1
|
Hidrobo MS, Höring M, Brunner S, Liebisch G, Schweizer S, Klingenspor M, Schreiber R, Zechner R, Burkhardt R, Ecker J. Cold-induced phosphatidylethanolamine synthesis in liver and brown adipose tissue of mice. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159562. [PMID: 39214167 DOI: 10.1016/j.bbalip.2024.159562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Increasing energy expenditure in brown adipose (BAT) tissue by cold-induced lipolysis is discussed as a potential strategy to counteract imbalanced lipid homeostasis caused through unhealthy lifestyle and cardiometabolic disease. Yet, it is largely unclear how liberated fatty acids (FA) are metabolized. We investigated the liver and BAT lipidome of mice housed for 1 week at thermoneutrality, 23 °C and 4 °C using quantitative mass spectrometry-based lipidomics. Housing at temperatures below thermoneutrality triggered the generation of phosphatidylethanolamine (PE) in both tissues. Particularly, the concentrations of PE containing polyunsaturated fatty acids (PUFA) in their acyl chains like PE 18:0_20:4 were increased at cold. Investigation of the plasma's FA profile using gas chromatography coupled to mass spectrometry revealed a negative correlation of PUFA with unsaturated PE in liver and BAT indicating a flux of FA from the circulation into these tissues. Beta-adrenergic stimulation elevated intracellular levels of PE 38:4 and PE 40:6 in beige wildtype adipocytes, but not in adipose triglyceride lipase (ATGL)-deficient cells. These results imply an induction of PE synthesis in liver, BAT and thermogenic adipocytes after activation of the beta-adrenergic signaling cascade.
Collapse
Affiliation(s)
- Maria Soledad Hidrobo
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sarah Brunner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Sabine Schweizer
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/2, 8010 Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31/2, 8010 Graz, Austria
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Josef Ecker
- ZIEL Institute for Food & Health, Research Group Lipid Metabolism, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
2
|
Xeni F, Marangoni C, Jackson MG. Validation of a non-food or water motivated effort-based foraging task as a measure of motivational state in male mice. Neuropsychopharmacology 2024; 49:1883-1891. [PMID: 38898205 PMCID: PMC11479259 DOI: 10.1038/s41386-024-01899-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Disorders of motivation such as apathy syndrome are highly prevalent across neurological disorders but do not yet have an agreed treatment approach. The use of translational behavioural models can provide a route through which to meaningfully screen novel drug targets. Methods that utilise food deprivation in contrived environments may lack the sensitivity to detect deficits in self-initiated behaviour, and may have limited translation to normal behaviour. Animals monitored in more naturalistic environments may display more ethologically-relevant behaviours of greater translational value. Here, we aimed to validate a novel, non-food or water motivated effort-based foraging task as a measure of motivational state in mice. In this task, the mouse can freely choose to exert effort to forage nesting material and shuttle it back to a safe and enclosed environment. The amount of nesting material foraged is used as a readout of motivational state. Acute dopaminergic modulation with haloperidol, amphetamine and methylphenidate, and two phenotypic models known to induce motivational deficits (healthy ageing and chronic administration of corticosterone) were used to validate this task. Consistent with other effort-based decision-making tasks we find that foraging behaviour is sensitive to acute modulation of dopaminergic transmission. We find that both phenotypic models induce differing deficits in various aspects of foraging behaviour suggesting that the task may be used to parse different behavioural profiles from distinct disease phenotypes. Thus, without requiring extended training periods or physiological deprivation, this task may represent a refined and translational preclinical measure of motivation.
Collapse
Affiliation(s)
- Foteini Xeni
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, BS8 1TD, Bristol, UK
| | - Caterina Marangoni
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, BS8 1TD, Bristol, UK
| | - Megan G Jackson
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, BS8 1TD, Bristol, UK.
| |
Collapse
|
3
|
Li CC, Liu SL, Lien TS, Sun DS, Cheng CF, Hamid H, Chen HP, Ho TJ, Lin IH, Wu WS, Hu CT, Tsai KW, Chang HH. Therapeutic Potential of Salvia miltiorrhiza Root Extract in Alleviating Cold-Induced Immunosuppression. Int J Mol Sci 2024; 25:9432. [PMID: 39273376 PMCID: PMC11395648 DOI: 10.3390/ijms25179432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
The interaction between environmental stressors, such as cold exposure, and immune function significantly impacts human health. Research on effective therapeutic strategies to combat cold-induced immunosuppression is limited, despite its importance. In this study, we aim to investigate whether traditional herbal medicine can counteract cold-induced immunosuppression. We previously demonstrated that cold exposure elevated immunoglobulin G (IgG) levels in mice, similar to the effects of intravenous immunoglobulin (IVIg) treatments. This cold-induced rise in circulating IgG was mediated by the renin-angiotensin-aldosterone system and linked to vascular constriction. In our mouse model, the cold-exposed groups (4 °C) showed significantly elevated plasma IgG levels and reduced bacterial clearance compared with the control groups maintained at room temperature (25 °C), both indicative of immunosuppression. Using this model, with 234 mice divided into groups of 6, we investigated the potential of tanshinone IIA, an active compound in Salvia miltiorrhiza ethanolic root extract (SMERE), in alleviating cold-induced immunosuppression. Tanshinone IIA and SMERE treatments effectively normalized elevated plasma IgG levels and significantly improved bacterial clearance impaired by cold exposure compared with control groups injected with a vehicle control, dimethyl sulfoxide. Notably, bacterial clearance, which was impaired by cold exposure, showed an approximately 50% improvement following treatment, restoring immune function to levels comparable to those observed under normal temperature conditions (25 °C, p < 0.05). These findings highlight the therapeutic potential of traditional herbal medicine in counteracting cold-induced immune dysregulation, offering valuable insights for future strategies aimed at modulating immune function in cold environments. Further research could focus on isolating tanshinone IIA and compounds present in SMERE to evaluate their specific roles in mitigating cold-induced immunosuppression.
Collapse
Grants
- 104-2320-B-320 -009 -MY3, 107-2311-B-320-002-MY3, 111-2320-B320-006-MY3, 112-2320-B-320-007 National Science and Technology Council, Taiwan
- TCMMP104-06, TCMMP108-04, TCMMP 111-01, TCAS111-02, TCAS-112-02, TCAS113-04, TCRD112-033, TCRD113-041 Tzu-Chi Medical Foundation
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Song-Lin Liu
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hussana Hamid
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Hao-Ping Chen
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - I-Hsin Lin
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation Hualien, Hualien 970, Taiwan
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University Hualien, Hualien 970, Taiwan
| | - Chi-Tan Hu
- Research Center for Hepatology, Department of Gastroenterology, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| |
Collapse
|
4
|
Sanz CR, Sarquis J, Daza MÁ, Miró G. Exploring the impact of epidemiological and clinical factors on the progression of canine leishmaniosis by statistical and whole genome analyses: from breed predisposition to comorbidities. Int J Parasitol 2024; 54:401-414. [PMID: 38570155 DOI: 10.1016/j.ijpara.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Canine leishmaniosis (CanL), caused by Leishmania infantum, is a complex disease of growing importance in Europe. Clinical manifestations result from the down-modulation of the host immune response through multiple host-parasite interactions. Although several factors might influence CanL progression, this is the first known study evaluating risk factors for its different clinical stages in a large referral hospital population (n = 35.669) from an endemic area, over a 20 year period. Genome-wide scans for selection signatures were also conducted to explore the genomic component of clinical susceptibility to L. infantum infection. The prevalence of CanL was 3.2% (16.7% stage I; 43.6% stage II; 32.1% stage III; 7.6% stage IV). Dog breed (crossbreed), bodyweight (<10 kg), living conditions (indoors), regular deworming treatment, and being vaccinated against Leishmania significantly decreased the transmission risk and the risk for developing severe clinical forms. Conversely, the detection of comorbidities was associated with advanced clinical forms, particularly chronic kidney disease, neoplasia, cryptorchidism, infectious tracheobronchitis and urate urolithiasis, although those did not impact the clinical outcome. Significant associations between an increased risk of severe clinical stages and findings in the anamnesis (renal or skin-related manifestations) and physical examination (ocular findings) were also detected, highlighting their diagnostic value in referred cases of CanL. Sixteen breeds were found to be significantly more susceptible to developing severe stages of leishmaniosis (e.g. Great Dane, Rottweiler, English Springer Spaniel, Boxer, American Staffordshire Terrier, Golden Retriever), while 20 breeds displayed a clinical resistantance phenotype and, thus, are more likely to mount an efficient immune response against L. infantum (e.g. Pointer, Samoyed, Spanish Mastiff, Spanish Greyhound, English Setter, Siberian Husky). Genomic analyses of these breeds retrieved 12 regions under selection, 63 candidate genes and pinpointed multiple biological pathways such as the IRE1 branch of the unfolded protein response, which could play a critical role in clinical susceptibility to L. infantum infection.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain.
