1
|
Gupta VK, Janda GS, Pump HK, Lele N, Cruz I, Cohen I, Ruff WE, Hafler DA, Sung J, Longbrake EE. Alterations in Gut Microbiome-Host Relationships After Immune Perturbation in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200355. [PMID: 39819054 PMCID: PMC11741292 DOI: 10.1212/nxi.0000000000200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES Gut microbial symbionts have been shown to influence the development of autoimmunity in multiple sclerosis (MS). Emerging research points to an important relationship between the microbial-IgA interface and MS pathophysiology. IgA-secreting B cells are observed in the MS brain, and shifts in gut bacteria-IgA binding have been described in some patients with MS. However, the relationships between the gut microbiome and the host immune response, particularly regarding B-cell-depleting immunomodulation, remain underexplored. This study aimed to evaluate the composition of the gut microbiome in patients with newly diagnosed MS at baseline and after B-cell depletion, using long-read sequencing for enhanced taxonomic resolution. We further aimed to investigate the host/microbiome interface by evaluating microbe/immunoglobulin A relationships. METHODS We collected stool samples from 43 patients with newly diagnosed, untreated MS and 42 matched healthy controls. Nineteen patients with MS initiated anti-CD20 monoclonal antibody treatment and donated additional stool samples after 6 months of treatment. We evaluated the host-microbial interface using bacterial flow cytometry and long-read 16S rRNA gene amplicon sequencing. We used Immune Coating Scores to compare the proportions of bacteria identified in the IgA-coated vs IgA-uncoated bacterial fractions. RESULTS Patients with untreated, newly diagnosed MS showed significant reductions in IgA-bound fecal microbiota compared with controls. Using multiple linear regression models adjusted for potential confounders, we observed significant (p < 0.05) changes in the abundance and prevalence of various strain-level gut bacteria amplicon sequence variants (ASVs) within both total and IgA-coated bacterial fractions. Some changes (e.g., decreased relative abundance of a Faecalibacterium prausnitzii variant in MS) were consistent with previous reports, while others (e.g., increased relative abundance and prevalence of Monoglobus pectinyliticus in MS) were novel. Immune Coating Scores identified subsets of organisms for which normal IgA-coating patterns were disrupted at the onset of MS, as well as those (particularly Akkermansia muciniphila) whose IgA-coating became more aligned with controls after therapy. DISCUSSION This analysis of gut microbial ASVs reveals shifts in taxonomic strains induced by immune modulation in MS.
Collapse
Affiliation(s)
- Vinod K Gupta
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Guneet S Janda
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Heather K Pump
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN
| | - Nikhil Lele
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Isabella Cruz
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Inessa Cohen
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - William E Ruff
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - David A Hafler
- Yale School of Medicine Department of Neurology, New Haven, CT
- Yale School of Medicine Department of Immunobiology, New Haven, CT
| | - Jaeyun Sung
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic; and
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
2
|
Fukasawa N, Tsunoda J, Sunaga S, Kiyohara H, Nakamoto N, Teratani T, Mikami Y, Kanai T. The gut-organ axis: Clinical aspects and immune mechanisms. Allergol Int 2025:S1323-8930(25)00009-7. [PMID: 39979198 DOI: 10.1016/j.alit.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 02/22/2025] Open
Abstract
The gut-brain axis exemplifies the bidirectional connection between the intestines and the brain, as evidenced by the impact of severe stress on gastrointestinal symptoms including abdominal pain and diarrhea, and conversely, the influence of abdominal discomfort on mood. Clinical observations support the notion of the gut-brain connection, including an increased prevalence of inflammatory bowel disease (IBD) in patients with depression and anxiety, as well as the association of changes in the gut microbiota with neurological disorders such as multiple sclerosis, Parkinson's disease, stroke and Alzheimer's disease. The gut and brain communicate via complex mechanisms involving inflammatory cytokines, immune cells, autonomic nerves, and gut microbiota, which contribute to the pathogenesis in certain gut and brain diseases. Two primary pathways mediate the bidirectional information exchange between the intestinal tract and the brain: signal transduction through bloodstream factors, such as bacterial metabolites and inflammatory cytokines, and neural pathways, such as neurotransmitters and inflammatory cytokines within the autonomic nervous system through the interaction between the nerve cells and beyond. In recent years, the basic mechanisms of the pathophysiology of the gut-brain axis have been gradually elucidated. Beyond the gut-brain interaction, emerging evidence suggests the influence of the gut extends to other organs, such as the liver and lungs, through intricate inter-organ communication pathways. An increasing number of reports on this clinical and basic cross-organ interactions underscore the potential for better understanding and novel therapeutic strategies targeting inter-organs networks. Further clarification of interactions between multiorgans premises transformative insights into cross-organ therapeutic strategies.
Collapse
Affiliation(s)
- Naoto Fukasawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Junya Tsunoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shogo Sunaga
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroki Kiyohara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Toshiaki Teratani
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan.
| |
Collapse
|
3
|
Deng X, Gong X, Zhou D, Hong Z. Perturbations in gut microbiota composition in patients with autoimmune neurological diseases: a systematic review and meta-analysis. Front Immunol 2025; 16:1513599. [PMID: 39981228 PMCID: PMC11839609 DOI: 10.3389/fimmu.2025.1513599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Studies suggest that gut dysbiosis occurs in autoimmune neurological diseases, but a comprehensive synthesis of the evidence is lacking. Our aim was to systematically review and meta-analyze the correlation between the gut microbiota and autoimmune neurological disorders to inform clinical diagnosis and therapeutic intervention. We searched the databases of PubMed, Embase, Web of Science, and the Cochrane Library until 1 March 2024 for research on the correlation between gut microbiota and autoimmune neurological disorders. A total of 62 studies provided data and were included in the analysis (n = 3,126 patients, n = 2,843 healthy individuals). Among the included studies, 42 studies provided data on α-diversity. Regarding α-diversity, except for Chao1, which showed a consistent small decrease (SMD = -0.26, 95% CI = -0.45 to -0.07, p < 0.01), other indices demonstrated no significant changes. While most studies reported significant differences in β-diversity, consistent differences were only observed in neuromyelitis optica spectrum disorders. A decrease in short-chain fatty acid (SCFA)-producing bacteria, including Faecalibacterium and Roseburia, was observed in individuals with autoimmune encephalitis, neuromyelitis optica spectrum disorders, myasthenia gravis, and multiple sclerosis. Conversely, an increase in pathogenic or opportunistic pathogens, including Streptococcus and Escherichia-Shigella, was observed in these patients. Subgroup analyses assessed the confounding effects of geography and immunotherapy use. These findings suggest that disturbances of the gut flora are associated with autoimmune neurological diseases, primarily manifesting as non-specific and shared microbial alterations, including a reduction in SCFA-producing bacteria and an increase in pathogenic or opportunistic pathogens. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023410215.
Collapse
Affiliation(s)
- Xiaolin Deng
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Xue Gong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Kim JH, Choi Y, Lee S, Oh MS. Probiotics as Potential Treatments for Neurodegenerative Diseases: a Review of the Evidence from in vivo to Clinical Trial. Biomol Ther (Seoul) 2025; 33:54-74. [PMID: 39676295 PMCID: PMC11704393 DOI: 10.4062/biomolther.2024.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Neurodegenerative diseases (NDDs), characterized by the progressive deterioration of the structure and function of the nervous system, represent a significant global health challenge. Emerging research suggests that the gut microbiota plays a critical role in regulating neurodegeneration via modulation of the gut-brain axis. Probiotics, defined as live microorganisms that confer health benefits to the host, have garnered significant attention owing to their therapeutic potential in NDDs. This review examines the current research trends related to the microbiome-gut-brain axis across various NDDs, highlighting key findings and their implications. Additionally, the effects of specific probiotic strains, including Lactobacillus plantarum, Bifidobacterium breve, and Lactobacillus rhamnosus, on neurodegenerative processes were assessed, focusing on their potential therapeutic benefits. Overall, this review emphasizes the potential of probiotics as promising therapeutic agents for NDDs, underscoring the importance of further investigation into this emerging field.
Collapse
Affiliation(s)
- Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yujin Choi
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungmin Lee
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
5
|
Jette S, de Schaetzen C, Tsai CC, Tremlett H. The multiple sclerosis gut microbiome and disease activity: A systematic review. Mult Scler Relat Disord 2024; 92:106151. [PMID: 39586156 DOI: 10.1016/j.msard.2024.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND The gut microbiome is a potential therapeutic target for multiple sclerosis (MS), yet its association with disease activity remains unclear. We systematically reviewed the literature to investigate the relationship between the gut microbiome and MS disease activity, course, and disability progression. METHODS We searched MEDLINE, EMBASE, Web of Science and Google Scholar (01/2011-02/2024) to identify relevant observational or interventional studies published in English. Case reports were ineligible. Outcomes included disease activity (e.g. relapses, MRI), course (e.g. relapsing-remitting/secondary-progressive [RR/SPMS]) and disability progression (e.g. using the Expanded Disability Status Scale [EDSS]). Study quality was evaluated using the Newcastle-Ottawa Scale. RESULTS Four longitudinal and nineteen cross-sectional studies were included, totaling 1760 persons with MS. Most were female (1237/1760, 70 %) and had RRMS (1378/1760, 78 %). The majority of studies (67 %;10/15) examining gut diversity (alpha or beta) did not find an association with disease activity, course or progression. However, several gut taxa exhibited significant associations with study outcomes, including eight that varied in consistent directions: a higher abundance of Actinobacteria, Bacteroidota and Roseburia inulinivorans were associated with better MS outcomes (e.g. lower EDSS scores), while higher abundances of Streptococcus, Clostridium nexile, Clostridium scindens and Collinsella aerofaciens were associated with worse outcomes (e.g. higher MRI lesion volumes). CONCLUSIONS Gut diversity was not associated with MS-related outcomes in most studies whereas several gut taxa were, including higher abundances of short chain-fatty acid producers (e.g. Bacteroidota) showing associations with lower EDSS scores. Most studies were cross-sectional, limiting interpretation of findings; longitudinal studies are warranted.
Collapse
Affiliation(s)
- Sophia Jette
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada
| | | | - Chia-Chen Tsai
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Helen Tremlett
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Li D, Li M, Gao H, Hu K, Xie R, Fan J, Huang M, Liao C, Han C, Guo Z, Chen X, Li M. Integrative multiomics analysis reveals association of gut microbiota and its metabolites with susceptibility to keloids. Front Microbiol 2024; 15:1475984. [PMID: 39669776 PMCID: PMC11636970 DOI: 10.3389/fmicb.2024.1475984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024] Open
Abstract
Keloid scarring is a fibroproliferative disease of the skin, which can significantly impact one's quality of life through cosmetic concerns, physical discomfort (itchy; painful), restricted movement, and psychological distress. Owing to the poorly understood pathogenesis of keloids and their high recurrence rate, the efficacy of keloid treatment remains unsatisfactory, particularly in patients susceptible to multiple keloids. We conducted fecal metagenomic analyzes and both untargeted and targeted plasma metabolomics in patients with multiple keloids (MK, n = 56) and controls with normal scars (NS, n = 60); tissue-untargeted metabolomics (MK, n = 35; NS, n = 32), tissue-targeted metabolomics (MK, n = 41; NS, n = 36), and single-cell sequencing analyzes (GSE163973). Differences in the gut microbiota composition, plasma metabolites, and tissue metabolites were observed between the MK and NS groups; the core gut microbiota, Oxalobacter formigenes, Bacteroides plebeius, and Parabacteroides distasonis, were identified via the gut microbiome co-occurrence network. Single-cell data helped clarify the specific cells affected by plasma metabolites. An area under the curve analysis using a random forest model based on fecal metagenomics, plasma metabolomics, and tissue metabolomics revealed that gut bacteria, plasma, and tissue metabolites were effective in distinguishing between MK and NS groups. Decreased Bacteroides plebeius could lower uracil levels, altering systemic lipid metabolism, which may change the metabolic phenotype of secretory reticular fibroblasts in wounds, potentially leading to MK. These findings may open new avenues for understanding the multifactorial nature of keloid formation from the gut-skin axis and highlight the potential for novel therapeutic strategies targeting keloid lesions and the underlying systemic imbalances affected by the gut microbiome.
