1
|
Park BS, Yoon J, Lee JM, Cho SH, Choi Y, Cho BK, Oh MK. Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production. Microb Cell Fact 2025; 24:2. [PMID: 39754105 PMCID: PMC11699682 DOI: 10.1186/s12934-024-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production. RESULTS The engineering targets included the deletion of the lacZ gene to prevent lactose metabolism interference, introduction of α-1,2-fucosyltransferase derived from the non-pathogenic strain, and optimization of the GDP-L-fucose biosynthesis pathway through the overexpression of manA and manC. These changes, coupled with improvements in lactose uptake and utilization through random mutagenesis, led to a high 2'-FL yield of 28.6 g/L in fed-batch fermentation, highlighting the potential of our metabolic engineering strategies on P. megaterium. CONCLUSIONS The GRAS strain P. megaterium ATCC 14581 was successfully engineered to overproduce 2'-FL, a valuable human milk oligosaccharide, through a series of genetic modifications and metabolic pathway optimizations. This work underscores the feasibility of using GRAS strains for the production of oligosaccharides, paving the way for safer and more efficient methods in biotechnological applications. Future studies could explore additional genetic modifications and optimization of fermentation conditions of the strain to further enhance 2'-FL yield and scalability.
Collapse
Affiliation(s)
- Bu-Soo Park
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jihee Yoon
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun-Min Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoojeong Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.
| |
Collapse
|
2
|
Ma X, Lu Y, Huang C, Guo Z, Xiang Z, Gao H, Zhao K, Zhao Y, Li Y. Analysis of human milk oligosaccharides from women with gestational diabetes mellitus. Anal Biochem 2025; 696:115689. [PMID: 39426696 DOI: 10.1016/j.ab.2024.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Human milk oligosaccharides (HMOs) are bioactive components which play an important role in infant health. HMO composition is vulnerable to changes of maternal conditions including lactation stages and maternal phenotypes. Pregnant diseases such as gestational diabetes mellitus (GDM) are commonly found in women during pragnancy, and may cause disorder in maternal physiological metabolism which is harmful to infants. Unfortunately, anlysis of oligosaccharides from women with GDM is limited. To address this issue, we analyzed HMO compositions and profiles in breast milk from women with GDM using an established 96-well plate permethylation platform and MALDI-TOF-MS. We enrolled 127 women with GDM, and investigated HMO abundances in colostrum, transition milk, and mature milk respectively. We found that GDM affected HMO compositions in breast milk, and the level of fucosylation became higher over the course of lactation for all the women with GDM. Interestingly, the relative abundances of fucosylated HMOs in different lactation stages were affected differentially by GDM, with the most pronounced effect in colostrum. In particular, the relative abundances of H3N1F1 and H3N1F2 sharply decreased over time, showing very low levels in late lactation. These differences in our findings need further investigation to develop optimal feeding for mothers with GDM.
Collapse
Affiliation(s)
- Xinyue Ma
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Yue Lu
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Chuncui Huang
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Zhendong Guo
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Zheng Xiang
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China
| | - Huanyu Gao
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China
| | - Keli Zhao
- Western Institute of Health Data Science, Chongqing, 400039, China
| | - Yao Zhao
- Children's Hospital of Chongqing Medical University, Chongqing, 400015, China.
| | - Yan Li
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Institute of Biophysics, 15 Datun Road, Beijing, 100101, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
3
|
Tseng HK, Lee TY, Chiang YC, Kuo WH, Tseng HW, Wang HK, Ni CK, Lin CC. Versatile Strategy for the Chemoenzymatic Synthesis of Branched Human Milk Oligosaccharides Containing the Lacto-N-Biose Motif. Angew Chem Int Ed Engl 2024:e202419021. [PMID: 39589188 DOI: 10.1002/anie.202419021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity. Although a few systematic synthetic strategies have emerged, many of them rely on labor-intensive chemical methodologies or exploit the substrate specificity of human N-acetylglucosaminyltransferase 2 (hGCNT2). In this study, we capitalized on the substrate promiscuities of hGCNT2 and bacterial glycosyltransferases (GTs) to construct a universal tetrasaccharide core in a highly efficient manner. This core was systematically and flexibly extended to generate diverse branched HMOs utilizing the promiscuity of bacterial GTs coupled with N-trifluoroacetyl glucosamine (GlcNTFA), which facilitated sugar chain elongation. The GlcNTFA residues were subsequently converted into various N-modified glucosamines through straightforward chemical manipulations to modulate the activities of additional GTs during glycan extension. These masked amino groups were ultimately reverted to N-acetyl groups, facilitating the synthesis of a broad range of asymmetric and multiantennary HMOs featuring LNB moieties, including many previously inaccessible structures.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Ching Chiang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
4
|
Mousa WK, Al Ali A. The Gut Microbiome Advances Precision Medicine and Diagnostics for Inflammatory Bowel Diseases. Int J Mol Sci 2024; 25:11259. [PMID: 39457040 PMCID: PMC11508888 DOI: 10.3390/ijms252011259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
The gut microbiome emerges as an integral component of precision medicine because of its signature variability among individuals and its plasticity, which enables personalized therapeutic interventions, especially when integrated with other multiomics data. This promise is further fueled by advances in next-generation sequencing and metabolomics, which allow in-depth high-precision profiling of microbiome communities, their genetic contents, and secreted chemistry. This knowledge has advanced our understanding of our microbial partners, their interaction with cellular targets, and their implication in human conditions such as inflammatory bowel disease (IBD). This explosion of microbiome data inspired the development of next-generation therapeutics for treating IBD that depend on manipulating the gut microbiome by diet modulation or using live products as therapeutics. The current landscape of artificial microbiome therapeutics is not limited to probiotics and fecal transplants but has expanded to include community consortia, engineered probiotics, and defined metabolites, bypassing several limitations that hindered rapid progress in this field such as safety and regulatory issues. More integrated research will reveal new therapeutic targets such as enzymes or receptors mediating interactions between microbiota-secreted molecules that drive or modulate diseases. With the shift toward precision medicine and the enhanced integration of host genetics and polymorphism in treatment regimes, the following key questions emerge: How can we effectively implement microbiomics to further personalize the treatment of diseases like IBD, leveraging proven and validated microbiome links? Can we modulate the microbiome to manage IBD by altering the host immune response? In this review, we discuss recent advances in understanding the mechanism underpinning the role of gut microbes in driving or preventing IBD. We highlight developed targeted approaches to reverse dysbiosis through precision editing of the microbiome. We analyze limitations and opportunities while defining the specific clinical niche for this innovative therapeutic modality for the treatment, prevention, and diagnosis of IBD and its potential implication in precision medicine.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- College of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University of Science and Technology, Abu Dhabi 64141, United Arab Emirates;
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 112612, United Arab Emirates
| |
Collapse
|
5
|
Chen Y, Wen Y, Zhao R, Zhu Y, Chen Z, Zhao C, Mu W. Human milk oligosaccharides in preventing food allergy: A review through gut microbiota and immune regulation. Int J Biol Macromol 2024; 278:134868. [PMID: 39163965 DOI: 10.1016/j.ijbiomac.2024.134868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Food allergy (FA) has increasingly attracted global attention in past decades. However, the mechanism and effect of FA are complex and varied, rendering it hard to prevention and management. Most of the allergens identified so far are macromolecular proteins in food and may have potential cross-reactions. Human milk oligosaccharides (HMOs) have been regarded as an ideal nutrient component for infants, as they can enhance the immunomodulatory capacity to inhibit the progress of FA. HMOs may intervene in the development of allergies by modifying gut microbiota and increasing specific short-chain fatty acids levels. Additionally, HMOs could improve the intestinal permeability and directly or indirectly regulate the balance of T helper cells and regulatory T cells by enhancing the inflammatory signaling pathways to combat FA. This review will discuss the influence factors of FA, key species of gut microbiota involved in FA, types of FA, and profiles of HMOs and provide evidence for future research trends to advance HMOs as potential therapeutic aids in preventing the progress of FA.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
| | - Runfan Zhao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhengxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Chen X, Gasaly N, Tang X, Walvoort MT, de Vos P. The effect of nerve cells on the intestinal barrier function and the influence of human milk oligosaccharides (hMOs) on the intestinal neuro-epithelial crosstalk. Curr Res Food Sci 2024; 9:100851. [PMID: 39314222 PMCID: PMC11417580 DOI: 10.1016/j.crfs.2024.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
The intestinal epithelium is an important gatekeeper of the human body by forming a barrier for the luminal content of the intestine. The barrier function is regulated by a complex crosstalk between different cell types, including cells from the enteric nervous system (ENS). ENS is considered to influence gastrointestinal processes and functions, but its direct effect on epithelial barrier function remains to be confirmed. To investigate the effect of nerve cells on the gut barrier function, an in vitro co-culture system was established in which T84 intestinal epithelial cells and SH-SY5Y nerve cells were seeded in ratios of 29:1 and 14:1. When the epithelial barrier was disrupted with the calcium ionophores A23187, we found that nerve cells exert a protective effect on A23187-induced disruption and that this protective effect is nerve cell concentration-dependent. This was demonstrated by rescuing effects on transepithelial electrical resistance (TEER) and upregulation of tight junction (TJ) protein expression. Furthermore, we studied whether similar rescuing effects could be achieved with the human milk oligosaccharides (hMOs) 2'-fucosyllactose (2'-FL) and 3-fucosyllactose (3-FL). Our results illustrate that in the presence of nerve cells 2'-FL and 3-FL do not have any additional rescuing effects, but that these hMOs can substitute the rescuing effects of nerve cells in the absence of nerve cells. Meanwhile, 2'-FL and 3-FL show different regulation effects on TJ expression. These findings provide valuable insights into potential therapeutic strategies for maintaining intestinal barrier integrity.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Naschla Gasaly
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Laboratory of Innate Immunity, Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Xin Tang
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marthe T.C. Walvoort
- Stratingh Institute for Chemistry, Department of Chemical Biology, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
7
|
Masi AC, Stewart CJ. Role of breastfeeding in disease prevention. Microb Biotechnol 2024; 17:e14520. [PMID: 38946112 PMCID: PMC11214977 DOI: 10.1111/1751-7915.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Human milk provides the infant with many bioactive factors, including immunomodulating components, antimicrobials and prebiotics, which modulate the infant microbiome and immune system maturation. As a result, breastfeeding can impact infant health from infancy, through adolescence, and into adulthood. From protecting the infant from infections, to reducing the risk of obesity, type 1 diabetes and childhood leukaemia, many positive health outcomes are observed in infants receiving breastmilk. For the mother, breastfeeding protects against postpartum bleeding and depression, increases weight loss, and long-term lowers the risk of type 2 diabetes, breast and ovarian cancer, and cardiovascular diseases. Beyond infants and mothers, the wider society is also impacted because of avoidable costs relating to morbidity and mortality derived from a lack of human milk exposure. In this review, Medline was used to search for relevant articles to discuss the health benefits of breastfeeding and its societal impact before exploring future recommendations to enhance our understanding of the mechanisms behind breastfeeding's positive effects and promote breastfeeding on a global scale.
