1
|
Zhang Z. The Initial COVID-19 Reliable Interactive DNA Methylation Markers and Biological Implications. BIOLOGY 2024; 13:245. [PMID: 38666857 PMCID: PMC11048280 DOI: 10.3390/biology13040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Earlier research has established the existence of reliable interactive genomic biomarkers. However, reliable DNA methylation biomarkers, not to mention interactivity, have yet to be identified at the epigenetic level. This study, drawing from 865,859 methylation sites, discovered two miniature sets of Infinium MethylationEPIC sites, each having eight CpG sites (genes) to interact with each other and disease subtypes. They led to the nearly perfect (96.87-100% accuracy) prediction of COVID-19 patients from patients with other diseases or healthy controls. These CpG sites can jointly explain some post-COVID-19-related conditions. These CpG sites and the optimally performing genomic biomarkers reported in the literature become potential druggable targets. Among these CpG sites, cg16785077 (gene MX1), cg25932713 (gene PARP9), and cg22930808 (gene PARP9) at DNA methylation levels indicate that the initial SARS-CoV-2 virus may be better treated as a transcribed viral DNA into RNA virus, i.e., not as an RNA virus that has concerned scientists in the field. Such a discovery can significantly change the scientific thinking and knowledge of viruses.
Collapse
Affiliation(s)
- Zhengjun Zhang
- School of Computer, Data and Information Sciences, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
2
|
Sefatjoo Z, Mohebbi SR, Hosseini SM, Shoraka S, Saeedi Niasar M, Baghaei K, Meyfour A, Sadeghi A, Malekpour H, Asadzadeh Aghdaei H, Zali MR. Evaluation of long non-coding RNAs EGOT, NRAV, NRIR and mRNAs ISG15 and IFITM3 expressions in COVID-19 patients. Cytokine 2024; 175:156495. [PMID: 38184893 DOI: 10.1016/j.cyto.2023.156495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.
Collapse
Affiliation(s)
- Zahra Sefatjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Research and Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Makled AF, Ali SAM, Eldahdouh SS, Sleem AS, Eldahshan MM, Elsaadawy Y, Salman SS, Mohammed Elbrolosy A. Angiotensin-Converting Enzyme-2 ( ACE-2) with Interferon-Induced Transmembrane Protein-3 ( IFITM-3) Genetic Variants and Interleukin-6 as Severity and Risk Predictors among COVID-19 Egyptian Population. Int J Microbiol 2023; 2023:6384208. [PMID: 38155729 PMCID: PMC10754637 DOI: 10.1155/2023/6384208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction The host genetic background is a crucial factor that underlies the interindividual variability of COVID-19 fatality and outcomes. Angiotensin-converting enzyme-2 (ACE-2) and interferon-induced transmembrane protein-3 (IFITM-3) have a key role in viral cell entrance and priming. The evoked immune response will also provide a predictive prognosis for COVID-19 infection. This study aimed to explore the association between ACE-2 and IFITM-3 genotypes and their corresponding allele frequencies with disease severity indices in the Egyptian COVID-19 population. The serum level of interleukin-6, as a biomarker of hyperinflammatory response, and cytokine storm, was correlated with disease progression, single nucleotide polymorphisms (SNPs) of the selected receptors, and treatment response. Methodology. We enrolled 900 COVID-19-confirmed cases and 100 healthy controls. Genomic DNA was extracted from 200 subjects (160 patients selected based on clinical and laboratory data and 40 healthy controls). The ACE-2 rs2285666 and IFITM-3 rs12252 SNPs were genotyped using the TaqMan probe allelic discrimination assay, and the serum IL-6 level was determined by ELISA. Logistic regression analysis was applied to analyze the association between ACE-2 and IFITM-3 genetic variants, IL-6 profile, and COVID-19 severity. Results The identified genotypes and their alleles were significantly correlated with COVID-19 clinical deterioration as follows: ACE2 rs2285666 CT + TT, odds ratio (95% confidence interval): 12.136 (2.784-52.896) and IFITM-3 rs12252 AG + GG: 17.276 (3.673-81.249), both p < 0.001. Compared to the controls, the heterozygous and mutant genotypes for both SNPs were considerable risk factors for increased susceptibility to COVID-19. IL-6 levels were significantly correlated with disease progression (p < 0.001). Conclusion ACE-2 and IFITM-3 genetic variants are potential predictors of COVID-19 severity, critical outcomes, and post-COVID-19 complications. Together, these SNPs and serum IL-6 levels explain a large proportion of the variability in the severity of COVID-19 infection and its consequences among Egyptian subjects.
Collapse
Affiliation(s)
- Amal F. Makled
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Sahar A. M. Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - S. S. Eldahdouh
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Asmaa S. Sleem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Maha M. Eldahshan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Yara Elsaadawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar S. Salman
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Asmaa Mohammed Elbrolosy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| |
Collapse
|
4
|
Carriazo S, Ribagorda M, Pintor-Chocano A, Perez-Gomez MV, Ortiz A, Sanchez-Niño MD. Increased expression of SCARF genes favoring SARS-CoV-2 infection in key target organs in CKD. Clin Kidney J 2023; 16:2672-2682. [PMID: 38046008 PMCID: PMC10689187 DOI: 10.1093/ckj/sfad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background Chronic kidney disease (CKD), especially diabetic CKD, is the condition that most increases the risk of lethal coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the underlying molecular mechanisms are unclear. SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) regulate coronavirus cell entry and/or replication. We hypothesized that CKD may alter the expression of SCARF genes. Methods A literature search identified 34 SCARF genes of which we selected 21 involved in interactions between SARS-CoV/SARS-CoV-2 and host cells, and assessed their mRNA expression in target tissues of COVID-19 (kidneys, lungs, aorta and heart) in mice with adenine-induced CKD. Results Twenty genes were differentially expressed in at least one organ in mice with CKD. For 15 genes, the differential expression would be expected to favor SARS-CoV-2 infection and/or severity. Of these 15 genes, 13 were differentially expressed in the kidney and 8 were validated in human CKD kidney transcriptomics datasets, including those for the most common cause of CKD, diabetic nephropathy. Two genes reported to protect from SARS-CoV-2 were downregulated in at least two non-kidney target organs: Ifitm3 encoding interferon-induced transmembrane protein 3 (IFITM3) in lung and Ly6e encoding lymphocyte antigen 6 family member 6 (LY6E) in aorta. Conclusion CKD, including diabetic CKD, is associated with the differential expression of multiple SCARF genes in target organs of COVID-19, some of which may sensitize to SARS-CoV-2 infection. This information may facilitate developing therapeutic strategies aimed at decreasing COVID-19 severity in patients with CKD.
Collapse
Affiliation(s)
- Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Ajanel A, Middleton EA. Alterations in the megakaryocyte transcriptome impacts platelet function in sepsis and COVID-19 infection. Thromb Res 2023; 231:247-254. [PMID: 37258336 PMCID: PMC10198739 DOI: 10.1016/j.thromres.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/02/2023]
Abstract
Platelets and their parent cell, the megakaryocyte (MK), are increasingly recognized for their roles during infection and inflammation. The MK residing in the bone marrow or arising from precursors trafficked to other organs for development go on to form platelets through thrombopoiesis. Infection, by direct and indirect mechanisms, can alter the transcriptional profile of MKs. The altered environment, whether mediated by inflammatory cytokines or other signaling mechanisms results in an altered platelet transcriptome. Platelets released into the circulation, in turn, interact with each other, circulating leukocytes and endothelial cells and contribute to the clearance of pathogens or the potentiation of pathophysiology through such mechanisms as immunothrombosis. In this article we hope to identify key contributions that explore the impact of an altered transcriptomic landscape during severe, systemic response to infection broadly defined as sepsis, and viral infections, including SARS-CoV2. We include current publications that outline the role of MKs from bone-marrow and extra-medullary sites as well as the circulating platelet. The underlying diseases result in thrombotic complications that exacerbate organ dysfunction and mortality. Understanding the impact of platelets on the pathophysiology of disease may drive therapeutic advances to improve the morbidity and mortality of these deadly afflictions.
Collapse
Affiliation(s)
- Abigail Ajanel
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Elizabeth A Middleton
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA; Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Čiučiulkaitė I, Siffert W, Elsner C, Dittmer U, Wichert M, Wagner B, Volbracht L, Mosel F, Möhlendick B. Influence of the Single Nucleotide Polymorphisms rs12252 and rs34481144 in IFITM3 on the Antibody Response after Vaccination against COVID-19. Vaccines (Basel) 2023; 11:1257. [PMID: 37515072 PMCID: PMC10384856 DOI: 10.3390/vaccines11071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 mRNA vaccine is the first mRNA vaccine approved for human administration by both the U.S. Food and Drug Administration and the European Medicines Agency. Studies have shown that the immune response and the decay of immunity after vaccination with the COVID-19 vaccines are variable within a population. Host genetic factors probably contribute to this variability. In this study, we investigated the effect of the single-nucleotide polymorphisms rs12252 and rs34481144 in the interferon-induced transmembrane protein (IFITM) 3 gene on the humoral immune response after vaccination against COVID-19 with mRNA vaccines. Blood samples were collected from 1893 healthcare workers and medical students at multiple time points post-vaccination and antibody titers against the SARS-CoV-2 S1 protein receptor binding domain were determined at all time points. All participants were genotyped for the rs34481144 and rs12252 polymorphisms in the IFITM3 gene. After the second and third vaccinations, antibody titer levels increased at one month and decreased at six months (p < 0.0001) and were higher after the booster vaccination than after the basic immunization (p < 0.0001). Participants vaccinated with mRNA-1273 had a higher humoral immune response than participants vaccinated with BNT162b2. rs12252 had no effect on the antibody response. In contrast, carriers of the GG genotype in rs34481144 vaccinated with BNT162b2 had a lower humoral immune response compared to A allele carriers, which reached statistical significance on the day of the second vaccination (p = 0.03) and one month after the second vaccination (p = 0.04). Further studies on the influence of rs12252 and rs34481144 on the humoral immune response after vaccination against COVID-19 are needed.