| | - Juliana Sarquis
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain
| | - María Ángeles Daza
- Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Av. Puerta Hierro s/n, Madrid 28040, Spain; Department of Animal Medicine and Surgery, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, Madrid 28040, Spain; Veterinary Teaching Hospital, Veterinary Faculty, Complutense University of Madrid, Av. Puerta Hierro s/n, Madrid 28040, Spain.
| |
Collapse
|
5
|
Neves MM, Klein SG, Silva RC, Bernardes LMM, Malta SM, Vieira TN, Rosa RB, Lima IL, Ferreira FB, Silva MV. Impact of quality and transparency in scientific writing on the reduction of animal usage in experimental protocols: a review based in pertinent literature. Front Vet Sci 2024; 11:1394113. [PMID: 38872792 PMCID: PMC11169789 DOI: 10.3389/fvets.2024.1394113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
The irreproducibility in scientific research has become a critical issue. Despite the essential role of rigorous methodology in constructing a scientific article, more than half of publications, on average, are considered non-reproducible. The implications of this irreproducibility extend to reliability problems, hindering progress in technological production and resulting in substantial financial losses. In the context of laboratory animal research, this work emphasizes the importance of choosing an appropriate experimental model within the 3R's principle (Refine, Reduce, Replace). This study specifically addresses a deficiency in data specification in scientific articles, revealing inadequacies in the description of crucial details, such as environmental conditions, diet, and experimental procedures. For this purpose, 124 articles from journals with relevant impact factors were analyzed, conducting a survey of data considered important for the reproducibility of studies. Important flaws in the presentation of data were identified in most of the articles evaluated. The results of this study highlight the need to improve the description of essential information, standardizing studies, and ensuring the reproducibility of experiments in areas such as metabolism, immunity, hormones, stress, among others, to enhance the reliability and reproduction of experimental results, aligning with international guidelines such as ARRIVE and PREPARE.
Collapse
Affiliation(s)
- Matheus M. Neves
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Uberlândia, Brazil
| | - Sandra G. Klein
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Uberlândia, Brazil
| | - Ray C. Silva
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Serena M. Malta
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Thiago N. Vieira
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rafael B. Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia, Brazil
| | - Isabela L. Lima
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Uberlândia, Brazil
| | - Flávia B. Ferreira
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Uberlândia, Brazil
| | - Murilo V. Silva
- Biotechnology in Experimental Models Laboratory - LABME, Federal University of Uberlândia, Uberlândia, Brazil
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia, Brazil
| |
Collapse
|
6
|
Pan C, Hao X, Deng X, Lu F, Liu J, Hou W, Xu T. The roles of Hippo/YAP signaling pathway in physical therapy. Cell Death Discov 2024; 10:197. [PMID: 38670949 PMCID: PMC11053014 DOI: 10.1038/s41420-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular behavior is regulated by mechanical signals within the cellular microenvironment. Additionally, changes of temperature, blood flow, and muscle contraction also affect cellular state and the development of diseases. In clinical practice, physical therapy techniques such as ultrasound, vibration, exercise, cold therapy, and hyperthermia are commonly employed to alleviate pain and treat diseases. However, the molecular mechanism about how these physiotherapy methods stimulate local tissues and control gene expression remains unknow. Fortunately, the discovery of YAP filled this gap, which has been reported has the ability to sense and convert a wide variety of mechanical signals into cell-specific programs for transcription, thereby offering a fresh perspective on the mechanisms by which physiotherapy treat different diseases. This review examines the involvement of Hippo/YAP signaling pathway in various diseases and its role in different physical therapy approaches on diseases. Furthermore, we explore the potential therapeutic implications of the Hippo/YAP signaling pathway and address the limitations and controversies surrounding its application in physiotherapy.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Bradford BJ, Contreras GA. Adipose Tissue Inflammation: Linking Physiological Stressors to Disease Susceptibility. Annu Rev Anim Biosci 2024; 12:261-281. [PMID: 38064480 DOI: 10.1146/annurev-animal-021122-113212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The study of adipose tissue (AT) is enjoying a renaissance. White, brown, and beige adipocytes are being investigated in adult animals, and the critical roles of small depots like perivascular AT are becoming clear. But the most profound revision of the AT dogma has been its cellular composition and regulation. Single-cell transcriptomic studies revealed that adipocytes comprise well under 50% of the cells in white AT, and a substantial portion of the rest are immune cells. Altering the function of AT resident leukocytes can induce or correct metabolic syndrome and, more surprisingly, alter adaptive immune responses to infection. Although the field is dominated by obesity research, conditions such as rapid lipolysis, infection, and heat stress impact AT immune dynamics as well. Recent findings in rodents lead to critical questions that should be explored in domestic livestock as potential avenues for improved animal resilience to stressors, particularly as animals age.
Collapse
Affiliation(s)
- Barry J Bradford
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan, USA;
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
8
|
Makrufardi F, Triasih R, Nurnaningsih N, Chung KF, Lin SC, Chuang HC. Extreme temperatures increase the risk of pediatric pneumonia: a systematic review and meta-analysis. Front Pediatr 2024; 12:1329918. [PMID: 38370139 PMCID: PMC10869493 DOI: 10.3389/fped.2024.1329918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction The impact of climate change on ambient temperatures threatens to worsen pediatric pneumonia-related outcomes considerably. This study examined the associations of temperature variation and extreme temperature with pediatric pneumonia-related events using a meta-analysis. Methods We systematically searched PubMed, Medline, Embase, and Web of Science databases for relevant literature, and the quality of evidence was assessed. Fixed and random-effects meta-analyses were performed to calculate the pooled relative risks (RRs) of the associations with pneumonia-related events. Results We observed that a 1°C temperature variation increased the RR of pneumonia events by 1.06-fold (95% confidence interval (CI): 1.03-1.10). A 1°C temperature variation increased the RR by 1.10-fold of the pediatric pneumonia hospital admissions (95% CI: 1.00-1.21) and 1.06-fold of the pediatric pneumonia emergency department visits (95% CI: 1.01-1.10). Extreme cold increased the RR by 1.25-fold of the pediatric pneumonia events (95% CI: 1.07-1.45). A 1°C temperature variation increased the RR of pneumonia events in children by 1.19-fold (95% CI: 1.08-1.32), girls by 1.03-fold (95% CI: 1.02-1.05), and in temperate climate zones by 1.07-fold (95% CI: 1.03-1.11). Moreover, an increase in extreme cold increased the RR of pneumonia events in children by 2.43-fold (95% CI: 1.72-3.43), girls by 1.96-fold (95% CI: 1.29-2.98) and in temperate climate zones by 2.76-fold (95% CI: 1.71-4.47). Conclusion Our study demonstrated that pediatric pneumonia events are more prevalent among children, particularly girls, and individuals residing in temperate climate zones. Climate change represents an emergent public health threat, affecting pediatric pneumonia treatment and prevention.. Systematic Review Registration PROSPERO (CRD42022378610).
Collapse
Affiliation(s)
- Firdian Makrufardi
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Rina Triasih
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Nurnaningsih Nurnaningsih
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada—Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiao-Chi Chuang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Gupta K, George A, Attwood K, Gupta A, Roy AM, Gandhi S, Siromoni B, Singh A, Repasky E, Mukherjee S. Association between Environmental Temperature and Survival in Gastroesophageal Cancers: A Population Based Study. Cancers (Basel) 2023; 16:74. [PMID: 38201502 PMCID: PMC10778299 DOI: 10.3390/cancers16010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Cold stress suppresses antitumor response in animal models, leading to tumor growth. Recent studies have also shown a negative correlation between the average annual temperature (AAT) and cancer incidence. We hypothesized that esophageal cancer (EC) and gastric cancer (GC) patients living in warmer climates have improved survival outcomes than those living in colder climates. METHODS We conducted a retrospective analysis using the Surveillance, Epidemiology, and End Results (SEER) database from 1996 to 2015. We retrieved the National Centers for Environmental Information data to calculate the county-level AAT. Cox multivariate regression models were performed to measure the association between temperature (measured continuously at diagnosis and in 5-degree increments) and OS/DSS, adjusting for variables. All associations were compared at a significance level of 0.05. The OS and DSS were summarized using Kaplan-Meier methods. All statistics were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). RESULTS A total of 17,408 EC patients were analyzed. The average age of the cohort was 65 years, 79% of which were males and 21% were females. Of them, 61.6% had adenocarcinoma, and 37.6% were squamous. After adjusting for covariates, patients in regions with an AAT > 53.5 °F had an 11% improvement in OS [HR 0.89 (95% CI 0.86-0.92), p < 0.0001] and 13% in DSS [HR 0.87 (95% CI 0.84-0.90), p < 0.0001]. When the temperature was analyzed in 5 °F increments, with each increment, there was a 3% improvement in OS [HR 0.97 (95% CI 0.96-0.98), p < 0.0001] and 4% in DSS [HR 0.96 (95% CI 0.95-0.97), p < 0.0001]. Subgroup analysis of squamous and adenocarcinoma showed similar results. These findings were validated in 20,553 GC patients. After adjusting for covariates, patients in regions with an AAT > 53.5 had a 13% improvement in OS [HR 0.87 (95% CI 0.85-0.90), p < 0.0001] and 14% in DSS [HR 0.86 (95% CI 0.83-0.89), p < 0.0001]. When analyzed in 5 °F increments, with each increment, there was a 4% improvement in OS [HR 0.96 (95% CI 0.952-0.971), p < 0.0001] and 4% in DSS [HR 0.96 (95% CI 0.945-0.965), p < 0.0001]. CONCLUSION We showed for the first time that higher environmental temperatures are associated with significant improvements in OS and DSS in patients with gastro-esophageal cancers, notwithstanding the limitations of a retrospective database analysis. Further confirmatory and mechanistic studies are required to implement specific interventional strategies.