Collapse
Affiliation(s)
- Andrea C. Masi
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
8
|
Pressley SR, McGill AS, Luu B, Atsumi S. Recent Advances in the Microbial Production of Human Milk Oligosaccharides. Curr Opin Food Sci 2024; 57:101154. [PMID: 39399461 PMCID: PMC11469638 DOI: 10.1016/j.cofs.2024.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Human milk oligosaccharides (HMOs) are naturally occurring, non-digestible sugars found in human milk. They have recently become a popular target for industrial synthesis due to their positive effects on the developing gut microbiome and immune system of infants. Microbial synthesis has shown great promise in driving down the cost of these sugars and making them more available for consumers and researchers. The application of common metabolic engineering techniques such as gene knockouts, gene overexpression, and expression of exogenous genes has enabled the rational design of whole-cell biocatalysts which can produce increasingly complex HMOs. Herein, we discuss how these strategies have been applied to produce a variety of sugars from sialylated to complex fucosylated HMOs. With increased availability of HMOs, more research can be done to understand their beneficial effects.
Collapse
Affiliation(s)
- Shannon R. Pressley
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
| | - Alex S. McGill
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Bryant Luu
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, Davis, CA, 95616, USA
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Crouch LI, Rodrigues CS, Bakshani CR, Tavares-Gomes L, Gaifem J, Pinho SS. The role of glycans in health and disease: Regulators of the interaction between gut microbiota and host immune system. Semin Immunol 2024; 73:101891. [PMID: 39388764 DOI: 10.1016/j.smim.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The human gut microbiota is home to a diverse collection of microorganisms that has co-evolved with the host immune system in which host-microbiota interactions are essential to preserve health and homeostasis. Evidence suggests that the perturbation of this symbiotic host-microbiome relationship contributes to the onset of major diseases such as chronic inflammatory diseases including Inflammatory Bowel Disease. The host glycocalyx (repertoire of glycans/sugar-chains at the surface of gut mucosa) constitutes a major biological and physical interface between the intestinal mucosa and microorganisms, as well as with the host immune system. Glycans are an essential niche for microbiota colonization and thus an important modulator of host-microorganism interactions both in homeostasis and in disease. In this review, we discuss the role of gut mucosa glycome as an instrumental pathway that regulates host-microbiome interactions in homeostasis but also in health to inflammation transition. We also discuss the power of mucosa glycosylation remodelling as an attractive preventive and therapeutic strategy to preserve gut homeostasis.
Collapse
Affiliation(s)
- Lucy I Crouch
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK.
| | - Cláudia S Rodrigues
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Cassie R Bakshani
- Department of Microbes, Infection and Microbiomes, College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Leticia Tavares-Gomes
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Joana Gaifem
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Salomé S Pinho
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
10
|
Renwick S, Rahimi K, Sejane K, Bertrand K, Chambers C, Bode L. Consistency and Variability of the Human Milk Oligosaccharide Profile in Repeat Pregnancies. Nutrients 2024; 16:643. [PMID: 38474771 DOI: 10.3390/nu16050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are a set of complex carbohydrates and the third largest solid component of human milk, after lactose and lipids. To date, over 150 HMOs have been identified and the diversity of structures produced by lactating women is influenced by maternal genetics as well as other maternal, infant, and environmental factors. While the concentrations of individual HMOs have been shown to vary between individuals and throughout the course of lactation, the variability of HMO concentration profiles following different pregnancies occurring in the same woman is presently unknown. As such, the objective of this study was to compare HMO concentrations in human milk samples provided by the same women (n = 34) following repeat pregnancies. We leveraged existing human milk samples and metadata from the UC San Diego Human Milk Research Biorepository (HMB) and measured the concentrations of the 19 most abundant HMOs using high-performance liquid chromatography with fluorescence detection (HPLC-FL). By assessing dissimilarities in HMO concentration profiles, as well as concentration trends in individual structures between pregnancies of each participant, we discovered that HMO profiles largely follow a highly personalized and predictable trajectory following different pregnancies irrespective of non-genetic influences. In conclusion, this is the first study to assess the interactions between parity and time following delivery on variations in HMO compositions.
Collapse
Affiliation(s)
- Simone Renwick
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA
| | - Kamand Rahimi
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kristija Sejane
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kerri Bertrand
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UC San Diego Mommy's Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, CA 92093, USA
| | - Christina Chambers
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UC San Diego Mommy's Milk Human Milk Research Biorepository, University of California San Diego, La Jolla, CA 92093, USA
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA 92093, USA
- Human Milk Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Lars Bode
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Mother-Milk-Infant Center of Research Excellence, University of California San Diego, La Jolla, CA 92093, USA
- Human Milk Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Peled S, Freilich S, Hanani H, Kashi Y, Livney YD. Next-generation prebiotics: Maillard-conjugates of 2'-fucosyllactose and lactoferrin hydrolysates beneficially modulate gut microbiome composition and health promoting activity in a murine model. Food Res Int 2024; 177:113830. [PMID: 38225111 DOI: 10.1016/j.foodres.2023.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
Current prebiotics are predominantly carbohydrates. However, great competition exists among gut microbes for the scarce protein in the colon, as most consumed protein is digested and absorbed in the small intestine. Herein we evaluated in-vivo novel next-generation prebiotics: protein-containing-prebiotics, for selectively-targeted delivery of protein to colonic probiotics, to boost their growth. This system is based on micellar-particles, composed of Maillard-glycoconjugates of 2'-Fucosyllactose (2'-FL, human-milk-oligosaccharide) shell, engulfing lactoferrin peptic-then-tryptic hydrolysate (LFH) core. This core-shell structure lowers protein-core digestibility, while the prebiotic glycans are hypothesized to serve as molecular-recognition ligands for selectively targeting probiotics. To study the efficacy of this novel prebiotic, we fed C57BL/6JRccHsd mice with either 2'-FL-LFH Maillard-glycoconjugates, unconjugated components (control), or saline (blank). Administration of 2'-FL-LFH significantly increased the levels of short-chain-fatty-acids (SCFAs)-producing bacterial families (Ruminococcaceae, Lachnospiraceae) and genus (Odoribacter) and the production of the health-related metabolites, SCFAs, compared to the unconjugated components and to saline. The SCFAs-producing genus Prevotella significantly increased upon 2'-FL-LFH consumption, compared to only moderate increase in the unconjugated components. Interestingly, the plasma-levels of inflammation-inducing lipopolysaccharides (LPS), which indicate increased gut-permeability, were significantly lower in the 2'-FL-LFH group compared to the unconjugated-components and the saline groups. We found that Maillard-glycoconjugates of 2'-FL-LFH can serve as novel protein-containing prebiotics, beneficially modulating gut microbial composition and its metabolic activity, thereby contributing to host health more effectively than the conventional carbohydrate-only prebiotics.
Collapse
Affiliation(s)
- Stav Peled
- Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Shay Freilich
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hila Hanani
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yechezkel Kashi
- Laboratory of Applied Genomics, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav D Livney
- Laboratory of Biopolymers for Food and Health, Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
12
|
Yang S, Cai J, Su Q, Li Q, Meng X. Human milk oligosaccharides combine with Bifidobacterium longum to form the "golden shield" of the infant intestine: metabolic strategies, health effects, and mechanisms of action. Gut Microbes 2024; 16:2430418. [PMID: 39572856 PMCID: PMC11587862 DOI: 10.1080/19490976.2024.2430418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Human milk oligosaccharides (HMOs) are the third most important nutrient in human milk and are the gold standard for infant nutrition. Due to the lack of an enzyme system capable of utilizing HMOs in the infant intestine, HMOs cannot be directly utilized. Instead, they function as natural prebiotics, participating in the establishment of the intestinal microbiota as a "bifidus factor." A crucial colonizer of the early intestine is Bifidobacterium longum (B. longum), particularly its subspecies B. longum subsp. infantis, which is the most active consumer of HMOs. However, due to the structural diversity of HMOs and the specificity of B. longum strains, studies on their synergy are limited. An in-depth investigation into the mechanisms of HMO utilization by B. longum is essential for applying both as synbiotics to promote early intestinal development in infants. This review describes the colonization advantages of B. longum in the infant intestinal tract and its metabolic strategies for HMOs. It also summarizes recent studies on the effect and mechanism of B. longum and HMOs in infant intestinal development directly or indirectly through the action of metabolites. In conclusion, further structural analysis of HMOs and a deeper understanding of the interactions between B. longum and HMOs, as well as clinical trials, are necessary to lay the foundation for future practical applications as synbiotics.
Collapse
Affiliation(s)
- Shuo Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Junwu Cai
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qian Su
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Qiaohui Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
13
|
Zuurveld M, Diks MAP, Kiliaan PCJ, Garssen J, Folkerts G, van’t Land B, Willemsen LEM. Butyrate interacts with the effects of 2'FL and 3FL to modulate in vitro ovalbumin-induced immune activation, and 2'FL lowers mucosal mast cell activation in a preclinical model for hen's egg allergy. Front Nutr 2023; 10:1305833. [PMID: 38174112 PMCID: PMC10762782 DOI: 10.3389/fnut.2023.1305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024] Open
Abstract
Background Early life provides a window of opportunity to prevent allergic diseases. With a prevalence of 0.5-2% in infants, hen's egg allergy is one of the most common food allergies. The immunomodulatory effects of human milk oligosaccharides (HMOs), 2'-fucosyllactose (2'FL), and 3-fucosyllactose (3FL) were studied in an in vitro mucosal immune model and an in vivo murine model for hen's egg (ovalbumin) allergy. Methods Intestinal epithelial cell (IEC)/dendritic cell (DC) and DC/T cell cocultures were used to expose IECs to ovalbumin (OVA) in an in vitro mucosal immune model. The effects of epithelial pre-incubation with 0.1% 2'FL or 3FL and/or 0.5 mM butyrate were studied. Three- to four-weeks-old female C3H/HeOuJ mice were fed AIN93G diets containing 0.1-0.5% 2'FL or 3FL 2 weeks before and during OVA sensitization and challenge. Allergic symptoms and systemic and local immune parameters were assessed. Results Exposing IECs to butyrate in vitro left the IEC/DC/T cell cross-talk unaffected, while 2'FL and 3FL showed differential immunomodulatory effects. In 3FL exposed IEC-DC-T cells, the secretion of IFNγ and IL10 was enhanced. This was observed upon pre-incubation of IECs with 2'FL and butyrate as well, but not 2'FL alone. The presence of butyrate did not affect OVA activation, but when combined with 3FL, an increase in IL6 release from DCs was observed (p < 0.001). OVA allergic mice receiving 0.5% 3FL diet had a lower %Th2 cells in MLNs, but the humoral response was unaltered compared to control mice. OVA-allergic mice receiving 0.1 or 0.5% 2'FL diets had lower serum levels of OVA-IgG2a (p < 0.05) or the mast cell marker mMCP1, in association with increased concentration of cecal short-chain fatty acids (SCFAs) (p < 0.05). Conclusion In vitro butyrate exposure promotes the development of a downstream type 1 and regulatory response observed after 2'FL exposure. 2'FL and 3FL differentially modulate ovalbumin-induced mucosal inflammation predominantly independent of butyrate. Mice receiving dietary 3FL during ovalbumin sensitization and challenge had lowered Th2 activation while the frequency of Treg cells was enhanced. By contrast, 2'FL improved the humoral immune response and suppressed mast cell activation in association with increased SCFAs production in the murine model for hen's egg allergy.