Collapse
Affiliation(s)
- Ieva Čiučiulkaitė
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marc Wichert
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Bernd Wagner
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lothar Volbracht
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Frank Mosel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Birte Möhlendick
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
7
|
Kenney AD, Zani A, Kawahara J, Eddy AC, Wang X, Mahesh KC, Lu M, Thomas J, Kohlmeier JE, Suthar MS, Hemann EA, Li J, Peeples ME, Hall‐Stoodley L, Forero A, Cai C, Ma J, Yount JS. Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice. EMBO Rep 2023; 24:e56660. [PMID: 36880581 PMCID: PMC10074051 DOI: 10.15252/embr.202256660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Ashley Zani
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jeffrey Kawahara
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adrian C Eddy
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | | | - KC Mahesh
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
| | - Mijia Lu
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Jeronay Thomas
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Jacob E Kohlmeier
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Mehul S Suthar
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
- Department of PediatricsEmory University School of MedicineAtlantaGAUSA
- Emory Vaccine Center, Yerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
| | - Emily A Hemann
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jianrong Li
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Mark E Peeples
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
- Department of PediatricsThe Ohio State UniversityColumbusOHUSA
| | - Luanne Hall‐Stoodley
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adriana Forero
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Chuanxi Cai
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jianjie Ma
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jacob S Yount
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
8
|
Escoubas CC, Dorman LC, Nguyen PT, Lagares-Linares C, Nakajo H, Anderson SR, Cuevas B, Vainchtein ID, Silva NJ, Xiao Y, Lidsky PV, Wang EY, Taloma SE, Nakao-Inoue H, Schwer B, Andino R, Nowakowski TJ, Molofsky AV. Type I interferon responsive microglia shape cortical development and behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.04.29.441889. [PMID: 35233577 PMCID: PMC8887080 DOI: 10.1101/2021.04.29.441889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microglia are brain resident phagocytes that can engulf synaptic components and extracellular matrix as well as whole neurons. However, whether there are unique molecular mechanisms that regulate these distinct phagocytic states is unknown. Here we define a molecularly distinct microglial subset whose function is to engulf neurons in the developing brain. We transcriptomically identified a cluster of Type I interferon (IFN-I) responsive microglia that expanded 20-fold in the postnatal day 5 somatosensory cortex after partial whisker deprivation, a stressor that accelerates neural circuit remodeling. In situ, IFN-I responsive microglia were highly phagocytic and actively engulfed whole neurons. Conditional deletion of IFN-I signaling (Ifnar1fl/fl) in microglia but not neurons resulted in dysmorphic microglia with stalled phagocytosis and an accumulation of neurons with double strand DNA breaks, a marker of cell stress. Conversely, exogenous IFN-I was sufficient to drive neuronal engulfment by microglia and restrict the accumulation of damaged neurons. IFN-I deficient mice had excess excitatory neurons in the developing somatosensory cortex as well as tactile hypersensitivity to whisker stimulation. These data define a molecular mechanism through which microglia engulf neurons during a critical window of brain development. More broadly, they reveal key homeostatic roles of a canonical antiviral signaling pathway in brain development.
Collapse
Affiliation(s)
- Caroline C. Escoubas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Leah C. Dorman
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Phi T. Nguyen
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Christian Lagares-Linares
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Haruna Nakajo
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Sarah R. Anderson
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Beatriz Cuevas
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Ilia D. Vainchtein
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Nicholas J. Silva
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Peter V. Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Ellen Y. Wang
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- UCSF SRTP program, University of California, San Francisco, San Francisco, CA
| | - Sunrae E. Taloma
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA
| | - Hiromi Nakao-Inoue
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Bjoern Schwer
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
- Chan-Zuckerberg Biohub, San Francisco, CA
| | - Anna V. Molofsky
- Department of Psychiatry and Behavioral Sciences/ Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Isnard P, Vergnaud P, Garbay S, Jamme M, Eloudzeri M, Karras A, Anglicheau D, Galantine V, Jalal Eddine A, Gosset C, Pourcine F, Zarhrate M, Gibier JB, Rensen E, Pietropaoli S, Barba-Spaeth G, Duong-Van-Huyen JP, Molina TJ, Mueller F, Zimmer C, Pontoglio M, Terzi F, Rabant M. A specific molecular signature in SARS-CoV-2-infected kidney biopsies. JCI Insight 2023; 8:165192. [PMID: 36749641 PMCID: PMC10077488 DOI: 10.1172/jci.insight.165192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury is one of the most important complications in patients with COVID-19 and is considered a negative prognostic factor with respect to patient survival. The occurrence of direct infection of the kidney by SARS-CoV-2, and its contribution to the renal deterioration process, remain controversial issues. By studying 32 renal biopsies from patients with COVID-19, we verified that the major pathological feature of COVID-19 is acute tubular injury (ATI). Using single-molecule fluorescence in situ hybridization, we showed that SARS-CoV-2 infected living renal cells and that infection, which paralleled renal angiotensin-converting enzyme 2 expression levels, was associated with increased death. Mechanistically, a transcriptomic analysis uncovered specific molecular signatures in SARS-CoV-2-infected kidneys as compared with healthy kidneys and non-COVID-19 ATI kidneys. On the other hand, we demonstrated that SARS-CoV-2 and hantavirus, 2 RNA viruses, activated different genetic networks despite triggering the same pathological lesions. Finally, we identified X-linked inhibitor of apoptosis-associated factor 1 as a critical target of SARS-CoV-2 infection. In conclusion, this study demonstrated that SARS-CoV-2 can directly infect living renal cells and identified specific druggable molecular targets that can potentially aid in the design of novel therapeutic strategies to preserve renal function in patients with COVID-19.
Collapse
Affiliation(s)
- Pierre Isnard
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France.,Department of Pathology, Centre Hospitalier Universitaire Necker-Enfants Malades, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| | - Paul Vergnaud
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France
| | - Serge Garbay
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France
| | - Matthieu Jamme
- Department of Intensive Care Medicine, Centre Hospitalier Intercommunal de Poissy, Poissy, France
| | - Maeva Eloudzeri
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France
| | - Alexandre Karras
- Department of Nephrology, Centre Hospitalier Universitaire Européen Georges Pompidou, Paris, France
| | - Dany Anglicheau
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France.,Department of Transplantation, Centre Hospitalier Universitaire Necker-Enfants Malades, Paris, France
| | - Valérie Galantine
- Department of Nephrology, Centre Hospitalier Universitaire de la Guadeloupe, Pointe-à-Pitre, France
| | | | - Clément Gosset
- Department of Nephrology, Centre Hospitalier Universitaire de La Réunion, Saint Denis de La Réunion, France
| | - Franck Pourcine
- Department of Nephrology, Centre Hospitalier de Melun, Melun, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Structure Fédérative de Recherche Necker, University of Paris, Paris, France
| | - Jean-Baptiste Gibier
- Department of Pathology, Centre Hospitalier Universitaire (CHU) Lille, Lille, France
| | | | | | | | - Jean-Paul Duong-Van-Huyen
- Department of Pathology, Centre Hospitalier Universitaire Necker-Enfants Malades, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| | - Thierry J Molina
- Department of Pathology, Centre Hospitalier Universitaire Necker-Enfants Malades, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| | | | | | - Marco Pontoglio
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France
| | - Fabiola Terzi
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France
| | - Marion Rabant
- University of Paris Cité, INSERM U1151, CNRS UMR 8253, Institut Necker-Enfants Malades, Département Croissance et Signalisation, Paris, France.,Department of Pathology, Centre Hospitalier Universitaire Necker-Enfants Malades, Assistance Publique - Hopitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
10
|
SARS-CoV-2 mRNA Dual Immunization Induces Innate Transcriptional Signatures, Establishes T-Cell Memory and Coordinates the Recall Response. Vaccines (Basel) 2023; 11:vaccines11010103. [PMID: 36679948 PMCID: PMC9861479 DOI: 10.3390/vaccines11010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND mRNA vaccines have played a crucial role in controlling the SARS-CoV-2 global pandemic. However, the immunological mechanisms involved in the induction, magnitude and longevity of mRNA-vaccine-induced protective immunity are still unclear. METHODS In our study, we used whole-RNA sequencing along with detailed immunophenotyping of antigen-specific T cells and humoral RBD-specific response to dual immunization with the Pfizer-BioNTech mRNA vaccine (BNT162b2) and correlated them with response to an additional dose, administered 10 months later, in order to comprehensively profile the immune response of healthy volunteers to BNT162b2. RESULTS Primary dual immunization induced upregulation of the Type I interferon pathway and generated spike protein (S)-specific IFN-γ+ and TNF-α+ CD4 T cells, S-specific memory CD4 T cells, and RBD-specific antibodies against SARS-CoV-2. S-specific CD4 T cells induced by the primary series correlated with the RBD-specific antibody titers to a third dose. CONCLUSIONS This study demonstrates the induction of both innate and adaptive immunity in response to the BNT162b2 mRNA vaccine in a coordinated manner and identifies the central role of primarily induced CD4+ T cells as a predictive biomarker of the magnitude of anamnestic immune response.
Collapse
|
11
|
Gisby JS, Buang NB, Papadaki A, Clarke CL, Malik TH, Medjeral-Thomas N, Pinheiro D, Mortimer PM, Lewis S, Sandhu E, McAdoo SP, Prendecki MF, Willicombe M, Pickering MC, Botto M, Thomas DC, Peters JE. Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence. Nat Commun 2022; 13:7775. [PMID: 36522333 PMCID: PMC9753891 DOI: 10.1038/s41467-022-35454-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with end-stage kidney disease (ESKD) are at high risk of severe COVID-19. Here, we perform longitudinal blood sampling of ESKD haemodialysis patients with COVID-19, collecting samples pre-infection, serially during infection, and after clinical recovery. Using plasma proteomics, and RNA-sequencing and flow cytometry of immune cells, we identify transcriptomic and proteomic signatures of COVID-19 severity, and find distinct temporal molecular profiles in patients with severe disease. Supervised learning reveals that the plasma proteome is a superior indicator of clinical severity than the PBMC transcriptome. We show that a decreasing trajectory of plasma LRRC15, a proposed co-receptor for SARS-CoV-2, is associated with a more severe clinical course. We observe that two months after the acute infection, patients still display dysregulated gene expression related to vascular, platelet and coagulation pathways, including PF4 (platelet factor 4), which may explain the prolonged thrombotic risk following COVID-19.
Collapse
Affiliation(s)
- Jack S Gisby
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Norzawani B Buang
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Artemis Papadaki
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Candice L Clarke
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Talat H Malik
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Nicholas Medjeral-Thomas
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Damiola Pinheiro
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Paige M Mortimer
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Shanice Lewis
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Eleanor Sandhu
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Maria F Prendecki
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Michelle Willicombe
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Matthew C Pickering
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - Marina Botto
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK
| | - David C Thomas
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK.