Collapse
Affiliation(s)
- Kush Gupta
- Department of Internal Medicine, Umass Chan Medical School—Baystate, Springfield, MA 01199, USA;
| | - Anthony George
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (K.A.)
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (K.A.)
| | - Ashish Gupta
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (A.M.R.)
| | - Arya Mariam Roy
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (A.M.R.)
| | - Shipra Gandhi
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (A.M.R.)
| | - Beas Siromoni
- School of Health Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Anurag Singh
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (A.M.R.)
| | - Elizabeth Repasky
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (A.M.R.)
| | - Sarbajit Mukherjee
- Department of Hematology and Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA (A.M.R.)
| |
Collapse
|
10
|
To NH, Pilon C, Moatti A, Debesset A, Debbi K, Coraggio G, Ksouri W, Massaria V, Cohen JL, Belkacemi Y, Thiolat A. Effect of lethal total body irradiation on bone marrow chimerism, acute graft-versus-host disease, and tumor engraftment in mouse models: impact of different radiation techniques using low- and high-energy X-rays. Strahlenther Onkol 2023; 199:1242-1254. [PMID: 36932237 DOI: 10.1007/s00066-023-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/19/2023] [Indexed: 03/19/2023]
Abstract
PURPOSE Effects of X‑ray energy levels used for myeloablative lethal total body irradiation (TBI) delivery prior to bone marrow transplantation (BMT) in preclinical mouse models were examined. MATERIALS AND METHODS In mouse models, single-fraction myeloablative TBI at a lethal dose was delivered using two different X‑ray devices, either low (160 kV cabinet irradiator) or high energy (6 MV linear accelerator), before semi-allogeneic hematopoietic stem-cell transplantation (HSCT) to ensure bone marrow (BM) chimerism, graft-versus-host disease (GVHD), and tumor engraftment. Recipient mice were clinically followed for 80 days after bone marrow transplantation (BMT). Flow cytometry was performed to assess donor chimerism and tumor engraftment in recipient mice. RESULTS Both X‑ray irradiation techniques delivered a 10 Gy single fraction of TBI, presented a lethal effect, and could allow near-complete early donor chimerism on day 13. However, low-energy irradiation increased T cells' alloreactivity compared to high-energy irradiation, leading to clinical consequences for GVHD and tumor engraftment outcomes. The alloreactive effect differences might be attributed to the distinction in inflammatory status of irradiated recipients at donor cell infusion (D0). Delaying donor cell administration (D1 after lethal TBI) attenuated T cells' alloreactivity and clinical outcomes in GVHD mouse models. CONCLUSION Different X‑ray irradiation modalities condition T cell alloreactivity in experimental semi-allogeneic BMT. Low-energy X‑ray irradiator induces a post-TBI inflammatory burst and exacerbates alloreactive reactions. This technical and biological information should be considered in interpreting GVHD/ graft-versus-leukemia effect results in mice experimental models of BMT.
Collapse
Affiliation(s)
- Nhu Hanh To
- AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France.
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France.
| | - Caroline Pilon
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Creteil, France
| | - Audrey Moatti
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Creteil, France
| | - Anaïs Debesset
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France
| | - Kamel Debbi
- AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France
| | - Gabriele Coraggio
- AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France
| | - Wassim Ksouri
- AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France
| | - Virginie Massaria
- AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France
| | - José L Cohen
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Creteil, France
| | - Yazid Belkacemi
- AP-HP. Radiation Oncology Department and Henri Mondor Breast Center, Henri Mondor University Hospital, Créteil, France
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France
| | - Allan Thiolat
- INSERM UMR 955, team I-BIOT, Institute Mondor de Recherche Biomédicale, University of Paris Est Créteil, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'Investigation Clinique Biothérapie, Creteil, France
| |
Collapse
|
11
|
Silva V, Faria HOF, Sousa-Filho CPB, de Alvarenga JFR, Fiamoncini J, Otton R. Thermoneutrality or standard temperature: is there an ideal housing temperature to study the antisteatotic effects of green tea in obese mice? J Nutr Biochem 2023; 120:109411. [PMID: 37423321 DOI: 10.1016/j.jnutbio.2023.109411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 06/15/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a condition characterized by excessive accumulation of triglycerides in hepatocytes, currently considered the number one cause of chronic liver disease. MAFLD is strongly associated with obesity, type 2 diabetes, hyperlipidaemia, and hypertension. Emphasis has been placed on the use of green tea (GT), produced from the Camellia sinensis plant, rich in antioxidants as polyphenols and catechins, on obesity and MAFLD treatment/prevention. Studies carried out in rodent models housed at a standard temperature (ST, 22°C) are being questioned as ST is a determining factor on generating changes in the physiology of immune response, and energy metabolism. On the other hand, it seems that thermoneutrality (TN, 28°C) represents a closer parallel to human physiology. In this perspective, we investigated the effects of GT (500 mg/kg of body weight, over 12 weeks, 5 days/week) by comparing mice housed at ST or TN in a model of MAFLD of diet-induced obese males C57Bl/6 mice. We show that the liver phenotype at TN exhibits a more severe MAFLD while GT ameliorates this condition. In parallel, GT restores the expression of genes involved in the lipogenic pathway, regardless of temperature, with slight modifications in lipolysis/fatty acid oxidation. We observed an increase promoted by GT in PPARα and PPARγ proteins independently of housing temperature and a dual pattern of bile acid synthesis. Thus, animals' conditioning temperature is a key factor that can interfere in the results involving obesity and MAFLD, although GT has beneficial effects against MAFLD independently of the housing temperature of mice.
Collapse
Affiliation(s)
- Victória Silva
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil
| | | | | | - José Fernando Rinaldi de Alvarenga
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Jarlei Fiamoncini
- Department of Food Science and Experimental Nutrition, Food Research Center, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rosemari Otton
- Interdisciplinary Postgraduate Program in Health Sciences, Cruzeiro do Sul University, Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
12
|
Wittek L, Touma C, Nitezki T, Laeger T, Krämer S, Raila J. Reduction in Cold Stress in an Innovative Metabolic Cage Housing System Increases Animal Welfare in Laboratory Mice. Animals (Basel) 2023; 13:2866. [PMID: 37760266 PMCID: PMC10525209 DOI: 10.3390/ani13182866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Housing in metabolic cages can induce a pronounced stress response. Metabolic cage systems imply housing mice on metal wire mesh for the collection of urine and feces in addition to monitoring food and water intake. Moreover, mice are single-housed, and no nesting, bedding, or enrichment material is provided, which is often argued to have a not negligible impact on animal welfare due to cold stress. We therefore attempted to reduce stress during metabolic cage housing for mice by comparing an innovative metabolic cage (IMC) with a commercially available metabolic cage from Tecniplast GmbH (TMC) and a control cage. Substantial refinement measures were incorporated into the IMC cage design. In the frame of a multifactorial approach for severity assessment, parameters such as body weight, body composition, food intake, cage and body surface temperature (thermal imaging), mRNA expression of uncoupling protein 1 (Ucp1) in brown adipose tissue (BAT), fur score, and fecal corticosterone metabolites (CMs) were included. Female and male C57BL/6J mice were single-housed for 24 h in either conventional Macrolon cages (control), IMC, or TMC for two sessions. Body weight decreased less in the IMC (females-1st restraint: -6.94%; 2nd restraint: -6.89%; males-1st restraint: -8.08%; 2nd restraint: -5.82%) compared to the TMC (females-1st restraint: -13.2%; 2nd restraint: -15.0%; males-1st restraint: -13.1%; 2nd restraint: -14.9%) and the IMC possessed a higher cage temperature (females-1st restraint: 23.7 °C; 2nd restraint: 23.5 °C; males-1st restraint: 23.3 °C; 2nd restraint: 23.5 °C) compared with the TMC (females-1st restraint: 22.4 °C; 2nd restraint: 22.5 °C; males-1st restraint: 22.6 °C; 2nd restraint: 22.4 °C). The concentration of fecal corticosterone metabolites in the TMC (females-1st restraint: 1376 ng/g dry weight (DW); 2nd restraint: 2098 ng/g DW; males-1st restraint: 1030 ng/g DW; 2nd restraint: 1163 ng/g DW) was higher compared to control cage housing (females-1st restraint: 640 ng/g DW; 2nd restraint: 941 ng/g DW; males-1st restraint: 504 ng/g DW; 2nd restraint: 537 ng/g DW). Our results show the stress potential induced by metabolic cage restraint that is markedly influenced by the lower housing temperature. The IMC represents a first attempt to target cold stress reduction during metabolic cage application thereby producing more animal welfare friendlydata.
