal.ppat.1010366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses. The outbreaks of emerging infectious diseases have become a severe challenge worldwide, and therefore it is a public health priority to explore novel broad-spectrum antiviral agents with various mechanisms. This study reported that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme during tryptophan metabolism, showed promise as a novel broad-spectrum antiviral factor against emerging pathogenic viruses. We further found that quinolinic acid (QUIN), an enzymatic product of KMO, could also act as a novel broad-spectrum antiviral agent. We then systematically studied the underlying mechanisms and broadly antiviral function of KMO and QUIN in vitro and in vivo. Our data highlight the importance of exploring novel antiviral targets from the key enzymes and their metabolites in tryptophan metabolism.
Collapse
Affiliation(s)
- Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (GC); (CS)
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
- * E-mail: (GC); (CS)
| |
Collapse
|
39
|
Salminen A. Role of indoleamine 2,3-dioxygenase 1 (IDO1) and kynurenine pathway in the regulation of the aging process. Ageing Res Rev 2022; 75:101573. [PMID: 35085834 DOI: 10.1016/j.arr.2022.101573] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is activated in chronic inflammatory states, e.g., in the aging process and age-related diseases. IDO1 enzyme catabolizes L-tryptophan (L-Trp) into kynurenine (KYN) thus stimulating the KYN pathway. The depletion of L-Trp inhibits the proliferation of immune cells in inflamed tissues and it also reduces serotonin synthesis predisposing to psychiatric disorders. Interestingly, IDO1 protein contains two immunoreceptor tyrosine-based inhibitory motifs (ITIM) which trigger suppressive signaling through the binding of PI3K p110 and SHP-1 proteins. This immunosuppressive activity is not dependent on the catalytic activity of IDO1. KYN and its metabolite, kynurenic acid (KYNA), are potent activators of the aryl hydrocarbon receptor (AhR) which can enhance immunosuppression. IDO1-KYN-AhR signaling counteracts excessive pro-inflammatory responses in acute inflammation but in chronic inflammatory states it has many harmful effects. A chronic low-grade inflammation is associated with the aging process, a state called inflammaging. There is substantial evidence that the activation of the IDO1-KYN-AhR pathway robustly increases with the aging process. The activation of IDO1-KYN-AhR signaling does not only suppress the functions of effector immune cells, probably promoting immunosenescence, but it also impairs autophagy, induces cellular senescence, and remodels the extracellular matrix as well as enhancing the development of osteoporosis and vascular diseases. I will review the function of IDO1-KYN-AhR signaling and discuss its activation with aging as an enhancer of the aging process.
Collapse
|
40
|
He S, Granot‐Hershkovitz E, Zhang Y, Bressler J, Tarraf W, Yu B, Huang T, Zeng D, Wassertheil‐Smoller S, Lamar M, Daviglus M, Marquine MJ, Cai J, Mosley T, Kaplan R, Boerwinkle E, Fornage M, DeCarli C, Kristal B, Gonzalez HM, Sofer T. Blood metabolites predicting mild cognitive impairment in the study of Latinos-investigation of neurocognitive aging (HCHS/SOL). ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12259. [PMID: 35229015 PMCID: PMC8865745 DOI: 10.1002/dad2.12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Blood metabolomics-based biomarkers may be useful to predict measures of neurocognitive aging. METHODS We tested the association between 707 blood metabolites measured in 1451 participants from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), with mild cognitive impairment (MCI) and global cognitive change assessed 7 years later. We further used Lasso penalized regression to construct a metabolomics risk score (MRS) that predicts MCI, potentially identifying a different set of metabolites than those discovered in individual-metabolite analysis. RESULTS We identified 20 metabolites predicting prevalent MCI and/or global cognitive change. Six of them were novel and 14 were previously reported as associated with neurocognitive aging outcomes. The MCI MRS comprised 61 metabolites and improved prediction accuracy from 84% (minimally adjusted model) to 89% in the entire dataset and from 75% to 87% among apolipoprotein E ε4 carriers. DISCUSSION Blood metabolites may serve as biomarkers identifying individuals at risk for MCI among US Hispanics/Latinos.