- Renal and Transplant Centre, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK.
| | - James E Peters
- Centre for Inflammatory Disease, Dept of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
12
|
Shi G, Chiramel AI, Li T, Lai KK, Kenney AD, Zani A, Eddy AC, Majdoul S, Zhang L, Dempsey T, Beare PA, Kar S, Yewdell JW, Best SM, Yount JS, Compton AA. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. J Clin Invest 2022; 132:e160766. [PMID: 36264642 PMCID: PMC9753997 DOI: 10.1172/jci160766] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Adrian C. Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Saliha Majdoul
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Tirhas Dempsey
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| | - Paul A. Beare
- Laboratory of Bacteriology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | | | | | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, Montana, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute (NCI), NIH, Frederick, Maryland, USA
| |
Collapse
|
13
|
Liu Y, Zhai G, Fu W, Zhang X, Xu J. A randomized, double-blind, placebo-controlled phase I trial of inhalation treatment of recombinant TFF2-IFN protein: A multifunctional candidate for the treatment of COVID-19. Front Pharmacol 2022; 13:1063106. [PMID: 36578554 PMCID: PMC9790930 DOI: 10.3389/fphar.2022.1063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Background and Objectives: Coronavirus disease 2019 (COVID-19) has caused global pandemics in the last 3 years, and the development of new therapeutics is urgently needed. This study aimed to assess the safety, tolerated, and prolonged retention of recombinant protein trefoil factor 2 (TFF2)- interferon (IFN) in the respiratory tract of healthy volunteers. Methods: We conducted a randomized, double-blind, placebo-controlled, single-dose, dose-escalation phase I study to evaluate safety, tolerability, pharmacokinetics (PK), and cytokine responses after administration of recombinant TFF2-IFN proteins. Healthy volunteers were informed, enrolled, and randomized into four groups with a dose escalation of 0.2, 1, 2, and 4 mg and then inhaled the investigation product or placebo. Thirty-two eligible participants were finally enrolled; eight were assigned to the placebo group and 24 to the TFF2-IFN group, with six participants per group. Data were collected from 19 November 2021, to 4 January 2022. Results: All 32 participants completed the study. Of the participants who received the recombinant TFF2-IFN protein, 41.7% (10/24) reported 11 adverse events (AEs) during treatment and 62.5% (5/8) of those who received a placebo reported six AEs. Sixteen of the 17 AEs were grade 1. Only one grade 3 AE occurred in the placebo group and no worse event occurred as a serious adverse event. The pharmacokinetics was analyzed for times and concentrations of the investigation products in 0.2, 1, 2, and 4 mg groups in 24 recipients of TFF2-IFN, and the results showed that TFF2-IFN was retained in the lung for at least 6-8 h. Only the highest dose group (4 mg) had a transient detectable concentration in serum, while all other dose groups had a level below the lower limit of quantification. Conclusion: In this study, the recombinant TFF2-IFN protein was a well-tolerated and safe therapeutic when administered by nebulization, characterized by prolonged retention in the respiratory tract, which would be greatly beneficial in combating respiratory viral infection. Systematic Review Registration: [http://www.chictr.org.cn], identifier [ChiCTR2000035633].
Collapse
Affiliation(s)
- Yan Liu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China,National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanxing Zhai
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Weihui Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaoyan Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| | - Jianqing Xu
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China,*Correspondence: Xiaoyan Zhang, ; Jianqing Xu,
| |
Collapse
|
14
|
Xu F, Wang G, Zhao F, Huang Y, Fan Z, Mei S, Xie Y, Wei L, Hu Y, Wang C, Cen S, Liang C, Ren L, Guo F, Wang J. IFITM3 Inhibits SARS-CoV-2 Infection and Is Associated with COVID-19 Susceptibility. Viruses 2022; 14:2553. [PMID: 36423162 PMCID: PMC9692367 DOI: 10.3390/v14112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
SARS-CoV-2 has become a global threat to public health. Infected individuals can be asymptomatic or develop mild to severe symptoms, including pneumonia, respiratory distress, and death. This wide spectrum of clinical presentations of SARS-CoV-2 infection is believed in part due to the polymorphisms of key genetic factors in the population. In this study, we report that the interferon-induced antiviral factor IFITM3 inhibits SARS-CoV-2 infection by preventing SARS-CoV-2 spike-protein-mediated virus entry and cell-to-cell fusion. Analysis of a Chinese COVID-19 patient cohort demonstrates that the rs12252 CC genotype of IFITM3 is associated with SARS-CoV-2 infection risk in the studied cohort. These data suggest that individuals carrying the rs12252 C allele in the IFITM3 gene may be vulnerable to SARS-CoV-2 infection and thus may benefit from early medical intervention.
Collapse
Affiliation(s)
- Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Geng Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Xie
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
15
|
Jahanimoghadam A, Abdolahzadeh H, Rad NK, Zahiri J. Discovering Common Pathogenic Mechanisms of COVID-19 and Parkinson Disease: An Integrated Bioinformatics Analysis. J Mol Neurosci 2022; 72:2326-2337. [PMID: 36301487 PMCID: PMC9607846 DOI: 10.1007/s12031-022-02068-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged since December 2019 and was later characterized as a pandemic by WHO, imposing a major public health threat globally. Our study aimed to identify common signatures from different biological levels to enlighten the current unclear association between COVID-19 and Parkinson's disease (PD) as a number of possible links, and hypotheses were reported in the literature. We have analyzed transcriptome data from peripheral blood mononuclear cells (PBMCs) of both COVID-19 and PD patients, resulting in a total of 81 common differentially expressed genes (DEGs). The functional enrichment analysis of common DEGs are mostly involved in the complement system, type II interferon gamma (IFNG) signaling pathway, oxidative damage, microglia pathogen phagocytosis pathway, and GABAergic synapse. The protein-protein interaction network (PPIN) construction was carried out followed by hub detection, revealing 10 hub genes (MX1, IFI27, C1QC, C1QA, IFI6, NFIX, C1S, XAF1, IFI35, and ELANE). Some of the hub genes were associated with molecular mechanisms such as Lewy bodies-induced inflammation, microglia activation, and cytokine storm. We investigated regulatory elements of hub genes at transcription factor and miRNA levels. The major transcription factors regulating hub genes are SOX2, XAF1, RUNX1, MITF, and SPI1. We propose that these events may have important roles in the onset or progression of PD. To sum up, our analysis describes possible mechanisms linking COVID-19 and PD, elucidating some unknown clues in between.
Collapse
Affiliation(s)
- Aria Jahanimoghadam
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Hadis Abdolahzadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Niloofar Khoshdel Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Zahiri
- Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, USA.
| |
Collapse
|
16
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
17
|
Tiwari V, Viswanath S. Identification of potential modulators of IFITM3 by in-silico modeling and virtual screening. Sci Rep 2022; 12:15952. [PMID: 36153346 PMCID: PMC9509314 DOI: 10.1038/s41598-022-20259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractIFITM3 is a transmembrane protein that confers innate immunity. It has been established to restrict entry of multiple viruses. Overexpression of IFITM3 has been shown to be associated with multiple cancers, implying IFITM3 to be good therapeutic target. The regulation of IFITM3 activity is mediated by multiple post-translational modifications (PTM). In this study, we have modelled the structure of IFITM3, consistent with experimental predictions on its membrane topology. MD simulation in membrane-aqueous environment revealed the stability of the model. Ligand binding sites on the IFITM3 surface were predicted and it was observed that the best site includes important residues involved in PTM and has good druggable score. Molecular docking was performed using FDA approved ligands and natural ligands from Super Natural II database. The ligands were re-ranked by calculating binding free energy. Select docking complexes were simulated again to substantiate the binding between ligand and IFITM3. We observed that known drugs like Eluxadoline and natural products like SN00224572 and Parishin A have good binding affinity against IFITM3. These ligands form persistent interactions with key lysine residues (Lys83, Lys104) and hence can potentially alter the activity of IFITM3. The results of this computational study can provide a starting point for experimental investigations on IFITM3 modulators.
Collapse
|
18
|
Shi G, Chiramel AI, Li T, Lai KK, Kenney AD, Zani A, Eddy A, Majdoul S, Zhang L, Dempsey T, Beare PA, Kar S, Yewdell JW, Best SM, Yount JS, Compton AA. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.04.15.440067. [PMID: 33880473 PMCID: PMC8057238 DOI: 10.1101/2021.04.15.440067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.
Collapse
Affiliation(s)
- Guoli Shi
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Tiansheng Li
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Kin Kui Lai
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Ashley Zani
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Adrian Eddy
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Saliha Majdoul
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Lizhi Zhang
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Tirhas Dempsey
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Paul A. Beare
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | | | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA
| | - Alex A. Compton
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
19
|
Increased mRNA Levels of ADAM17, IFITM3, and IFNE in Peripheral Blood Cells Are Present in Patients with Obesity and May Predict Severe COVID-19 Evolution. Biomedicines 2022; 10:biomedicines10082007. [PMID: 36009555 PMCID: PMC9406212 DOI: 10.3390/biomedicines10082007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Gene expression patterns in blood cells from SARS-CoV-2 infected individuals with different clinical phenotypes and body mass index (BMI) could help to identify possible early prognosis factors for COVID-19. We recruited patients with COVID-19 admitted in Hospital Universitari Son Espases (HUSE) between March 2020 and November 2021, and control subjects. Peripheral blood cells (PBCs) and plasma samples were obtained on hospital admission. Gene expression of candidate transcriptomic biomarkers in PBCs were compared based on the patients’ clinical status (mild, severe and critical) and BMI range (normal weight, overweight, and obesity). mRNA levels of ADAM17, IFITM3, IL6, CXCL10, CXCL11, IFNG and TYK2 were increased in PBCs of COVID-19 patients (n = 73) compared with controls (n = 47), independently of sex. Increased expression of IFNE was observed in the male patients only. PBC mRNA levels of ADAM17, IFITM3, CXCL11, and CCR2 were higher in those patients that experienced a more serious evolution during hospitalization. ADAM17, IFITM3, IL6 and IFNE were more highly expressed in PBCs of patients with obesity. Interestingly, the expression pattern of ADAM17, IFITM3 and IFNE in PBCs was related to both the severity of COVID-19 evolution and obesity status, especially in the male patients. In conclusion, gene expression in PBCs can be useful for the prognosis of COVID-19 evolution.
Collapse
|
20
|
Transcriptome Analysis Revealed Inhibition of Lipid Metabolism in 2-D Porcine Enteroids by Infection with Porcine Epidemic Diarrhea Virus. Vet Microbiol 2022; 273:109525. [DOI: 10.1016/j.vetmic.2022.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
|
21
|
Machuka EM, Juma J, Muigai AWT, Amimo JO, Pelle R, Abworo EO. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia.1 (ken-1033). BMC Genomics 2022; 23:522. [PMID: 35854219 PMCID: PMC9294756 DOI: 10.1186/s12864-022-08754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. Methods Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. Results A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. Conclusions We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08754-8.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya. .,Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O Box 62000-00200, Nairobi, Kenya.
| | - John Juma
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Roger Pelle
- Biosciences eastern and central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
22
|
Trugilho MRO, Azevedo-Quintanilha IG, Gesto JSM, Moraes ECS, Mandacaru SC, Campos MM, Oliveira DM, Dias SSG, Bastos VA, Santos MDM, Carvalho PC, Valente RH, Hottz ED, Bozza FA, Souza TML, Perales J, Bozza PT. Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discov 2022; 8:324. [PMID: 35842415 PMCID: PMC9287722 DOI: 10.1038/s41420-022-01122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.