Collapse
Affiliation(s)
- Laura Wittek
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| | - Chadi Touma
- Department of Behavioural Biology, Osnabruck University, 49076 Osnabruck, Germany;
| | - Tina Nitezki
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| | - Thomas Laeger
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| | - Stephanie Krämer
- Interdisciplinary Center of 3Rs in Animal Research (ICAR3R), Clinic of Veterinary Medicine, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Jens Raila
- Department of Physiology and Pathophysiology of Nutrition, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany (T.L.); (J.R.)
| |
Collapse
|
13
|
Gong L, Zhao S, Chu X, Yang H, Li Y, Wei S, Li F, Zhang Y, Li S, Jiang P. Assessment of cold exposure-induced metabolic changes in mice using untargeted metabolomics. Front Mol Biosci 2023; 10:1228771. [PMID: 37719264 PMCID: PMC10500074 DOI: 10.3389/fmolb.2023.1228771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/18/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Cold exposure (CE) can effectively modulate adipose tissue metabolism and improve metabolic health. Although previous metabolomics studies have primarily focused on analyzing one or two samples from serum, brown adipose tissue (BAT), white adipose tissue (WAT), and liver samples, there is a significant lack of simultaneous analysis of multiple tissues regarding the metabolic changes induced by CE in mice. Therefore, our study aims to investigate the metabolic profiles of the major tissues involved. Methods: A total of 14 male C57BL/6J mice were randomly assigned to two groups: the control group (n = 7) and the CE group (n = 7). Metabolite determination was carried out using gas chromatography-mass spectrometry (GC-MS), and multivariate analysis was employed to identify metabolites exhibiting differential expression between the two groups. Results: In our study, we identified 32 discriminant metabolites in BAT, 17 in WAT, 21 in serum, 7 in the liver, 16 in the spleen, and 26 in the kidney, respectively. Among these metabolites, amino acids, fatty acids, and nucleotides emerged as the most significantly altered compounds. These metabolites were found to be associated with 12 differential metabolic pathways closely related to amino acids, fatty acids, and energy metabolism. Conclusion: Our study may provide valuable insights into the metabolic effects induced by CE, and they have the potential to inspire novel approaches for treating metabolic diseases.
Collapse
Affiliation(s)
| | - Shiyuan Zhao
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| | - Xue Chu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
| | - Hui Yang
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yanan Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Graduate Department, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| | - Fengfeng Li
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Yazhou Zhang
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Shuhui Li
- Tengzhou Central People’s Hospital, Tengzhou, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining, China
| |
Collapse
|
14
|
Piotrowska M. Diversity and inclusion for rodents: how animal ethics committees can help improve translation. JOURNAL OF MEDICAL ETHICS 2023:jme-2023-109166. [PMID: 37407026 DOI: 10.1136/jme-2023-109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Translation failure occurs when a treatment shown to be safe and effective in one type of population does not produce the same result in another. We are currently in a crisis involving the translatability of preclinical studies to human populations. Animal trials are no better than a coin toss at predicting the safety and efficacy of drugs in human trials, and the high failure rate of drugs entering human trials suggests that most of the suffering of laboratory animals is futile, creating no commensurate benefit for human patients. Here, I argue that animal ethics committees have a role to play in getting us out of this crisis. Inadequate representation is a known contributor to translation failures and is a matter of both scientific and ethical concern. Ethical review committees have the authority to address it by reprioritising the values already enshrined in their guiding principles.
Collapse
Affiliation(s)
- Monika Piotrowska
- Philosophy, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
15
|
Hylander BL, Qiao G, Cortes Gomez E, Singh P, Repasky EA. Housing temperature plays a critical role in determining gut microbiome composition in research mice: Implications for experimental reproducibility. Biochimie 2023; 210:71-81. [PMID: 36693616 PMCID: PMC10953156 DOI: 10.1016/j.biochi.2023.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/03/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Preclinical mouse models are widely used for studying mechanisms of disease and responses to therapeutics, however there is concern about the lack of experimental reproducibility and failure to predict translational success. The gut microbiome has emerged as a regulator of metabolism and immunological processes in health and disease. The gut microbiome of mice differs by supplier and this affects experimental outcomes. We have previously reported that the mandated, mildly cool housing temperature for research mice (22°-26 °C) induces chronic adrenergic stress which suppresses anti-tumor immunity and promotes tumor growth compared to thermoneutral housing (30 °C). Therefore, we wondered how housing temperature affects the microbiome. Here, we demonstrate that the gut microbiome of BALB/c mice is easily modulated by a few degrees difference in temperature. Our results reveal significant differences between the gut microbiome of mice housed at 22°-23 °C vs. 30 °C. Although the genera vary, we consistently observed an enrichment of members of the family Lachnospiraceae when mice are housed at 22°-23 °C. These findings demonstrate that adrenergic stress and need for increased energy harvest to support thermogenesis, in addition to other factors such as diet, modulates the gut microbiome and this could be one mechanism by which housing temperature affects experimental outcomes. Additionally, tumor growth in mice housed at 30 °C also increases the proportion of Lachnospiraceae. The idea that stress can alter the gut microbiome and cause differences in experimental outcomes is applicable to mouse studies in general and is a variable that has significant potential to affect experimental reproducibility.
Collapse
Affiliation(s)
- Bonnie L Hylander
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Guanxi Qiao
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Eduardo Cortes Gomez
- Department of Biostatistics & Bioinformatics, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Prashant Singh
- Genomics Shared Resource, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
16
|
Vialard F, Allaeys I, Dong G, Phan MP, Singh U, Hébert MJ, Dieudé M, Langlais D, Boilard E, Labbé DP, Olivier M. Thermoneutrality and severe malaria: investigating the effect of warmer environmental temperatures on the inflammatory response and disease progression. Front Immunol 2023; 14:1128466. [PMID: 37350957 PMCID: PMC10283000 DOI: 10.3389/fimmu.2023.1128466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/19/2023] [Indexed: 06/24/2023] Open
Abstract
Introduction Most studies using murine disease models are conducted at housing temperatures (20 - 22°C) that are sub-optimal (ST) for mice, eliciting changes in metabolism and response to disease. Experiments performed at a thermoneutral temperature (TT; 28 - 31°C) have revealed an altered immune response to pathogens and experimental treatments in murine disease model that have implications for their translation to clinical research. How such conditions affect the inflammatory response to infection with Plasmodium berghei ANKA (PbA) and disease progression is unknown. We hypothesized that changes in environmental temperature modulate immune cells and modify host response to malaria disease. To test this hypothesis, we conducted experiments to determine: (1) the inflammatory response to malarial agents injection in a peritonitis model and (2) disease progression in PbA-infected mice at TT compared to ST. Methods In one study, acclimatized mice were injected intraperitoneally with native hemozoin (nHZ) or Leishmania at TT (28 - 31°C) or ST, and immune cells, cytokine, and extracellular vesicle (EV) profiles were determined from the peritoneal cavity (PEC) fluid. In another study, PbA-infected mice were monitored until end-point (i.e. experimental malaria score ≥4). Results We found that Leishmania injection resulted in decreased cell recruitment and higher phagocytosis of nHZ in mice housed at TT. We found 398 upregulated and 293 downregulated proinflammatory genes in mice injected with nHZ, at both temperatures. We report the presence of host-derived EVs never reported before in a murine parasitic murine model at both temperatures. We observed metabolic changes in mice housed at TT, but these did not result to noticeable changes in disease progression compared to ST. Discussion To our knowledge, these experiments are the first to investigate the effect of thermoneutrality on a malaria murine model. We found important metabolic difference in mice housed at TT. Our results offer insights on how thermoneutrality might impact a severe malaria murine model and directions for more targeted investigations.