Collapse
Affiliation(s)
- Shan He
- Department of BiostatisticsHarvard T.H Chan School of Public HealthBostonMassachusettsUSA
- Division of Sleep and Circadian DisordersBrigham and Women's HospitalBostonMassachusettsUSA
| | - Einat Granot‐Hershkovitz
- Division of Sleep and Circadian DisordersBrigham and Women's HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Ying Zhang
- Division of Sleep and Circadian DisordersBrigham and Women's HospitalBostonMassachusettsUSA
| | - Jan Bressler
- Human Genetics CenterSchool of Public Health, University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Wassim Tarraf
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
| | - Bing Yu
- Human Genetics CenterSchool of Public Health, University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tianyi Huang
- Channing Division of Network MedicineBrigham and Women's HospitalBostonMassachusettsUSA
| | - Donglin Zeng
- Department of BiostatisticsGillings School of Global Public HealthUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Sylvia Wassertheil‐Smoller
- Department of Epidemiology & Population HealthDepartment of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Melissa Lamar
- Department of MedicineInstitute for Minority Health ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Rush Alzheimer's Disease Research CenterRush University Medical CenterChicagoIllinoisUSA
| | - Martha Daviglus
- Department of MedicineInstitute for Minority Health ResearchUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Maria J. Marquine
- Department of PsychiatryUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - Jianwen Cai
- Department of BiostatisticsGillings School of Global Public HealthUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Thomas Mosley
- Department of MedicineUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Robert Kaplan
- Department of Epidemiology & Population HealthDepartment of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
- Division of Public Health SciencesFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Eric Boerwinkle
- Human Genetics CenterSchool of Public Health, University of Texas Health Science Center at HoustonHoustonTexasUSA
- Human Genome Sequencing CenterBaylor College of MedicineHoustonTexasUSA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular MedicineMcGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Charles DeCarli
- Department of Neurology, Alzheimerʼs Disease CenterUniversity of California, DavisSacramentoCaliforniaUSA
| | - Bruce Kristal
- Burke Medical Research Institute, White PlainsNew YorkUSA
- Departments of Biochemistry and NeuroscienceWeill Medical College of Cornell UniversityNew YorkNew YorkUSA
| | - Hector M. Gonzalez
- Department of Neurosciences and Shiley‐Marcos Alzheimer's Disease CenterUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Tamar Sofer
- Department of BiostatisticsHarvard T.H Chan School of Public HealthBostonMassachusettsUSA
- Division of Sleep and Circadian DisordersBrigham and Women's HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
41
|
Liang Y, Xie S, He Y, Xu M, Qiao X, Zhu Y, Wu W. Kynurenine Pathway Metabolites as Biomarkers in Alzheimer's Disease. DISEASE MARKERS 2022; 2022:9484217. [PMID: 35096208 PMCID: PMC8791723 DOI: 10.1155/2022/9484217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that deteriorates cognitive function. Patients with AD generally exhibit neuroinflammation, elevated beta-amyloid (Aβ), tau phosphorylation (p-tau), and other pathological changes in the brain. The kynurenine pathway (KP) and several of its metabolites, especially quinolinic acid (QA), are considered to be involved in the neuropathogenesis of AD. The important metabolites and key enzymes show significant importance in neuroinflammation and AD. Meanwhile, the discovery of changed levels of KP metabolites in patients with AD suggests that KP metabolites may have a prominent role in the pathogenesis of AD. Further, some KP metabolites exhibit other effects on the brain, such as oxidative stress regulation and neurotoxicity. Both analogs of the neuroprotective and antineuroinflammation metabolites and small molecule enzyme inhibitors preventing the formation of neurotoxic and neuroinflammation compounds may have potential therapeutic significance. This review focused on the KP metabolites through the relationship of neuroinflammation in AD, significant KP metabolites, and associated molecular mechanisms as well as the utility of these metabolites as biomarkers and therapeutic targets for AD. The objective is to provide references to find biomarkers and therapeutic targets for patients with AD.