Collapse
Affiliation(s)
- Dang Li
- Nursing Department of Fujian Medical University Union Hospital, Fuzhou, China
| | - Minghao Li
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Kailun Hu
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Rongrong Xie
- Department of Plastic Surgery, The Second Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Fan
- Department of Gynecology, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou, China
| | - Mingquan Huang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Chengxin Liao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Chang Han
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd., Shanghai, China
| | - Zhihui Guo
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| | - Ming Li
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou, China
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, Fuzhou, China
| |
Collapse
|
7
|
Gawlik-Kotelnicka O, Rogalski J, Czarnecka-Chrebelska KH, Burzyński J, Jakubowska P, Skowrońska A, Strzelecki D. The Interplay Between Depression, Probiotics, Diet, Immunometabolic Health, the Gut, and the Liver-A Secondary Analysis of the Pro-Demet Randomized Clinical Trial. Nutrients 2024; 16:4024. [PMID: 39683419 PMCID: PMC11643736 DOI: 10.3390/nu16234024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Depression, metabolic alternations, and liver diseases are highly comorbid. Studies have shown that probiotics might be helpful in the treatment of the above-mentioned states. The aim of this secondary analysis was to search for possible predictors of probiotics' efficacy on liver-related outcome measures. (2) Methods: Data from 92 subjects from a randomized clinical trial on the effect of probiotics on depression were analyzed. The shift in liver steatosis and fibrosis indices was assessed in the context of baseline immunometabolic, psychometric, dietary, and intestinal permeability factors. Correlation analysis and linear regression models were used. (3) Results: A total of 30% of the variance of the improvement in the score of the aspartate transferase to platelet ratio index was explained by probiotic use, higher pre-intervention triglycerides, cholesterol, C-reactive protein levels, increased cereal intake, and a lower consumption of sweets. Then, the model of the change in alanine transferase indicated that probiotics were efficient when used by subjects with higher basal levels of intestinal permeability markers. (4) Conclusions: Probiotics being used along with a healthy diet may provide additional benefits, such as decreased cardiovascular risk, for patients with measures consistent with the immunometabolic form of depression. Probiotic augmentation may be useful for liver protection among subjects with a suspected "leaky gut" syndrome. ClinicalTrials.gov: NCT04756544.
Collapse
Affiliation(s)
- Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| | - Jakub Rogalski
- University Clinical Hospital No. 2, Medical University of Lodz, 90-549 Lodz, Poland;
| | | | - Jacek Burzyński
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Paulina Jakubowska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| | - Anna Skowrońska
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| | - Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Lodz, 92-216 Lodz, Poland; (P.J.); (A.S.); (D.S.)
| |
Collapse
|
8
|
Bellando-Randone S, Russo E, Di Gloria L, Lepri G, Baldi S, Fioretto BS, Romano E, Ghezzi G, Bertorello S, El Aoufy K, Rosa I, Pallecchi M, Bruni C, Cei F, Nannini G, Niccolai E, Orlandi M, Bandini G, Guiducci S, Bartolucci GL, Ramazzotti M, Manetti M, Matucci-Cerinic M, Amedei A. Gut microbiota in very early systemic sclerosis: the first case-control taxonomic and functional characterisation highlighting an altered butyric acid profile. RMD Open 2024; 10:e004647. [PMID: 39557490 PMCID: PMC11574430 DOI: 10.1136/rmdopen-2024-004647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVES In systemic sclerosis (SSc), gastrointestinal involvement is one of the earliest events. We compared the gut microbiota (GM), its short-chain fatty acids (SCFAs) and host-derived free fatty acids (FFAs) in patients with very early diagnosis of SSc (VEDOSS) and definite SSc. METHODS Stool samples of 26 patients with SSc, 18 patients with VEDOSS and 20 healthy controls (HC) were collected. The GM was assessed through 16S rRNA sequencing, while SCFAs and FFAs were assessed by gas chromatography-mass spectrometry. RESULTS In patients with VEDOSS, an increase in Bacteroidales and Oscillospirales orders and a decrease in Bacilli class, Blautia, Romboutsia, Streptococcus and Turicibacter genera was detected in comparison with HC. In patients with SSc, an elevated number of Acidaminococcaceae and Sutterellaceae families, along with a decrease of the Peptostreptococcaceae family and Anaerostipes, Blautia, Romboutsia and Turicibacter genera was found in comparison with HC. Patients with SSc and VEDOSS had a significantly lower butyrate and higher acetate with respect to HC. In VEDOSS, an increase in Oscillospiraceae family and Anaerostipes genus, and a decrease in Alphaproteobacteria class, and Lactobacillales order was identified with respect to SSc. Moreover, patients with VEDOSS exhibited higher acetate and lower valerate compared with definite SSc. CONCLUSION A GM dysbiosis with depletion of beneficial anti-inflammatory bacteria (especially butyrate-producing) and a significant decrease in faecal butyrate was identified in patients with VEDOSS. This early GM imbalance may foster the growth of inflammatory microbes, worsening intestinal dysbiosis and inflammation in early SSc stages. The potential butyrate administration in early disease phases might be considered as a novel therapeutic approach to mitigate gastrointestinal discomfort and progression preserving patient's quality of life.
Collapse
Affiliation(s)
- Silvia Bellando-Randone
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Gemma Lepri
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
| | - Eloisa Romano
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulio Ghezzi
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Sara Bertorello
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Khadija El Aoufy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Cei
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Martina Orlandi
- Department of Medical and Surgical Sciences for Children, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Bandini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Serena Guiducci
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
- Scleroderma Unit, Azienda Ospedaliero-Universitaria Careggi (AOUC), Florence, Italy
| | - Gian Luca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, Italy
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Florence, Italy
| | - Marco Matucci-Cerinic
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases, IRCCS San Raffaele Hospital, Milan, Italy
- Vita Salute San Raffaele University, Milan, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
9
|
Barcutean L, Farczadi L, Manescu IB, Imre S, Maier S, Balasa R. Short and Medium Chain Fatty Acids in a Cohort of Naïve Multiple Sclerosis Patients: Pre- and Post-Interferon Beta Treatment Assessment. Biologics 2024; 18:349-361. [PMID: 39569059 PMCID: PMC11577435 DOI: 10.2147/btt.s489523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Introduction Alterations in intestinal permeability and microbiota dysregulation have been linked to the development of multiple sclerosis (MS). Short-chain fatty acids (SCFA) and medium-chain fatty acids (MCFA) are products of gut bacteria fermentation which are involved in immune regulation processes. In MS, SCFA have important immunomodulatory properties both in the periphery and the central compartment. Interferon β (IFNβ) was the first disease-modifying therapy approved for the treatment of MS and its effects on the gut microbiota are not fully elucidated. Patients and Methods We performed a prospective observational study aimed to assess peripheral levels of SCFA and MCFA in 23 newly diagnosed, treatment-naïve MS patients (nMS) before and after one year of IFNβ treatment and 23 healthy controls (HC). We investigated their associations with inflammation, interleukin-10 (IL-10), and blood-brain barrier permeability, matrix metalloproteinase 9 (MMP9). Results No significant differences in SCFA/MCFA levels were observed between baseline and after IFNβ treatment. Caproic acid levels were significantly higher in nMS compared to HC (1.64 vs 1.27 µM, p=0.005). The butyric acid/caproic acid ratio was higher in HC compared to nMS (5.47 vs 2.55, p=0.005). Correlation analysis revealed associations between SCFA/MCFA levels and inflammatory biomarkers. Conclusion nMS have a higher gut-inflammatory activity as seen by the caproic acid ratio as opposed to HC. In this cohort, IFNβ does not appear to modify the peripheral SCFA/MCFA levels after one year of treatment. The quantifications of peripheral SCFA/MCFA may prove to be a useful biomarker for gut-brain axis disruption in MS patients.
Collapse
Affiliation(s)
- Laura Barcutean
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Lenard Farczadi
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
| | - Ion-Bogdan Manescu
- Department of Laboratory Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Silvia Imre
- Chromatography and Mass Spectrometry Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, Mures, 540139, Romania
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
| | - Smaranda Maier
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Targu Mures, 540142, Romania
- Neurology 1 Clinic, Mures County Emergency Clinical Hospital, Targu Mures, Romania
| |
Collapse
|
10
|
Zhou J, Zhang H, Huo P, Shen H, Huang Q, Yang L, Liu A, Chen G, Tao F, Liu K, Zhang D. The association between circulating short-chain fatty acids and blood pressure in Chinese elderly population. Sci Rep 2024; 14:27062. [PMID: 39511348 PMCID: PMC11544228 DOI: 10.1038/s41598-024-78463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
The gut microbiome primarily generates short-chain fatty acids (SCFAs) by fermenting dietary fibers. Though previous studies have linked SCFAs to blood pressure, there remains a lack of research on the relationship between SCFAs levels in the serum of elderly individuals and blood pressure. Based on this, we investigated the associations of serum SCFAs with blood pressure in Chinese older adults in a cross-sectional study. In this report, we recruited 1013 older adults over 60 years of age from June to September 2016 in Lu 'an City, China. Using Ultra High Performance Liquid Chromatography-Quadrupole-Exactive-Orbitrap-Mass Spectrometry (UHPLC-QE-Orbitrap MS), we measured the level of various SCFAs, including acetic acid (AA), propanoic acid (PA), butyric acid (BA), isobutyric acid (iso-BA), valeric acid (VA), isovaleric acid (iso-VA), and caproic acid (CA), in serum samples collected from Chinese elderly adults. The study recruited 1013 older adults in total. Multiple logistic regression analysis shows that AA (OR = 0.696, 95%CI: 0.501-0.966) and VA (OR = 0.713, 95%CI: 0.516-0.985) are negatively associated with hypertension. Linear regression analysis shows a negative correlation between AA (β = -3.89, 95% CI: -7.12 - -0.66) and the systolic blood pressure (SBP) levels, and a significant negative association between iso-VA (β = -2.11, 95% CI: -3.94 - -0.29) and diastolic blood pressure (DBP) levels. Whether in unadjusted or adjusted linear regression models, we all observe significant positive associations between CA and blood pressure levels. In the Bayesian kernel-machine regression (BKMR) models, the trends between the mixture of SCFAs and hypertension, SBP are inverse, but not significant; we also observe a significant negative correlation between AA and SBP, and a significant negative association between iso-VA and DBP levels, while CA is significantly positively correlated with SBP and DBP. Collectively, our results advocate for considering SCFA as a potential intervention to lower blood pressure, and especially AA may be a possible target for research. This may provide new perspectives for understanding the role of SCFAs in hypertension.