Collapse
Affiliation(s)
- Fiorella Vialard
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Isabelle Allaeys
- Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - George Dong
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Minh Phuong Phan
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
| | - Urvashi Singh
- Department of Human Genetics, McGill University Genome Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marie Josée Hébert
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
| | - Mélanie Dieudé
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal, Montréal, QC, Canada
- Département Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - David Langlais
- Department of Human Genetics, McGill University Genome Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Eric Boilard
- Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - David P. Labbé
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Division of Urology, Department of Surgery, McGill University, Montréal, QC, Canada
| | - Martin Olivier
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Sattgast LH, Wong CP, Branscum AJ, Olson DA, Aguirre-Burk AM, Iwaniec UT, Turner RT. Small changes in thermoregulation influence cancellous bone turnover balance in distal femur metaphysis in growing female mice. Bone Rep 2023; 18:101675. [PMID: 37007217 PMCID: PMC10063413 DOI: 10.1016/j.bonr.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Mice are typically housed at temperatures well below their thermoneutral zone. When individually housed at room temperature (~22 °C) mice experience cold stress which results in cancellous bone loss and has the potential to alter the skeletal response to treatment. It is not clear if there is a threshold temperature for cold stress-induced bone loss. It is also not clear if alternative strategies for attenuating cold stress, such as group housing, influence bone accrual and turnover. This study aimed to determine how small differences in temperature (4 °C) or heat loss (individual versus group housing with nestlets) influence bone in growing female C57BL/6 J mice. Five-week-old mice were randomized by weight to 1 of 4 treatment groups (N = 10/group): 1) baseline, 2) single housed at 22 °C, 3) single housed at 26 °C, or 4) group housed (n = 5/cage) with nestlets at 22 °C. Mice in the baseline group were sacrificed 1 week later, at 6 weeks of age. The other 3 groups of mice were maintained at their respective temperatures and housing conditions for 13 weeks until 18 weeks of age. Compared to baseline, mice single housed at room temperature had increased body weight and femur size, but dramatically decreased cancellous bone volume fraction in distal femur metaphysis. The cancellous bone loss was attenuated but not prevented in mice individually housed at 26 °C or group housed at 22 °C. In conclusion, by impacting thermogenesis or heat loss, modest differences in housing conditions could influence experimental results.
Collapse
Affiliation(s)
- Lara H. Sattgast
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A. Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Allan M. Aguirre-Burk
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
- Corresponding author at: Skeletal Biology Laboratory, School of Biological and Population Health Sciences, 127 Milam Hall, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
18
|
Ding Z, Chen W, Wu H, Li W, Mao X, Su W, Zhang Y, Lin N. Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis. Chin Med 2023; 18:48. [PMID: 37143094 PMCID: PMC10158004 DOI: 10.1186/s13020-023-00750-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Cold-dampness Syndrome (RA-Cold) and Hot-dampness Syndrome (RA-Hot) are two distinct groups of rheumatoid arthritis (RA) patients with different clinical symptoms based on traditional Chinese medicine (TCM) theories and clinical empirical knowledge. However, the biological basis of the two syndromes has not been fully elucidated, which may restrict the development of personalized medicine and drug discovery for RA diagnosis and therapy. METHODS An integrative strategy combining clinical transcriptomics, phenomics, and metabolomics data based on clinical cohorts and adjuvant-induced arthritis rat models was performed to identify novel candidate biomarkers and to investigate the biological basis of RA-Cold and RA-Hot. RESULTS The main clinical symptoms of RA-Cold patients are joint swelling, pain, and contracture, which may be associated with the dysregulation of T cell-mediated immunity, osteoblast differentiation, and subsequent disorders of steroid biosynthesis and phenylalanine metabolism. In contrast, the main clinical symptoms of RA-Hot patients are fever, irritability, and vertigo, which may be associated with various signals regulating angiogenesis, adrenocorticotropic hormone release, and NLRP3 inflammasome activation, leading to disorders of steroid biosynthesis, nicotinamide, and sphingolipid metabolism. IL17F, 5-HT, and IL4I1 were identified as candidate biomarkers of RA-Cold, while S1P and GLNS were identified as candidate biomarkers of RA-Hot. CONCLUSIONS The current study presents the most comprehensive metabonomic and transcriptomic profiling of serum, urine, synovial fluid, and synovial tissue samples obtained from RA-Cold and RA-Hot patients and experimental animal models to date. Through the integration of multi-omics data and clinical independent validation, a list of novel candidate biomarkers of RA-Cold and RA-Hot syndromes were identified, that may be useful in improving RA diagnosis and therapy.
Collapse
Affiliation(s)
- Zihe Ding
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Wenjia Chen
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Hao Wu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weijie Li
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Xia Mao
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Weiwei Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yanqiong Zhang
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
19
|
Xu J, Zhang J, Lin H, Zhang J, Zhou R, Wu X, Niu Y, Zhang J. Preparation of oral nanoparticles of Perillae Fructus oil and prevention application of cold stress in mice. Food Sci Nutr 2023; 11:1728-1735. [PMID: 37051352 PMCID: PMC10084961 DOI: 10.1002/fsn3.3202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Perillae Fructus oil has an important function in relieving cold stress. However, its application in this aspect has still been restricted because of instability and low bioavailability. In this study, Perillae Fructus oil was extracted through Soxhlet extraction, analyzed through gas chromatography-mass spectrometry (GC-MS), and nanopackaged into a yeast shell for the preparation of nanoparticles for oral administration. The characteristics of the nanoparticles were investigated using a Malvern zeta-size nanoinstrument, scanning electron microscopy (SEM), and high-performance liquid chromatography (HPLC). Then, the roles of orally administered nanoparticles in relieving cold stress were evaluated by investigating blood physiological and biochemical indexes in mice. The results showed that the oil yield from Perillae Fructus and shell yield from yeast cells were ~48.37% and ~16.87%, respectively. Approximately 89.21% of the added oil was packaged into the yeast shell to form nanoparticles with an average diameter of 316.74 nm and a surface charge of +2.9 mV. The nanoparticles were stable in simulated gastric acid and could be effectively released in simulated intestinal fluid with an efficiency of ~91.34%. After oral administration of nanoparticles, the mouse blood indexes of white blood cells (WBCs), superoxide dismutase (SOD) activity, and malonaldehyde (MDA) content were recovered compared to those in model mice, with a more remarkable effect than oral administration of free Perillae Fructus oil. Overall, the stability and bioavailability were improved by packaging Perillae Fructus oil into a yeast shell. These nanoparticles are a new agent for the prevention of cold stress.
Collapse
Affiliation(s)
- Junfei Xu
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Jianxi Zhang
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Huiying Lin
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Jiayu Zhang
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Rong Zhou
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Xianjin Wu
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| | - Youya Niu
- School of Basic Medical SciencesHunan University of MedicineHuaihuaChina
| | - Juzuo Zhang
- College of Biological and Food EngineeringHuaihua UniversityHuaihuaChina
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan ProvinceHuaihuaChina
- "Double First‐Class" Applied Characteristic Discipline of Bioengineering in Hunan High Educational InstitutionHuaihuaChina
| |
Collapse
|
20
|
Ginting RP, Lee JM, Lee MW. The Influence of Ambient Temperature on Adipose Tissue Homeostasis, Metabolic Diseases and Cancers. Cells 2023; 12:cells12060881. [PMID: 36980222 PMCID: PMC10047443 DOI: 10.3390/cells12060881] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Adipose tissue is a recognized energy storage organ during excessive energy intake and an endocrine and thermoregulator, which interacts with other tissues to regulate systemic metabolism. Adipose tissue dysfunction is observed in most obese mouse models and humans. However, most studies using mouse models were conducted at room temperature (RT), where mice were chronically exposed to mild cold. In this condition, energy use is prioritized for thermogenesis to maintain body temperature in mice. It also leads to the activation of the sympathetic nervous system, followed by the activation of β-adrenergic signaling. As humans live primarily in their thermoneutral (TN) zone, RT housing for mice limits the interpretation of disease studies from mouse models to humans. Therefore, housing mice in their TN zone (~28–30 °C) can be considered to mimic humans physiologically. However, factors such as temperature ranges and TN pre-acclimatization periods should be examined to obtain reliable results. In this review, we discuss how adipose tissue responds to housing temperature and the outcomes of the TN zone in metabolic disease studies. This review highlights the critical role of TN housing in mouse models for studying adipose tissue function and human metabolic diseases.
Collapse
Affiliation(s)
- Rehna Paula Ginting
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
| | - Min-Woo Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan 31151, Republic of Korea
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Republic of Korea
- Correspondence: ; Tel.: +82-41-413-5029
| |
Collapse
|
21
|
The metabolic cost of physical activity in mice using a physiology-based model of energy expenditure. Mol Metab 2023; 71:101699. [PMID: 36858190 PMCID: PMC10090438 DOI: 10.1016/j.molmet.2023.101699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE Physical activity is a major component of total energy expenditure (TEE) that exhibits extreme variability in mice. Our objective was to construct a general, physiology-based model of TEE to accurately quantify the energy cost of physical activity. METHODS Spontaneous home cage physical activity, body temperature, TEE, and energy intake were measured with frequent sampling. The energy cost of activity was modeled considering six contributors to TEE (basal metabolic rate, thermic effect of food, body temperature, cold induced thermogenesis, physical activity, and body weight). An ambient temperature of 35 °C was required to remove the contribution from cold induced thermogenesis. Basal metabolic rate was adjusted for body temperature using a Q10 temperature coefficient. RESULTS We developed a TEE model that robustly explains 70-80% of the variance in TEE at 35 °C while fitting only two parameters, the basal metabolic rate and the mass-specific energy cost per unit of physical activity, which averaged 60 cal/km/g body weight. In Ucp1-/- mice the activity cost was elevated by 60%, indicating inefficiency and increased muscle thermogenesis. The diurnal rhythm in TEE was quantitatively explained by the combined diurnal differences in physical activity, body temperature, and energy intake. CONCLUSIONS The physiology-based model of TEE allows quantifying the energy cost of physical activity. While applied here to mice, the model should be generally valid across species. Due to the effect of body temperature, we suggest that basal metabolic rate measurements be corrected to a reference body temperature, including in humans. Having an accurate cost of physical activity allows mechanistic dissection of disorders of energy homeostasis, including obesity.
