1
|
Nishide M, Shimagami H, Kumanogoh A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol 2024; 24:781-797. [PMID: 38914790 DOI: 10.1038/s41577-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
2
|
Ding Y, Luan X, Hou J. The critical involvement of monocytes/macrophages in the pathogenesis of primary Sjögren's syndrome: New evidence from Mendelian randomization and single-cell sequencing. Heliyon 2024; 10:e39130. [PMID: 39497977 PMCID: PMC11532255 DOI: 10.1016/j.heliyon.2024.e39130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Background Primary Sjögren's syndrome (pSS) stands as a chronic autoimmune disease characterized by an elusive pathogenesis. The synergy of single-cell RNA sequencing and Mendelian randomization (MR) analysis provides an opportunity to comprehensively unravel the contributory role of monocytes/macrophages in the intricate pathogenesis of pSS. Methods Differentially expressed genes (DEGs) of various types of immune cells were analyzed after annotating single-cell RNA sequencing (scRNA-seq) data. MR analysis of expression quantitative trait loci (eQTL) and protein quantitative trait loci (pQTL) was conducted to search for key pathogenic genes and proteins. Cellular localization of pathogenic genes was performed based on scRNA-seq data. Variations in signaling pathways between immune cells were further analyzed. Results A total of 1434 significant DEGs were identified. Among these, 60 genes exhibited strong relevance to the occurrence of pSS, of which 32 genes differentially expressed in monocytes/macrophages. CTSS was found to be a significant risk protein with a p-value of 0.001 and an odds ratio of 1.384 (1.147-1.669), showing pronounced expression in monocytes/macrophages. Furthermore, monocytes/macrophages displayed heightened expression levels of MXD1, AMPD2, TNFSF10, FTL, UBXN11, CSF3R, and LILRA5. The analysis of intercellular signaling revealed increased signal intensity in both incoming and outgoing signals in monocytes/macrophages. The signaling interactions between monocytes/macrophages, B cells, and T cells exhibited varying degrees of deviation. Conclusions This study highlights the significant involvement of monocytes/macrophages in the pathogenesis of pSS, as evidenced by MR analysis and scRNA-seq analysis. This suggests monocytes/macrophages as a focal point for pathogenesis research and potential therapeutic targeting in pSS.
Collapse
Affiliation(s)
- Yimei Ding
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Luan
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Hou
- Department of Rheumatology and Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Lee CR, Kim MJ, Park SH, Kim S, Kim SY, Koh SJ, Lee S, Choi M, Chae JH, Park SG, Moon J. Recurrent fever of unknown origin and unexplained bacteremia in a patient with a novel 4.5 Mb microdeletion in Xp11.23-p11.22. Sci Rep 2024; 14:17801. [PMID: 39090138 PMCID: PMC11294525 DOI: 10.1038/s41598-024-65341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024] Open
Abstract
Fever of unknown origin (FUO) remains a formidable diagnostic challenge in the field of medicine. Numerous studies suggest an association between FUO and genetic factors, including chromosomal abnormalities. Here, we report a female patient with a 4.5 Mb Xp microdeletion, who presented with recurrent FUO, bacteremia, colitis, and hematochezia. To elucidate the underlying pathogenic mechanism, we employed a comprehensive approach involving single cell RNA sequencing, T cell receptor sequencing, and flow cytometry to evaluate CD4 T cells. Analysis of peripheral blood mononuclear cells revealed augmented Th1, Th2, and Th17 cell populations, and elevated levels of proinflammatory cytokines in serum. Notably, the patient exhibited impaired Treg cell function, possibly related to deletion of genes encoding FOPX3 and WAS. Single cell analysis revealed specific expansion of cytotoxic CD4 T lymphocytes, characterized by upregulation of various signature genes associated with cytotoxicity. Moreover, interferon-stimulated genes were upregulated in the CD4 T effector memory cluster. Further genetic analysis confirmed maternal inheritance of the Xp microdeletion. The patient and her mother exhibited X chromosome-skewed inactivation, a potential protective mechanism against extensive X chromosome deletions; however, the mother exhibited complete skewing and the patient exhibited incomplete skewing (85:15), which may have contributed to emergence of immunological symptoms. In summary, this case report describes an exceptional instance of FUO stemming from an incompletely inactivated X chromosome microdeletion, thereby increasing our understanding of the genetics underpinning FUO.