Collapse
Affiliation(s)
- Jiamou Zhou
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Heqiao Zhang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Pengcheng Huo
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Huiyan Shen
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Qian Huang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Linsheng Yang
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Annuo Liu
- School of Nursing, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Guimei Chen
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
| | - Fangbiao Tao
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China
- Center for Big Data and Population Health, Institute of Health and Medicine, Anhui Province, Hefei Comprehensive National Science Center, No 81 Meishan Road, Hefei, 230032, People's Republic of China
| | - Kaiyong Liu
- School of Public Health, Anhui Province, Anhui Medical University, Hefei, People's Republic of China.
- Center for Big Data and Population Health, Institute of Health and Medicine, Anhui Province, Hefei Comprehensive National Science Center, No 81 Meishan Road, Hefei, 230032, People's Republic of China.
| | - Dongmei Zhang
- School of Health Management, Anhui Province, Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
11
|
Campagnoli LIM, Marchesi N, Varesi A, Morozzi M, Mascione L, Ricevuti G, Esposito C, Galeotti N, Pascale A. New therapeutic avenues in multiple sclerosis: Is there a place for gut microbiota-based treatments? Pharmacol Res 2024; 209:107456. [PMID: 39389400 DOI: 10.1016/j.phrs.2024.107456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The bidirectional interaction between the gut and the central nervous system (CNS), the so-called gut microbiota-brain axis, is reported to influence brain functions, thus having a potential impact on the development or the progression of several neurodegenerative disorders. Within this context, it has been documented that multiple sclerosis (MS), an autoimmune inflammatory, demyelinating, and neurodegenerative disease of the CNS, is associated with gastrointestinal symptoms, including constipation, dysphagia, and faecal incontinence. Moreover, some evidence suggests the existence of an altered gut microbiota (GM) composition in MS patients with respect to healthy individuals, as well as the potential influence of GM dysbiosis on typical MS features, including increased intestinal permeability, disruption of blood-brain barrier integrity, chronic inflammation, and altered T cells differentiation. Starting from these assumptions, the possible involvement of GM alteration in MS pathogenesis seems likely, and its restoration could represent a supplemental beneficial strategy against this disabling disease. In this regard, the present review will explore possible preventive approaches (including several dietary interventions, the administration of probiotics, prebiotics, synbiotics, and postbiotics, and the use of faecal microbiota transplantation) to be pursued as prophylaxis or in combination with pharmacological treatments with the aim of re-establishing a proper GM, thus helping to prevent the development of this disease or to manage it by alleviating symptoms or slowing down its progression.
Collapse
Affiliation(s)
| | - Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| | - Angelica Varesi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Martina Morozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Linda Mascione
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy
| | | | - Ciro Esposito
- Department of Internal Medicine and Therapeutics, University of Pavia, Italy; Nephrology and dialysis unit, ICS S. Maugeri SPA SB Hospital, Pavia, Italy; High School in Geriatrics, University of Pavia, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, Pavia, Italy.
| |
Collapse
|
12
|
Peter B, Rebeaud J, Vigne S, Bressoud V, Phillips N, Ruiz F, Petrova TV, Bernier-Latmani J, Pot C. Perivascular B cells link intestinal angiogenesis to immunity and to the gut-brain axis during neuroinflammation. J Autoimmun 2024; 148:103292. [PMID: 39067313 DOI: 10.1016/j.jaut.2024.103292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Disruption of gut barrier function and intestinal immune cell homeostasis are increasingly considered critical players in pathogenesis of extra-intestinal inflammatory diseases, including multiple sclerosis (MS) and its prototypical animal model, the experimental autoimmune encephalomyelitis (EAE). Breakdown of epithelial barriers increases intestinal permeability and systemic dissemination of microbiota-derived molecules. However, whether the gut-vascular barrier (GVB) is altered during EAE has not been reported. Here, we demonstrate that endothelial cell proliferation and vessel permeability increase before EAE clinical onset, leading to vascular remodeling and expansion of intestinal villi capillary bed during disease symptomatic phase in an antigen-independent manner. Concomitant to onset of angiogenesis observed prior to neurological symptoms, we identify an increase of intestinal perivascular immune cells characterized by the surface marker lymphatic vessel endothelial hyaluronic acid receptor 1 (LYVE-1). LYVE-1+ is expressed more frequently on B cells that show high levels of CD73 and have proangiogenic properties. B cell depletion was sufficient to mitigate enteric blood endothelial cell proliferation following immunization for EAE. In conclusion, we propose that altered intestinal vasculature driven by a specialized LYVE-1+ B cell subset promotes angiogenesis and that loss of GVB function is implicated in EAE development and autoimmunity.
Collapse
Affiliation(s)
- Benjamin Peter
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Jessica Rebeaud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Solenne Vigne
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Valentine Bressoud
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Nicholas Phillips
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Florian Ruiz
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Epalinges, 1066, Switzerland
| | - Caroline Pot
- Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Epalinges, 1066, Switzerland.
| |
Collapse
|
13
|
Montgomery TL, Peipert D, Krementsov DN. Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet. Immunol Rev 2024; 325:131-151. [PMID: 38717158 PMCID: PMC11338732 DOI: 10.1111/imr.13343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dan Peipert
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
14
|
Chen L, Jiang Q, Lu H, Jiang C, Hu W, Liu H, Xiang X, Tan CP, Zhou T, Shen G. Effects of Tea Seed Oil Extracted by Different Refining Temperatures on the Intestinal Microbiota of High-Fat-Diet-Induced Obese Mice. Foods 2024; 13:2352. [PMID: 39123544 PMCID: PMC11312122 DOI: 10.3390/foods13152352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity has become one of the most serious chronic diseases threatening human health. Its onset and progression are closely related to the intestinal microbiota, as disruption of the intestinal flora promotes the production of endotoxins and induces an inflammatory response. This study aimed to investigate the variations in the physicochemical properties of various refined tea seed oils and their impact on intestinal microbiota disorders induced by a high-fat diet (HFD) through dietary intervention. In the present study, C57BL/6J mice on a HFD were randomly divided into three groups: HFD, T-TSO, and N-TSO. T-TSO and N-TSO mice were given traditionally refined and optimized tea seed oil for 12 weeks. The data revealed that tea seed oil obtained through degumming at 70 °C, deacidification at 50 °C, decolorization at 90 °C, and deodorization at 180 °C (at 0.06 MPa for 1 h) effectively removed impurities while minimizing the loss of active ingredients. Additionally, the optimized tea seed oil mitigated fat accumulation and inflammatory responses resulting from HFD, and reduced liver tissue damage in comparison to traditional refining methods. More importantly, N-TSO can serve as a dietary supplement to enhance the diversity and abundance of intestinal microbiota, increasing the presence of beneficial bacteria (norank_f__Muribaculaceae, Lactobacillus, and Bacteroides) while reducing pathogenic bacteria (Alistipes and Mucispirillum). Therefore, in HFD-induced obese C57BL/6J mice, N-TSO can better ameliorate obesity compared with a T-TSO diet, which is promising in alleviating HFD-induced intestinal microbiota disorders.
Collapse
Affiliation(s)
- Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Qihong Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Hongling Lu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Chenkai Jiang
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Wenjun Hu
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| | - Hanxiao Liu
- Zhejiang Feida Environmental Science & Technology Co., Ltd., Shaoxing 311800, China;
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang 43400, Malaysia;
| | - Tianhuan Zhou
- Zhejiang Forest Resources Monitoring Center, Hangzhou 310020, China
| | - Guoxin Shen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.C.); (Q.J.); (H.L.); (C.J.); (W.H.)
| |
Collapse
|
15
|
Dell'Olio A, Rubert J, Capozzi V, Tonezzer M, Betta E, Fogliano V, Biasioli F. Non-invasive VOCs detection to monitor the gut microbiota metabolism in-vitro. Sci Rep 2024; 14:15842. [PMID: 38982163 PMCID: PMC11233675 DOI: 10.1038/s41598-024-66303-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
This work implemented a non-invasive volatile organic compounds (VOCs) monitoring approach to study how food components are metabolised by the gut microbiota in-vitro. The fermentability of a model food matrix rich in dietary fibre (oat bran), and a pure prebiotic (inulin), added to a minimal gut medium was compared by looking at global changes in the volatilome. The substrates were incubated with a stabilised human faecal inoculum over a 24-h period, and VOCs were monitored without interfering with biological processes. The fermentation was performed in nitrogen-filled vials, with controlled temperature, and tracked by automated headspace-solid-phase microextraction coupled with gas chromatography-mass spectrometry. To understand the molecular patterns over time, we applied a multivariate longitudinal statistical framework: repeated measurements-ANOVA simultaneous component analysis. The methodology was able to discriminate the studied groups by looking at VOCs temporal profiles. The volatilome showed a time-dependency that was more distinct after 12 h. Short to medium-chain fatty acids showed increased peak intensities, mainly for oat bran and for inulin, but with different kinetics. At the same time, alcohols, aldehydes, and esters showed distinct trends with discriminatory power. The proposed approach can be applied to study the intertwined pathways of gut microbiota food components interaction in-vitro.
Collapse
Affiliation(s)
- Andrea Dell'Olio
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Josep Rubert
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Vittorio Capozzi
- Institute of Food Production Sciences, National Research Council, 71121, Foggia, Italy
| | - Matteo Tonezzer
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
- Department of Chemical and Geological Sciences, University of Cagliari, 09042, Monserrato , Italy
| | - Emanuela Betta
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy
| | - Vincenzo Fogliano
- Food Quality and Design, Wageningen University & Research, 6708 WG, Wageningen, Netherlands
| | - Franco Biasioli
- Reserach and Innovation Centre, Fondazione Edmund Mach, 39098, San Michele All'Adige, Italy.
| |
Collapse
|
16
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JWS, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. Sci Rep 2024; 14:15292. [PMID: 38961134 PMCID: PMC11222390 DOI: 10.1038/s41598-024-64369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.
Collapse
Affiliation(s)
- Theresa L Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA
| | - Qin Wang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ali Mirza
- Pharmacoepidemiology in Multiple Sclerosis Research Group, The University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Deanna Dwyer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qi Wu
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Catherine A Dowling
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jacob W S Martens
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jennifer Yang
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Dimitry N Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, 05401, USA.
| | - Yang Mao-Draayer
- Autoimmunity Center of Excellence, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Autoimmunity Center of Excellence, Multiple Sclerosis Center of Excellence, Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
17
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
18
|
Chen L, Zhang L, Hua H, Liu L, Mao Y, Wang R. Interactions between toll-like receptors signaling pathway and gut microbiota in host homeostasis. Immun Inflamm Dis 2024; 12:e1356. [PMID: 39073297 PMCID: PMC11284964 DOI: 10.1002/iid3.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) are a family of fundamental pattern recognition receptors in the innate immune system, constituting the first line of defense against endogenous and exogenous antigens. The gut microbiota, a collection of commensal microorganisms in the intestine, is a major source of exogenous antigens. The components and metabolites of the gut microbiota interact with specific TLRs to contribute to whole-body immune and metabolic homeostasis. OBJECTIVE This review aims to summarize the interaction between the gut microbiota and TLR signaling pathways and to enumerate the role of microbiota dysbiosis-induced TLR signaling pathways in obesity, inflammatory bowel disease (IBD), and colorectal cancer (CRC). RESULTS Through the recognition of TLRs, the microbiota facilitates the development of both the innate and adaptive immune systems, while the immune system monitors dynamic changes in the commensal bacteria to maintain the balance of the host-microorganism symbiosis. Dysbiosis of the gut microbiota can induce a cascade of inflammatory and metabolic responses mediated by TLR signaling pathways, potentially resulting in various metabolic and inflammatory diseases. CONCLUSION Understanding the crosstalk between TLRs and the gut microbiota contributes to potential therapeutic applications in related diseases, offering new avenues for treatment strategies in conditions like obesity, IBD, and CRC.