Collapse
|
22
|
Dumenil T, Le TT, Rawle DJ, Yan K, Tang B, Nguyen W, Bishop C, Suhrbier A. Warmer ambient air temperatures reduce nasal turbinate and brain infection, but increase lung inflammation in the K18-hACE2 mouse model of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160163. [PMID: 36395835 PMCID: PMC9659553 DOI: 10.1016/j.scitotenv.2022.160163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.
Collapse
Affiliation(s)
- Troy Dumenil
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Thuy T Le
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Daniel J Rawle
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Kexin Yan
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Bing Tang
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wilson Nguyen
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Cameron Bishop
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Andreas Suhrbier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; Australian Infectious Disease Research Centre, GVN Center of Excellence, Brisbane, Queensland 4029, 4072, Australia.
| |
Collapse
|
23
|
Tognolli K, Silva V, Sousa-Filho CPB, Cardoso CAL, Gorjão R, Otton R. Green tea beneficial effects involve changes in the profile of immune cells in the adipose tissue of obese mice. Eur J Nutr 2023; 62:321-336. [PMID: 35994086 DOI: 10.1007/s00394-022-02963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE During obesity, the adipose tissue is usually infiltrated by immune cells which are related to hallmarks of obesity such as systemic inflammation and insulin resistance (IR). Green tea (GT) has been widely studied for its anti-inflammatory actions, including the modulation in the proliferation and activity of immune cells, in addition to preventing cardiovascular and metabolic diseases. METHODS The aim of the present study was to analyze the population of immune cells present in the subcutaneous and epididymal white adipose tissue (WAT) of mice kept at thermoneutrality (TN) and fed with a high-fat diet (HFD) for 16 weeks, supplemented or not with GT extract (500 mg/kg/12 weeks). RESULTS The HFD in association with TN has induced chronic inflammation, and IR in parallel with changes in the profile of immune cells in the subcutaneous and epidydimal WAT, increasing pro-inflammatory cytokines release, inflammatory cells infiltration, and fibrotic aspects in WAT. On the other hand, GT prevented body weight gain, in addition to avoiding IR and inflammation, and the consequent tissue fibrosis, maintaining a lower concentration of cytokines and a profile of immune cells similar to the control mice, preventing the harmful modulations induced by both HFD and TN. CONCLUSIONS GT beneficial effects in WAT abrogated the deleterious effects triggered by HFD and TN, maintaining all immune cells and fibrotic markers at the same level as in lean mice. These results place WAT immune cells population as a potential target of GT action, also highlighting the positive effects of GT in obese mice housed at TN.
Collapse
Affiliation(s)
- Kaue Tognolli
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Victoria Silva
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Celso Pereira Batista Sousa-Filho
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | | | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil
| | - Rosemari Otton
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, Regente Feijó Avenue, 1295, Sao Paulo, SP, 03342-000, Brazil.
| |
Collapse
|
24
|
Unger CA, Hope MC, Aladhami AK, Velázquez KT, Enos RT. How stable is your vivarium's temperature? Fluctuations in vivarium temperature significantly impact metabolism and behavior impeding scientific reproducibility. Physiol Behav 2023; 258:114029. [PMID: 36372225 PMCID: PMC10797230 DOI: 10.1016/j.physbeh.2022.114029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES The purpose of this investigation was to examine the variability in vivarium temperature and the impact that this has on metabolic and behavioral outcomes in mice. METHODS Daily vivarium temperature was monitored every day for a two-year period. Behavioral and metabolic phenotyping were assessed in male and female C57BL/6 (n = 71/sex) mice over the course of 2 years. RESULTS Vivarium temperature was found to fluctuate on a monthly, daily, and even an hourly basis of approximately ±5ºC. A 5ºC change in temperature was found to result in daily changes in total energy expenditure (35% and 27%), resting energy expenditure (39% for both sexes), movement (51% and 37%), food consumption (35% and 29%), and sleep duration (15% and 13%) for female and male mice, respectively. CONCLUSIONS Fluctuations in vivarium temperature can dramatically impact metabolic and behavioral outcomes, which impedes scientific reproducibility. This awareness and the guidelines we propose in this publication will hopefully help to enhance the reproducibility of pre-clinical animal research.
Collapse
Affiliation(s)
- Christian A Unger
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States
| | - Marion C Hope
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States
| | - Ahmed K Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States; University of Baghdad, Nursing College, Baghdad, Iraq
| | - Kandy T Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina-School of Medicine, Columbia, SC, United States.
| |
Collapse
|
25
|
Furuuchi R, Shimizu I, Yoshida Y, Katsuumi G, Suda M, Kubota Y, Walsh K, Minamino T. Endothelial SIRT-1 has a critical role in the maintenance of capillarization in brown adipose tissue. iScience 2022; 25:105424. [PMID: 36388988 PMCID: PMC9641227 DOI: 10.1016/j.isci.2022.105424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Brown adipose tissue (BAT) has critical roles in thermogenesis and systemic metabolism. Capillary rarefaction was reported to develop in BAT with dietary obesity, and previous studies showed that suppression of vascular endothelial growth factor A (VEGF-A) reduced capillary density in BAT, promoting the functional decline of this organ. Capillarization is regulated through the balance between angiogenesis and vasculogenesis on the one hand and apoptosis of endothelial cells (ECs) on the other; however, the role of EC apoptosis in BAT remained to be explored. In studies testing the role of boysenberry polyphenols (BoyP) in BAT, we found that BoyP decreased EC apoptosis, enhanced capillarization in BAT, and ameliorated dietary BAT dysfunction, which was associated with the upregulation of nicotinamide adenine dinucleotide-dependent protein deacetylase sirtuin 1 (SIRT-1) in ECs. Our studies suggest that EC SIRT-1 would be one of the potential targets of BoyP that contributes to BAT capillarization and function.
Collapse
Affiliation(s)
- Ryo Furuuchi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Bourbon Corporation, Niigata 945-8611, Japan,Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Corresponding author
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo 113-8431, Japan
| | - Goro Katsuumi
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Masayoshi Suda
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenneth Walsh
- Division of Cardiovascular Medicine, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8431, Japan,Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan,Corresponding author
| |
Collapse
|
26
|
Abdelzaher H, Tawfik SM, Nour A, Abdelkader S, Elbalkiny ST, Abdelkader M, Abbas WA, Abdelnaser A. Climate change, human health, and the exposome: Utilizing OMIC technologies to navigate an era of uncertainty. Front Public Health 2022; 10:973000. [PMID: 36211706 PMCID: PMC9533016 DOI: 10.3389/fpubh.2022.973000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 01/25/2023] Open
Abstract
Climate change is an anthropogenic phenomenon that is alarming scientists and non-scientists alike. The emission of greenhouse gases is causing the temperature of the earth to rise and this increase is accompanied by a multitude of climate change-induced environmental exposures with potential health impacts. Tracking human exposure has been a major research interest of scientists worldwide. This has led to the development of exposome studies that examine internal and external individual exposures over their lifetime and correlate them to health. The monitoring of health has also benefited from significant technological advances in the field of "omics" technologies that analyze physiological changes on the nucleic acid, protein, and metabolism levels, among others. In this review, we discuss various climate change-induced environmental exposures and their potential health implications. We also highlight the potential integration of the technological advancements in the fields of exposome tracking, climate monitoring, and omics technologies shedding light on important questions that need to be answered.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
27
|
Chan JFW, Poon VKM, Chan CCS, Chik KKH, Tsang JOL, Zou Z, Chan CCY, Lee ACY, Li C, Liang R, Cao J, Tang K, Yuen TTT, Hu B, Huang X, Chai Y, Shuai H, Luo C, Cai JP, Chan KH, Sridhar S, Yin F, Kok KH, Chu H, Zhang AJ, Yuan S, Yuen KY. Low Environmental Temperature Exacerbates Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Golden Syrian Hamsters. Clin Infect Dis 2022; 75:e1101-e1111. [PMID: 34536277 DOI: 10.1093/cid/ciab817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The effect of low environmental temperature on viral shedding and disease severity of Coronavirus Disease 2019 (COVID-19) is uncertain. METHODS We investigated the virological, clinical, pathological, and immunological changes in hamsters housed at room (21°C), low (12-15°C), and high (30-33°C) temperature after challenge by 105 plaque-forming units of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS The nasal turbinate, trachea, and lung viral load and live virus titer were significantly higher (~0.5-log10 gene copies/β-actin, P < .05) in the low-temperature group at 7 days postinfection (dpi). The low-temperature group also demonstrated significantly higher level of tumor necrosis factor-α, interferon-γ (IFN-γ), interleukin-1β, and C-C motif chemokine ligand 3, and lower level of the antiviral IFN-α in lung tissues at 4 dpi than the other 2 groups. Their lungs were grossly and diffusely hemorrhagic, with more severe and diffuse alveolar and peribronchiolar inflammatory infiltration, bronchial epithelial cell death, and significantly higher mean total lung histology scores. By 7 dpi, the low-temperature group still showed persistent and severe alveolar inflammation and hemorrhage, and little alveolar cell proliferative changes of recovery. The viral loads in the oral swabs of the low-temperature group were significantly higher than those of the other two groups from 10 to 17 dpi by about 0.5-1.0 log10 gene copies/β-actin. The mean neutralizing antibody titer of the low-temperature group was significantly (P < .05) lower than that of the room temperature group at 7 dpi and 30 dpi. CONCLUSIONS This study provided in vivo evidence that low environmental temperature exacerbated the degree of virus shedding, disease severity, and tissue proinflammatory cytokines/chemokines expression, and suppressed the neutralizing antibody response of SARS-CoV-2-infected hamsters. Keeping warm in winter may reduce the severity of COVID-19.