Collapse
Affiliation(s)
- Yuqing Liang
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Shan Xie
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yanyun He
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Manru Xu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Xi Qiao
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Yue Zhu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| | - Wenbin Wu
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, China
| |
Collapse
|
42
|
The effect of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase gene overexpression in the kynurenine pathway on the expression levels of indoleamine 2,3-dioxygenase 1 and interferon-γ in inflammatory conditions: an in vitro study. Mol Biol Rep 2021; 49:1103-1111. [PMID: 34775574 DOI: 10.1007/s11033-021-06935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) can be involved in the pathogenesis of neurodegenerative diseases and excessive neurotoxic metabolite production. This study aimed to evaluate the effects of overexpression of murine 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase (Acmsd) gene in inflammatory conditions in RAW 264.7 cell line to present more information about the effect of this gene on inflammatory conditions and the KP cycle. METHODS AND RESULTS The coding sequence of the Acmsd gene was cloned into pCMV6-AC-IRES-GFP expression vector with a green fluorescent protein (GFP) marker. To simulate inflammatory conditions, RAW 264.7 macrophage cells were stimulated by Lipopolysaccharide (LPS) 24 h before transfection, and transfected by Polyethyleneimine (PEI) with constructed plasmids expressing the Acmsd gene. The effect of Acmsd gene expression level on murine Interferon-gamma (Ifn-γ) and murine Indoleamine 2,3-dioxygenase 1 (Ido1) gene expression level was investigated by Real-Time PCR. According to the results of this study, good transfection efficiency was observed 72 h after transfection, and Acmsd expression level increased 29-fold (P < 0.001) in transfected LPS-stimulated cells compared to the control group (LPS-stimulated cells that were not transfected). Additionally, increased Acmsd expression level significantly down-regulated Ifn-γ (P < 0.001) and Ido1 (P < 0.01) expression level in transfected LPS-stimulated cells compared to LPS-stimulated cells. CONCLUSIONS Acmsd gene overexpression in inflammatory conditions can reduce the expression levels of the Ido1 gene, and its regulator, Ifn-γ. Consequently, it may be considered as a novel regulatory factor in the KP balance.
Collapse
|
43
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
44
|
Plasma Metabolomics in a Nonhuman Primate Model of Abdominal Radiation Exposure. Metabolites 2021; 11:metabo11080540. [PMID: 34436481 PMCID: PMC8398377 DOI: 10.3390/metabo11080540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022] Open
Abstract
The acute radiation syndrome is defined in large part by radiation injury in the hematopoietic and gastrointestinal (GI) systems. To identify new pathways involved in radiation-induced GI injury, this study assessed dose- and time-dependent changes in plasma metabolites in a nonhuman primate model of whole abdominal irradiation. Male and female adult Rhesus monkeys were exposed to 6 MV photons to the abdomen at doses ranging between 8 and 14 Gy. At time points from 1 to 60 days after irradiation, plasma samples were collected and subjected to untargeted metabolomics. With the limited sample size of females, different discovery times after irradiation between males and females were observed in metabolomics pattern. Detailed analyses are restricted to only males for the discovery power. Radiation caused an increase in fatty acid oxidation and circulating levels of corticosteroids which may be an indication of physiological stress, and amino acids, indicative of a cellular repair response. The largest changes were observed at days 9 and 10 post-irradiation, with most returning to baseline at day 30. In addition, dysregulated metabolites involved in amino acid pathways, which might indicate changes in the microbiome, were detected. In conclusion, abdominal irradiation in a nonhuman primate model caused a plasma metabolome profile indicative of GI injury. These results point to pathways that may be targeted for intervention or used as early indicators of GI radiation injury. Moreover, our results suggest that effects are sex-specific and that interventions may need to be tailored accordingly.