Collapse
Affiliation(s)
- M. Zuurveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - M. A. P. Diks
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P. C. J. Kiliaan
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - J. Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
- Danone Nutricia Research B.V, Utrecht, Netherlands
| | - G. Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - B. van’t Land
- Danone Nutricia Research B.V, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - L. E. M. Willemsen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
14
|
Shi J, Dong P, Liu C, Xu Y, Zheng M, Cheng L, Wang J, Raghavan V. Lactobacillus rhamnosus Probio-M9 alleviates OVA-sensitized food allergy through modulating gut microbiota and its metabolism. Food Funct 2023; 14:10784-10795. [PMID: 37982421 DOI: 10.1039/d3fo03321j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Over the past few decades, food allergy has continued to rise, significantly affecting our health, economy, and quality of life. However, current therapeutic strategies have limited efficacy and need to be improved. One alternative to prevent or reduce allergies is to modulate immunity and microbiota. Human milk (HM) could be considered a protective factor against food allergy, but how probiotics in human milk impact the susceptibility to food allergy remains unknown. Therefore, we studied the preventive impact of human milk Lactobacillus rhamnosus Probio-M9 on food allergy in ovalbumin (OVA)-sensitized mice. We studied the effects of oral administration of Probio-M9 on allergic signatures, immune response, gut microbiota, and metabolism. Oral therapeutic administration of live Probio-M9, but not heat-killed Probio-M9, significantly reduces OVA-specific IgE (OVA-sIgE), histamine, and mMCP-1 (mouse mast cell protease-1) levels in OVA-sensitized mice. Moreover, Probio-M9 supplementation reduced allergic inflammation and changes in the Th2/Th1 balance toward a dampened Th2 response. 16S rDNA sequencing analysis revealed an increased ratio of Firmicutes/Bacteroidota (F/B) and the relative abundance of short-chain fatty acid (SCFA)-producing Clostridia in the feces after Probio-M9 intake. Simultaneously, Probio-M9 significantly increased the levels of SCFAs and promoted the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inducing the expression of the antimicrobial peptides (AMPs) Reg3b and Reg3g. Our findings suggest that the use of Probio-M9 can be a potent strategy in food allergy prevention.
Collapse
Affiliation(s)
- Jialu Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Pengfei Dong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cheng Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Yan Xu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Mingzhu Zheng
- Department of Microbiology and Immunology School of Medicine, Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Lei Cheng
- Department of Otorhinolaryngology and Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jin Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Rd, Sainte-Anne-de-Bellevue, QC H9X3V9, Canada
| |
Collapse
|
15
|
Li X, Ning X, Rui B, Wang Y, Lei Z, Yu D, Liu F, Deng Y, Yuan J, Li W, Yan J, Li M. Alterations of milk oligosaccharides in mothers with gestational diabetes mellitus impede colonization of beneficial bacteria and development of RORγt + Treg cell-mediated immune tolerance in neonates. Gut Microbes 2023; 15:2256749. [PMID: 37741825 PMCID: PMC10519364 DOI: 10.1080/19490976.2023.2256749] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is an increasing public health concern that significantly increases the risk of early childhood allergic diseases. Altered maternal milk glycobiome may strongly affect gut microbiota and enteric-specific Treg cell-mediated development of immune tolerance in GDM infants. In this study, we found that, compared with healthy Chinese mothers, mothers with GDM had significantly lower levels of total and specific human milk oligosaccharides (HMOs) in their colostrum that subsequently increased with extension of lactation. This alteration in HMO profiles significantly delayed colonization of Lactobacillus and Bifidobacterium spp. in their breast-fed infants, resulting in a distinct gut microbial structure and metabolome. Further experiments in GDM mouse models indicated that decreased contents of milk oligosaccharides, mainly 3'-sialyllactose (3'-SL), in GDM maternal mice reduced colonization of bacteria, such as L. reuteri and L. johnsonii, in the neonatal gut, which impeded development of RORγt+ regulatory T (Treg) cell-mediated immune tolerance. Treatment of GDM neonates with 3'-SL, Lactobacillus reuteri (L. reuteri) and L. johnsonii promoted the proliferation of enteric Treg cells and expression of transcription factor RORγt, which may have contributed to compromising ovalbumin (OVA)-induced allergic responses. In vitro experiments showed that 3'-SL, metabolites of L. johnsonii, and lysates of L. reuteri stimulated differentiation of mouse RORγt+ Treg cells through multiple regulatory effects on Toll-like receptor, MAPK, p53, and NOD-like receptor signaling pathways. This study provides new ideas for the development of gut microbiota and immune tolerance in GDM newborns.
Collapse
Affiliation(s)
- Xinke Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Xixi Ning
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Binqi Rui
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Yushuang Wang
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Zengjie Lei
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Da Yu
- Department of Obstetrics, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Feitong Liu
- H&H Group, H&H Research, China Research and Innovation Center, Guangzhou, China
| | - Yanjie Deng
- Department of Obstetrics, Dalian Women and Children Medical Center (Group), Dalian, China
| | - Jieli Yuan
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Wenzhe Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jingyu Yan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Zhang Y, Zhang X, Liu H, Hou J, Liu M, Qi Q. Efficient production of 2'-fucosyllactose in unconventional yeast Yarrowia lipolytica. Synth Syst Biotechnol 2023; 8:716-723. [PMID: 38053583 PMCID: PMC10694633 DOI: 10.1016/j.synbio.2023.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
2'-Fucosyllactose (2'-FL) has great application value as a nutritional component and the whole cell biosynthesis of 2'-FL has become the focus of current research. Yarrowia lipolytica has great potential in oligosaccharide synthesis and large-scale fermentation. In this study, systematic engineering of Y. lipolytica for efficient 2'-FL production was performed. By fusing different protein tags, the synthesis of 2'-FL was optimized and the ubiquitin tag was demonstrated to be the best choice to increase the 2'-FL production. By iterative integration of the related genes, increasing the precursor supply, and promoting NADPH regeneration, the 2'-FL synthesis was further improved. The final 2'-FL titer, 41.10 g/L, was obtained in the strain F5-1. Our work reports the highest 2'-FL production in Y. lipolytica, and demonstrates that Y. lipolytica is an efficient microbial chassis for the synthesis of oligosaccharides.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xuejing Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Haiyan Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Mengmeng Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Weiser-Fuchs MT, Maggauer E, van Poppel MNM, Csapo B, Desoye G, Köfeler HC, Groselj-Strele A, Trajanoski S, Fluhr H, Obermayer-Pietsch B, Jantscher-Krenn E. Human Milk Oligosaccharides in Maternal Serum Respond to Oral Glucose Load and Are Associated with Insulin Sensitivity. Nutrients 2023; 15:4042. [PMID: 37764825 PMCID: PMC10534497 DOI: 10.3390/nu15184042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Pregnancy presents a challenge to maternal glucose homeostasis; suboptimal adaptations can lead to gestational diabetes mellitus (GDM). Human milk oligosaccharides (HMOs) circulate in maternal blood in pregnancy and are altered with GDM, suggesting influence of glucose homeostasis on HMOs. We thus assessed the HMO response to glucose load during an oral glucose tolerance test (OGTT) and investigated HMO associations with glucose tolerance/insulin sensitivity in healthy pregnant women. (2) Methods: Serum of 99 women, collected at 0 h, 1 h and 2 h during a 75 g OGTT at 24-28 gestational weeks was analyzed for HMOs (2'FL, 3'SLN, LDFT, 3'SL) by HPLC; plasma glucose, insulin and C-peptide were analyzed by standard biochemistry methods. (3) Results: Serum 3'SL concentrations significantly increased from fasting to 1 h after glucose load, while concentrations of the other HMOs were unaltered. Higher 3'SL at all OGTT time points was associated with a generally more diabetogenic profile, with higher hepatic insulin resistance (HOMA-IR), lower insulin sensitivity (Matsuda index) and higher insulin secretion (C-peptide index 1). (4) Conclusions: Rapid increase in serum 3'SL post-oral glucose load (fasted-fed transition) indicates utilization of plasma glucose, potentially for sialylation of lactose. Associations of sialylated HMOs with a more diabetogenic profile suggest sustained adaptations to impaired glucose homeostasis in pregnancy. Underlying mechanisms or potential consequences of observed HMO changes remain to be elucidated.
Collapse
Affiliation(s)
- Marie-Therese Weiser-Fuchs
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Elena Maggauer
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
| | - Mireille N. M. van Poppel
- Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria;
- BioTechMed, 8010 Graz, Austria;
| | - Bence Csapo
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Harald C. Köfeler
- BioTechMed, 8010 Graz, Austria;
- Core Facility Mass Spectrometry, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Groselj-Strele
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria; (A.G.-S.); (S.T.)
| | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research, Medical University of Graz, 8036 Graz, Austria; (A.G.-S.); (S.T.)
| | - Herbert Fluhr
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
| | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, 8036 Graz, Austria;
- Department of Obstetrics and Gynecology, Endocrinology Lab Platform, 8036 Graz, Austria
| | - Evelyn Jantscher-Krenn
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria; (M.-T.W.-F.); (G.D.); (E.J.-K.)