Collapse
Affiliation(s)
- Monique R O Trugilho
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | - João S M Gesto
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Emilly Caroline S Moraes
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Samuel C Mandacaru
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana M Campos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Douglas M Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Suelen S G Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, and D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thiago Moreno L Souza
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
23
|
Lee Y, Riskedal E, Kalleberg KT, Istre M, Lind A, Lund-Johansen F, Reiakvam O, Søraas AVL, Harris JR, Dahl JA, Hadley CL, Jugessur A. EWAS of post-COVID-19 patients shows methylation differences in the immune-response associated gene, IFI44L, three months after COVID-19 infection. Sci Rep 2022; 12:11478. [PMID: 35798818 PMCID: PMC9261254 DOI: 10.1038/s41598-022-15467-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Although substantial progress has been made in managing COVID-19, it is still difficult to predict a patient’s prognosis. We explored the epigenetic signatures of COVID-19 in peripheral blood using data from an ongoing prospective observational study of COVID-19 called the Norwegian Corona Cohort Study. A series of EWASs were performed to compare the DNA methylation profiles between COVID-19 cases and controls three months post-infection. We also investigated differences associated with severity and long-COVID. Three CpGs—cg22399236, cg03607951, and cg09829636—were significantly hypomethylated (FDR < 0.05) in COVID-19 positive individuals. cg03607951 is located in IFI44L which is involved in innate response to viral infection and several systemic autoimmune diseases. cg09829636 is located in ANKRD9, a gene implicated in a wide variety of cellular processes, including the degradation of IMPDH2. The link between ANKRD9 and IMPDH2 is striking given that IMPDHs are considered therapeutic targets for COVID-19. Furthermore, gene ontology analyses revealed pathways involved in response to viruses. The lack of significant differences associated with severity and long-COVID may be real or reflect limitations in sample size. Our findings support the involvement of interferon responsive genes in the pathophysiology of COVID-19 and indicate a possible link to systemic autoimmune diseases.
Collapse
Affiliation(s)
- Yunsung Lee
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. box 222, 0213, Oslo, Norway
| | | | | | - Mette Istre
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital Ullevaal, 0372, Oslo, Norway
| | | | - Olaug Reiakvam
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Arne V L Søraas
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | - Jennifer R Harris
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. box 222, 0213, Oslo, Norway
| | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital Rikshospitalet, 0372, Oslo, Norway
| | | | - Astanand Jugessur
- Centre for Fertility and Health, Norwegian Institute of Public Health, Skøyen, P.O. box 222, 0213, Oslo, Norway.,Department of Global Public Health and Primary Care, University of Bergen, P.O. box 7804, 5020, Bergen, Norway
| |
Collapse
|
24
|
Iwanicka J, Iwanicki T, Kaczmarczyk M, Mazur W. Clinical and Genetic Characteristics of Coronaviruses with Particular Emphasis on SARS-CoV-2 Virus. Pol J Microbiol 2022; 71:141-159. [PMID: 35716167 PMCID: PMC9252140 DOI: 10.33073/pjm-2022-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/10/2022] [Indexed: 12/02/2022] Open
Abstract
The rapidly spreading Coronavirus Disease 2019 (COVID-19) pandemic has led to a global health crisis and has left a deep mark on society, culture, and the global economy. Despite considerable efforts made to contain the disease, SARS-CoV-2 still poses a threat on a global scale. The current epidemiological situation caused an urgent need to understand the basic mechanisms of the virus transmission and COVID-19 severe course. This review summarizes current knowledge on clinical courses, diagnostics, treatment, and prevention of COVID-19. Moreover, we have included the latest research results on the genetic characterization of SARS-CoV-2 and genetic determinants of susceptibility and severity to infection.
Collapse
Affiliation(s)
- Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Kaczmarczyk
- Clinical Department of Infectious Diseases, Medical University of Silesia, Chorzów, Poland
| | - Włodzimierz Mazur
- Clinical Department of Infectious Diseases, Medical University of Silesia, Chorzów, Poland
| |
Collapse
|
25
|
Persson J, Andersson B, van Veen S, Haks MC, Obudulu O, Torkzadeh S, Ottenhoff THM, Kanberg N, Gisslén M, Andersson LM, Harandi AM. Stratification of COVID-19 patients based on quantitative immune-related gene expression in whole blood. Mol Immunol 2022; 145:17-26. [PMID: 35272104 PMCID: PMC8894815 DOI: 10.1016/j.molimm.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/05/2022] [Accepted: 03/01/2022] [Indexed: 01/08/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes mild symptoms in the majority of infected individuals, yet in some cases it leads to a life-threatening condition. Determination of early predictive biomarkers enabling risk stratification for coronavirus disease 2019 (COVID-19) patients can inform treatment and intervention strategies. Herein, we analyzed whole blood samples obtained from individuals infected with SARS-CoV-2, varying from mild to critical symptoms, approximately one week after symptom onset. In order to identify blood-specific markers of disease severity status, a targeted expression analysis of 143 immune-related genes was carried out by dual-color reverse transcriptase multiplex ligation-dependent probe amplification (dcRT-MLPA). The clinically well-defined subgroups of COVID-19 patients were compared with healthy controls. The transcriptional profile of the critically ill patients clearly separated from that of healthy individuals. Moreover, the number of differentially expressed genes increased by severity of COVID-19. It was also found that critically ill patients can be distinguished by reduced peripheral blood expression of several genes, which most likely reflects the lower lymphocyte counts. There was a notable predominance of IFN-associated gene expression in all subgroups of COVID-19, which was most profound in critically ill patients. Interestingly, the gene encoding one of the main TNF-receptors, TNFRS1A, had selectively lower expression in mild COVID-19 cases. This report provides added value in understanding COVID-19 disease, and shows potential of determining early immune transcript signatures in the blood of patients with different disease severity. These results can guide further explorations to uncover mechanisms underlying immunity and immunopathology in COVID-19.
Collapse
Affiliation(s)
- Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Björn Andersson
- Bioinformatics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëlle C Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Ogonna Obudulu
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Torkzadeh
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Nelly Kanberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Lars-Magnus Andersson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
26
|
Alarabi AB, Mohsen A, Mizuguchi K, Alshbool FZ, Khasawneh FT. Co-expression analysis to identify key modules and hub genes associated with COVID-19 in platelets. BMC Med Genomics 2022; 15:83. [PMID: 35421970 PMCID: PMC9008611 DOI: 10.1186/s12920-022-01222-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/21/2022] [Indexed: 01/23/2023] Open
Abstract
Corona virus disease 2019 (COVID-19) increases the risk of cardiovascular occlusive/thrombotic events and is linked to poor outcomes. The underlying pathophysiological processes are complex, and remain poorly understood. To this end, platelets play important roles in regulating the cardiovascular system, including via contributions to coagulation and inflammation. There is ample evidence that circulating platelets are activated in COVID-19 patients, which is a primary driver of the observed thrombotic outcome. However, the comprehensive molecular basis of platelet activation in COVID-19 disease remains elusive, which warrants more investigation. Hence, we employed gene co-expression network analysis combined with pathways enrichment analysis to further investigate the aforementioned issues. Our study revealed three important gene clusters/modules that were closely related to COVID-19. These cluster of genes successfully identify COVID-19 cases, relative to healthy in a separate validation data set using machine learning, thereby validating our findings. Furthermore, enrichment analysis showed that these three modules were mostly related to platelet metabolism, protein translation, mitochondrial activity, and oxidative phosphorylation, as well as regulation of megakaryocyte differentiation, and apoptosis, suggesting a hyperactivation status of platelets in COVID-19. We identified the three hub genes from each of three key modules according to their intramodular connectivity value ranking, namely: COPE, CDC37, CAPNS1, AURKAIP1, LAMTOR2, GABARAP MT-ND1, MT-ND5, and MTRNR2L12. Collectively, our results offer a new and interesting insight into platelet involvement in COVID-19 disease at the molecular level, which might aid in defining new targets for treatment of COVID-19–induced thrombosis.
Collapse
|
27
|
Prescott L. SARS-CoV-2 3CLpro whole human proteome cleavage prediction and enrichment/depletion analysis. Comput Biol Chem 2022; 98:107671. [PMID: 35429835 PMCID: PMC8958254 DOI: 10.1016/j.compbiolchem.2022.107671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Abstract
A novel coronavirus (SARS-CoV-2) has devastated the globe as a pandemic that has killed millions of people. Widespread vaccination is still uncertain, so many scientific efforts have been directed toward discovering antiviral treatments. Many drugs are being investigated to inhibit the coronavirus main protease, 3CLpro, from cleaving its viral polyprotein, but few publications have addressed this protease’s interactions with the host proteome or their probable contribution to virulence. Too few host protein cleavages have been experimentally verified to fully understand 3CLpro’s global effects on relevant cellular pathways and tissues. Here, I set out to determine this protease’s targets and corresponding potential drug targets. Using a neural network trained on cleavages from 392 coronavirus proteomes with a Matthews correlation coefficient of 0.985, I predict that a large proportion of the human proteome is vulnerable to 3CLpro, with 4898 out of approximately 20,000 human proteins containing at least one putative cleavage site. These cleavages are nonrandomly distributed and are enriched in the epithelium along the respiratory tract, brain, testis, plasma, and immune tissues and depleted in olfactory and gustatory receptors despite the prevalence of anosmia and ageusia in COVID-19 patients. Affected cellular pathways include cytoskeleton/motor/cell adhesion proteins, nuclear condensation and other epigenetics, host transcription and RNAi, ribosomal stoichiometry and nascent-chain detection and degradation, ubiquitination, pattern recognition receptors, coagulation, lipoproteins, redox, and apoptosis. This whole proteome cleavage prediction demonstrates the importance of 3CLpro in expected and nontrivial pathways affecting virulence, lead me to propose more than a dozen potential therapeutic targets against coronaviruses, and should therefore be applied to all viral proteases and subsequently experimentally verified.
Collapse
|
28
|
Li Y, Li Z, Yang M, Wang F, Zhang Y, Li R, Li Q, Gong Y, Wang B, Fan B, Wang C, Chen L, Li H, Ong J, Teng Z, Jin L, Wang YL, Du P, Jiao J. Decoding the temporal and regional specification of microglia in the developing human brain. Cell Stem Cell 2022; 29:620-634.e6. [PMID: 35245443 DOI: 10.1016/j.stem.2022.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 11/03/2022]
Abstract
Region-related heterogeneity and state transitions of microglia are important for brain development and neurological pathogenesis. However, regional specialization and state transition in microglia during early human CNS development remain unclear. Here, we profile single-cell transcriptomes of microglia from distinct regions of the developing human brain, and combined with experimental verification, we define and characterize early microglial fate determinations related to regional specification and state transition. We identified several subclasses of neuronal gene-enriched microglia with regional specification that dynamically and transiently appeared as early brain regions formed. In contrast, immune-related microglia were regionally specialized at later stages of CNS development. Surprisingly, we discovered that region-specialized immune-related microglia exit from a relative resting state and transition into distinct active states. In addition, we experimentally verified the microglial state transition. Finally, we showed that the state transition is conserved but that there are molecular differences in developing microglia in humans and mice.