Collapse
|
45
|
Kidney Allograft Function Is a Confounder of Urine Metabolite Profiles in Kidney Allograft Recipients. Metabolites 2021; 11:metabo11080533. [PMID: 34436474 PMCID: PMC8399888 DOI: 10.3390/metabo11080533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Noninvasive biomarkers of kidney allograft status can help minimize the need for standard of care kidney allograft biopsies. Metabolites that are measured in the urine may inform about kidney function and health status, and potentially identify rejection events. To test these hypotheses, we conducted a metabolomics study of biopsy-matched urine cell-free supernatants from kidney allograft recipients who were diagnosed with two major types of acute rejections and no-rejection controls. Non-targeted metabolomics data for 674 metabolites and 577 unidentified molecules, for 192 biopsy-matched urine samples, were analyzed. Univariate and multivariate analyses identified metabolite signatures for kidney allograft rejection. The replicability of a previously developed urine metabolite signature was examined. Our study showed that metabolite profiles can serve as biomarkers for discriminating rejection biopsies from biopsies without rejection features, but also revealed a role of estimated Glomerular Filtration Rate (eGFR) as a major confounder of the metabolite signal.
Collapse
|
46
|
Notarangelo FM, Schwarcz R. A single prenatal lipopolysaccharide injection has acute, but not long-lasting, effects on cerebral kynurenine pathway metabolism in mice. Eur J Neurosci 2021; 54:5968-5981. [PMID: 34363411 DOI: 10.1111/ejn.15416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
In rodents, a single injection of lipopolysaccharide (LPS) during gestation causes chemical and functional abnormalities in the offspring. These effects may involve changes in the kynurenine pathway (KP) of tryptophan degradation and may provide insights into the pathophysiology of psychiatric diseases. Using CD1 mice, we examined acute and long-term effects of prenatal LPS treatment on the levels of kynurenine and its neuroactive downstream products kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK) and quinolinic acid. To this end, LPS (100 μg/kg, i.p.) was administered on gestational day 15, and KP metabolites were measured 4 and 24 h later or in adulthood. After 4 h, kynurenine, KYNA and 3-HK levels were elevated in the fetal brain, 3-HK and KYNA levels were increased in the maternal plasma, and kynurenine was increased in the maternal brain, whereas no changes were seen in the placenta. These effects were less prominent after 24 h, and prenatal LPS did not affect the basal levels of KP metabolites in the forebrain of adult animals. In addition, a second LPS injection (1 mg/kg) in adulthood in the offspring of prenatally saline- and LPS-treated mice caused a similar elevation in 3-HK levels in both groups after 24 h, but the effect was significantly more pronounced in male mice. Thus, acute immune activation during pregnancy has only short-lasting effects on KP metabolism and does not cause cerebral KP metabolites to be disproportionally affected by a second immune challenge in adulthood. However, prenatal KYNA elevations still contribute to functional abnormalities in the offspring.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
47
|
García-Flores LA, Green CL, Mitchell SE, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded calorie restriction XVII: Multitissue metabolomics reveals synthesis of carnitine and NAD, and tRNA charging as key pathways. Proc Natl Acad Sci U S A 2021; 118:e2101977118. [PMID: 34330829 PMCID: PMC8346868 DOI: 10.1073/pnas.2101977118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The evolutionary context of why caloric restriction (CR) activates physiological mechanisms that slow the process of aging remains unclear. The main goal of this analysis was to identify, using metabolomics, the common pathways that are modulated across multiple tissues (brown adipose tissue, liver, plasma, and brain) to evaluate two alternative evolutionary models: the "disposable soma" and "clean cupboards" ideas. Across the four tissues, we identified more than 10,000 different metabolic features. CR altered the metabolome in a graded fashion. More restriction led to more changes. Most changes, however, were tissue specific, and in some cases, metabolites changed in opposite directions in different tissues. Only 38 common metabolic features responded to restriction in the same way across all four tissues. Fifty percent of the common altered metabolites were carboxylic acids and derivatives, as well as lipids and lipid-like molecules. The top five modulated canonical pathways were l-carnitine biosynthesis, NAD (nicotinamide adenine dinucleotide) biosynthesis from 2-amino-3-carboxymuconate semialdehyde, S-methyl-5'-thioadenosine degradation II, NAD biosynthesis II (from tryptophan), and transfer RNA (tRNA) charging. Although some pathways were modulated in common across tissues, none of these reflected somatic protection, and each tissue invoked its own idiosyncratic modulation of pathways to cope with the reduction in incoming energy. Consequently, this study provides greater support for the clean cupboards hypothesis than the disposable soma interpretation.