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, 8036 Graz, Austria
- BioTechMed, 8010 Graz, Austria;
| |
Collapse
|
18
|
Melekoglu E, Yılmaz B, Çevik A, Gökyıldız Sürücü Ş, Avcıbay Vurgeç B, Gözüyeşil E, Sharma H, Boyan N, Ozogul F. The Impact of the Human Milk Microbiota in the Prevention of Disease and Infant Health. Breastfeed Med 2023. [PMID: 37140562 DOI: 10.1089/bfm.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Background: Human milk is recognized as an ideal food for newborns and infants owing to the presence of various nutritive factors, including healthy bacteria. Aim/Objective: This review aimed to understand the effects of human milk microbiota in both the prevention of disease and the health of infants. Methods: Data were obtained from PubMed, Scopus, Web of Science, clinical trial registries, Dergipark, and Türk Atıf Dizini up to February 2023 without language restrictions. Results: It is considered that the first human milk microbiota ingested by the newborn creates the initial microbiome of the gut system, which in turn influences the development and maturation of immunity. Bacteria present in human milk modulate the anti-inflammatory response by releasing certain cytokines, protecting the newborn against certain infections. Therefore, certain bacterial strains isolated from human milk could serve as potential probiotics for various therapeutic applications. Conclusions: In this review, the origin and significance of human milk bacteria have been highlighted along with certain factors influencing the composition of human milk microbiota. In addition, it also summarizes the health benefits of human milk as a protective agent against certain diseases and ailments.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Ayseren Çevik
- Department of Midwifery, Cukurova University, Adana, Turkey
| | | | | | - Ebru Gözüyeşil
- Department of Midwifery, Cukurova University, Adana, Turkey
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Neslihan Boyan
- Department of Anatomy, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
19
|
Zhu H, Cai Y, Slimmen LJM, de Bruijn ACJM, van Rossum AMC, Folkerts G, Braber S, Unger WWJ. Galacto-Oligosaccharides as an Anti-Infective and Anti-Microbial Agent for Macrolide-Resistant and -Sensitive Mycoplasma pneumoniae. Pathogens 2023; 12:pathogens12050659. [PMID: 37242328 DOI: 10.3390/pathogens12050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The worldwide increase in the incidence of antibiotic resistance of the atypical bacterium Mycoplasma pneumoniae (MP) challenges the treatment of MP infections, especially in children. Therefore, alternative strategies for the treatment of MP infections are warranted. Galacto- and fructo-oligosaccharides (GOS and FOS) are a specific group of complex carbohydrates that were recently shown to possess direct anti-pathogenic properties. In this study, we assessed whether GOS and FOS exert anti-microbial and anti-infective effects against MP and, especially, macrolide-resistant MP (MRMP) in vitro. The MIC values of GOS for MP and MRMP were 4%. In contrast, the MIC values of FOS for both MP and MRMP were 16%. A time-kill kinetic assay showed that FOS possess bacteriostatic properties, while for GOS, a bactericidal effect against MP and MRMP was observed after 24 h at a concentration of 4x MIC. In co-cultures with human alveolar A549 epithelial cells, GOS killed adherent MP and MRMP and also concentration-dependently inhibited their adherence to A549 cells. Further, GOS suppressed (MR)MP-induced IL-6 and IL-8 in A549 cells. None of the aforementioned parameters were affected when FOS were added to these co-cultures. In conclusion, the anti-infective and anti-microbial properties of GOS could provide an alternative treatment against MRMP and MP infections.
Collapse
Affiliation(s)
- Hongzhen Zhu
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Yang Cai
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lisa J M Slimmen
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Adrianus C J M de Bruijn
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Annemarie M C van Rossum
- Department of Pediatrics, Division of Pediatric Infectious Diseases and Immunology, Erasmus MC, University Medical Center Rotterdam, Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wendy W J Unger
- Laboratory of Pediatrics, Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
20
|
Chen X, de Vos P. Structure-function relationship and impact on the gut-immune barrier function of non-digestible carbohydrates and human milk oligosaccharides applicable for infant formula. Crit Rev Food Sci Nutr 2023; 64:8325-8345. [PMID: 37035930 DOI: 10.1080/10408398.2023.2199072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Human milk oligosaccharides (hMOs) in mothers' milk play a crucial role in guiding the colonization of microbiota and gut-immune barrier development in infants. Non-digestible carbohydrates (NDCs) such as synthetic single hMOs, galacto-oligosaccharides (GOS), inulin-type fructans and pectin oligomers have been added to infant formula to substitute some hMOs' functions. HMOs and NDCs can modulate the gut-immune barrier, which is a multiple-layered functional unit consisting of microbiota, a mucus layer, gut epithelium, and the immune system. There is increasing evidence that the structures of the complex polysaccharides may influence their efficacy in modulating the gut-immune barrier. This review focuses on the role of different structures of individual hMOs and commonly applied NDCs in infant formulas in (i) direct regulation of the gut-immune barrier in a microbiota-independent manner and in (ii) modulation of microbiota composition and microbial metabolites of these polysaccharides in a microbiota-dependent manner. Both have been shown to be essential for guiding the development of an adequate immune barrier, but the effects are very dependent on the structural features of hMO or NDC. This knowledge might lead to tailored infant formulas for specific target groups.
Collapse
Affiliation(s)
- Xiaochen Chen
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
21
|
Rahman T, Sarwar PF, Potter C, Comstock SS, Klepac-Ceraj V. Role of human milk oligosaccharide metabolizing bacteria in the development of atopic dermatitis/eczema. Front Pediatr 2023; 11:1090048. [PMID: 37020647 PMCID: PMC10069630 DOI: 10.3389/fped.2023.1090048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/23/2023] [Indexed: 04/07/2023] Open
Abstract
Despite affecting up to 20% of infants in the United States, there is no cure for atopic dermatitis (AD), also known as eczema. Atopy usually manifests during the first six months of an infant's life and is one predictor of later allergic health problems. A diet of human milk may offer protection against developing atopic dermatitis. One milk component, human milk oligosaccharides (HMOs), plays an important role as a prebiotic in establishing the infant gut microbiome and has immunomodulatory effects on the infant immune system. The purpose of this review is to summarize the available information about bacterial members of the intestinal microbiota capable of metabolizing HMOs, the bacterial genes or metabolic products present in the intestinal tract during early life, and the relationship of these genes and metabolic products to the development of AD/eczema in infants. We find that specific HMO metabolism gene sets and the metabolites produced by HMO metabolizing bacteria may enable the protective role of human milk against the development of atopy because of interactions with the immune system. We also identify areas for additional research to further elucidate the relationship between the human milk metabolizing bacteria and atopy. Detailed metagenomic studies of the infant gut microbiota and its associated metabolomes are essential for characterizing the potential impact of human milk-feeding on the development of atopic dermatitis.
Collapse
Affiliation(s)
- Trisha Rahman
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Prioty F. Sarwar
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Cassie Potter
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| | - Sarah S. Comstock
- Department of Food Science & Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Vanja Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, United States
| |
Collapse
|
22
|
Lee JM, Park BS, Oh MK. Production of 2’-Fucosyllactose using ⍺1,2-fucosyltransferase from a GRAS bacterial strain. Enzyme Microb Technol 2023; 167:110232. [PMID: 37028251 DOI: 10.1016/j.enzmictec.2023.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/25/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
2'-Fucosyllactose (2'-FL) is a major oligosaccharide found in human breast milk. It is produced from GDP-L-fucose and D-lactose by ⍺1,2-fucosyltransferase (⍺1,2-fucT), but the enzyme has been identified mostly in pathogens. In this study, an ⍺1,2-fucT was isolated from a Generally Recognized as Safe (GRAS) Bacillus megaterium strain. The enzyme was successfully expressed in metabolically-engineered Escherichia coli. Furthermore, replacement of non-conserved amino acid residues with conserved ones in the protein led to an increase in the rate of 2'-FL production. As a result, fed-batch fermentation of E. coli produced 30 g/L of 2'-FL from glucose and lactose. Thus, the overproduction of 2'-FL using a novel enzyme from a GRAS bacteria strain was successfully demonstrated.
Collapse
Affiliation(s)
- Jun-Min Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, South Korea
| | - Bu-Soo Park
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, South Korea
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-763, South Korea.
| |
Collapse
|
23
|
Li R, Zhou Y, Xu Y. Comparative Analysis of Oligosaccharides in Breast Milk and Feces of Breast-Fed Infants by Using LC-QE-HF-MS: A Communication. Nutrients 2023; 15:nu15040888. [PMID: 36839244 PMCID: PMC9963387 DOI: 10.3390/nu15040888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Currently, it must be acknowledged that little is known about the quantity and make-up of oligosaccharides (OS) found in breast-fed babies' feces as well as their metabolic fate. In the present work, UPLC-QE-HF-MS was successfully adopted to identify the profiles of human milk oligosaccharides (HMOs) in the breast milk of four mothers and fecal OS in the feces of their breast-fed infant. There were significant variations and differences in both number and composition between HMOs and fecal OS. The early-life gastrointestinal microbiota metabolism may be triggered into the advanced breakdown, synthesis, bioconversion, or redesign of HMOs. The fate of HMOs during passage through the gastrointestinal tract may be profoundly informed by the comparison of OS between breast milk and fecal OS profiles. The characterization of fecal OS could be applied as a valuable tool for monitoring the gastrointestinal fate of HMOs and reflecting infant development at different stages of lactation. Further research on the gastrointestinal bioconversion of HMOs profiles is required, including secretor type and the lactation time of milk, as well as baby feeding.
Collapse
Affiliation(s)
- Rui Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, No. 38 Xueyuan Road, Beijing 100083, China
| | - Yalin Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
| | - Yajun Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, No. 38 Xueyuan Road, Beijing 100083, China
- PKUHSC-China Feihe Joint Research Institute of Nutrition and Healthy Lifespan Development, No. 38 Xueyuan Road, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-8280-2552
| |
Collapse
|
24
|
Zuurveld M, Ayechu-Muruzabal V, Folkerts G, Garssen J, van‘t Land B, Willemsen LEM. Specific Human Milk Oligosaccharides Differentially Promote Th1 and Regulatory Responses in a CpG-Activated Epithelial/Immune Cell Coculture. Biomolecules 2023; 13:biom13020263. [PMID: 36830632 PMCID: PMC9953370 DOI: 10.3390/biom13020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Proper early life immune development creates a basis for a healthy and resilient immune system, which balances immune tolerance and activation. Deviations in neonatal immune maturation can have life-long effects, such as development of allergic diseases. Evidence suggests that human milk oligosaccharides (HMOS) possess immunomodulatory properties essential for neonatal immune maturation. To understand the immunomodulatory properties of enzymatic or bacterial produced HMOS, the effects of five HMOS (2'FL, 3FL, 3'SL, 6'SL and LNnT), present in human milk have been studied. A PBMC immune model, the IEC barrier model and IEC/PBMC transwell coculture models were used, representing critical steps in mucosal immune development. HMOS were applied to IEC cocultured with activated PBMC. In the presence of CpG, 2'FL and 3FL enhanced IFNγ (p < 0.01), IL10 (p < 0.0001) and galectin-9 (p < 0.001) secretion when added to IEC; 2'FL and 3FL decreased Th2 cell development while 3FL enhanced Treg polarization (p < 0.05). IEC were required for this 3FL mediated Treg polarization, which was not explained by epithelial-derived galectin-9, TGFβ nor retinoic acid secretion. The most pronounced immunomodulatory effects, linking to enhanced type 1 and regulatory mediator secretion, were observed for 2'FL and 3FL. Future studies are needed to further understand the complex interplay between HMO and early life mucosal immune development.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| | - Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
| | - Belinda van‘t Land
- Danone Nutricia Research B.V., 3584 CT Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.Z.); (L.E.M.W.)
| |
Collapse
|
25
|
Belyaeva IA, Bombardirova EP, Turti TV. The Choice of Product for Mixed or Formula Feeding of Infant: Beneficial Properties of Goat’s Milk Formula. CURRENT PEDIATRICS 2022. [DOI: 10.15690/vsp.v21i6.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review summarizes the benefits of goat’s milk as the basis to produce adapted milk formulas according to relevant infants feeding issues. The characteristics of main nutrients of modern goat’s milk formulas are presented. A balanced protein composition enriched with β-palmitate, presence of prebiotics-oligosaccharides, natural nucleotides and probiotics advances these formulas closer to breast milk and provide their multipotent sanogenetic effects. The unique composition of goat’s milk formulas allows to ensure normal physical growth of a baby, induces tissue and systemic immunity via adequate intestinal microbiota formation, maintains normal functioning of gut-brain axis, that promotes vegetative and visceral disorders (due to functional digestive disorders) correction. Thus, it is possible to recommend goat’s milk formulas in cases of forced mixed or formula feeding of healthy infants and children with functional digestive disorders.