Collapse
Affiliation(s)
- Yanxin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongqiu Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Yang
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feiyang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuehong Zhang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Rong Li
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Department of Obstetrics and Gynecology, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China; National Clinical Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Qian Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunxia Gong
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Binhong Wang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Baoguang Fan
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Chunyue Wang
- Tongzhou Maternal and Child Health Hospital of Beijing, Beijing 101100, China
| | - Lei Chen
- Six Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Hong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jennie Ong
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Peking University/National Health Commission Key Laboratory, Peking University, Beijing 100191, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Omolaoye TS, Hachim MY, du Plessis SS. Using publicly available transcriptomic data to identify mechanistic and diagnostic biomarkers in azoospermia and overall male infertility. Sci Rep 2022; 12:2584. [PMID: 35173218 PMCID: PMC8850557 DOI: 10.1038/s41598-022-06476-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
Azoospermia, which is the absence of spermatozoa in an ejaculate occurring due to defects in sperm production, or the obstruction of the reproductive tract, affects about 1% of all men and is prevalent in up to 10–15% of infertile males. Conventional semen analysis remains the gold standard for diagnosing and treating male infertility; however, advances in molecular biology and bioinformatics now highlight the insufficiency thereof. Hence, the need to widen the scope of investigating the aetiology of male infertility stands pertinent. The current study aimed to identify common differentially expressed genes (DEGs) that might serve as potential biomarkers for non-obstructive azoospermia (NOA) and overall male infertility. DEGs across different datasets of transcriptomic profiling of testis from human patients with different causes of infertility/ impaired spermatogenesis and/or azoospermia were explored using the gene expression omnibus (GEO) database. Following the search using the GEOquery, 30 datasets were available, with 5 meeting the inclusion criteria. The DEGs for datasets were identified using limma R packages through the GEO2R tool. The annotated genes of the probes in each dataset were intersected with DEGs from all other datasets. Enriched Ontology Clustering for the identified genes was performed using Metascape to explore the possible connection or interaction between the genes. Twenty-five DEGs were shared between most of the datasets, which might indicate their role in the pathogenesis of male infertility. Of the 25 DEGs, eight genes (THEG, SPATA20, ROPN1L, GSTF1, TSSK1B, CABS1, ADAD1, RIMBP3) are either involved in the overall spermatogenic processes or at specific phases of spermatogenesis. We hypothesize that alteration in the expression of these genes leads to impaired spermatogenesis and, ultimately, male infertility. Thus, these genes can be used as potential biomarkers for the early detection of NOA.
Collapse
Affiliation(s)
- Temidayo S Omolaoye
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Mahmood Yaseen Hachim
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.
| | - Stefan S du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE.,Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
30
|
Zlacká J, Stebelová K, Zeman M, Herichová I. Interactions of renin-angiotensin system and COVID-19: the importance of daily rhythms in ACE2, ADAM17 and TMPRSS2 expression. Physiol Res 2021; 70:S177-S194. [PMID: 34913351 DOI: 10.33549/physiolres.934754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) was identified as a molecule that mediates the cellular entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several membrane molecules of the host cell must cooperate in this process. While ACE2 serves in a membrane receptor-mediating interaction with the surface spike (S) glycoprotein of SARS-CoV-2 located on the virus envelope, enzyme A disintegrin and metalloproteinase 17 (ADAM17) regulates ACE2 availability on the membrane and transmembrane protease serine 2 (TMPRSS2) facilitates virus-cell membrane fusion. Interestingly, ACE2, ADAM17 and TMPRSS2 show a daily rhythm of expression in at least some mammalian tissue. The circadian system can also modulate COVID-19 progression via circadian control of the immune system (direct, as well as melatonin-mediated) and blood coagulation. Virus/ACE2 interaction causes ACE2 internalization into the cell, which is associated with suppressed activity of ACE2. As a major role of ACE2 is to form vasodilatory angiotensin 1-7 from angiotensin II (Ang II), suppressed ACE2 levels in the lung can contribute to secondary COVID-19 complications caused by up-regulated, pro-inflammatory vasoconstrictor Ang II. This is supported by the positive association of hypertension and negative COVID-19 prognosis although this relationship is dependent on numerous comorbidities. Hypertension treatment with inhibitors of renin-angiotensin system does not negatively influence prognosis of COVID-19 patients. It seems that tissue susceptibility to SARS-CoV-2 shows negative correlation to ACE2 expression. However, in lungs of infected patient, a high ACE2 expression is associated with better outcome, compared to low ACE2 expression. Manipulation of soluble ACE2 levels is a promising COVID-19 therapeutic strategy.
Collapse
Affiliation(s)
- J Zlacká
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovak Republic.
| | | | | | | |
Collapse
|
31
|
Giobbe GG, Bonfante F, Jones BC, Gagliano O, Luni C, Zambaiti E, Perin S, Laterza C, Busslinger G, Stuart H, Pagliari M, Bortolami A, Mazzetto E, Manfredi A, Colantuono C, Di Filippo L, Pellegata AF, Panzarin V, Thapar N, Li VSW, Eaton S, Cacchiarelli D, Clevers H, Elvassore N, De Coppi P. SARS-CoV-2 infection and replication in human gastric organoids. Nat Commun 2021; 12:6610. [PMID: 34785679 PMCID: PMC8595698 DOI: 10.1038/s41467-021-26762-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
COVID-19 typically manifests as a respiratory illness, but several clinical reports have described gastrointestinal symptoms. This is particularly true in children in whom gastrointestinal symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. These observations raise the question of whether the virus can replicate within the stomach. Here we generate gastric organoids from fetal, pediatric, and adult biopsies as in vitro models of SARS-CoV-2 infection. To facilitate infection, we induce reverse polarity in the gastric organoids. We find that the pediatric and late fetal gastric organoids are susceptible to infection with SARS-CoV-2, while viral replication is significantly lower in undifferentiated organoids of early fetal and adult origin. We demonstrate that adult gastric organoids are more susceptible to infection following differentiation. We perform transcriptomic analysis to reveal a moderate innate antiviral response and a lack of differentially expressed genes belonging to the interferon family. Collectively, we show that the virus can efficiently infect the gastric epithelium, suggesting that the stomach might have an active role in fecal-oral SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Giovanni Giuseppe Giobbe
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK.
| | - Francesco Bonfante
- Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Brendan C Jones
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
| | - Onelia Gagliano
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China
| | - Elisa Zambaiti
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Dept. Women's and Children's Health, University of Padova, Padova, Italy
| | - Silvia Perin
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Georg Busslinger
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Hannah Stuart
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Matteo Pagliari
- Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Alessio Bortolami
- Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Eva Mazzetto
- Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Anna Manfredi
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Chiara Colantuono
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Lucio Di Filippo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Next Generation Diagnostic srl, Pozzuoli, Italy
| | - Alessandro Filippo Pellegata
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
| | - Valentina Panzarin
- Lab. of Experimental Animal Models, Division of Comparative Biomedical Sciences, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Nikhil Thapar
- Gastroenterology, Hepatology and Liver Transplant, Queensland Children's Hospital, Brisbane, Australia
| | - Vivian Sze Wing Li
- Stem Cell and Cancer Biology Lab, the Francis Crick Institute, London, UK
| | - Simon Eaton
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy
| | - Hans Clevers
- Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center (UMC) Utrecht, Utrecht, Netherlands
- Princess Máxima Center (PMC) for Pediatric Oncology, Utrecht, Netherlands
| | - Nicola Elvassore
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK.
- Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, China.
- Dept. of Industrial Engineering, University of Padova, Padova, Italy.
| | - Paolo De Coppi
- Stem Cell and Regenerative Medicine Section, GOS Institute of Child Health, University College London, London, UK.
- Dept. of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital, London, UK.
| |
Collapse
|
32
|
Meng L, Qin H, Zhao J, He S, Wei Q, Wang Z, Shen J, Sooranna S, Song J. Transcriptomic Signatures of Airway Epithelium Infected With SARS-CoV-2: A Balance Between Anti-infection and Virus Load. Front Cell Dev Biol 2021; 9:735307. [PMID: 34497809 PMCID: PMC8419361 DOI: 10.3389/fcell.2021.735307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/30/2021] [Indexed: 01/14/2023] Open
Abstract
COVID-19 pneumonia requires effective medical therapies. However, it is a challenge to find therapeutic drugs that not only inhibit viral replication, but also inhibit the accompanying cytokine storm and maintain an appropriate immune response. In this study, the effects of SARS-CoV-2 on gene expression in lung epithelial cells from patients with COVID-19 were systematically evaluated with bioinformatics analysis methods. Transcriptome expression specific to bystander (exposed but uninfected) and infected cells were found, and the vital pathways were identified by conducting differentially expressed gene analysis regarding the relationship between gene signatures of COVID-19 infection and disease severity. We found that a high viral load did not necessarily imply a low response of epithelial cells or a poor disease convalescence. The ability to distinguish the role of virus-correlated genes facilitates the development of potential new medicines and therapies for COVID-19 infection.