Collapse
Affiliation(s)
- Luping Chen
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Department of Pharmacology and Toxicology, School of Nutrition and Translational Research in MetabolismMaastricht UniversityMaastrichtThe Netherlands
| | - Linfang Zhang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
- Oxford Suzhou Centre for Advanced ResearchSuzhouChina
| | - Hua Hua
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Li Liu
- Sichuan Institute for Translational Chinese MedicineChengduChina
- Sichuan Academy of Chinese Medical SciencesChengduChina
| | - Yuejian Mao
- Global R&D Innovation CenterInner Mongolia Mengniu Dairy (Group) Co. Ltd.HohhotInner MongoliaChina
| | - Ruirui Wang
- Shanghai Innovation Center of TCM Health ServiceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
19
|
Lee B, Lee SM, Song JW, Choi JW. Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction. Biomol Ther (Seoul) 2024; 32:403-423. [PMID: 38898687 PMCID: PMC11214962 DOI: 10.4062/biomolther.2024.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
The human gastrointestinal (GI) tract houses a diverse microbial community, known as the gut microbiome comprising bacteria, viruses, fungi, and protozoa. The gut microbiome plays a crucial role in maintaining the body's equilibrium and has recently been discovered to influence the functioning of the central nervous system (CNS). The communication between the nervous system and the GI tract occurs through a two-way network called the gut-brain axis. The nervous system and the GI tract can modulate each other through activated neuronal cells, the immune system, and metabolites produced by the gut microbiome. Extensive research both in preclinical and clinical realms, has highlighted the complex relationship between the gut and diseases associated with the CNS, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This review aims to delineate receptor and target enzymes linked with gut microbiota metabolites and explore their specific roles within the brain, particularly their impact on CNS-related diseases.
Collapse
Affiliation(s)
- Bada Lee
- Department of Biomedicinal and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Min Lee
- Department of Biomedicinal and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Won Song
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Woo Choi
- Department of Biomedicinal and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Lim JJ, Goedken M, Jin Y, Gu H, Cui JY. Single-cell transcriptomics unveiled that early life BDE-99 exposure reprogrammed the gut-liver axis to promote a proinflammatory metabolic signature in male mice at late adulthood. Toxicol Sci 2024; 200:114-136. [PMID: 38648751 PMCID: PMC11199921 DOI: 10.1093/toxsci/kfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are legacy flame retardants that bioaccumulate in the environment. The gut microbiome is an important regulator of liver functions including xenobiotic biotransformation and immune regulation. We recently showed that neonatal exposure to polybrominated diphenyl ether-99 (BDE-99), a human breast milk-enriched PBDE congener, up-regulated proinflammation-related and down-regulated drug metabolism-related genes predominantly in males in young adulthood. However, the persistence of this dysregulation into late adulthood, differential impact among hepatic cell types, and the involvement of the gut microbiome from neonatal BDE-99 exposure remain unknown. To address these knowledge gaps, male C57BL/6 mouse pups were orally exposed to corn oil (10 ml/kg) or BDE-99 (57 mg/kg) once daily from postnatal days 2-4. At 15 months of age, neonatal BDE-99 exposure down-regulated xenobiotic and lipid-metabolizing enzymes and up-regulated genes involved in microbial influx in hepatocytes. Neonatal BDE-99 exposure also increased the hepatic proportion of neutrophils and led to a predicted increase of macrophage migration inhibitory factor signaling. This was associated with decreased intestinal tight junction protein (Tjp) transcripts, altered gut environment, and dysregulation of inflammation-related metabolites. ScRNA-seq using germ-free (GF) mice demonstrated the necessity of a normal gut microbiome in maintaining hepatic immune tolerance. Microbiota transplant to GF mice using large intestinal microbiome from adults neonatally exposed to BDE-99 down-regulated Tjp transcripts and up-regulated several cytokines in large intestine. In conclusion, neonatal BDE-99 exposure reprogrammed cell type-specific gene expression and cell-cell communication in liver towards proinflammation, and this may be partly due to the dysregulated gut environment.
Collapse
Affiliation(s)
- Joe Jongpyo Lim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| | - Michael Goedken
- Rutgers Research Pathology Services, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St Lucie, Florida 34987, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, USA
- Environmental Health and Microbiome Research Center (EHMBRACE), Seattle, Washington 98105, USA
| |
Collapse
|
21
|
Maiuolo J, Bulotta RM, Ruga S, Nucera S, Macrì R, Scarano F, Oppedisano F, Carresi C, Gliozzi M, Musolino V, Mollace R, Muscoli C, Mollace V. The Postbiotic Properties of Butyrate in the Modulation of the Gut Microbiota: The Potential of Its Combination with Polyphenols and Dietary Fibers. Int J Mol Sci 2024; 25:6971. [PMID: 39000076 PMCID: PMC11240906 DOI: 10.3390/ijms25136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
The gut microbiota is a diverse bacterial community consisting of approximately 2000 species, predominantly from five phyla: Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. The microbiota's bacterial species create distinct compounds that impact the host's health, including well-known short-chain fatty acids. These are produced through the breakdown of dietary fibers and fermentation of undigested carbohydrates by the intestinal microbiota. The main short-chain fatty acids consist of acetate, propionate, and butyrate. The concentration of butyrate in mammalian intestines varies depending on the diet. Its main functions are use as an energy source, cell differentiation, reduction in the inflammatory process in the intestine, and defense against oxidative stress. It also plays an epigenetic role in histone deacetylases, thus helping to reduce the risk of colon cancer. Finally, butyrate affects the gut-brain axis by crossing the brain-blood barrier, making it crucial to determine the right concentrations for both local and peripheral effects. In recent years, there has been a significant amount of attention given to the role of dietary polyphenols and fibers in promoting human health. Polyphenols and dietary fibers both play crucial roles in protecting human health and can produce butyrate through gut microbiota fermentation. This paper aims to summarize information on the key summits related to the negative correlation between intestinal microbiota diversity and chronic diseases to guide future research on determining the specific activity of butyrate from polyphenols and dietary fibers that can carry out these vital functions.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Rosa Maria Bulotta
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Stefano Ruga
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Federica Scarano
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Francesca Oppedisano
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Cristina Carresi
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Micaela Gliozzi
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Vincenzo Musolino
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Rocco Mollace
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy;
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, Germaneto, 88100 Catanzaro, Italy; (R.M.B.); (S.R.); (S.N.); (R.M.); (F.S.); (F.O.); (C.C.); (M.G.); (V.M.); (C.M.); (V.M.)
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Roma, Italy;
| |
Collapse
|
22
|
Kettunen P, Koistinaho J, Rolova T. Contribution of CNS and extra-CNS infections to neurodegeneration: a narrative review. J Neuroinflammation 2024; 21:152. [PMID: 38845026 PMCID: PMC11157808 DOI: 10.1186/s12974-024-03139-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, particularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenerative processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. This narrative review aims to bring together a broad range of data currently supporting the involvement of central nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens and subsequent pathologies.
Collapse
Affiliation(s)
- Pinja Kettunen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Jari Koistinaho
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Taisia Rolova
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
23
|
Yao Y, Yang Y, Wang J, Yu P, Guo J, Dong L, Wang C, Liu P, Zhang Y, Song X. Proteomic and metabolomic proof of concept for unified airways in chronic rhinosinusitis and asthma. Ann Allergy Asthma Immunol 2024; 132:713-722.e4. [PMID: 38382675 DOI: 10.1016/j.anai.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) with comorbid asthma remains unclear. OBJECTIVE To assess upper and lower airway unity and identify a possible common pathogenesis in CRSwNP with asthma. METHODS This study analyzed the expression of proteins and metabolites in nasal lavage fluid cells (NLFCs) and induced sputum cells (ISCs). Differentially expressed proteins and their function-related metabolites in the upper and lower airways of patients having CRSwNP with or without asthma were identified; relevant signaling pathways were analyzed, and key pathway-related proteins were identified. Parallel reaction monitoring was used to verify these target proteins. RESULTS Protein or metabolite expression between NLFCs and ISCs was highly correlated and conservative on the basis of expression profiles and weighted gene coexpression network analysis. There were 17 differentially coexpressed proteins and their function-related 13 metabolites that were identified in the NLFCs and ISCs of CRSwNP, whereas 11 proteins and 11 metabolites were identified in CRSwNP with asthma. An asthma pathway was involved in the copathogenesis of upper and lower airways in whether CRSwNP or CRSwNP with asthma. The asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase, as the core of the protein-metabolism interaction networks between the upper and lower airways, were both highly coexpressed in NLFCs and ISCs in patients having either CRSwNP or CRSwNP with asthma by parallel reaction monitoring validation. CONCLUSION Proteomics and metabolomics reveal upper and lower airway unity. Asthma pathway-related proteins proteoglycan 2 and eosinophil peroxidase from the upper airway could be used to assess the potential risk of lower airway dysfunction in CRSwNP.
Collapse
Affiliation(s)
- Yao Yao
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Yujuan Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Jianwei Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Pengyi Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Jing Guo
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Luchao Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Cai Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Pengfei Liu
- Shanghai Applied Protein Technology Co, Ltd, Shanghai, People's Republic of China
| | - Yu Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
24
|
Tian H, Huang D, Wang J, Li H, Gao J, Zhong Y, Xia L, Zhang A, Lin Z, Ke X. The role of the "gut microbiota-mitochondria" crosstalk in the pathogenesis of multiple sclerosis. Front Microbiol 2024; 15:1404995. [PMID: 38741740 PMCID: PMC11089144 DOI: 10.3389/fmicb.2024.1404995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Multiple Sclerosis (MS) is a neurologic autoimmune disease whose exact pathophysiologic mechanisms remain to be elucidated. Recent studies have shown that the onset and progression of MS are associated with dysbiosis of the gut microbiota. Similarly, a large body of evidence suggests that mitochondrial dysfunction may also have a significant impact on the development of MS. Endosymbiotic theory has found that human mitochondria are microbial in origin and share similar biological characteristics with the gut microbiota. Therefore, gut microbiota and mitochondrial function crosstalk are relevant in the development of MS. However, the relationship between gut microbiota and mitochondrial function in the development of MS is not fully understood. Therefore, by synthesizing previous relevant literature, this paper focuses on the changes in gut microbiota and metabolite composition in the development of MS and the possible mechanisms of the crosstalk between gut microbiota and mitochondrial function in the progression of MS, to provide new therapeutic approaches for the prevention or reduction of MS based on this crosstalk.