Collapse
Affiliation(s)
- Irina A. Belyaeva
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Morozovskaya Children’s City Hospital
| | - Elena P. Bombardirova
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery
| | - Tatiana V. Turti
- Research Institute of Pediatrics and Children’s Health in Petrovsky National Research Centre of Surgery; Pirogov Russian National Research Medical University; Research Institute for Healthcare Organization and Medical Management
| |
Collapse
|
26
|
Donovan SM, Abrams SA, Azad MB, Belfort MB, Bode L, Carlson SE, Dallas DC, Hettinga K, Järvinen K, Kim JH, Lebrilla CB, McGuire MK, Sela DA, Neu J. Summary of the joint National Institutes of Health and the Food and Drug Administration workshop titled "exploring the science surrounding the safe use of bioactive ingredients in infant formula: Considerations for an assessment framework". J Pediatr 2022; 255:30-41.e1. [PMID: 36463938 PMCID: PMC10121942 DOI: 10.1016/j.jpeds.2022.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/20/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Affiliation(s)
- Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL
| | - Steven A Abrams
- Department of Pediatrics Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada; Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA
| | - Susan E Carlson
- Department of Dietetics and Nutrition, Kansas University Medical Center and The University of Kansas, Kansas City, KS
| | - David C Dallas
- Department of Nutrition, Oregon State University, Corvallis, OR
| | - Kasper Hettinga
- Department of Food Sciences and Agrotechnology, Wageningen University, Wageningen, Netherlands
| | - Kirsi Järvinen
- Department of Pediatrics, Golisano Children's Hospital and University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Jae H Kim
- Perinatal Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH
| | | | | | - David A Sela
- Department of Food Science, University of Massachusetts, Amherst, Amherst, MA
| | - Josef Neu
- Department of Pediatrics, University of Florida, Gainesville, FL.
| |
Collapse
|
27
|
Cai Y, Folkerts G, Braber S. Non-Digestible Oligosaccharides: A Novel Treatment for Respiratory Infections? Nutrients 2022; 14:nu14235033. [PMID: 36501062 PMCID: PMC9736878 DOI: 10.3390/nu14235033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Emerging antimicrobial resistance in respiratory infections requires novel intervention strategies. Non-digestible oligosaccharides (NDOs) are a diverse group of carbohydrates with broad protective effects. In addition to promoting the colonization of beneficial gut microbiota and maintaining the intestinal homeostasis, NDOs act as decoy receptors, effectively blocking the attachment of pathogens on host cells. NDOs also function as a bacteriostatic agent, inhibiting the growth of specific pathogenic bacteria. Based on this fact, NDOs potentiate the actions of antimicrobial drugs. Therefore, there is an increasing interest in characterizing the anti-infective properties of NDOs. This focused review provides insights into the mechanisms by which representative NDOs may suppress respiratory infections by targeting pathogens and host cells. We summarized the most interesting mechanisms of NDOs, including maintenance of gut microbiota homeostasis, interference with TLR-mediated signaling, anti-oxidative effects and bacterial toxin neutralization, bacteriostatic and bactericidal effects, and anti-adhesion or anti-invasive properties. A detailed understanding of anti-infective mechanisms of NDOs against respiratory pathogens may contribute to the development of add-on therapy or alternatives to antimicrobials.
Collapse
Affiliation(s)
- Yang Cai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing 210009, China
- Correspondence: (Y.C.); (S.B.)
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (Y.C.); (S.B.)
| |
Collapse
|
28
|
Zuurveld M, Kiliaan PC, van Grinsven SE, Folkerts G, Garssen J, van't Land B, Willemsen LE. Ovalbumin-Induced Epithelial Activation Directs Monocyte-Derived Dendritic Cells to Instruct Type 2 Inflammation in T Cells Which Is Differentially Modulated by 2'-Fucosyllactose and 3-Fucosyllactose. J Innate Immun 2022; 15:222-239. [PMID: 36215948 PMCID: PMC10643896 DOI: 10.1159/000526528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Allergic sensitization starts with epithelial cell activation driving dendritic cells (DCs) to instruct T helper 2 (Th2) cell polarization. Food allergens trigger intestinal epithelial cell (IEC) activation. Human milk oligosaccharides may temper the allergic phenotype by shaping mucosal immune responses.We investigated in vitro mucosal immune development after allergen exposure by combining ovalbumin (OVA)-preexposed IEC with monocyte-derived DCs (OVA-IEC-DCs) and subsequent coculture of OVA-IEC-DCs with Th cells. IECs were additionally preincubated with 2'FL or 3FL.OVA activation increased IEC cytokine secretion. OVA-IEC-DCs instructed both IL13 (p < 0.05) and IFNγ (p < 0.05) secretion from Th cells. 2'FL and 3FL permitted OVA-induced epithelial activation, but 2'FL-OVA-IEC-DCs boosted inflammatory and regulatory T-cell development. 3FL-OVA-IEC lowered IL12p70 and IL23 in DCs and suppressed IL13 (p < 0.005) in T cells, while enhancing IL17 (p < 0.001) and IL10 (p < 0.005).These results show that OVA drives Th2- and Th1-type immune responses via activation of IECs in this model. 2'FL and 3FL differentially affect OVA-IEC-driven immune effects. 2'FL boosted overall T-cell OVA-IEC immunity via DC enhancing inflammatory and regulatory responses. 3FL-OVA-IEC-DCs silenced IL13, shifting the balance towards IL17 and IL10.This model demonstrates the contribution of IEC to OVA Th2-type immunity. 2'FL and 3FL modulate the OVA-induced activation in this novel model to study allergic sensitization.
Collapse
Affiliation(s)
- Marit Zuurveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Pien C.J. Kiliaan
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sophie E.L. van Grinsven
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Belinda van't Land
- Danone Nutricia Research, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Linette E.M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
29
|
Prevalence and Risk Factors for Allergic Rhinitis in China: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7165627. [PMID: 36193147 PMCID: PMC9525776 DOI: 10.1155/2022/7165627] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
The prevalence of allergic rhinitis (AR) has increased tremendously in the recent year in China. Evidence-based medicine to objectively evaluate the prevalence and risk factors for AR in China is urgently required. Toward this, we systematically searched four English and four Chinese databases to identify the literature on the same, from the year of website establishment until November 2021. A total of 51 studies were evaluated, and data were obtained through Stata 16 analysis. Overall pooled risk factors for adult AR were smoking (odds ratio [OR] = 1.89, 95% confidence interval [CI]: 1.25, 2.87), asthma (OR = 3.30, 95% CI: 1.48, 7.39), a family history of AR (OR = 3.17, 95% CI: 2.31, 4.34), a family history of asthma (OR = 3.99, 95% CI: 2.58, 6.16), drug allergy (OR = 1.62, 95% CI: 1.38, 1.89), food allergy (OR = 2.29, 95% CI: 1.39, 3.78), pollen allergy history (OR = 2.41, 95% CI: 1.67, 3.46), antibiotic use (OR = 2.08, 95% CI: 1.28, 3.36), occupational dust exposure (OR = 2.05, 95% CI: 1.70, 2.47), home renovation (OR = 1.73, 95% CI: 0.99, 3.02), and middle school education (OR = 1.99, 95% CI: 1.29, 3.06). Overall pooled risk factors for AR in children were passive smoking (OR = 1.70, 95% CI: 1.02, 2.82), asthma (OR = 3.26, 95% CI: 2.42, 4.39), a family history of AR (OR = 2.59, 95% CI: 2.07, 3.24), a family history of allergy (OR = 4.84, 95% CI: 3.22, 7.26), a history of allergic diseases (OR = 2.11, 95% CI: 1.52, 2.94), eczema(OR = 2.29, 95% CI: 1.36, 3.85), owning pets (OR = 1.56, 95% CI: 1.37, 1.77), eating seafood (OR = 1.30, 95% CI: 1.10, 1.55), boys (OR = 1.58, 95% CI: 1.43, 1.74), and breastfeeding (OR = 0.82, 95% CI: 0.55, 1.22). The results of our meta-analysis showed that the prevalence of allergy rhinitis was 19% (95% CI 14–25) among adults and 22% (95% CI 17–27) among children, with boys showing a higher prevalence than girls. The development of AR in China is associated with several factors, including allergic diseases (eczema, asthma, pollen allergy, and food allergy), a family history of allergy (AR, asthma, and other allergies), and dwelling and working environment (smoking or passive smoking, occupational dust exposure, and owning pets); conversely, breastfeeding can reduce the risk.
Collapse
|
30
|
Li J, Bi Y, Zheng Y, Cao C, Yu L, Yang Z, Chai W, Yan J, Lai J, Liang X. Development of high-throughput UPLC-MS/MS using multiple reaction monitoring for quantitation of complex human milk oligosaccharides and application to large population survey of secretor status and Lewis blood group. Food Chem 2022; 397:133750. [PMID: 35882165 DOI: 10.1016/j.foodchem.2022.133750] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/17/2022] [Accepted: 07/18/2022] [Indexed: 11/04/2022]
Abstract
Human milk oligosaccharides (HMOs) have attracted increasing attention due to the emerging evidence of their positive roles for infant's health. A high-throughput method for absolute quantitation of the complex HMOs including multiple isomeric structures is important but very challenging, due to the highly divers nature and wide variation in content of HMOs from different individuals. Here we used UPLC-MS-MRM in the negative-ion mode for accurate quantitation of 23 complex HMOs in just 15 min. The selected oligosaccharides are in their native forms and include neutral and sialylated, fucosylated and non-fucosylated, linear and branched, and secretor and Lewis phenotype indicators. The well validated method with good sensitivity, recovery and reproducibility was then applied to a large population quantitative survey of 251 Chinese mothers from five different ethnic groups (Han, Zhuang, Hui, Mongolian and Tibetan) living in different geographical regions for their secretor's status and Lewis phenotypes.
Collapse
Affiliation(s)
- Jiaqi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Bi
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yi Zheng
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Cuiyan Cao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China
| | - Long Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jianqiang Lai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
In silico analysis of the human milk oligosaccharide glycome reveals key enzymes of their biosynthesis. Sci Rep 2022; 12:10846. [PMID: 35760821 PMCID: PMC9237113 DOI: 10.1038/s41598-022-14260-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Human milk oligosaccharides (HMOs) form the third most abundant component of human milk and are known to convey several benefits to the neonate, including protection from viral and bacterial pathogens, training of the immune system, and influencing the gut microbiome. As HMO production during lactation is driven by enzymes that are common to other glycosylation processes, we adapted a model of mucin-type GalNAc-linked glycosylation enzymes to act on free lactose. We identified a subset of 11 enzyme activities that can account for 206 of 226 distinct HMOs isolated from human milk and constructed a biosynthetic reaction network that identifies 5 new core HMO structures. A comparison of monosaccharide compositions demonstrated that the model was able to discriminate between two possible groups of intermediates between major subnetworks, and to assign possible structures to several previously uncharacterised HMOs. The effect of enzyme knockouts is presented, identifying β-1,4-galactosyltransferase and β-1,3-N-acetylglucosaminyltransferase as key enzyme activities involved in the generation of the observed HMO glycosylation patterns. The model also provides a synthesis chassis for the most common HMOs found in lactating mothers.