Collapse
Affiliation(s)
- Lingzhang Meng
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Houji Qin
- Department of Infectious Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Jingjie Zhao
- Life Science and Clinical Research Center, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Siyuan He
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Qiuju Wei
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China.,College of Pharmacy, Youjiang Medical University for Nationalities, Baise, China
| | - Zechen Wang
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Jiajia Shen
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China
| | - Suren Sooranna
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Jian Song
- Center for Systemic Inflammation Research (CSIR), School of Preclinical Medicine, Youjiang Medical University for Nationalities, Baise, China.,Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Abstract
Several genes in innate immunity have been implicated in Alzheimer's disease (AD). However, the effect of innate immunity on amyloid β (Aβ) production, which makes amyloid plaques in AD brains, was previously not known. Recently, the antiviral protein interferon-induced transmembrane protein 3 (IFITM3) has been identified as a novel γ-secretase modulatory protein for Aβ production. In this review, the mechanisms of how innate immunity modulates Aβ production via IFITM3-γ-secretase complexes and contributes to AD pathogenesis are discussed.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
34
|
Sodeifian F, Nikfarjam M, Kian N, Mohamed K, Rezaei N. The role of type I interferon in the treatment of COVID-19. J Med Virol 2021; 94:63-81. [PMID: 34468995 PMCID: PMC8662121 DOI: 10.1002/jmv.27317] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Although significant research has been done to find effective drugs against coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), no definite effective drug exists. Thus, research has now shifted towards immunomodulatory agents other than antivirals. In this review, we aim to describe the latest findings on the role of type I interferon (IFN)‐mediated innate antiviral response against SARS‐CoV‐2 and discuss the use of IFNs as a medication for COVID‐19. A growing body of evidence has indicated a promoting active but delayed IFNs response to SARS‐CoV‐2 and Middle East respiratory syndrome coronavirus in infected bronchial epithelial cells. Studies have demonstrated that IFNs' administration before the viral peak and the inflammatory phase of disease could offer a highly protective effect. However, IFNs' treatment during the inflammatory and severe stages of the disease causes immunopathology and long‐lasting harm for patients. Therefore, it is critical to note the best time window for IFNs' administration. Further investigation of the clinical effectiveness of interferon for patients with mild to severe COVID‐19 and its optimal timing and route of administration can be beneficial in finding a safe and effective antiviral therapy for the COVID‐19 disease. 1‐IFNs have many antiviral actions including; the activation of cytotoxic T‐cell responses, the inhibition of the viral mRNA translation, the degradation of the viral RNA, RNA editing and modulating the synthesis of Nitric Oxide. 2‐IFNS are two‐edged immunomodulatory agents; as they can provide a protective effect if administered in the early phases of the disease before the viral peak, whereas a harming effect is observed when administered in the inflammatory phase. 3‐More human trials are needed to find the best time window for administrating type I IFN for patients with various COVID‐19 modalities.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,USERN SBMU Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Manama, Bahrain
| | - Mahsa Nikfarjam
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,USERN SBMU Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Naghmeh Kian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,USERN SBMU Office, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Kawthar Mohamed
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Manama, Bahrain.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Mohammed FS, Farooqi YN, Mohammed S. The Interferon-Induced Transmembrane Protein 3 -rs12252 Allele May Predict COVID-19 Severity Among Ethnic Minorities. Front Genet 2021; 12:692254. [PMID: 34434219 PMCID: PMC8380955 DOI: 10.3389/fgene.2021.692254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Fahad S Mohammed
- Trinity College of Arts and Sciences, Duke University, Durham, NC, United States
| | | | - Suneel Mohammed
- Department of Medicine, Carolinas HealthCare System - Blue Ridge, Morganton, NC, United States
| |
Collapse
|
36
|
Golden SR, Rosenstein DL, Belhorn T, Blatt J. Repurposing Psychotropic Agents for Viral Disorders: Beyond Covid. Assay Drug Dev Technol 2021; 19:373-385. [PMID: 34375133 DOI: 10.1089/adt.2021.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent reports have highlighted the possible role of the antipsychotic chlorpromazine and the antidepressant fluvoxamine as anti-coronavirus disease 2019 (COVID-19) agents. The objective of this narrative review is to explore what is known about the activity of psychotropic medications against viruses in addition to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). PubMed was queried for "drug repurposing, antiviral activity," and for "antiviral activity" with "psychotropic drugs" and individual agents, through November 2020. Of more than 100 psychotropic agents, 37 drugs, including 27 with a history of pediatric use were identified, which had been studied in the preclinical setting and found to have activity against viruses which are human pathogens. Effects were evaluated by type of virus and by category of psychotropic agent. Activity was identified both against viruses known to cause epidemics such as SARS-CoV-2 and Ebola and against those that are the cause of rare disorders such as Human Papillomatosis Virus-related respiratory papillomatosis. Individual drugs and classes of psychotropics often had activity against multiple viruses, with promiscuity explained by shared viral or cellular targets. Safety profiles of psychotropics may be more tolerable in this context than when they are used long-term in the setting of psychiatric illness. Nonetheless, translation of in vitro results to the clinical arena has been slow. Psychotropic medications as a class deserve further study, including in clinical trials for repurposing as antiviral drugs for children and adults.
Collapse
Affiliation(s)
- Shea R Golden
- Department of Neuroscience, Middlebury College, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Donald L Rosenstein
- Department of Psychiatry, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Tom Belhorn
- Department of Pediatric Infectious Diseases, and the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Julie Blatt
- Department of Pediatric Hematology Oncology, the University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Park A, Harris LK. Gene Expression Meta-Analysis Reveals Interferon-Induced Genes Associated With SARS Infection in Lungs. Front Immunol 2021; 12:694355. [PMID: 34367154 PMCID: PMC8342995 DOI: 10.3389/fimmu.2021.694355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome (SARS) corona virus (CoV) infections are a serious public health threat because of their pandemic-causing potential. This work is the first to analyze mRNA expression data from SARS infections through meta-analysis of gene signatures, possibly identifying therapeutic targets associated with major SARS infections. Methods This work defines 37 gene signatures representing SARS-CoV, Middle East Respiratory Syndrome (MERS)-CoV, and SARS-CoV2 infections in human lung cultures and/or mouse lung cultures or samples and compares them through Gene Set Enrichment Analysis (GSEA). To do this, positive and negative infectious clone SARS (icSARS) gene panels are defined from GSEA-identified leading-edge genes between two icSARS-CoV derived signatures, both from human cultures. GSEA then is used to assess enrichment and identify leading-edge icSARS panel genes between icSARS gene panels and 27 other SARS-CoV gene signatures. The meta-analysis is expanded to include five MERS-CoV and three SARS-CoV2 gene signatures. Genes associated with SARS infection are predicted by examining the intersecting membership of GSEA-identified leading-edges across gene signatures. Results Significant enrichment (GSEA p<0.001) is observed between two icSARS-CoV derived signatures, and those leading-edge genes defined the positive (233 genes) and negative (114 genes) icSARS panels. Non-random significant enrichment (null distribution p<0.001) is observed between icSARS panels and all verification icSARSvsmock signatures derived from human cultures, from which 51 over- and 22 under-expressed genes are shared across leading-edges with 10 over-expressed genes already associated with icSARS infection. For the icSARSvsmock mouse signature, significant, non-random significant enrichment held for only the positive icSARS panel, from which nine genes are shared with icSARS infection in human cultures. Considering other SARS strains, significant, non-random enrichment (p<0.05) is observed across signatures derived from other SARS strains for the positive icSARS panel. Five positive icSARS panel genes, CXCL10, OAS3, OASL, IFIT3, and XAF1, are found across mice and human signatures regardless of SARS strains. Conclusion The GSEA-based meta-analysis approach used here identifies genes with and without reported associations with SARS-CoV infections, highlighting this approach’s predictability and usefulness in identifying genes that have potential as therapeutic targets to preclude or overcome SARS infections.
Collapse
Affiliation(s)
- Amber Park
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States
| | - Laura K Harris
- Harris Interdisciplinary Research, Davenport University, Grand Rapids, MI, United States.,Institute for Cyber-Enabled Research, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
38
|
Das D, Podder S. Unraveling the molecular crosstalk between Atherosclerosis and COVID-19 comorbidity. Comput Biol Med 2021; 134:104459. [PMID: 34020127 PMCID: PMC8088080 DOI: 10.1016/j.compbiomed.2021.104459] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Corona virus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) has created ruckus throughout the world. Growing epidemiological studies have depicted atherosclerosis as a comorbid factor of COVID-19. Though both these diseases are triggered via inflammatory rage that leads to injury of healthy tissues, the molecular linkage between them and their co-influence in causing fatality is not yet understood. METHODS We have retrieved the data of differentially expressed genes (DEGs) for both atherosclerosis and COVID-19 from publicly available microarray and RNA-Seq datasets. We then reconstructed the protein-protein interaction networks (PPIN) for these diseases from protein-protein interaction data of corresponding DEGs. Using RegNetwork and TRRUST, we mapped the transcription factors (TFs) in atherosclerosis and their targets (TGs) in COVID-19 PPIN. RESULTS From the atherosclerotic PPIN, we have identified 6 hubs (TLR2, TLR4, EGFR, SPI1, MYD88 and IRF8) as differentially expressed TFs that might control the expression of their 17 targets in COVID-19 PPIN. The important target proteins include IL1B, CCL5, ITGAM, IFIT3, CXCL1, CXCL2, CXCL3 and CXCL8. Consequent functional enrichment analysis of these TGs have depicted inflammatory responses to be overrepresented among the gene sets. CONCLUSION Finally, analyzing the DEGs in cardiomyocytes infected with SARS-CoV-2, we have concluded that MYD88 is a crucial linker of atherosclerosis and COVID-19, the co-existence of which lead to fatal outcomes. Anti-inflammatory therapy targeting MYD88 could be a potent strategy for combating this comorbidity.
Collapse
Affiliation(s)
- Deepyaman Das
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, West Bengal, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134, West Bengal, India.
| |
Collapse
|
39
|
Yang AC, Kern F, Losada PM, Agam MR, Maat CA, Schmartz GP, Fehlmann T, Stein JA, Schaum N, Lee DP, Calcuttawala K, Vest RT, Berdnik D, Lu N, Hahn O, Gate D, McNerney MW, Channappa D, Cobos I, Ludwig N, Schulz-Schaeffer WJ, Keller A, Wyss-Coray T. Dysregulation of brain and choroid plexus cell types in severe COVID-19. Nature 2021; 595:565-571. [PMID: 34153974 PMCID: PMC8400927 DOI: 10.1038/s41586-021-03710-0] [Citation(s) in RCA: 393] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
Although SARS-CoV-2 primarily targets the respiratory system, patients with and survivors of COVID-19 can suffer neurological symptoms1-3. However, an unbiased understanding of the cellular and molecular processes that are affected in the brains of patients with COVID-19 is missing. Here we profile 65,309 single-nucleus transcriptomes from 30 frontal cortex and choroid plexus samples across 14 control individuals (including 1 patient with terminal influenza) and 8 patients with COVID-19. Although our systematic analysis yields no molecular traces of SARS-CoV-2 in the brain, we observe broad cellular perturbations indicating that barrier cells of the choroid plexus sense and relay peripheral inflammation into the brain and show that peripheral T cells infiltrate the parenchyma. We discover microglia and astrocyte subpopulations associated with COVID-19 that share features with pathological cell states that have previously been reported in human neurodegenerative disease4-6. Synaptic signalling of upper-layer excitatory neurons-which are evolutionarily expanded in humans7 and linked to cognitive function8-is preferentially affected in COVID-19. Across cell types, perturbations associated with COVID-19 overlap with those found in chronic brain disorders and reside in genetic variants associated with cognition, schizophrenia and depression. Our findings and public dataset provide a molecular framework to understand current observations of COVID-19-related neurological disease, and any such disease that may emerge at a later date.