Collapse
Affiliation(s)
- Libia Alejandra García-Flores
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, China
| | - Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, Scotland, United Kingdom
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, Scotland, United Kingdom
| | - Daniel E L Promislow
- Department of Lab Medicine and Pathology, University of Washington, Seattle, WA 98195
- Department of Biology, University of Washington, Seattle, WA 98195
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, Scotland, United Kingdom
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, Scotland, United Kingdom
| | - John R Speakman
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Chaoyang, Beijing 100101, China;
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB39 2PN, Scotland, United Kingdom
- Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Shenzhen 518055, China
- Center of Excellence for Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
48
|
Pei L, Fukutani KF, Tibúrcio R, Rupert A, Dahlstrom EW, Galindo F, Laidlaw E, Lisco A, Manion M, Andrade BB, Sereti I. Plasma Metabolomics Reveals Dysregulated Metabolic Signatures in HIV-Associated Immune Reconstitution Inflammatory Syndrome. Front Immunol 2021; 12:693074. [PMID: 34211479 PMCID: PMC8239348 DOI: 10.3389/fimmu.2021.693074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) is an inflammatory complication associated with an underlying opportunistic infection that can be observed in HIV-infected individuals shortly after the initiation of antiretroviral therapy, despite successful suppression of HIV viral load and CD4+ T cell recovery. Better understanding of IRIS pathogenesis would allow for targeted prevention and therapeutic approaches. In this study, we sought to evaluate the metabolic perturbations in IRIS across longitudinal time points using an unbiased plasma metabolomics approach as well as integrated analyses to include plasma inflammatory biomarker profile and whole blood transcriptome. We found that many lipid and amino acid metabolites differentiated IRIS from non-IRIS conditions prior to antiretroviral therapy and during the IRIS event, implicating the association between oxidative stress, tryptophan pathway, and lipid mediated signaling and the development of IRIS. Lipid and amino acid metabolic pathways also significantly correlated with inflammatory biomarkers such as IL-12p70 and IL-8 at the IRIS event, indicating the role of cellular metabolism on cell type specific immune activation during the IRIS episode and in turn the impact of immune activation on cellular metabolism. In conclusion, we defined the metabolic profile of IRIS and revealed that perturbations in metabolism may predispose HIV-infected individuals to IRIS development and contribute to the inflammatory manifestations during the IRIS event. Furthermore, our findings expanded our current understanding IRIS pathogenesis and highlighted the significance of lipid and amino acid metabolism in inflammatory complications.
Collapse
Affiliation(s)
- Luxin Pei
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Kiyoshi F Fukutani
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Curso de Medicina, Centro Universitário Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Brazil
| | - Rafael Tibúrcio
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil
| | - Adam Rupert
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eric W Dahlstrom
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Frances Galindo
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elizabeth Laidlaw
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Maura Manion
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Bruno B Andrade
- Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Laboratory of Inflammation and Biomarkers, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, Brazil.,Curso de Medicina, Centro Universitário Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Brazil.,Faculdade de Medicina, Universidade Federal da Bahia, Salvador, Brazil.,Wellcome Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Irini Sereti
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
49
|