Collapse
|
32
|
Gold MS, Quinn PJ, Campbell DE, Peake J, Smart J, Robinson M, O’Sullivan M, Vogt JK, Pedersen HK, Liu X, Pazirandeh-Micol E, Heine RG. Effects of an Amino Acid-Based Formula Supplemented with Two Human Milk Oligosaccharides on Growth, Tolerability, Safety, and Gut Microbiome in Infants with Cow's Milk Protein Allergy. Nutrients 2022; 14:nu14112297. [PMID: 35684099 PMCID: PMC9182596 DOI: 10.3390/nu14112297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/04/2022] Open
Abstract
This open-label, non-randomized, multicenter trial (Registration: NCT03661736) aimed to assess if an amino acid-based formula (AAF) supplemented with two human milk oligosaccharides (HMO) supports normal growth and is well tolerated in infants with a cow's milk protein allergy (CMPA). Term infants aged 1-8 months with moderate-to-severe CMPA were enrolled. The study formula was an AAF supplemented with 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT). Infants were fed the study formula for 4 months and were offered to remain on the formula until 12 months of age. Tolerance and safety were assessed throughout the trial. Out of 32 infants (mean age 18.6 weeks; 20 (62.5%) male), 29 completed the trial. During the 4-month principal study period, the mean weight-for-age Z score (WAZ) increased from -0.31 at the baseline to +0.28 at the 4-months' follow-up. Linear and head growth also progressed along the WHO child growth reference, with a similar small upward trend. The formula was well tolerated and had an excellent safety profile. When comparing the microbiome at the baseline to the subsequent visits, there was a significant on-treatment enrichment in HMO-utilizing bifidobacteria, which was associated with a significant increase in fecal short-chain fatty acids. In addition, we observed a significant reduction in the abundance of fecal Proteobacteria, suggesting that the HMO-supplemented study formula partially corrected the gut microbial dysbiosis in infants with CMPA.
Collapse
Affiliation(s)
- Michael S. Gold
- Department of Allergy & Immunology, Women’s and Children’s Hospital, University of Adelaide, Adelaide, SA 5006, Australia;
- Correspondence:
| | - Patrick J. Quinn
- Department of Allergy & Immunology, Women’s and Children’s Hospital, University of Adelaide, Adelaide, SA 5006, Australia;
| | - Dianne E. Campbell
- Department of Allergy & Clinical Immunology, Children’s Hospital at Westmead, University of Sydney, Sydney, NSW 2145, Australia;
| | - Jane Peake
- Queensland Paediatric Immunology and Allergy Service, Queensland Children’s Hospital, University of Queensland, South Brisbane, QLD 4101, Australia;
| | - Joanne Smart
- Paediatric Allergy Services, Epworth Hospital, Richmond, VIC 3121, Australia;
| | - Marnie Robinson
- Melbourne Allergy Centre & Children’s Specialists Medical Group, Parkville, VIC 3152, Australia;
| | - Michael O’Sullivan
- Department of Immunology, Perth Children’s Hospital, Nedlands, WA 6009, Australia
| | | | | | - Xiaoqiu Liu
- Biostatistics and Data Science Division, The George Institute for Global Health, University of New South Wales, Sydney, NSW 2042, Australia;
| | | | - Ralf G. Heine
- Nestlé Health Science, CH-1800 Vevey, Switzerland; (E.P.-M.); (R.G.H.)
| |
Collapse
|
33
|
Abstract
Secretory immunoglobulin A (SIgA) in human milk plays a central role in complex maternal-infant interactions that influence long-term health outcomes. Governed by genetics and maternal microbial exposure, human milk SIgA shapes both the microbiota and immune system of infants. Historically, SIgA-microbe interactions have been challenging to unravel due to their dynamic and personalized nature, particularly during early life. Recent advances have helped to clarify how SIgA acts beyond simple pathogen clearance to help guide and constrain a healthy microbiota, promote tolerance, and influence immune system development. In this review, we highlight these new findings in the context of the critical early-life window and propose outstanding areas of study that will be key to harnessing the benefits of SIgA to support healthy immune development during infancy.
Collapse
|
34
|
Liu F, He S, Yan J, Yan S, Chen J, Lu Z, Zhang B, Lane J. Longitudinal changes of human milk oligosaccharides, breastmilk microbiome and infant gut microbiome are associated with maternal characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Feitong Liu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Shiting He
- H&H Group Global Research and Technology Center Guangzhou 510700 China
- College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China
| | - Jingyu Yan
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Shuyuan Yan
- Child Health Care Center Changsha Hospital for Maternal and Child Care Changsha 410007 China
| | - Juchun Chen
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Zerong Lu
- H&H Group Global Research and Technology Center Guangzhou 510700 China
| | - Bin Zhang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jonathan Lane
- H&H Group Global Research and Technology Center Cork P61 C996 Ireland
| |
Collapse
|
35
|
Li Z, Zhu Y, Ni D, Zhang W, Mu W. Occurrence, functional properties, and preparation of 3-fucosyllactose, one of the smallest human milk oligosaccharides. Crit Rev Food Sci Nutr 2022; 63:9364-9378. [PMID: 35438024 DOI: 10.1080/10408398.2022.2064813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human milk oligosaccharides (HMOs) are receiving wide interest and high attention due to their health benefits, especially for newborns. The HMOs-fortified products are expected to mimic human milk not only in the kinds of added oligosaccharides components but also the appropriate proportion between these components, and further provide the nutrition and physiological effects of human milk to newborns as closely as possible. In comparison to intensively studied 2'-fucosyllactose (2'-FL), 3-fucosyllactose (3-FL) has less attention in almost all respects. Nerveless, 3-FL naturally occurs in breast milk and increases roughly over the course of lactation with a nonnegligible content, and plays an irreplaceable role in human milk and delivers functional properties to newborns. According to the safety evaluation, 3-FL shows no acute oral toxicity, genetic toxicity, and subchronic toxicity. It has been approved as generally recognized as safe (GRAS). Biological production of 3-FL can be realized by enzymatic and cell factory approaches. The α1,3- or α1,3/4-fucosyltransferase is the key enzyme for 3-FL biosynthesis. Various metabolic engineering strategies have been applied to enhance 3-FL yield using cell factory approach. In conclusion, this review gives an overview of the recent scientific literatures regarding occurrence, bioactive properties, safety evaluation, and biotechnological preparation of 3-FL.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Abstract
The developing gut microbiome in infancy plays a key role in shaping the host immune system and metabolic state, and human milk is the main factor influencing its composition. Human milk does not only serve to feed the baby, but also to help the new-born adapt to its new environment and microbial exposures. Human milk protects the infant by providing multiple bioactive molecules, including human milk oligosaccharides (HMOs), which are the third most abundant solid component after lipids and lactose. The infant is unable to digest HMOs, so they reach the small and large intestines intact where they have many roles, including acting as prebiotics. Bifidobacterium spp. are the main, but not the only, commensals equipped with genes for HMO degradation. In this review we will outline the HMOs structures and functions, list the genes needed for their digestion, and describe the main strategies adopted by bacteria for their utilization.
Collapse
Affiliation(s)
- Andrea C Masi
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, 3rd Floor Leech Building, Newcastle NE2 4HH, UK
| | - Christopher J Stewart
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, 3rd Floor Leech Building, Newcastle NE2 4HH, UK
| |
Collapse
|
37
|
Rubio-Del-Campo A, Gozalbo-Rovira R, Moya-Gonzálvez EM, Alberola J, Rodríguez-Díaz J, Yebra MJ. Infant gut microbiota modulation by human milk disaccharides in humanized microbiome mice. Gut Microbes 2022; 13:1-20. [PMID: 33938391 PMCID: PMC8096338 DOI: 10.1080/19490976.2021.1914377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human milk glycans present a unique diversity of structures that suggest different mechanisms by which they may affect the infant microbiome development. A humanized mouse model generated by infant fecal transplantation was utilized here to evaluate the impact of fucosyl-α1,3-GlcNAc (3FN), fucosyl-α1,6-GlcNAc, lacto-N-biose (LNB) and galacto-N-biose on the fecal microbiota and host-microbiota interactions. 16S rRNA amplicon sequencing showed that certain bacterial genera significantly increased (Ruminococcus and Oscillospira) or decreased (Eubacterium and Clostridium) in all disaccharide-supplemented groups. Interestingly, cluster analysis differentiates the consumption of fucosyl-oligosaccharides from galactosyl-oligosaccharides, highlighting the disappearance of Akkermansia genus in both fucosyl-oligosaccharides. An increment of the relative abundance of Coprococcus genus was only observed with 3FN. As well, LNB significantly increased the relative abundance of Bifidobacterium, whereas the absolute levels of this genus, as measured by quantitative real-time PCR, did not significantly increase. OTUs corresponding to the species Bifidobacterium longum, Bifidobacterium adolescentis and Ruminococcus gnavus were not present in the control after the 3-week intervention, but were shared among the donor and specific disaccharide groups, indicating that their survival is dependent on disaccharide supplementation. The 3FN-feeding group showed increased levels of butyrate and acetate in the colon, and decreased levels of serum HDL-cholesterol. 3FN also down-regulated the pro-inflammatory cytokine TNF-α and up-regulated the anti-inflammatory cytokines IL-10 and IL-13, and the Toll-like receptor 2 in the large intestine tissue. The present study revealed that the four disaccharides show efficacy in producing beneficial compositional shifts of the gut microbiota and in addition, the 3FN demonstrated physiological and immunomodulatory roles.