Collapse
Affiliation(s)
- Andrew C Yang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Fabian Kern
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Patricia M Losada
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Maayan R Agam
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina A Maat
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Georges P Schmartz
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Julian A Stein
- Institute for Neuropathology, Saarland University Hospital and Medical Faculty of Saarland University, Homburg, Germany
| | - Nicholas Schaum
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Davis P Lee
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Kruti Calcuttawala
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan T Vest
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniela Berdnik
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Hahn
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - David Gate
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - M Windy McNerney
- Department of Psychiatry, Stanford University School of Medicine, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Inma Cobos
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, Homburg, Germany
| | - Walter J Schulz-Schaeffer
- Institute for Neuropathology, Saarland University Hospital and Medical Faculty of Saarland University, Homburg, Germany
| | - Andreas Keller
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany.
| | - Tony Wyss-Coray
- ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
40
|
Zhou Y, Xu J, Hou Y, Leverenz JB, Kallianpur A, Mehra R, Liu Y, Yu H, Pieper AA, Jehi L, Cheng F. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther 2021; 13:110. [PMID: 34108016 PMCID: PMC8189279 DOI: 10.1186/s13195-021-00850-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive and therapeutic interventions. METHODS In this study, we conducted a network-based, multimodal omics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9-based genetic assay results and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of Alzheimer's disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. RESULTS We found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was elevated in brain endothelial cells of AD patients and healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in COVID-19-mediated cognitive impairment. Overall, individuals with the AD risk allele APOE E4/E4 displayed reduced expression of antiviral defense genes compared to APOE E3/E3 individuals. CONCLUSION Our results suggest significant mechanistic overlap between AD and COVID-19, centered on neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated neurological manifestations and provide guidance for future development of preventive or treatment interventions, although causal relationship and mechanistic pathways between COVID-19 and AD need future investigations.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - James B Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Asha Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Reena Mehra
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14850, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, 14850, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY, 14850, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lara Jehi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
41
|
Winstone H, Lista MJ, Reid AC, Bouton C, Pickering S, Galao RP, Kerridge C, Doores KJ, Swanson CM, Neil SJD. The Polybasic Cleavage Site in SARS-CoV-2 Spike Modulates Viral Sensitivity to Type I Interferon and IFITM2. J Virol 2021; 95:e02422-20. [PMID: 33563656 PMCID: PMC8104117 DOI: 10.1128/jvi.02422-20] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The cellular entry of severe acute respiratory syndrome-associated coronaviruses types 1 and 2 (SARS-CoV-1 and -2) requires sequential protease processing of the viral spike glycoprotein. The presence of a polybasic cleavage site in SARS-CoV-2 spike at the S1/S2 boundary has been suggested to be a factor in the increased transmissibility of SARS-CoV-2 compared to SARS-CoV-1 by facilitating maturation of the spike precursor by furin-like proteases in the producer cells rather than endosomal cathepsins in the target. We investigate the relevance of the polybasic cleavage site in the route of entry of SARS-CoV-2 and the consequences this has for sensitivity to interferons (IFNs) and, more specifically, the IFN-induced transmembrane (IFITM) protein family that inhibit entry of diverse enveloped viruses. We found that SARS-CoV-2 is restricted predominantly by IFITM2, rather than IFITM3, and the degree of this restriction is governed by route of viral entry. Importantly, removal of the cleavage site in the spike protein renders SARS-CoV-2 entry highly pH and cathepsin dependent in late endosomes, where, like SARS-CoV-1 spike, it is more sensitive to IFITM2 restriction. Furthermore, we found that potent inhibition of SARS-CoV-2 replication by type I but not type II IFNs is alleviated by targeted depletion of IFITM2 expression. We propose that the polybasic cleavage site allows SARS-CoV-2 to mediate viral entry in a pH-independent manner, in part to mitigate against IFITM-mediated restriction and promote replication and transmission. This suggests that therapeutic strategies that target furin-mediated cleavage of SARS-CoV-2 spike may reduce viral replication through the activity of type I IFNs.IMPORTANCE The furin cleavage site in the spike protein is a distinguishing feature of SARS-CoV-2 and has been proposed to be a determinant for the higher transmissibility between individuals, compared to SARS-CoV-1. One explanation for this is that it permits more efficient activation of fusion at or near the cell surface rather than requiring processing in the endosome of the target cell. Here, we show that SARS-CoV-2 is inhibited by antiviral membrane protein IFITM2 and that the sensitivity is exacerbated by deletion of the furin cleavage site, which restricts viral entry to low pH compartments. Furthermore, we find that IFITM2 is a significant effector of the antiviral activity of type I interferons against SARS-CoV-2 replication. We suggest that one role of the furin cleavage site is to reduce SARS-CoV-2 sensitivity to innate immune restriction, and thus, it may represent a potential therapeutic target for COVID-19 treatment development.
Collapse
Affiliation(s)
- Helena Winstone
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Maria Jose Lista
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Alisha C Reid
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Clement Bouton
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Rui Pedro Galao
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Claire Kerridge
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
42
|
Wu YH, Yeh IJ, Phan NN, Yen MC, Hung JH, Chiao CC, Chen CF, Sun Z, Hsu HP, Wang CY, Lai MD. Gene signatures and potential therapeutic targets of Middle East respiratory syndrome coronavirus (MERS-CoV)-infected human lung adenocarcinoma epithelial cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 54:845-857. [PMID: 34176764 PMCID: PMC7997684 DOI: 10.1016/j.jmii.2021.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/03/2020] [Accepted: 03/07/2021] [Indexed: 12/23/2022]
Abstract
Background Pathogenic coronaviruses include Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. These viruses have induced outbreaks worldwide, and there are currently no effective medications against them. Therefore, there is an urgent need to develop potential drugs against coronaviruses. Methods High-throughput technology is widely used to explore differences in messenger (m)RNA and micro (mi)RNA expression profiles, especially to investigate protein–protein interactions and search for new therapeutic compounds. We integrated miRNA and mRNA expression profiles in MERS-CoV-infected cells and compared them to mock-infected controls from public databases. Results Through the bioinformatics analysis, there were 251 upregulated genes and eight highly differentiated miRNAs that overlapped in the two datasets. External validation verified that these genes had high expression in MERS-CoV-infected cells, including RC3H1, NF-κB, CD69, TNFAIP3, LEAP-2, DUSP10, CREB5, CXCL2, etc. We revealed that immune, olfactory or sensory system-related, and signal-transduction networks were discovered from upregulated mRNAs in MERS-CoV-infected cells. In total, 115 genes were predicted to be related to miRNAs, with the intersection of upregulated mRNAs and miRNA-targeting prediction genes such as TCF4, NR3C1, and POU2F2. Through the Connectivity Map (CMap) platform, we suggested potential compounds to use against MERS-CoV infection, including diethylcarbamazine, harpagoside, bumetanide, enalapril, and valproic acid. Conclusions The present study illustrates the crucial roles of miRNA-mRNA interacting networks in MERS-CoV-infected cells. The genes we identified are potential targets for treating MERS-CoV infection; however, these could possibly be extended to other coronavirus infections.
Collapse
Affiliation(s)
- Yen-Hung Wu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Nam Nhut Phan
- NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Chung-Chieh Chiao
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Hui-Ping Hsu
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN37232, USA.
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ming-Derg Lai
- Department of Biochemistry and Molecular Biology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
43
|
Zhou Y, Xu J, Hou Y, Leverenz JB, Kallianpur A, Mehra R, Liu Y, Yu H, Pieper AA, Jehi L, Cheng F. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.03.15.435423. [PMID: 33791705 PMCID: PMC8010732 DOI: 10.1101/2021.03.15.435423] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive interventions. METHODS In this study, we conducted a network-based, multimodal genomics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9 based genetic assay results, and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of Alzheimer's disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. RESULTS We found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors ( BSG and FURIN ) and antiviral defense genes ( LY6E , IFITM2 , IFITM3 , and IFNAR1 ) was significantly elevated in brain endothelial cells of AD patients and healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in COVID-19-mediated cognitive impairment. Notably, individuals with the AD risk allele APOE E4/E4 displayed reduced levels of antiviral defense genes compared to APOE E3/E3 individuals. CONCLUSION Our results suggest significant mechanistic overlap between AD and COVID-19, strongly centered on neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated neurological manifestations and provide guidance for future development of preventive or treatment interventions.
Collapse
Affiliation(s)
- Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jielin Xu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James B. Leverenz
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Asha Kallianpur
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Reena Mehra
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14850, USA
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Andrew A. Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY 10065, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Lara Jehi
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
44
|
Nassar R, Hachim M, Nassar M, Kaklamanos EG, Jamal M, Williams D, Senok A. Microbial Metabolic Genes Crucial for S. aureus Biofilms: An Insight From Re-analysis of Publicly Available Microarray Datasets. Front Microbiol 2021; 11:607002. [PMID: 33584569 PMCID: PMC7876462 DOI: 10.3389/fmicb.2020.607002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023] Open
Abstract
Bacterial biofilms are microbial lifestyles found in all environments. Up to 80% of human infections and 60–70% of hospital-acquired infections have a biofilm origin, with Staphylococcus aureus one of the leading causes of these infections. Microorganisms in biofilms exhibit significant antimicrobial resistance which poses important treatment challenges, hence the urgent need to identify novel antibiofilm strategies. Microbes form biofilms in response to various factors, and once these 3-dimentional structures form they are highly recalcitrant to removal. The switch from planktonic lifestyle to the biofilm protected mode of growth results in a phenotypic shift in the behavior of the microorganisms in terms of growth rate and gene expression. Given these changes, investigation of microbial gene expression and their modulation at different stages of biofilm maturation is needed to provide vital insight into the behavior of biofilm cells. In this study, we analyzed publicly available transcriptomic dataset of S. aureus biofilms at different stages of maturation to identify consistently upregulated genes irrespective of the biofilm maturation stage. Our reanalysis identified a total of 6 differentially expressed genes upregulated in both 48 and 144-h old S. aureus biofilms. Functional analysis revealed that these genes encode for proteins which play a role in key microbial metabolic pathways. However, these genes, as yet, are unrelated or fully studied in the context of biofilm. Moreover, the findings of this in silico work, suggest that these genes may represent potential novel targets for the development of more effective antibiofilm strategies against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mohannad Nassar
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Eleftherios G Kaklamanos
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, United Arab Emirates
| | - Mohamed Jamal
- Hamdan Bin Mohammed College of Dental Medicine, Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, United Arab Emirates
| | - David Williams
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
45
|
Nikoloudis D, Kountouras D, Hiona A. The frequency of combined IFITM3 haplotype involving the reference alleles of both rs12252 and rs34481144 is in line with COVID-19 standardized mortality ratio of ethnic groups in England. PeerJ 2020; 8:e10402. [PMID: 33240681 PMCID: PMC7666821 DOI: 10.7717/peerj.10402] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
Evidence was brought forward in England and the USA that Black, Asian, Latino and Minority Ethnic people exhibit higher mortality risk from COVID-19 than White people. While socioeconomic factors were suggested to contribute to this trend, they arguably do not explain the range of the differences observed, allowing for possible genetic implications. Almost concurrently, the analysis of a cohort in Chinese COVID-19 patients proposed an association between the severity of the disease and the presence of the minor allele of rs12252 of the Interferon-induced transmembrane protein 3 (IFITM3) gene. This SNP, together with rs34481144, are the two most studied polymorphisms of IFITM3 and have been associated in the past with increased severity in Influenza, Dengue, Ebola, and HIV viruses. IFITM3 is an immune effector protein that is pivotal for the restriction of viral replication, but also for the regulation of cytokine production. Following up on these two developments in the ongoing SARS-CoV-2 pandemic, the present study investigates a possible association between the differences in mortality of ethnic groups in England and the combined haplotypes of rs12252 and rs34481144. The respective allele frequencies were collected for 26 populations from the 1000 Genomes Project and subgroups were pooled wherever possible to create correspondences with ethnic groups in England. A significant correlation (r = 0.9687, p = 0.0003) and a striking agreement was observed between the reported Standardized Mortality Ratios and the frequency of the combined haplotype of both reference alleles, suggesting that the combination of the reference alleles of the specific SNPs may be implicated in more severe outcomes of COVID-19. This study calls for further focus on the role of IFITM3 variants in the mechanism of cellular invasion of SARS-CoV-2, their impact in COVID-19 severity and their possible implications in vaccination efficacy.