Collapse
Affiliation(s)
- Huan Tian
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dunbing Huang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqi Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huaqiang Li
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiaxin Gao
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Zhong
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Libin Xia
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhonghua Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Rehabilitation Medicine Center, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Center for Geriatrics, Fujian Provincia Hospital, Fuzhou, China
| | - Xiaohua Ke
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
26
|
Maglie R, Baldi S, Nannini G, Di Gloria L, Pallecchi M, Bartolucci G, Ramazzotti M, Niccolai E, Baffa ME, Camilla B, Solimani F, Antiga E, Amedei A. Alterations of circulating free fatty acids in patients with pemphigus vulgaris. Exp Dermatol 2024; 33:e15063. [PMID: 38532568 DOI: 10.1111/exd.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Free fatty acids (FFA) have gained research interest owing to their functions in both local and systemic immune regulation. Changes in the serum levels of anti-inflammatory short chain fatty acids (SCFA), primarily derived from the gut microbiota, and pro-inflammatory medium (MCFA) and long (LCFA) chain fatty acids, derived from either the gut microbiota or the diet, have been associated with autoimmunity. Circulating FFA were retrospectively analysed by a gas chromatography-mass spectrometry method in the serum of 18 patients with pemphigus vulgaris (PV) at the baseline and 6 months (n = 10) after immunosuppressive treatments, and 18 healthy controls (HC). Circulating FFA were correlated with the Pemphigus Disease Area Index (PDAI) and serum concentrations of interferon-gamma (IFN-γ), Interleukin (IL)-17A, IL-5, IL-10 and IL-21. Principal Component analysis computed on FFA abundances revealed significant differences in the profile of SCFA (p = 0,012), MCFA (p = 0.00015) and LCFA (p = 0,035) between PV patients and HC, which were not significantly changed by immunosuppressive treatments. PV patients showed a significantly lower serum concentration of propionic (p < 0.0005) and butyric (p < 0.0005) acids, SCFA with anti-inflammatory functions, while hexanoic (p < 0.0005) and hexadecanoic (p = 0.0006) acids, pro-inflammatory MCFA and LCFA respectively, were over-represented. Treatments induced a significant decrease of hexanoic (p = 0.035) and a further increase of hexadecanoic (p = 0.046) acids. Positive correlations emerged between IFN-γ and acetic acid (Rho = 0.60), IFN-γ and hexanoic acid (Rho = 0.46), IL-5 and both hexadecanoic acid (Rho = 0.50) and octadecanoic acid (Rho = 0.53), butyric acid and PDAI (Rho = 0.53). PV was associated with a remarked imbalance of circulating FFA compared to HC. The serum alterations of SCFA, MCFA, and LCFA may contribute to promoting inflammation in PV. Deeper insights into the immunomodulatory functions of these molecules may pave the way for personalized dietary interventions in PV patients.
Collapse
Affiliation(s)
- Roberto Maglie
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Leandro Di Gloria
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Marco Pallecchi
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Gianluca Bartolucci
- Department of Biomedical, Experimental and Clinical Sciences 'Mario Serio', University of Florence, Florence, Italy
| | - Matteo Ramazzotti
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Efenesia Baffa
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Biagioni Camilla
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Emiliano Antiga
- Department of Health Sciences, Section of Dermatology, University of Florence, Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
27
|
Gregorczyk-Maga I, Kania M, Dąbrowska M, Samborowska E, Żeber-Lubecka N, Kulecka M, Klupa T. The interplay between gingival crevicular fluid microbiome and metabolomic profile in intensively treated people with type 1 diabetes - a combined metagenomic/metabolomic approach cross-sectional study. Front Endocrinol (Lausanne) 2024; 14:1332406. [PMID: 38371896 PMCID: PMC10871129 DOI: 10.3389/fendo.2023.1332406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/31/2023] [Indexed: 02/20/2024] Open
Abstract
Aims This study aimed to assess the gingival crevicular fluid (GCF) microbiome and metabolome of adults with type 1 diabetes (T1D) treated with continuous subcutaneous insulin infusion (CSII). Methods In this cross-sectional study, the GCF of adults with T1D treated with CSII and non-diabetic controls were sampled, and metagenomic/metabolomic analyses were performed. Results In total, 65 participants with T1D and 45 healthy controls with a mean age of 27.05 ± 5.95 years were investigated. There were 22 cases of mild gingivitis (G) in the T1D group. There were no differences considering the Shannon and Chao indices and β-diversity between people with T1D and G, with T1D without G, and healthy controls. Differential taxa were identified, which were mainly enriched in people with T1D and G. Acetic acid concentration was higher in people with T1D, regardless of the presence of G, than in healthy controls. Propionic acid was higher in people with T1D and G than in healthy controls. Isobutyric and isovaleric acid levels were higher in individuals with T1D and G than in the other two subgroups. The concentration of valeric acid was lower and that of caproic acid was higher in people with T1D (regardless of gingival status) than in healthy controls. Conclusions The identification of early changes in periodontal tissues by targeting the microbiome and metabolome could potentially enable effective prevention and initial treatment of periodontal disease in people with T1D.
Collapse
Affiliation(s)
- Iwona Gregorczyk-Maga
- Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Kania
- Chair of Metabolic Diseases and Diabetology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Doctoral School of Medicine and Health Sciences, Jagiellonian University Medical College, Krakow, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Maria Kulecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Klupa
- Center of Advanced Technologies in Diabetes, Chair of Metabolic Diseases, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
28
|
Montgomery TL, Toppen LC, Eckstrom K, Heney ER, Kennedy JJ, Scarborough MJ, Krementsov DN. Lactobacillaceae differentially impact butyrate-producing gut microbiota to drive CNS autoimmunity. Gut Microbes 2024; 16:2418415. [PMID: 39462277 PMCID: PMC11520542 DOI: 10.1080/19490976.2024.2418415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs), produced by the gut microbiota, are thought to exert an anti-inflammatory effect on the host immune system. The levels of SCFAs and abundance of the microbiota that produce them are depleted in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS). The mechanisms leading to this depletion are unknown. Using experimental autoimmune encephalomyelitis (EAE) as a model for MS, we have previously shown that gut microbiomes divergent in their abundance of specific commensal Lactobacillaceae, Limosilactobacillus reuteri (L. reuteri) and Ligilactobacillus murinus (L. murinus), differentially impact CNS autoimmunity. To determine the underlying mechanisms, we employed colonization by L. reuteri and L. murinus in disparate gut microbiome configurations in vivo and in vitro, profiling their impact on gut microbiome composition and metabolism, coupled with modulation of dietary fiber in the EAE model. RESULTS We show that stable colonization by L. reuteri, but not L. murinus, exacerbates EAE, in conjunction with a significant remodeling of gut microbiome composition, depleting SCFA-producing microbiota, including Lachnospiraceae, Prevotellaceae, and Bifidobacterium, with a net decrease in bacterial metabolic pathways involved in butyrate production. In a minimal microbiome culture model in vitro, L. reuteri directly inhibited SCFA-producer growth and depleted butyrate. Genomic analysis of L. reuteri isolates revealed an enrichment in bacteriocins with known antimicrobial activity against SCFA-producing microbiota. Functionally, provision of excess dietary fiber, as the prebiotic substrate for SCFA production, elevated SCFA levels and abrogated the ability of L. reuteri to exacerbate EAE. CONCLUSTIONS Our data highlight a potential mechanism for reduced SCFAs and their producers in MS through depletion by other members of the gut microbiome, demonstrating that interactions between microbiota can impact CNS autoimmunity in a diet-dependent manner. These data suggest that therapeutic restoration of SCFA levels in MS may require not only dietary intervention, but also modulation of the gut microbiome.
Collapse
Affiliation(s)
- Theresa L. Montgomery
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | - Lucinda C. Toppen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
| | - Korin Eckstrom
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, USA
| | - Eamonn R. Heney
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| | | | - Matthew J. Scarborough
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | - Dimitry N. Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT, USA
| |
Collapse
|
29
|
Ruiz-Saavedra S, Arboleya S, Nogacka AM, González del Rey C, Suárez A, Diaz Y, Gueimonde M, Salazar N, González S, de los Reyes-Gavilán CG. Commensal Fecal Microbiota Profiles Associated with Initial Stages of Intestinal Mucosa Damage: A Pilot Study. Cancers (Basel) 2023; 16:104. [PMID: 38201530 PMCID: PMC10778549 DOI: 10.3390/cancers16010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Progressive intestinal mucosal damage occurs over years prior to colorectal cancer (CRC) development. The endoscopic screening of polyps and histopathological examination are used clinically to determine the risk and progression of mucosal lesions. We analyzed fecal microbiota compositions using 16S rRNA gene-based metataxonomic analyses and the levels of short-chain fatty acids (SCFAs) using gas chromatography in volunteers undergoing colonoscopy and histopathological analyses to determine the microbiota shifts occurring at the early stages of intestinal mucosa alterations. The results were compared between diagnosis groups (nonpathological controls and polyps), between samples from individuals with hyperplastic polyps or conventional adenomas, and between grades of dysplasia in conventional adenomas. Some microbial taxa from the Bacillota and Euryarchaeota phyla were the most affected when comparing the diagnosis and histopathological groups. Deeper microbiota alterations were found in the conventional adenomas than in the hyperplastic polyps. The Ruminococcus torques group was enriched in both the hyperplastic polyps and conventional adenomas, whereas the family Eggerthellaceae was enriched only in the hyperplastic polyps. The abundance of Prevotellaceae, Oscillospiraceae, Methanobacteriaceae, Streptococcaceae, Christensenellaceae, Erysipelotrichaceae, and Clostridiaceae shifted in conventional adenomas depending on the grade of dysplasia, without affecting the major SCFAs. Our results suggest a reorganization of microbial consortia involved in gut fermentative processes.
Collapse
Affiliation(s)
- Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.R.-S.); (S.A.); (A.M.N.); (M.G.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Silvia Arboleya
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.R.-S.); (S.A.); (A.M.N.); (M.G.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Alicja M. Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.R.-S.); (S.A.); (A.M.N.); (M.G.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Carmen González del Rey
- Department of Anatomical Pathology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Adolfo Suárez
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ylenia Diaz
- Digestive Service, Carmen and Severo Ochoa Hospital, 33819 Cangas del Narcea, Spain;
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.R.-S.); (S.A.); (A.M.N.); (M.G.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.R.-S.); (S.A.); (A.M.N.); (M.G.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), 33300 Villaviciosa, Spain; (S.R.-S.); (S.A.); (A.M.N.); (M.G.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
30
|
Ye J, Feng T, Su L, Li J, Gong Y, Ma X. Interactions between Helicobacter pylori infection and host metabolic homeostasis: A comprehensive review. Helicobacter 2023; 28:e13030. [PMID: 37871913 DOI: 10.1111/hel.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
The microbiota actively and extensively participates in the regulation of human metabolism, playing a crucial role in the development of metabolic diseases. Helicobacter pylori (H. pylori), when colonizing gastric epithelial cells, not only induces local tissue inflammation or malignant transformation but also leads to systemic and partial changes in host metabolism. These shifts can be mediated through direct contact, toxic components, or indirect immune responses. Consequently, they influence various molecular metabolic events that impact nutritional status and iron absorption in the host. Unraveling the intricate and diverse molecular interaction links between H. pylori and human metabolism modulation is essential for understanding pathogenesis mechanisms and developing targeted treatments for related diseases. However, significant challenges persist in comprehensively understanding the complex association networks among H. pylori itself, the infected host's status, the host microbiome, and the immune response. Previous metabolomics research has indicated that H. pylori infection and eradication may selectively shape the metabolite and microbial profiles of gastric lesions. Yet, it remains largely unknown how these diverse metabolic pathways, including isovaleric acid, cholesterol, fatty acids, and phospholipids, specifically modulate gastric carcinogenesis or affect the host's serum metabolism, consequently leading to the development of metabolic-associated diseases. The direct contribution of H. pylori to metabolisms still lacks conclusive evidence. In this review, we summarize recent advances in clinical evidence highlighting associations between chronic H. pylori infection and metabolic diseases, as well as its potential molecular regulatory patterns.