Collapse
Affiliation(s)
- Antonio Rubio-Del-Campo
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Gozalbo-Rovira
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Eva M. Moya-Gonzálvez
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain
| | - Juan Alberola
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jesús Rodríguez-Díaz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María J. Yebra
- Laboratorio de Bacterias Lácticas y Probióticos, Departamento de Biotecnología de Alimentos, IATA-CSIC, Paterna, Spain,CONTACT María J. Yebra Laboratorio De Bacterias Lácticas Y Probióticos, Departamento De Biotecnología De Alimentos, IATA-CSIC, Agustín Escardino 7, 46980Paterna, Spain
| |
Collapse
|
38
|
Jang KB, Kim SW. Role of milk carbohydrates in intestinal health of nursery pigs: a review. J Anim Sci Biotechnol 2022; 13:6. [PMID: 34983676 PMCID: PMC8729129 DOI: 10.1186/s40104-021-00650-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
39
|
Mortaz E, Nomani M, Adcock I, Folkerts G, Garssen J. Galactooligosaccharides (GOS) and 2′-fucosyllactose (2′-FL) can directly suppress growth of specific pathogenic microbes and impact phagocytosis of neutrophils. Nutrition 2022; 96:111601. [DOI: 10.1016/j.nut.2022.111601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 11/16/2022]
|
40
|
Zeinali LI, Giuliano S, Lakshminrusimha S, Underwood MA. Intestinal Dysbiosis in the Infant and the Future of Lacto-Engineering to Shape the Developing Intestinal Microbiome. Clin Ther 2021; 44:193-214.e1. [PMID: 34922744 DOI: 10.1016/j.clinthera.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/06/2021] [Accepted: 11/12/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE The goal of this study was to review the role of human milk in shaping the infant intestinal microbiota and the potential of human milk bioactive molecules to reverse trends of increasing intestinal dysbiosis and dysbiosis-associated diseases. METHODS This narrative review was based on recent and historic literature. FINDINGS Human milk immunoglobulins, oligosaccharides, lactoferrin, lysozyme, milk fat globule membranes, and bile salt-stimulating lipase are complex multifunctional bioactive molecules that, among other important functions, shape the composition of the infant intestinal microbiota. IMPLICATIONS The co-evolution of human milk components and human milk-consuming commensal anaerobes many thousands of years ago resulted in a stable low-diversity infant microbiota. Over the past century, the introduction of antibiotics and modern hygiene practices plus changes in the care of newborns have led to significant alterations in the intestinal microbiota, with associated increases in risk of dysbiosis-associated disease. A better understanding of mechanisms by which human milk shapes the intestinal microbiota of the infant during a vulnerable period of development of the immune system is needed to alter the current trajectory and decrease intestinal dysbiosis and associated diseases.
Collapse
Affiliation(s)
- Lida I Zeinali
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | | | | | - Mark A Underwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
41
|
Taylor M, Pillaye J, Horsnell WGC. Inherent maternal type 2 immunity: Consequences for maternal and offspring health. Semin Immunol 2021; 53:101527. [PMID: 34838445 DOI: 10.1016/j.smim.2021.101527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
An inherent elevation in type 2 immunity is a feature of maternal and offspring immune systems. This has diverse implications for maternal and offspring biology including influencing success of pregnancy, offspring immune development and maternal and offspring ability to control infection and diseases such as allergies. In this review we provide a broad insight into how this immunological feature of pregnancy and early life impacts both maternal and offspring biology. We also suggest how understanding of this axis of immune influence is and may be utilised to improve maternal and offspring health.
Collapse
Affiliation(s)
- Matthew Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, The Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Jamie Pillaye
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Gordon Charles Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
42
|
Fabiano V, Indrio F, Verduci E, Calcaterra V, Pop TL, Mari A, Zuccotti GV, Cullu Cokugras F, Pettoello-Mantovani M, Goulet O. Term Infant Formulas Influencing Gut Microbiota: An Overview. Nutrients 2021; 13:4200. [PMID: 34959752 PMCID: PMC8708119 DOI: 10.3390/nu13124200] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/05/2023] Open
Abstract
Intestinal colonization of the neonate is highly dependent on the term of pregnancy, the mode of delivery, the type of feeding [breast feeding or formula feeding]. Postnatal immune maturation is dependent on the intestinal microbiome implementation and composition and type of feeding is a key issue in the human gut development, the diversity of microbiome, and the intestinal function. It is well established that exclusive breastfeeding for 6 months or more has several benefits with respect to formula feeding. The composition of the new generation of infant formulas aims in mimicking HM by reproducing its beneficial effects on intestinal microbiome and on the gut associated immune system (GAIS). Several approaches have been developed currently for designing new infant formulas by the addition of bioactive ingredients such as human milk oligosaccharides (HMOs), probiotics, prebiotics [fructo-oligosaccharides (FOSs) and galacto-oligosaccharides (GOSs)], or by obtaining the so-called post-biotics also known as milk fermentation products. The aim of this article is to guide the practitioner in the understanding of these different types of Microbiota Influencing Formulas by listing and summarizing the main concepts and characteristics of these different models of enriched IFs with bioactive ingredients.
Collapse
Affiliation(s)
- Valentina Fabiano
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Valeria Calcaterra
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| | - Tudor Lucian Pop
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Second Paediatric Clinic, Department of Mother and Child, University of Medicine and Pharmacy Iuliu Hatieganu, 400177 Cluj-Napoca, Romania
| | - Alessandra Mari
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Gian Vincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università degli Studi di Milano, 20154 Milan, Italy; (V.F.); (E.V.); (V.C.); (A.M.); (G.V.Z.)
| | - Fugen Cullu Cokugras
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Paediatric Gastroenterology, Hepatology and Nutrition, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34000, Turkey
| | - Massimo Pettoello-Mantovani
- European Paediatric Association/Union of National European Paediatric Societies and Associations, 10115 Berlin, Germany; (T.L.P.); (F.C.C.); (M.P.-M.)
- Department of Pediatrics, Scientific Institute ‘Casa Sollievo della Sofferenza’, University of Foggia, 71122 Foggia, Italy
- Association pour l’Activité et la Recherche Scìentifiques, EPA-UNEPSA/ARS, 2000 Neuchâtel, Switzerland
| | - Olivier Goulet
- Department of Paediatric Gastroenterology, and Nutrition, Intestinal Failure Rehabilitation Centre, National Reference Centre for Rare Digestive Diseases, Necker-Enfants Malades Hospital, Paris Centre University and Paris-Descartes School of Medicine, 75000 Paris, France;
| |
Collapse
|
43
|
Hoang MP, Samuthpongtorn J, Seresirikachorn K, Snidvongs K. Prolonged breastfeeding and protective effects against the development of allergic rhinitis: a systematic review and meta-analysis. Rhinology 2021; 60:82-91. [PMID: 34783797 DOI: 10.4193/rhin21.274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND There is insufficient evidence to confirm the protective effects of prolonged breastfeeding against the development of allergic rhinitis (AR). METHODOLOGY A systematic review and meta-analysis was performed to assess the associations between prolonged breastfeeding and AR symptoms later in life. Comparisons were conducted between breastfeeding durations less than 6 months and 6 months or more and between less than 12 months and 12 months or more. Exclusive breastfeeding and nonexclusive breastfeeding were analysed separately. Outcomes were risks of AR development later in life. RESULTS Twenty-three observational studies (161,611 children, age 2-18 years, 51.50% male) were included. Two studies (9%) were with high quality. Both exclusive and nonexclusive prolonged breastfeeding (6 months or more) decreased the risk of AR. The long-term (12 months or more) nonexclusive breastfeeding lowered the likelihood of AR compared to the 12 months or fewer. The long-term exclusive breastfeeding did not show the same protective effect; however, this result was restricted to only one study. CONCLUSIONS Exclusive breastfeeding and nonexclusive breastfeeding for 6 months or more may have protective effects against the development of AR up to 18 years of age. The findings should be interpreted with caution given the limitation of low-quality observational studies.
Collapse
Affiliation(s)
- M P Hoang
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand.,Department of Otolaryngology, Hue University of Medicine and Pharmacy, Hue University, Vietnam
| | - J Samuthpongtorn
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - K Seresirikachorn
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - K Snidvongs
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Endoscopic Nasal and Sinus Surgery Excellent Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
44
|
Sibeko L, Johns T, Cordeiro LS. Traditional plant use during lactation and postpartum recovery: Infant development and maternal health roles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114377. [PMID: 34192598 DOI: 10.1016/j.jep.2021.114377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/11/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Evidence of phytochemical roles in infant development and maternal recovery offers insights into beneficial functions of traditional plant use during lactation and the postpartum period. Ethnopharmacological research has relevance to global priorities on maternal and child health, to understanding origins and determinants of human self-medication, and for reconciling traditional postpartum practices and mainstream healthcare. AIM OF THE STUDY Present emerging evidence, within evolutionary and socio-cultural contexts, on the role of maternal consumption on transfer of phytochemicals into breast milk with impacts on maternal and child health, and on infant development. Establish current state of knowledge and an ethnopharmacological research agenda that is attentive to cross-cultural and regional differences in postpartum plant use. MATERIALS AND METHODS An extensive literature review using Medline, Scopus, and Web of Science focused on traditional and contemporary use and socio-cultural context, as well as physiological, pharmacological, toxicological, and behavioral activities of plants used medicinally by women during postpartum recovery and lactation. RESULTS The most widely reported postpartum plants show antimicrobial, anti-inflammatory, immunological, and neurophysiological activities, with low toxicity. Phytochemicals transfer from maternal consumption into breast milk in physiological concentrations, while animal studies demonstrate immunomodulation and other actions of medicinal plants during lactation. Reporting on the use and diverse traditional knowledge of women about plants during the postpartum period is obscured by the marginal place of obstetric issues and by gender biases in ethnobotanical research. In many contemporary contexts use is prejudiced by precautionary risk warnings in health literature and practice that confound lactation with pregnancy. CONCLUSIONS Although systematic investigation of postpartum plant use is lacking, known pharmacological activities support potential benefits on infant development and maternal health with immediate and long-term consequences in relation to allergic, inflammatory, autoimmune, and other diseases. An ethnopharmacological agenda focused on the perinatal period requires directed methodologies and a regional approach in relation to culturally-specific knowledge and practices, traditional plant use, and local health needs. Testing the hypothesis that phytochemicals transferred from medicinal plants into breast milk impact the human immune system and other aspects of infant development requires extended analysis of phytochemicals in human milk and infant lumen and plasma, as well as effects on gastrointestinal and milk microbiome.
Collapse
Affiliation(s)
- Lindiwe Sibeko
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Timothy Johns
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, QC, H9X 3V9, Canada.
| | - Lorraine S Cordeiro
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
45
|
Sekerel BE, Bingol G, Cullu Cokugras F, Cokugras H, Kansu A, Ozen H, Tamay Z. An Expert Panel Statement on the Beneficial Effects of Human Milk Oligosaccharides (HMOs) in Early Life and Potential Utility of HMO-Supplemented Infant Formula in Cow's Milk Protein Allergy. J Asthma Allergy 2021; 14:1147-1164. [PMID: 34594114 PMCID: PMC8478436 DOI: 10.2147/jaa.s323734] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
This review by pediatric gastroenterology and allergy-immunology experts aimed to address the biological roles of human milk oligosaccharides (HMOs) and the potential utility of HMOs in prevention of allergy with particular emphasis on cow’s milk protein allergy (CMPA). The participating experts consider HMOs amongst the most critical bioactive components of human milk, which act as antimicrobials and antivirals by preventing pathogen adhesion to epithelial cells, as intestinal epithelial cell modulators by enhancing maturation of intestinal mucosa and intestinal epithelial barrier function, as prebiotics by promoting healthy microbiota composition and as immunomodulators by modulating immune cells indirectly and directly. Accordingly, the participating experts consider the proposed link between HMOs and prevention of allergy to be primarily based on the impact of HMO on gut microbiota, intestinal mucosal barrier, immunomodulation and immune maturation. Along with the lower risk of respiratory and gastrointestinal infections, HMO-supplemented formulas seem to be promising alternatives in the management of CMPA. Nonetheless, the effects of individual as well as complex mixtures of HMO in terms of clear clinical and immunological effects and tolerance development need to be further explored to fully realize the immunomodulatory mechanisms and the potential for HMOs in prevention of allergic diseases and CMPA.