Collapse
Affiliation(s)
- Dimitris Nikoloudis
- Center for Preventive Medicine & Longevity, Bioiatriki Healthcare Group, Athens, Attiki, Greece
| | - Dimitrios Kountouras
- Center for Preventive Medicine & Longevity, Bioiatriki Healthcare Group, Athens, Attiki, Greece
| | - Asimina Hiona
- Center for Preventive Medicine & Longevity, Bioiatriki Healthcare Group, Athens, Attiki, Greece
| |
Collapse
|
46
|
Bioinformatics analyses of significant genes, related pathways, and candidate diagnostic biomarkers and molecular targets in SARS-CoV-2/COVID-19. GENE REPORTS 2020; 21:100956. [PMID: 33553808 PMCID: PMC7854084 DOI: 10.1016/j.genrep.2020.100956] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022]
Abstract
Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infection is a leading cause of pneumonia and death. The aim of this investigation is to identify the key genes in SARS-CoV-2 infection and uncover their potential functions. We downloaded the expression profiling by high throughput sequencing of GSE152075 from the Gene Expression Omnibus database. Normalization of the data from primary SARS-CoV-2 infected samples and negative control samples in the database was conducted using R software. Then, joint analysis of the data was performed. Pathway and Gene ontology (GO) enrichment analyses were performed, and the protein-protein interaction (PPI) network, target gene - miRNA regulatory network, target gene - TF regulatory network of the differentially expressed genes (DEGs) were constructed using Cytoscape software. Identification of diagnostic biomarkers was conducted using receiver operating characteristic (ROC) curve analysis. 994 DEGs (496 up regulated and 498 down regulated genes) were identified. Pathway and GO enrichment analysis showed up and down regulated genes mainly enriched in the NOD-like receptor signaling pathway, Ribosome, response to external biotic stimulus and viral transcription in SARS-CoV-2 infection. Down and up regulated genes were selected to establish the PPI network, modules, target gene - miRNA regulatory network, target gene - TF regulatory network revealed that these genes were involved in adaptive immune system, fluid shear stress and atherosclerosis, influenza A and protein processing in endoplasmic reticulum. In total, ten genes (CBL, ISG15, NEDD4, PML, REL, CTNNB1, ERBB2, JUN, RPS8 and STUB1) were identified as good diagnostic biomarkers. In conclusion, the identified DEGs, hub genes and target genes contribute to the understanding of the molecular mechanisms underlying the advancement of SARS-CoV-2 infection and they may be used as diagnostic and molecular targets for the treatment of patients with SARS-CoV-2 infection in the future.
Collapse
Key Words
- Bioinformatics
- CBL, Cbl proto-oncogene
- DEGs, differentially expressed genes
- Diagnosis
- GO, Gene ontology
- ISG15, ISG15 ubiquitin like modifier
- Key genes
- NEDD4, NEDD4 E3 ubiquitin protein ligase
- PML, promyelocyticleukemia
- PPI, protein-protein interaction
- Pathways
- REL, REL proto-oncogene, NF-kB subunit
- ROC, receiver operating characteristic
- SARS-CoV-2 infection
- SARS-CoV-2, Severe acute respiratory syndrome corona virus 2
Collapse
|
47
|
Hachim MY, Al Heialy S, Senok A, Hamid Q, Alsheikh-Ali A. Molecular Basis of Cardiac and Vascular Injuries Associated With COVID-19. Front Cardiovasc Med 2020; 7:582399. [PMID: 33240937 PMCID: PMC7669624 DOI: 10.3389/fcvm.2020.582399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/18/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Coronavirus disease 2019 (COVID-19) is a viral respiratory illness caused by the novel coronavirus SARS-CoV-2. The presence of the pre-existing cardiac disease is associated with an increased likelihood of severe clinical course and mortality in patients with COVID-19. Besides, current evidence indicates that a significant number of patients with COVID-19 also exhibit cardiovascular involvement even in the absence of known cardiac risk factors. Therefore, there is a need to understand the underlying mechanisms and genetic predispositions that explain cardiovascular involvement in COVID-19. Objectives:In silico analysis of publicly available datasets to decipher the molecular basis, potential pathways, and the role of the endothelium in the pathogenesis of cardiac and vascular injuries in COVID-19. Materials and Methods: Consistent significant differentially expressed genes (DEGs) shared by endothelium and peripheral immune cells were identified in five microarray transcriptomic profiling datasets in patients with venous thromboembolism “VTE,” acute coronary syndrome, heart failure and/or cardiogenic shock (main cardiovascular injuries related to COVID-19) compared to healthy controls. The identified genes were further examined in the publicly available transcriptomic dataset for cell/tissue specificity in lung tissue, in different ethnicities and in SARS-CoV-2 infected vs. mock-infected lung tissues and cardiomyocytes. Results: We identified 36 DEGs in blood and endothelium known to play key roles in endothelium and vascular biology, regulation of cellular response to stress as well as endothelial cell migration. Some of these genes were upregulated significantly in SARS-CoV-2 infected lung tissues. On the other hand, some genes with cardioprotective functions were downregulated in SARS-CoV-2 infected cardiomyocytes. Conclusion: In conclusion, our findings from the analysis of publicly available transcriptomic datasets identified shared core genes pertinent to cardiac and vascular-related injuries and their probable role in genetic susceptibility to cardiovascular injury in patients with COVID-19.
Collapse
Affiliation(s)
- Mahmood Yaseen Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Saba Al Heialy
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Qutayba Hamid
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montreal, QC, Canada.,College of Medicine, Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
48
|
Kumar V. Understanding the complexities of SARS-CoV2 infection and its immunology: A road to immune-based therapeutics. Int Immunopharmacol 2020; 88:106980. [PMID: 33182073 PMCID: PMC7843151 DOI: 10.1016/j.intimp.2020.106980] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Emerging infectious diseases always pose a threat to humans along with plant and animal life. SARS-CoV2 is the recently emerged viral infection that originated from Wuhan city of the Republic of China in December 2019. Now, it has become a pandemic. Currently, SARS-CoV2 has infected more than 27.74 million people worldwide, and taken 901,928 human lives. It was named first 'WH 1 Human CoV' and later changed to 2019 novel CoV (2019-nCoV). Scientists have established it as a zoonotic viral disease emerged from Chinese horseshoe bats, which do not develop a severe infection. For example, Rhinolophus Chinese horseshoe bats harboring severe acute respiratory syndrome-related coronavirus (SARSr-CoV) or SARSr-Rh-BatCoV appear healthy and clear the virus within 2-4 months period. The article introduces first the concept of EIDs and some past EIDs, which have affected human life. Next section discusses mysteries regarding SARS-CoV2 origin, its evolution, and human transfer. Third section describes COVID-19 clinical symptoms and factors affecting susceptibility or resistance. The fourth section introduces the SARS-CoV2 entry in the host cell, its replication, and the establishment of productive infection. Section five describes the host's immune response associated with asymptomatic, symptomatic, mild to moderate, and severe COVID-19. The subsequent seventh and eighth sections mention the immune status in COVID-19 convalescent patients and re-emergence of COVID-19 in them. Thereafter, the eighth section describes viral strategies to hijack the host antiviral immune response and generate the "cytokine storm". The ninth section describes about transgenic humane ACE2 (hACE2) receptor expressing mice to study immunity, drugs, and vaccines. The article ends with the development of different immunomodulatory and immunotherapeutics strategies, including vaccines waiting for their approval in humans as prophylaxis or treatment measures.
Collapse
Affiliation(s)
- V Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
49
|
Gómez J, Albaiceta GM, Cuesta-Llavona E, García-Clemente M, López-Larrea C, Amado-Rodríguez L, López-Alonso I, Melón S, Alvarez-Argüelles ME, Gil-Peña H, Vidal-Castiñeira JR, Corte-Iglesias V, Saiz ML, Alvarez V, Coto E. The Interferon-induced transmembrane protein 3 gene (IFITM3) rs12252 C variant is associated with COVID-19. Cytokine 2020; 137:155354. [PMID: 33113474 DOI: 10.1016/j.cyto.2020.155354] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS The interferon-induced transmembrane proteins play an important antiviral role by preventing viruses from traversing the cellular lipid bilayer. IFITM3 gene variants have been associated with the clinical response to influenza and other viruses. Our aim was to determine whether the IFITM3 rs12252 polymorphism was associated with the risk of developing severe symptoms of COVID-19 in our population. METHODS A total of 288 COVID-19 patients who required hospitalization (81 in the intensive care unit) and 440 age matched controls were genotyped with a Taqman assay. Linear regression models were used to compare allele and genotype frequencies between the groups, correcting for age and sex. RESULTS Carriers of the minor allele frequency (rs12252 C) were significantly more frequent in the patients compared to controls after correcting by age and sex (p = 0.01, OR = 2.02, 95%CI = 1.19-3.42). This genotype was non-significantly more common among patients who required ICU. CONCLUSIONS The IFITM3 rs12252 C allele was a risk factor for COVID-19 hospitalization in our Caucasian population. The extent of the association was lower than the reported among Chinese, a population with a much higher frequency of the risk allele.
Collapse
Affiliation(s)
- Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Carlos López-Larrea
- Inmunología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain; Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Inés López-Alonso
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III, Madrid, Spain
| | - Santiago Melón
- Microbiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Marta E Alvarez-Argüelles
- Microbiología, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Helena Gil-Peña
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | | | - María L Saiz
- Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Victoria Alvarez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain; Universidad de Oviedo, Oviedo, Spain; Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
50
|
Iadecola C, Anrather J, Kamel H. Effects of COVID-19 on the Nervous System. Cell 2020; 183:16-27.e1. [PMID: 32882182 PMCID: PMC7437501 DOI: 10.1016/j.cell.2020.08.028] [Citation(s) in RCA: 418] [Impact Index Per Article: 83.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
Abstract
Neurological complications have emerged as a significant cause of morbidity and mortality in the ongoing COVID-19 pandemic. Beside respiratory insufficiency, many hospitalized patients exhibit neurological manifestations ranging from headache and loss of smell, to confusion and disabling strokes. COVID-19 is also anticipated to take a toll on the nervous system in the long term. Here, we will provide a critical appraisal of the potential for neurotropism and mechanisms of neuropathogenesis of SARS-CoV-2 as they relate to the acute and chronic neurological consequences of the infection. Finally, we will examine potential avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Clinical Translational Neuroscience Unit, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Clinical Translational Neuroscience Unit, Weill Cornell Medicine, New York, NY 10021, USA
| | - Hooman Kamel
- Feil Family Brain and Mind Research Institute, Clinical Translational Neuroscience Unit, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|