Groth B, Venkatakrishnan P, Lin SJ. NAD + Metabolism, Metabolic Stress, and Infection. Front Mol Biosci 2021; 8:686412. [PMID: 34095234 PMCID: PMC8171187 DOI: 10.3389/fmolb.2021.686412] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential metabolite with wide-ranging and significant roles in the cell. Defects in NAD+ metabolism have been associated with many human disorders; it is therefore an emerging therapeutic target. Moreover, NAD+ metabolism is perturbed during colonization by a variety of pathogens, either due to the molecular mechanisms employed by these infectious agents or by the host immune response they trigger. Three main biosynthetic pathways, including the de novo and salvage pathways, contribute to the production of NAD+ with a high degree of conservation from bacteria to humans. De novo biosynthesis, which begins with l-tryptophan in eukaryotes, is also known as the kynurenine pathway. Intermediates of this pathway have various beneficial and deleterious effects on cellular health in different contexts. For example, dysregulation of this pathway is linked to neurotoxicity and oxidative stress. Activation of the de novo pathway is also implicated in various infections and inflammatory signaling. Given the dynamic flexibility and multiple roles of NAD+ intermediates, it is important to understand the interconnections and cross-regulations of NAD+ precursors and associated signaling pathways to understand how cells regulate NAD+ homeostasis in response to various growth conditions. Although regulation of NAD+ homeostasis remains incompletely understood, studies in the genetically tractable budding yeast Saccharomyces cerevisiae may help provide some molecular basis for how NAD+ homeostasis factors contribute to the maintenance and regulation of cellular function and how they are regulated by various nutritional and stress signals. Here we present a brief overview of recent insights and discoveries made with respect to the relationship between NAD+ metabolism and selected human disorders and infections, with a particular focus on the de novo pathway. We also discuss how studies in budding yeast may help elucidate the regulation of NAD+ homeostasis.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Padmaja Venkatakrishnan
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
50
|
Sun S, Zhang J, Li H, Du Y, Li S, Li A, Suo X, Wang Y, Sun Q. Anti-inflammatory activity of the water extract of Chloranthus serratus roots in LPS-stimulated RAW264.7 cells mediated by the Nrf2/HO-1, MAPK and NF-κB signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113880. [PMID: 33508367 DOI: 10.1016/j.jep.2021.113880] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chloranthus serratus is a traditional Chinese medicine for treating arthritis and bruises. AIM OF THE STUDY To investigate the dose-effect relationship and molecular mechanisms of the water extract of C. serratus roots (WECR) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. MATERIALS AND METHODS The cell viability was detected by CCK-8 method. One-step method, DCFH-DA fluorescence probe method and immunofluorescence method were used to detect nitric oxide (NO), reactive oxygen species (ROS) and p65 nuclear transcription, respectively. Interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and prostaglandin E2 (PGE2) were detected by enzyme linked immunosorbent assay. Inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA were detected by quantitative real-time PCR. Western blotting was taken to determine the contents of the relevant proteins in the nuclear transcription factor E2 related factor 2/heme oxygenase-1 (Nrf2/HO-1), mitogen-activated protein kinases (MAPK) and nuclear factor-kappa B (NF-κB) pathways. RESULTS The concentrations of 3, 30 and 300 μg/mL were optimized as low, medium and high concentrations of the WECR, respectively, and 1 μg/mL was selected as the optimal concentration of LPS to activate macrophages. The dose of the positive drug dexamethasone was 0.13 mg/mL. The WECR could not only inhibit LPS-induced cell differentiation and the overexpression of NO, IL-6, TNF-α, PGE2 and ROS but also promote the expression of Nrf2 and HO-1, and down-regulate the phosphorylation levels of ERK, JNK, p38 and p65. After the WECR treatment, the expression levels of iNOS and COX-2 mRNA and nuclear translocation of p65 were all inhibited. CONCLUSIONS The WECR exerts its anti-inflammatory activity by inhibiting the MAPK and NF-κB pathways, activating the Nrf2/HO-1 pathway and down-regulating inflammatory factor levels in a dose-dependent manner.
Collapse
Affiliation(s)
- Shuping Sun
- College of Pharmacy, Wannan Medical College, Wuhu, 241002, Anhui, China; Institute of Natural Daily Chemistry, Wannan Medical College, Wuhu, 241002, Anhui, China.
| | - Jiahao Zhang
- College of Pharmacy, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Hongxing Li
- College of Pharmacy, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yunyan Du
- College of Pharmacy, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Shengli Li
- The Fifth People's Hospital of Wuhu, Wuhu, 241000, Anhui, China.
| | - Anqi Li
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| | - Xiaoguo Suo
- College of Pharmacy, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yang Wang
- College of Pharmacy, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Qi Sun
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China
| |
Collapse
|