Collapse
Affiliation(s)
- Bulent Enis Sekerel
- Division of Pediatric Allergy, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gulbin Bingol
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Acibadem Mehmet Ali Aydinlar University School of Medicine, Istanbul, Turkey
| | - Fugen Cullu Cokugras
- Division of Pediatric Gastroenterology, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Haluk Cokugras
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul University Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - Aydan Kansu
- Division of Pediatric Gastroenterology, Department of Pediatrics, Ankara University School of Medicine, Ankara, Turkey
| | - Hasan Ozen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Zeynep Tamay
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
46
|
Toutounchi NS, Braber S, Hogenkamp A, Varasteh S, Cai Y, Wehkamp T, Tims S, Leusink-Muis T, van Ark I, Wiertsema S, Stahl B, Kraneveld AD, Garssen J, Folkerts G, van’t Land B. Human Milk Oligosaccharide 3'-GL Improves Influenza-Specific Vaccination Responsiveness and Immunity after Deoxynivalenol Exposure in Preclinical Models. Nutrients 2021; 13:3190. [PMID: 34579070 PMCID: PMC8466816 DOI: 10.3390/nu13093190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023] Open
Abstract
Deoxynivalenol (DON), a highly prevalent mycotoxin food contaminant, is known to have immunotoxic effects. In the current study, the potential of dietary interventions with specific mixtures of trans-galactosyl-oligosaccharides (TOS) to alleviate these effects were assessed in a murine influenza vaccination model. Vaccine-specific immune responses were measured in C57Bl/6JOlaHsd mice fed diets containing DON, TOS or a combination, starting 2 weeks before the first vaccination. The direct effects of TOS and its main oligosaccharide, 3'-galactosyl-lactose (3'-GL), on DON-induced damage were studied in Caco-2 cells, as an in vitro model of the intestinal epithelial barrier. Exposure to DON significantly reduced vaccine-specific immune responses and the percentages of Tbet+ Th1 cells and B cells in the spleen. DON significantly altered epithelial structure and integrity in the ileum and reduced the SCFA levels in the cecum. Adding TOS into DON-containing diets significantly improved vaccine-specific immune responses, restored the immune cell balance in the spleen and increased SCFA concentrations in the cecum. Incubating Caco-2 cells with TOS and 3'-GL in vitro further confirmed their protective effects against DON-induced barrier disruption, supporting immune modulation. Overall, dietary intervention with TOS can attenuate the adverse effects of DON on Th1-mediated immune responses and gut homeostasis. These beneficial properties might be linked to the high levels of 3'-GL in TOS.
Collapse
Affiliation(s)
- Negisa Seyed Toutounchi
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Saskia Braber
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Astrid Hogenkamp
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Soheil Varasteh
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Yang Cai
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Tjalling Wehkamp
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Sebastian Tims
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Thea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Ingrid van Ark
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Selma Wiertsema
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Bernd Stahl
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Aletta D. Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; (N.S.T.); (S.B.); (A.H.); (S.V.); (Y.C.); (T.L.-M.); (I.v.A.); (B.S.); (A.D.K.); (J.G.); (G.F.)
| | - Belinda van’t Land
- Danone Nutricia Research, 3584 CG Utrecht, The Netherlands; (T.W.); (S.T.); (S.W.)
- Center of Translational Immunology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
47
|
Human Milk Oligosaccharides: A Comprehensive Review towards Metabolomics. CHILDREN-BASEL 2021; 8:children8090804. [PMID: 34572236 PMCID: PMC8465502 DOI: 10.3390/children8090804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022]
Abstract
Human milk oligosaccharides (HMOs) are the third most represented component in breast milk. They serve not only as prebiotics but they exert a protective role against some significant neonatal pathologies such as necrotizing enterocolitis. Furthermore, they can program the immune system and consequently reduce allergies and autoimmune diseases’ incidence. HMOs also play a crucial role in brain development and in the gut barrier’s maturation. Moreover, the maternal genetic factors influencing different HMO patterns and their modulation by the interaction and the competition between active enzymes have been widely investigated in the literature, but there are few studies concerning the role of other factors such as maternal health, nutrition, and environmental influence. In this context, metabolomics, one of the newest “omics” sciences that provides a snapshot of the metabolites present in bio-fluids, such as breast milk, could be useful to investigate the HMO content in human milk. The authors performed a review, from 2012 to the beginning of 2021, concerning the application of metabolomics to investigate the HMOs, by using Pubmed, Researchgate and Scopus as source databases. Through this technology, it is possible to know in real-time whether a mother produces a specific oligosaccharide, keeping into consideration that there are other modifiable and unmodifiable factors that influence HMO production from a qualitative and a quantitative point of view. Although further studies are needed to provide clinical substantiation, in the future, thanks to metabolomics, this could be possible by using a dipstick and adding the eventual missing oligosaccharide to the breast milk or formula in order to give the best and the most personalized nutritional regimen for each newborn, adjusting to different necessities.
Collapse
|
48
|
Siziba LP, Mank M, Stahl B, Gonsalves J, Blijenberg B, Rothenbacher D, Genuneit J. Human Milk Oligosaccharide Profiles over 12 Months of Lactation: The Ulm SPATZ Health Study. Nutrients 2021; 13:nu13061973. [PMID: 34201331 PMCID: PMC8228739 DOI: 10.3390/nu13061973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Abstract
Human milk oligosaccharides (HMOs) have specific dose-dependent effects on child health outcomes. The HMO profile differs across mothers and is largely dependent on gene expression of specific transferase enzymes in the lactocytes. This study investigated the trajectories of absolute HMO concentrations at three time points during lactation, using a more accurate, robust, and extensively validated method for HMO quantification. We analyzed human milk sampled at 6 weeks (n = 682), 6 months (n = 448), and 12 months (n = 73) of lactation in a birth cohort study conducted in south Germany, using label-free targeted liquid chromatography mass spectrometry (LC-MS2). We assessed trajectories of HMO concentrations over time and used linear mixed models to explore the effect of secretor status and milk group on these trajectories. Generalized linear model-based analysis was used to examine associations between HMOs measured at 6 weeks of lactation and maternal characteristics. Results: Overall, 74%, 18%, 7%, and 1% of human milk samples were attributed to milk groups I, II, III, and IV, respectively. Most HMO concentrations declined over lactation, but some increased. Cross-sectionally, HMOs presented high variations within milk groups and secretor groups. The trajectories of HMO concentrations during lactation were largely attributed to the milk group and secretor status. None of the other maternal characteristics were associated with the HMO concentrations. The observed changes in the HMO concentrations at different time points during lactation and variations of HMOs between milk groups warrant further investigation of their potential impact on child health outcomes. These results will aid in the evaluation and determination of adequate nutrient intakes, as well as further (or future) investigation of the dose-dependent impact of these biological components on infant and child health outcomes.
Collapse
Affiliation(s)
- Linda P. Siziba
- Pediatric Epidemiology, Department of Paediatrics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
- Correspondence: ; Tel.: +49-34-1972-4181
| | - Marko Mank
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.); (B.B.)
| | - Bernd Stahl
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.); (B.B.)
- Department of Chemical Biology & Drug Discovery, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - John Gonsalves
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.); (B.B.)
| | - Bernadet Blijenberg
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; (M.M.); (B.S.); (J.G.); (B.B.)
| | | | - Jon Genuneit
- Pediatric Epidemiology, Department of Paediatrics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075 Ulm, Germany;
| |
Collapse
|
49
|
Impact of 2'-Fucosyllactose on Gut Microbiota Composition in Adults with Chronic Gastrointestinal Conditions: Batch Culture Fermentation Model and Pilot Clinical Trial Findings. Nutrients 2021; 13:nu13030938. [PMID: 33799455 PMCID: PMC7998190 DOI: 10.3390/nu13030938] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/06/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis has been described in patients with certain gastrointestinal conditions including irritable bowel syndrome (IBS) and ulcerative colitis. 2′-fucosyllactose (2′-FL), a prebiotic human milk oligosaccharide, is considered bifidogenic and butyrogenic. To assess prebiotic effects of 2′-FL, alone or in combination with probiotic strains (potential synbiotics), in vitro experiments were conducted on stool from healthy, IBS, and ulcerative colitis adult donors. In anaerobic batch culture fermenters, Bifidobacterium and Eubacterium rectale-Clostridium coccoides counts, and short-chain fatty acids (SCFAs) including butyrate increased during fermentation with 2′-FL and some of the 2′-FL/probiotic combinations. In a subsequent open-label pilot trial, the effect of a 2′-FL-containing nutritional formula was evaluated in twelve adults with IBS or ulcerative colitis. Gastrointestinal Quality of Life Index (GIQLI) total and gastrointestinal symptoms domain scores, stool counts of Bifidobacterium and Faecalibacterium prausnitzii, and stool SCFAs including butyrate, increased after six weeks of intervention. Consistent with documented effects of 2′-FL, the batch culture fermentation experiments demonstrated bifidogenic and butyrogenic effects of 2′-FL during fermentation with human stool samples. Consumption of the 2′-FL-containing nutritional formula by adults with IBS or ulcerative colitis was associated with improvements in intra- and extra-intestinal symptoms, and bifidogenic and butyrogenic effects.
Collapse
|
50
|
Li J, Jiang M, Zhou J, Ding J, Guo Z, Li M, Ding F, Chai W, Yan J, Liang X. Characterization of rat and mouse acidic milk oligosaccharides based on hydrophilic interaction chromatography coupled with electrospray tandem mass spectrometry. Carbohydr Polym 2021; 259:117734. [PMID: 33673995 DOI: 10.1016/j.carbpol.2021.117734] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/05/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Oligosaccharides are one of the most important components in mammalian milk. Milk oligosaccharides can promote colonization of gut microbiota and protect newborns from infections. The diversity and structures of MOs differ among mammalian species. MOs in human and farm animals have been well-documented. However, the knowledge on MOs in rat and mouse have been very limited even though they are the most-widely used models for studies of human physiology and disease. Herein, we use a high-sensitivity online solid-phase extraction and HILIC coupled with electrospray tandem mass spectrometry to analyze the acidic MOs in rat and mouse. Among the fifteen MOs identified, twelve were reported for the first time in rat and mouse together with two novel sulphated oligosaccharides. The complete list of acidic oligosaccharides present in rat and mouse milk is the baseline information of these animals and should contribute to biological/biomedical studies using rats and mice as models.
Collapse
Affiliation(s)
- Jiaqi Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maorong Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - JiaoRui Zhou
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Junjie Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China
| | - Zhimou Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Li
- Department of Microecology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, 226001, China
| | - Wengang Chai
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, Hammersmith Campus, London, W12 0NN, United Kingdom
| | - Jingyu Yan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinmiao Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Key Laboratory of Separation Science for Analytical Chemistry, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|