Collapse
Affiliation(s)
- Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | - Ting Feng
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lei Su
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Jin Li
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Yingying Gong
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Xiaoyi Ma
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
31
|
Kujawa D, Laczmanski L, Budrewicz S, Pokryszko-Dragan A, Podbielska M. Targeting gut microbiota: new therapeutic opportunities in multiple sclerosis. Gut Microbes 2023; 15:2274126. [PMID: 37979154 PMCID: PMC10730225 DOI: 10.1080/19490976.2023.2274126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/18/2023] [Indexed: 11/20/2023] Open
Abstract
Multiple sclerosis (MS) causes long-lasting, multifocal damage to the central nervous system. The complex background of MS is associated with autoimmune inflammation and neurodegeneration processes, and is potentially affected by many contributing factors, including altered composition and function of the gut microbiota. In this review, current experimental and clinical evidence is presented for the characteristics of gut dysbiosis found in MS, as well as for its relevant links with the course of the disease and the dysregulated immune response and metabolic pathways involved in MS pathology. Furthermore, therapeutic implications of these investigations are discussed, with a range of pharmacological, dietary and other interventions targeted at the gut microbiome and thus intended to have beneficial effects on the course of MS.
Collapse
Affiliation(s)
- Dorota Kujawa
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Lukasz Laczmanski
- Laboratory of Genomics & Bioinformatics, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | | | | | - Maria Podbielska
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
32
|
Satheesan A, Sharma S, Basu A. Sodium Butyrate Induced Neural Stem/Progenitor Cell Death in an Experimental Model of Japanese Encephalitis. Metab Brain Dis 2023; 38:2831-2847. [PMID: 37650987 DOI: 10.1007/s11011-023-01279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
The anti-inflammatory and neuroprotective effects of short chain fatty acid (SCFA) butyrate have been explored in a wide array of neurological pathologies. It is a 4-carbon SCFA produced from the fermentation of dietary fibers by the gut-microbiota. As evident from previous literature, butyrate plays a wide array of functions in CNS and interestingly enhances the differentiation potential of Neural stem/Progenitor Cells (NSPCs). Japanese encephalitis virus (JEV) is a well-known member of the Flaviviridae family and has been shown to alter neural stem cell pool of the brain, causing devastating consequences. In this study, we administered sodium butyrate (NaB) post JEV infection in BALB/c mouse model to examine any possible amelioration of the viral infection in NSPCs. In addition, ex vivo neurospheres and in vitro model of NSPCs were also used to study the effect of sodium butyrate in JEV infection. As an unprecedented finding, butyrate treated infected animals presented early onset of symptoms, as compared to their respective JEV infected groups. Alongside, we observed an increased viral load in NSPCs isolated from these animals as well as in cell culture models upon sodium butyrate treatment. Cytometric bead array analysis also revealed an increase in inflammatory cytokines, particularly, MCP-1 and IL-6. Further, increased expression of the key members of the canonical NF-κB pathway, viz-a-viz p-NF-κB, p-Iκ-Bα and p-IKK was observed. Overall, the increased inflammation and cell death caused early symptom progression in NaB-treated JEV infected animal model, which is contradictory to the well documented protective nature of NaB and therefore a better understanding of SCFA-based modulation of the gut-brain axis in viral infections is required.
Collapse
Affiliation(s)
| | - Shivangi Sharma
- National Brain Research Centre, Manesar, Haryana, 122052, India
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, 122052, India.
| |
Collapse
|
33
|
Ju S, Shin Y, Han S, Kwon J, Choi TG, Kang I, Kim SS. The Gut-Brain Axis in Schizophrenia: The Implications of the Gut Microbiome and SCFA Production. Nutrients 2023; 15:4391. [PMID: 37892465 PMCID: PMC10610543 DOI: 10.3390/nu15204391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Schizophrenia, a severe mental illness affecting about 1% of the population, manifests during young adulthood, leading to abnormal mental function and behavior. Its multifactorial etiology involves genetic factors, experiences of adversity, infection, and gene-environment interactions. Emerging research indicates that maternal infection or stress during pregnancy may also increase schizophrenia risk in offspring. Recent research on the gut-brain axis highlights the gut microbiome's potential influence on central nervous system (CNS) function and mental health, including schizophrenia. The gut microbiota, located in the digestive system, has a significant role to play in human physiology, affecting immune system development, vitamin synthesis, and protection against pathogenic bacteria. Disruptions to the gut microbiota, caused by diet, medication use, environmental pollutants, and stress, may lead to imbalances with far-reaching effects on CNS function and mental health. Of interest are short-chain fatty acids (SCFAs), metabolic byproducts produced by gut microbes during fermentation. SCFAs can cross the blood-brain barrier, influencing CNS activity, including microglia and cytokine modulation. The dysregulation of neurotransmitters produced by gut microbes may contribute to CNS disorders, including schizophrenia. This review explores the potential relationship between SCFAs, the gut microbiome, and schizophrenia. Our aim is to deepen the understanding of the gut-brain axis in schizophrenia and to elucidate its implications for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoonhwa Shin
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Juhui Kwon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (Y.S.); (S.H.); (J.K.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea;
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
34
|
Yadav SK, Ito K, Dhib-Jalbut S. Interaction of the Gut Microbiome and Immunity in Multiple Sclerosis: Impact of Diet and Immune Therapy. Int J Mol Sci 2023; 24:14756. [PMID: 37834203 PMCID: PMC10572709 DOI: 10.3390/ijms241914756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The bidirectional communication between the gut and central nervous system (CNS) through microbiota is known as the microbiota-gut-brain axis. The brain, through the enteric neural innervation and the vagus nerve, influences the gut physiological activities (motility, mucin, and peptide secretion), as well as the development of the mucosal immune system. Conversely, the gut can influence the CNS via intestinal microbiota, its metabolites, and gut-homing immune cells. Growing evidence suggests that gut immunity is critically involved in gut-brain communication during health and diseases, including multiple sclerosis (MS). The gut microbiota can influence the development and function of gut immunity, and conversely, the innate and adaptive mucosal immunity can influence microbiota composition. Gut and systemic immunity, along with gut microbiota, are perturbed in MS. Diet and disease-modifying therapies (DMTs) can affect the composition of the gut microbial community, leading to changes in gut and peripheral immunity, which ultimately affects MS. A high-fat diet is highly associated with gut dysbiosis-mediated inflammation and intestinal permeability, while a high-fiber diet/short-chain fatty acids (SCFAs) can promote the development of Foxp3 Tregs and improvement in intestinal barrier function, which subsequently suppress CNS autoimmunity in the animal model of MS (experimental autoimmune encephalomyelitis or EAE). This review will address the role of gut immunity and its modulation by diet and DMTs via gut microbiota during MS pathophysiology.
Collapse
Affiliation(s)
- Sudhir Kumar Yadav
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
| | - Kouichi Ito
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
| | - Suhayl Dhib-Jalbut
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA; (S.K.Y.); (K.I.)
- Rutgers New Jersey Medical School, Newark, NJ 07101, USA
| |
Collapse
|
35
|
Li Y, Song WJ, Yi SK, Yu HX, Mo HL, Yao MX, Tao YX, Wang LX. Molecular Cloning, Tissue Distribution, and Pharmacological Characterization of GPR84 in Grass Carp ( Ctenopharyngodon Idella). Animals (Basel) 2023; 13:3001. [PMID: 37835607 PMCID: PMC10571743 DOI: 10.3390/ani13193001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The G-protein-coupled receptor GPR84, activated by medium-chain fatty acids, primarily expressed in macrophages and microglia, is involved in inflammatory responses and retinal development in mammals and amphibians. However, our understanding of its structure, function, tissue expression, and signaling pathways in fish is limited. In this study, we cloned and characterized the coding sequence of GPR84 (ciGPR84) in grass carp. A phylogenetic analysis revealed its close relationship with bony fishes. High expression levels of GPR84 were observed in the liver and spleen. The transfection of HEK293T cells with ciGPR84 demonstrated its responsiveness to medium-chain fatty acids and diindolylmethane (DIM). Capric acid, undecanoic acid, and lauric acid activated ERK and inhibited cAMP signaling. Lauric acid showed the highest efficiency in activating the ERK pathway, while capric acid was the most effective in inhibiting cAMP signaling. Notably, DIM did not activate GPR84 in grass carp, unlike in mammals. These findings provide valuable insights for mitigating chronic inflammation in grass carp farming and warrant further exploration of the role of medium-chain fatty acids in inflammation regulation in this species.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Wei-Jia Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Shao-Kui Yi
- College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Ming-Xing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Li-Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| |
Collapse
|
36
|
Lan J, Greter G, Streckenbach B, Wanner B, Arnoldini M, Zenobi R, Slack E. Non-invasive monitoring of microbiota and host metabolism using secondary electrospray ionization-mass spectrometry. CELL REPORTS METHODS 2023; 3:100539. [PMID: 37671025 PMCID: PMC10475793 DOI: 10.1016/j.crmeth.2023.100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.
Collapse
Affiliation(s)
- Jiayi Lan
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgia Greter
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Markus Arnoldini
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
37
|
Fialova L, Barilly P, Stetkarova I, Bartos A, Noskova L, Zimova D, Zido M, Hoffmanova I. Impaired intestinal permeability in patients with multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023. [PMID: 37581230 DOI: 10.5507/bp.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND A number of recent studies have shown that the intestinal microbiome, part of the brain-gut axis, is implicated in the pathophysiology of multiple sclerosis. An essential part of this axis, is the intestinal barrier and gastrointestinal disorders with intestinal barrier dysregulation appear to be linked to CNS demyelination, and hence involved in the etiopathogenesis of multiple sclerosis (MS). OBJECTIVE The aim of this study was to evaluate the integrity of the intestinal barrier in patients with clinically definite multiple sclerosis (CDMS) and clinically isolated syndrome (CIS) using two serum biomarkers, claudin-3 (CLDN3), a component of tight epithelial junctions, and intestinal fatty acid binding protein (I-FABP), a cytosolic protein in enterocytes. METHODS Serum levels of CLDN3 in 37 MS patients and 22 controls, and serum levels of I-FABP in 46 MS patients and 51 controls were measured using commercial ELISA kits. Complete laboratory tests excluded the presence of gluten-related disorders in all subjects. Thirty MS patients received either disease-modifying drugs (DMD), immunosuppression (IS) or corticosteroid treatment. RESULTS CLDN3 levels were only significantly higher in the MS patients treated with DMD or IS compared to the control group (P=0.006). There were no differences in I-FABP serum levels between the groups. Serum CLDN3 levels did not correlate with serum I-FABP levels in CDMS, in CIS patients or controls. CONCLUSIONS In multiple sclerosis patients, the intestinal epithelium may be impaired with increased permeability, but without significant enterocyte damage characterized by intracellular protein leakage. Based on our data, CLDN3 serum levels appear to assess intestinal dysfunction in MS patients but mainly in treated ones.