Collapse
Affiliation(s)
- Jasper Fuk Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Vincent Kwok Man Poon
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chung Sing Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kenn Ka Heng Chik
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jessica Oi Ling Tsang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Zijiao Zou
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chris Chun Yiu Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Andrew Chak Yiu Lee
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Can Li
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Terrence Tsz Tai Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Bingjie Hu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiner Huang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yue Chai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Cuiting Luo
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok Hung Chan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Siddharth Sridhar
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Feifei Yin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, China
| | - Kin Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Anna Jinxia Zhang
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.,Academician Workstation of Hainan Province, Hainan Medical University, Haikou, Hainan, China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
28
|
Ogawa S, Darhan H, Suzuki K. Genetic and genomic analysis of oxygen consumption in mice. J Anim Breed Genet 2022; 139:596-610. [PMID: 35608337 DOI: 10.1111/jbg.12721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/07/2022] [Indexed: 12/16/2022]
Abstract
We estimated genetic parameters for oxygen consumption (OC), OC per metabolic body weight (OCMBW) and body weight at three through 8 weeks of age in divergently selected mice populations, with an animal model considering maternal genetic, common litter environmental and cytoplasmic inheritance effects. Cytoplasmic inheritance was considered based on maternal lineage information. With respect to OC, estimated direct heritability was moderate (0.32) and the estimated proportion of the variance of cytoplasmic inheritance effects to the phenotypic variance was very low (0.01), implying that causal genes for OC could be located on autosomes. To assess this hypothesis, we attempted to identify possible candidate causal genes through selective signature detection with the results of pooled whole-genome resequencing using pooled DNA samples from high and low OC mice. We made a list of possible candidate causal genes for OC, including those relating to electron transport chain and ATP-binding proteins (Ndufa12, Sdhc, Atp10b, etc.), Prr16 encoding Largen protein, Cry1 encoding a key component of the circadian core oscillator and so on. The results, although careful interpretation must be required, could contribute to elucidate the genetic mechanism of OC, an indicator for maintenance energy requirement, and therefore feed efficiency.
Collapse
Affiliation(s)
- Shinichiro Ogawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hongyu Darhan
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Keiichi Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
29
|
Hamilton A, Rizzo R, Brod S, Ono M, Perretti M, Cooper D, D'Acquisto F. The immunomodulatory effects of social isolation in mice are linked to temperature control. Brain Behav Immun 2022; 102:179-194. [PMID: 35217174 DOI: 10.1016/j.bbi.2022.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/25/2022] Open
Abstract
Living in isolation is considered an emerging societal problem that negatively affects the physical wellbeing of its sufferers in ways that we are just starting to appreciate. This study investigates the immunomodulatory effects of social isolation in mice, utilising a two-week program of sole cage occupancy followed by the testing of immune-inflammatory resilience to bacterial sepsis. Our results revealed that mice housed in social isolation showed an increased ability to clear bacterial infection compared to control socially housed animals. These effects were associated with specific changes in whole blood gene expression profile and an increased production of classical pro-inflammatory cytokines. Interestingly, equipping socially isolated mice with artificial nests as a substitute for their natural huddling behaviour reversed the increased resistance to bacterial sepsis. Together these results suggest that the control of body temperature through social housing and huddling behaviour are important factors in the regulation of the host immune response to infection in mice and might provide another example of the many ways by which living conditions influence immunity.
Collapse
Affiliation(s)
- Alice Hamilton
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Raffaella Rizzo
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Samuel Brod
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Masahiro Ono
- University of London Imperial College Science Technology & Medicine, Department of Life Science, Faculty of Natural Science, London SW7 2AZ, England
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dianne Cooper
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fulvio D'Acquisto
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK; School of Life and Health Science, University of Roehampton, London SW15, 4JD, UK.
| |
Collapse
|
30
|
Lezama-García K, Mota-Rojas D, Pereira AMF, Martínez-Burnes J, Ghezzi M, Domínguez A, Gómez J, de Mira Geraldo A, Lendez P, Hernández-Ávalos I, Falcón I, Olmos-Hernández A, Wang D. Transient Receptor Potential (TRP) and Thermoregulation in Animals: Structural Biology and Neurophysiological Aspects. Animals (Basel) 2022; 12:106. [PMID: 35011212 PMCID: PMC8749608 DOI: 10.3390/ani12010106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents and analyzes recent scientific findings on the structure, physiology, and neurotransmission mechanisms of transient receptor potential (TRP) and their function in the thermoregulation of mammals. The aim is to better understand the functionality of these receptors and their role in maintaining the temperature of animals, or those susceptible to thermal stress. The majority of peripheral receptors are TRP cation channels formed from transmembrane proteins that function as transductors through changes in the membrane potential. TRP are classified into seven families and two groups. The data gathered for this review include controversial aspects because we do not fully know the mechanisms that operate the opening and closing of the TRP gates. Deductions, however, suggest the intervention of mechanisms related to G protein-coupled receptors, dephosphorylation, and ligands. Several questions emerge from the review as well. For example, the future uses of these data for controlling thermoregulatory disorders and the invitation to researchers to conduct more extensive studies to broaden our understanding of these mechanisms and achieve substantial advances in controlling fever, hyperthermia, and hypothermia.
Collapse
Affiliation(s)
- Karina Lezama-García
- PhD Program in Biological and Health Sciences, [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Daniel Mota-Rojas
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Marcelo Ghezzi
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Adriana Domínguez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Jocelyn Gómez
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Ana de Mira Geraldo
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.M.F.P.); (A.d.M.G.)
| | - Pamela Lendez
- Faculty of Veterinary Sciences, Veterinary Research Center (CIVETAN), Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), CONICET-CICPBA, Arroyo Seco S/N, Tandil 7000, Argentina; (M.G.); (P.L.)
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlan Izcalli 54714, Mexico;
| | - Isabel Falcón
- Department of Agricultural and Animal Production, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.); (J.G.); (I.F.)
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Tlalpan, Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| |
Collapse
|
31
|
Turner RT, Nesser KL, Philbrick KA, Wong CP, Olson DA, Branscum AJ, Iwaniec UT. Leptin and environmental temperature as determinants of bone marrow adiposity in female mice. Front Endocrinol (Lausanne) 2022; 13:959743. [PMID: 36277726 PMCID: PMC9582271 DOI: 10.3389/fendo.2022.959743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump. Controls consisted of ad libitum (ad lib) fed mice and mice pair fed to match food intake of leptin-supplemented mice. The mice were maintained at 32°C for the duration of treatment. At necropsy, serum leptin in leptin-supplemented mice did not differ from ad lib mice, suggesting suppression of endogenous leptin production. In support, Ucp1 expression in BAT, percent body fat, and abdominal WAT mass were lower in leptin-supplemented mice. Leptin-supplemented mice also had lower BMAT and higher bone formation in distal femur metaphysis compared to the ad lib group, changes not replicated by pair-feeding. In the second experiment, BMAT response was evaluated in 6-week-old female B6 wild type (WT), leptin-deficient ob/ob and leptin-treated (0.3 μg/d) ob/ob mice housed at 32°C for the 2-week duration of the treatment. Compared to mice sacrificed at baseline (22°C), BMAT increased in ob/ob mice as well as WT mice, indicating a leptin independent response to increased temperature. However, infusion of ob/ob mice with leptin, at a dose rate having negligible effects on either energy metabolism or serum leptin levels, attenuated the increase in BMAT. In summary, increased housing temperature and increased leptin have independent but opposing effects on BMAT in mice.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
| | - Kira L. Nesser
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Kenneth A. Philbrick
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Carmen P. Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Dawn A. Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, United States
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR, United States
- *Correspondence: Urszula T. Iwaniec,
| |
Collapse
|
32
|
Verduzco-Mendoza A, Bueno-Nava A, Wang D, Martínez-Burnes J, Olmos-Hernández A, Casas A, Domínguez A, Mota-Rojas D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals (Basel) 2021; 11:3448. [PMID: 34944225 PMCID: PMC8698170 DOI: 10.3390/ani11123448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Evaluating laboratory animals' health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Antonio Bueno-Nava
- División of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, (INR-LGII), Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| |
Collapse
|
33
|
Campler MR, Cheng TY, Schroeder DC, Yang M, Mor SK, Ferreira JB, Arruda AG. A longitudinal study on PRRSV detection in swine herds with different demographics and PRRSV management strategies. Transbound Emerg Dis 2021; 69:e1005-e1014. [PMID: 34747126 DOI: 10.1111/tbed.14386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 01/17/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been one of the major health-related concerns in the swine production industry. Through its rapid transmission and mutation, the simultaneous circulation of multiple PRRSV strains can be a challenge in PRRSV diagnostic, control and surveillance. The objective of this longitudinal study was to describe the temporal detection of PRRSV in swine farms with different production types and PRRS management strategies. Tonsil scraping (n = 344) samples were collected from three breeding and two growing herds for approximately one year. In addition, processing fluids (n = 216) were obtained from piglet processing batches within the three breeding farms while pen-based oral fluids (n = 125) were collected in the two growing pig farms. Viral RNA extraction and reverse-transcription quantitative PCR (RT-qPCR) were conducted for all samples. The sample positivity threshold was set at quantification cycle (Cq) of ≤ 37. Statistical analyses were performed using generalized linear modelling and post hoc pairwise comparisons with Bonferroni adjustments using R statistical software. The results suggested a higher probability of detection in processing fluids compared to tonsil scraping specimens [odds ratio (OR) = 3.86; p = .096] in breeding farms whereas oral fluids were outperformed by tonsil scrapings (OR = 0.26; p < .01) in growing pig farms. The results described herein may lead to an improvement in PRRSV diagnostic and surveillance by selecting proper specimens.
Collapse
Affiliation(s)
- Magnus R Campler
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - M Yang
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Sunil K Mor
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota
| | - Juliana B Ferreira
- Department of Population Health & Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Andréia G Arruda
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, the Ohio State University, Columbus, Ohio
| |
Collapse
|
34
|
Abstract
The intestinal microbiome influences host health, and its responsiveness to diet and disease is increasingly well studied. However, our understanding of the factors driving microbiome variation remain limited. Temperature is a core factor that controls microbial growth, but its impact on the microbiome remains to be fully explored. Although commonly assumed to be a constant 37°C, normal body temperatures vary across the animal kingdom, while individual body temperature is affected by multiple factors, including circadian rhythm, age, environmental temperature stress, and immune activation. Changes in body temperature via hypo- and hyperthermia have been shown to influence the gut microbiota in a variety of animals, with consistent effects on community diversity and stability. It is known that temperature directly modulates the growth and virulence of gastrointestinal pathogens; however, the effect of temperature on gut commensals is not well studied. Further, body temperature can influence other host factors, such as appetite and immunity, with indirect effects on the microbiome. In this minireview, we discuss the evidence linking body temperature and the intestinal microbiome and their implications for microbiome function during hypothermia, heat stress, and fever.
Collapse
Affiliation(s)
- Kelsey E. Huus
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| | - Ruth E. Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Wargent ET, Ahmad SJS, Lu QR, Kostenis E, Arch JRS, Stocker CJ. Leanness and Low Plasma Leptin in GPR17 Knockout Mice Are Dependent on Strain and Associated With Increased Energy Intake That Is Not Suppressed by Exogenous Leptin. Front Endocrinol (Lausanne) 2021; 12:698115. [PMID: 34646232 PMCID: PMC8503278 DOI: 10.3389/fendo.2021.698115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown that agonists of GPR17 stimulate, while antagonists inhibit feeding. However, whole body knockout of GPR17 in mice of the C57Bl/6 strain did not affect energy balance, whereas selective knockout in oligodendrocytes or pro-opiomelanocortin neurons provided protection from high fat diet-induced obesity and impaired glucose homeostasis. We reasoned that whole body knockout of GPR17 in mice of the 129 strain might elicit more marked effects because the 129 strain is more susceptible than the C57Bl/6 strain to increased sympathetic activity and less susceptible to high fat diet-induced obesity. Consistent with this hypothesis, compared to wild-type mice, and when fed on either a chow or a high fat diet, GPR17 -/- mice of the 129 strain displayed increased expression of uncoupling protein-1 in white adipose tissue, lower body weight and fat content, reduced plasma leptin, non-esterified fatty acids and triglycerides, and resistance to high fat diet-induced glucose intolerance. Not only energy expenditure, but also energy intake was raised. Administration of leptin did not suppress the increased food intake in GPR17 -/- mice of the 129 strain, whereas it did suppress food intake in GPR17 +/+ mice. The only difference between GPR17 +/- and GPR17 +/+ mice of the C57Bl/6 strain was that the body weight of the GPR17 -/- mice was lower than that of the GPR17 +/+ mice when the mice were fed on a standard chow diet. We propose that the absence of GPR17 raises sympathetic activity in mice of the 129 strain in response to a low plasma fuel supply, and that the consequent loss of body fat is partly mitigated by increased energy intake.
Collapse
Affiliation(s)
- Edward T. Wargent
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | - Suhaib J. S. Ahmad
- Department of Surgery, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Qing Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | | | - Jonathan R. S. Arch
- Institute of Translational Medicine, University of Buckingham, Buckingham, United Kingdom
| | | |
Collapse
|
36
|
Efficacy Comparison of Different Acupuncture Treatments for Hot Flashes: A Systematic Review with Network Meta-Analysis. JOURNAL OF ACUPUNCTURE RESEARCH 2021. [DOI: 10.13045/jar.2020.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The objective of this study was to conduct a systematic review and network meta-analysis to evaluate and compare the effectiveness of various types of acupuncture for menopausal hot flashes (HF). Randomized controlled trials (RCTs) were retrieved from 8 electronic databases, and the risk of bias was evaluated for the included studies. Pairwise meta-analysis and network meta-analysis were performed using Review Manager and R software for indirect comparison and ranking, respectively. In total, 23 RCTs (2,302 patients) were eligible for systematic review, of which 10 were included in network meta-analysis. Network meta-analysis showed manual acupuncture (MA) had the highest probability of reducing HF frequency and severity, followed by sham acupuncture (SA), electroacupuncture, usual care, or no treatment; furthermore, warm acupuncture significantly improved menopause-specific quality of life compared with MA or electroacupuncture. Compared with hormone replacement therapy, acupuncture had less efficacy in reducing HF frequency but enhanced menopause-specific quality of life. There was no significant difference between MA and SA in mitigating HF. The existing evidence showed that MA could be used for alleviating menopausal HF. However, it is recommended that more high-quality RCTs should be performed.
Collapse
|
37
|
Seeley RJ, MacDougald OA. Mice as experimental models for human physiology: when several degrees in housing temperature matter. Nat Metab 2021; 3:443-445. [PMID: 33767444 PMCID: PMC8987294 DOI: 10.1038/s42255-021-00372-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Standfirst: Some “species differences” between mouse and human can be diminished simply by housing mice at warmer temperatures. Failure to strategically turn up the thermostat may undermine translation of findings in mice into insights on human metabolic diseases.
Collapse
Affiliation(s)
- Randy J Seeley
- Departments of Surgery, Internal Medicine and Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Departments of Molecular & Integrative Physiology, and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
38
|
Martin LB, Hanson HE, Hauber ME, Ghalambor CK. Genes, Environments, and Phenotypic Plasticity in Immunology. Trends Immunol 2021; 42:198-208. [PMID: 33518415 DOI: 10.1016/j.it.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022]
Abstract
For most of its history, immunology has sought to control environmental variation to establish genetic causality. As with all biological traits though, variation among individuals arises by three broad pathways: genetic (G), environmental (E), and the interactive between the two (GxE); and immunity is no different. Here, we review the value of applying the evolutionary frameworks of phenotypic plasticity and reaction norms to immunology. Because standardized laboratory environments are vastly different from the conditions under which populations evolved, we hypothesize that immunology might presently be missing important phenotypic variation and even focusing on dysregulated molecular and cellular processes. Modest adjustments to study designs could make model organism immunology more productive, reproducible, and reflective of human physiology.
Collapse
Affiliation(s)
- Lynn B Martin
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA.
| | - Haley E Hanson
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, USA
| | - Mark E Hauber
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Cameron K Ghalambor
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|