Collapse
Affiliation(s)
- Lenka Fialova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavla Barilly
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady in Prague, Czech Republic
| | - Ivana Stetkarova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady in Prague, Czech Republic
| | - Ales Bartos
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady in Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Denisa Zimova
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady in Prague, Czech Republic
| | - Michal Zido
- Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady in Prague, Czech Republic
| | - Iva Hoffmanova
- Department of Internal Medicine, Second Faculty of Medicine, Charles University and University Hospital Motol in Prague, Czech Republic
| |
Collapse
|
38
|
Lyu Q, Deng H, Wang S, El-Seedi H, Cao H, Chen L, Teng H. Dietary supplementation with casein/cyanidin-3-O-glucoside nanoparticles alters the gut microbiota in high-fat fed C57BL/6 mice. Food Chem 2023; 412:135494. [PMID: 36736183 DOI: 10.1016/j.foodchem.2023.135494] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
This study aims to investigate the dietary intervention effect of casein/cyanidin-3-O-glucoside nanoparticles (Cs-C3G) on high-fat-diet (HFD)induced gut microbiota disorders. In HFD-fed C57BL/6mice, Cs-C3G has ameliorated HFD-caused fat accumulation and liver oxidative stress. Cs-C3G as a dietary supplementation can restore the abundance and diversity of gut microbiota with descending the ratio of Firmicutes to Bacteroidetes, increasing some beneficial microorganisms, and reducing some opportunistic pathogenic bacteria. In general, Cs-C3G has a effect on regulating the disturbance of gut microbiota, and then prevents HFD-induced obesity and liver damage.
Collapse
Affiliation(s)
- Qiyan Lyu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongting Deng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shunxin Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hesham El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, Uppsala 751 23, Sweden
| | - Hui Cao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lei Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Hui Teng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
39
|
Montgomery TL, Wang Q, Mirza A, Dwyer D, Wu Q, Dowling CA, Martens JW, Yang J, Krementsov DN, Mao-Draayer Y. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.26.23291875. [PMID: 37425956 PMCID: PMC10327224 DOI: 10.1101/2023.06.26.23291875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. Methods In a longitudinal study, disability status and associated clinical features in 60 MS patients were tracked over 4.2 ± 0.97 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. Results We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 45 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia , Lachnospiraceae, and Oscillospiraceae , with an expansion of Alloprevotella , Prevotella-9 , and Rhodospirillales . Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed a significant enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K 2 production (linked to Akkermansia ), and a depletion in SCFA metabolism (linked to Lachnospiraceae and Oscillospiraceae ). Further, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to robustly predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. Conclusions These results demonstrate the utility of the gut microbiome for predicting disease progression in MS. Further, analysis of the inferred metagenome revealed that oxidative stress, vitamin K 2 and SCFAs are associated with progression. Abstract Figure
Collapse
|
40
|
Wang M, Yang N, Wu X, Zou T, Zheng J, Zhu H, Zhao C, Wang J. Insight into Nephrotoxicity and Processing Mechanism of Arisaema erubescens (Wall.) Schott by Metabolomics and Network Analysis. Drug Des Devel Ther 2023; 17:1831-1846. [PMID: 37360574 PMCID: PMC10289099 DOI: 10.2147/dddt.s406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Background Arisaematis Rhizome (AR) has been used as a damp-drying, phlegm-resolving, wind-expelling, pain-alleviating, and swelling-relieving drug for thousands of years. However, the toxicity limits its clinical applications. Therefore, AR is usually processed (Paozhi in Chinese) prior to clinical use. In this study, the integration of ultra-high performance liquid chromatography-quadrupole/ time-of-flight mass spectrometry-based metabolomics and network analysis was adopted to investigate the metabolic shifts induced by AR and explore the processing mechanism. Materials and Methods Extracts of crude and processed AR products (1g/kg) were intragastrically administered to rats once daily for four consecutive weeks. The renal function was evaluated by blood urea nitrogen, creatinine, interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α), malondialdehyde (MDA), super oxide dismutase (SOD), the ratio of glutathione/glutathione disulfide (GSH/GSSH), glutathione peroxidase (GSH-Px) and histopathological examination. Furthermore, the chemical composition of AR was clarified by ultra-high performance liquid chromatography-quadrupole/ time-of-flight mass spectrometry, after which the integration of metabolomics and network analysis was adopted to investigate the metabolic shifts induced by AR and explore the processing mechanism. Results Crude AR caused renal damage by stimulating inflammation and oxidative stress, as confirmed by the increased production of IL-1β, TNF-α and MDA, and decreased levels of SOD, GSH/GSSH and GSH-Px. Processing with ginger juice, alumen and bile juice alleviated the damage to kidney. Metabolomics results showed that a total of 35 potential biomarkers enriched in amino acid metabolism, glycerophospholipid metabolism, fatty acid-related pathways, etc. were deduced to be responsible for the nephrotoxicity of AR and the toxicity-reducing effect of processing. Conclusion This work provided theoretical and data support for the in-depth study of the processing mechanism, showing that processing reduces AR nephrotoxicity through multiple metabolic pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Xu Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Ting Zou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Jiahui Zheng
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Chongbo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| | - Jing Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People’s Republic of China
| |
Collapse
|
41
|
Bronzini M, Maglione A, Rosso R, Matta M, Masuzzo F, Rolla S, Clerico M. Feeding the gut microbiome: impact on multiple sclerosis. Front Immunol 2023; 14:1176016. [PMID: 37304278 PMCID: PMC10248010 DOI: 10.3389/fimmu.2023.1176016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial neurological disease characterized by chronic inflammation and immune-driven demyelination of the central nervous system (CNS). The rising number of MS cases in the last decade could be partially attributed to environmental changes, among which the alteration of the gut microbiome driven by novel dietary habits is now of particular interest. The intent of this review is to describe how diet can impact the development and course of MS by feeding the gut microbiome. We discuss the role of nutrition and the gut microbiota in MS disease, describing preclinical studies on experimental autoimmune encephalomyelitis (EAE) and clinical studies on dietary interventions in MS, with particular attention to gut metabolites-immune system interactions. Possible tools that target the gut microbiome in MS, such as the use of probiotics, prebiotics and postbiotics, are analyzed as well. Finally, we discuss the open questions and the prospects of these microbiome-targeted therapies for people with MS and for future research.
Collapse
Affiliation(s)
- Matteo Bronzini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Rachele Rosso
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Manuela Matta
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| | | | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
- San Luigi Gonzaga University Hospital, Orbassano, Italy
| |
Collapse
|
42
|
Hoffman K, Brownell Z, Doyle WJ, Ochoa-Repáraz J. The immunomodulatory roles of the gut microbiome in autoimmune diseases of the central nervous system: Multiple sclerosis as a model. J Autoimmun 2023; 137:102957. [PMID: 36435700 PMCID: PMC10203067 DOI: 10.1016/j.jaut.2022.102957] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022]
Abstract
The gut-associated lymphoid tissue is a primary activation site for immune responses to infection and immunomodulation. Experimental evidence using animal disease models suggests that specific gut microbes significantly regulate inflammation and immunoregulatory pathways. Furthermore, recent clinical findings indicate that gut microbes' composition, collectively named gut microbiota, is altered under disease state. This review focuses on the functional mechanisms by which gut microbes promote immunomodulatory responses that could be relevant in balancing inflammation associated with autoimmunity in the central nervous system. We also propose therapeutic interventions that target the composition of the gut microbiota as immunomodulatory mechanisms to control neuroinflammation.
Collapse
Affiliation(s)
- Kristina Hoffman
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Zackariah Brownell
- Department of Biological Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - William J Doyle
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA
| | - Javier Ochoa-Repáraz
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
43
|
Golpour F, Abbasi-Alaei M, Babaei F, Mirzababaei M, Parvardeh S, Mohammadi G, Nassiri-Asl M. Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomed Pharmacother 2023; 163:114763. [PMID: 37105078 DOI: 10.1016/j.biopha.2023.114763] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Gut microbiota can interact with the immune system through its metabolites. Short-chain fatty acids (SCFAs), as one of the most abundant metabolites of the resident gut microbiota play an important role in this crosstalk. SCFAs (acetate, propionate, and butyrate) regulate nearly every type of immune cell in the gut's immune cell repertoire regarding their development and function. SCFAs work through several pathways to impose protection towards colonic health and against local or systemic inflammation. Additionally, SCFAs play a role in the regulation of immune or non-immune pathways that can slow the development of autoimmunity either systematically or in situ. The present study aims to summarize the current knowledge on the immunomodulatory roles of SCFAs and the association between the SCFAs and autoimmune disorders such as celiac disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE), type 1 diabetes (T1D) and other immune-mediated diseases, uncovering a brand-new therapeutic possibility to prevent or treat autoimmunity.
Collapse
Affiliation(s)
- Faezeh Golpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrsa Abbasi-Alaei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Mohammadi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Molecular Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Marjan Nassiri-Asl
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Zang H, Wang J, Wang H, Guo J, Li Y, Zhao Y, Song J, Liu F, Liu X, Zhao Y. Metabolic alterations in patients with Helicobacter pylori-related gastritis: The H. pylori-gut microbiota-metabolism axis in progression of the chronic inflammation in the gastric mucosa. Helicobacter 2023:e12984. [PMID: 37186092 DOI: 10.1111/hel.12984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
PURPOSE To characterize the serum metabolism in patients with Helicobacter pylori-positive and H. pylori-negative gastritis. METHODS Clinical data and serum gastric function parameters, PGI (pepsinogen I), PGII, PGR (PGI/II), and G-17 (gastrin-17) of 117 patients with chronic gastritis were collected, including 57 H. pylori positive and 60 H. pylori negative subjects. Twenty cases in each group were randomly selected to collect intestinal mucosa specimens and serum samples. The gut microbiota profiles were generated by 16S rRNA gene sequencing, and the serum metabolites were analyzed by a targeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) technology. RESULTS Altered expression of 20 metabolites, including isovaleric acid, was detected in patients with HPAG. Some taxa of Bacteroides, Fusobacterium, and Prevotella in the gut microbiota showed significant correlations with differentially expressed metabolites between H. pylori positive and H. pylori negative individuals. As a result, an H. pylori-gut microbiota-metabolism (HGM) axis was proposed. CONCLUSION Helicobacter pylori infection may influence the progression of mucosal diseases and the emergence of other complications in the host by altering the gut microbiota, and thus affecting the host serum metabolism.
Collapse
Affiliation(s)
- Hongmin Zang
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Huijie Wang
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jiaxuan Guo
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yuchan Li
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Yinuo Zhao
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jinzhong Song
- Hebei University of Chinese Medicine, Shijiazhuang, China
- The Traditional Chinese Medicine Hospital of Shijiazhuang, Shijiazhuang, China
| | - Fengshuang Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Academy of Traditional Chinese Medicine, Shijiazhuang, China
| | - Xuzhao Liu
- North China University of Science and Technology, Tangshan, China
| | - Yubin Zhao
- Hebei University of Chinese Medicine, Shijiazhuang, China
- North China University of Science and Technology, Tangshan, China
- Shijiazhuang People's Hospital, Shijiazhuang, China
| |
Collapse
|
45
|
Ďásková N, Modos I, Krbcová M, Kuzma M, Pelantová H, Hradecký J, Heczková M, Bratová M, Videňská P, Šplíchalová P, Králová M, Heniková M, Potočková J, Ouřadová A, Landberg R, Kühn T, Cahová M, Gojda J. Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings from an observational study followed by an interventional trial. Nutr Diabetes 2023; 13:7. [PMID: 37085526 PMCID: PMC10121613 DOI: 10.1038/s41387-023-00235-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/23/2023] Open
Abstract
AIM The metabolic performance of the gut microbiota contributes to the onset of type 2 diabetes. However, targeted dietary interventions are limited by the highly variable inter-individual response. We hypothesized (1) that the composition of the complex gut microbiome and metabolome (MIME) differ across metabolic spectra (lean-obese-diabetes); (2) that specific MIME patterns could explain the differential responses to dietary inulin; and (3) that the response can be predicted based on baseline MIME signature and clinical characteristics. METHOD Forty-nine patients with newly diagnosed pre/diabetes (DM), 66 metabolically healthy overweight/obese (OB), and 32 healthy lean (LH) volunteers were compared in a cross-sectional case-control study integrating clinical variables, dietary intake, gut microbiome, and fecal/serum metabolomes (16 S rRNA sequencing, metabolomics profiling). Subsequently, 27 DM were recruited for a predictive study: 3 months of dietary inulin (10 g/day) intervention. RESULTS MIME composition was different between groups. While the DM and LH groups represented opposite poles of the abundance spectrum, OB was closer to DM. Inulin supplementation was associated with an overall improvement in glycemic indices, though the response was very variable, with a shift in microbiome composition toward a more favorable profile and increased serum butyric and propionic acid concentrations. The improved glycemic outcomes of inulin treatment were dependent on better baseline glycemic status and variables related to the gut microbiota, including the abundance of certain bacterial taxa (i.e., Blautia, Eubacterium halii group, Lachnoclostridium, Ruminiclostridium, Dialister, or Phascolarctobacterium), serum concentrations of branched-chain amino acid derivatives and asparagine, and fecal concentrations of indole and several other volatile organic compounds. CONCLUSION We demonstrated that obesity is a stronger determinant of different MIME patterns than impaired glucose metabolism. The large inter-individual variability in the metabolic effects of dietary inulin was explained by differences in baseline glycemic status and MIME signatures. These could be further validated to personalize nutritional interventions in patients with newly diagnosed diabetes.
Collapse
Affiliation(s)
- N Ďásková
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - I Modos
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Krbcová
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - M Kuzma
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - H Pelantová
- Institute of Microbiology of the CAS, Prague, Czech Republic
| | - J Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - M Heczková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Bratová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - P Videňská
- Mendel University, Department of Chemistry and Biochemistry, Brno, Czech Republic
| | - P Šplíchalová
- RECETOX, Faculty of Science Masaryk University, Brno, Czech Republic
| | - M Králová
- Ambis University, Department of Economics and Management, Prague, Czech Republic
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - M Heniková
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - J Potočková
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - A Ouřadová
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - R Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Goteborg, Sweden
| | - T Kühn
- Institute of Global Food Security, Queen's University Belfast, Belfast, UK
- Heidelberg Institute of Global Health (HIGH), Medical Faculty and University Hospital, Heidelberg University, Heidelberg, Germany
| | - M Cahová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - J Gojda
- Department of Internal Medicine, Kralovske Vinohrady University Hospital and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
46
|
Kim CH. Complex regulatory effects of gut microbial short-chain fatty acids on immune tolerance and autoimmunity. Cell Mol Immunol 2023; 20:341-350. [PMID: 36854801 PMCID: PMC10066346 DOI: 10.1038/s41423-023-00987-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Immune tolerance deletes or suppresses autoreactive lymphocytes and is established at multiple levels during the development, activation and effector phases of T and B cells. These mechanisms are cell-intrinsically programmed and critical in preventing autoimmune diseases. We have witnessed the existence of another type of immune tolerance mechanism that is shaped by lifestyle choices, such as diet, microbiome and microbial metabolites. Short-chain fatty acids (SCFAs) are the most abundant microbial metabolites in the colonic lumen and are mainly produced by the microbial fermentation of prebiotics, such as dietary fiber. This review focuses on the preventive and immunomodulatory effects of SCFAs on autoimmunity. The tissue- and disease-specific effects of dietary fiber, SCFAs and SCFA-producing microbes on major types of autoimmune diseases, including type I diabetes, multiple sclerosis, rheumatoid arthritis and lupus, are discussed. Additionally, their key regulatory mechanisms for lymphocyte development, tissue barrier function, host metabolism, immunity, autoantibody production, and inflammatory effector and regulatory lymphocytes are discussed. The shared and differential effects of SCFAs on different types and stages of autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
- Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
47
|
Ordoñez-Rodriguez A, Roman P, Rueda-Ruzafa L, Campos-Rios A, Cardona D. Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054624. [PMID: 36901634 PMCID: PMC10001679 DOI: 10.3390/ijerph20054624] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease mediated by autoimmune reactions against myelin proteins and gangliosides in the grey and white matter of the brain and spinal cord. It is considered one of the most common neurological diseases of non-traumatic origin in young people, especially in women. Recent studies point to a possible association between MS and gut microbiota. Intestinal dysbiosis has been observed, as well as an alteration of short-chain fatty acid-producing bacteria, although clinical data remain scarce and inconclusive. OBJECTIVE To conduct a systematic review on the relationship between gut microbiota and multiple sclerosis. METHOD The systematic review was conducted in the first quarter of 2022. The articles included were selected and compiled from different electronic databases: PubMed, Scopus, ScienceDirect, Proquest, Cochrane, and CINAHL. The keywords used in the search were: "multiple sclerosis", "gut microbiota", and "microbiome". RESULTS 12 articles were selected for the systematic review. Among the studies that analysed alpha and beta diversity, only three found significant differences with respect to the control. In terms of taxonomy, the data are contradictory, but confirm an alteration of the microbiota marked by a decrease in Firmicutes, Lachnospiraceae, Bifidobacterium, Roseburia, Coprococcus, Butyricicoccus, Lachnospira, Dorea, Faecalibacterium, and Prevotella and an increase in Bacteroidetes, Akkermansia, Blautia, and Ruminocococcus. As for short-chain fatty acids, in general, a decrease in short-chain fatty acids, in particular butyrate, was observed. CONCLUSIONS Gut microbiota dysbiosis was found in multiple sclerosis patients compared to controls. Most of the altered bacteria are short-chain fatty acid (SCFA)-producing, which could explain the chronic inflammation that characterises this disease. Therefore, future studies should consider the characterisation and manipulation of the multiple sclerosis-associated microbiome as a focus of both diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Pablo Roman
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| | - Lola Rueda-Ruzafa
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Correspondence:
| | - Ana Campos-Rios
- Laboratory of Neuroscience, CINBIO, University of Vigo, 36310 Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), 15706 Vigo, Spain
| | - Diana Cardona
- Faculty of Health Sciences, Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almería, 04120 Almeria, Spain
| |
Collapse
|
48
|
Fock E, Parnova R. Mechanisms of Blood-Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023; 12:cells12040657. [PMID: 36831324 PMCID: PMC9954192 DOI: 10.3390/cells12040657] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Impairment of the blood-brain barrier (BBB) integrity is implicated in the numerous neurological disorders associated with neuroinflammation, neurodegeneration and aging. It is now evident that short-chain fatty acids (SCFAs), mainly acetate, butyrate and propionate, produced by anaerobic bacterial fermentation of the dietary fiber in the intestine, have a key role in the communication between the gastrointestinal tract and nervous system and are critically important for the preservation of the BBB integrity under different pathological conditions. The effect of SCFAs on the improvement of the compromised BBB is mainly based on the decrease in paracellular permeability via restoration of junctional complex proteins affecting their transcription, intercellular localization or proteolytic degradation. This review is focused on the revealed and putative underlying mechanisms of the direct and indirect effects of SCFAs on the improvement of the barrier function of brain endothelial cells. We consider G-protein-coupled receptor-mediated effects of SCFAs, SCFAs-stimulated acetylation of histone and non-histone proteins via inhibition of histone deacetylases, and crosstalk of these signaling pathways with transcriptional factors NF-κB and Nrf2 as mainstream mechanisms of SCFA's effect on the preservation of the BBB integrity.
Collapse
Affiliation(s)
| | - Rimma Parnova
- Correspondence: ; Tel.: +7-812-552-79-01; Fax: +7-812-552-30-12
| |
Collapse
|
49
|
Ladakis DC, Bhargava P. The Role of Gut Dysbiosis and Potential Approaches to Target the Gut Microbiota in Multiple Sclerosis. CNS Drugs 2023; 37:117-132. [PMID: 36690786 DOI: 10.1007/s40263-023-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
It has now been established that a perturbation in gut microbiome composition exists in multiple sclerosis (MS) and its interplay with the immune system and brain could potentially contribute to the development of the disease and influence its course. The effects of the gut microbiota on the disease may be mediated by direct interactions between bacteria and immune cells or through interactions of products of bacterial metabolism with immune and CNS cells. In this review article we summarize the ways in which the gut microbiome of people with MS differs from controls and how bacterial metabolites can potentially play a role in MS pathogenesis, and examine approaches to alter the composition of the gut microbiota potentially alleviating gut dysbiosis and impacting the course of MS.
Collapse
Affiliation(s)
- Dimitrios C Ladakis
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Pathology 627, Baltimore, MD, 21287, USA
| | - Pavan Bhargava
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Pathology 627, Baltimore, MD, 21287, USA.
| |
Collapse
|
50
|
Wu N, Li X, Ma H, Zhang X, Liu B, Wang Y, Zheng Q, Fan X. The role of the gut microbiota and fecal microbiota transplantation in neuroimmune diseases. Front Neurol 2023; 14:1108738. [PMID: 36816570 PMCID: PMC9929158 DOI: 10.3389/fneur.2023.1108738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The gut microbiota plays a key role in the function of the host immune system and neuroimmune diseases. Alterations in the composition of the gut microbiota can lead to pathology and altered formation of microbiota-derived components and metabolites. A series of neuroimmune diseases, such as myasthenia gravis (MG), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSDs), Guillain-Barré syndrome (GBS), and autoimmune encephalitis (AIE), are associated with changes in the gut microbiota. Microecological therapy by improving the gut microbiota is expected to be an effective measure for treating and preventing some neuroimmune diseases. This article reviews the research progress related to the roles of gut microbiota and fecal microbiota transplantation (FMT) in neuroimmune diseases.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xizhi Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - He Ma
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Bin Liu
- Institute for Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,*Correspondence: Yuan Wang ✉
| | - Qi Zheng
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Qi Zheng ✉
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, China,Xueli Fan ✉
| |
Collapse
|