Collapse
Affiliation(s)
- Cho-Rong Lee
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Man Jin Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sang-Heon Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sheehyun Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seong-Joon Koh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Gyoo Park
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jangsup Moon
- Department of Genomic Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Neurology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
4
|
Xu Y, Han J, Fan Z, Liang S. Transcriptomics explores potential mechanisms for the development of Primary Sjogren's syndrome to diffuse large B-cell lymphoma in B cells. BMC Immunol 2024; 25:53. [PMID: 39080525 PMCID: PMC11287849 DOI: 10.1186/s12865-024-00646-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 07/26/2024] [Indexed: 08/03/2024] Open
Abstract
PURPOSE Primary Sjogren's syndrome (pSS) is a prevalent autoimmune disease. The immune dysregulation it causes often leads to the development of diffuse large B-cell lymphoma (DLBCL) in clinical practice. However, how it contributes to these two disorders at the molecular level is not yet known. This study explored the potential molecular mechanisms associated with the differences between DLBCL and pSS. PATIENTS AND METHODS Gene expression matrices from discovery cohort 1, discovery cohort 2, and the validation cohort were downloaded from the GEO and TCGA databases. Weighted gene coexpression network analysis (WGCNA) was performed to identify the coexpression modules of DLBCL and pSS in discovery cohort 1 and obtain shared genes. GO and KEGG enrichment analyses and PPI network analysis were performed on the shared genes. Immune-related genes (IRGs) were intersected with shared genes to obtain common genes. Afterward, common genes were identified via machine learning methods. The immune infiltration analysis, miRNA-TF-hub gene regulatory chart, gene interactions of the hub genes, and gene‒drug target analysis were performed. Finally, STAT1 was identified as a possible essential gene by the above analysis, and immune infiltration and GSEA pathway analyses were performed in the high- and low-expression groups in discovery cohort 2. The diagnostic efficacy of the hub genes was assessed in the validation cohort, and clinical samples were collected for validation. RESULTS By WGCNA, one modular gene in each group was considered highly associated with the disease, and we obtained 28 shared genes. Enrichment analysis revealed shared genes involved in the viral response and regulation. We obtained four hub genes (ISG20, STAT1, TLR7, and RSAD2) via the algorithm. Hub genes and similar genes are primarily involved in regulating type I IFNs. The construction of a miRNA-TF-hub gene regulatory chart revealed that hsa-mir-155-5p, hsa-mir-146b-5p, hsa-mir-21-3p, and hsa-mir-126-3p play essential roles in both diseases. Hub genes were differentially expressed in B-cell memory according to immune infiltration analysis. Hub genes had a strong diagnostic effect on both diseases. STAT1 plays an essential role in immune cells in both diseases. CONCLUSION We identified hub susceptibility genes for DLBCL and pSS and identified hub genes and potential therapeutic targets that may act as biomarkers.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Laboratory, the Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, P.R. China
| | - Jianxing Han
- Department of Stomatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, P.R. China
| | - Ziyi Fan
- Shanxi Bethune Hospital, Taiyuan, Shanxi, P.R. China
| | - Shufen Liang
- Department of Laboratory, the Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Taiyuan, 030001, Shanxi, P.R. China.
| |
Collapse
|
5
|
Tang X, Zhang Y, Zhang H, Zhang N, Dai Z, Cheng Q, Li Y. Single-Cell Sequencing: High-Resolution Analysis of Cellular Heterogeneity in Autoimmune Diseases. Clin Rev Allergy Immunol 2024; 66:376-400. [PMID: 39186216 DOI: 10.1007/s12016-024-09001-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2024] [Indexed: 08/27/2024]
Abstract
Autoimmune diseases (AIDs) are complex in etiology and diverse in classification but clinically show similar symptoms such as joint pain and skin problems. As a result, the diagnosis is challenging, and usually, only broad treatments can be available. Consequently, the clinical responses in patients with different types of AIDs are unsatisfactory. Therefore, it is necessary to conduct more research to figure out the pathogenesis and therapeutic targets of AIDs. This requires research technologies with strong extraction and prediction capabilities. Single-cell sequencing technology analyses the genomic, epigenomic, or transcriptomic information at the single-cell level. It can define different cell types and states in greater detail, further revealing the molecular mechanisms that drive disease progression. These advantages enable cell biology research to achieve an unprecedented resolution and scale, bringing a whole new vision to life science research. In recent years, single-cell technology especially single-cell RNA sequencing (scRNA-seq) has been widely used in various disease research. In this paper, we present the innovations and applications of single-cell sequencing in the medical field and focus on the application contributing to the differential diagnosis and precise treatment of AIDs. Despite some limitations, single-cell sequencing has a wide range of applications in AIDs. We finally present a prospect for the development of single-cell sequencing. These ideas may provide some inspiration for subsequent research.
Collapse
Affiliation(s)
- Xuening Tang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yudi Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
6
|
Zhang Z, Bahabayi A, Liu D, Hasimu A, Zhang Y, Guo S, Liu R, Zhang K, Li Q, Xiong Z, Wang P, Liu C. KLRB1 defines an activated phenotype of CD4+ T cells and shows significant upregulation in patients with primary Sjögren's syndrome. Int Immunopharmacol 2024; 133:112072. [PMID: 38636371 DOI: 10.1016/j.intimp.2024.112072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE This study aimed to investigate the role of KLRB1 (CD161) in human CD4+ T cells and elucidate its significance in primary Sjögren's syndrome (pSS). METHODS Peripheral blood samples from 37 healthy controls and 44 pSS patients were collected. The publicly available single-cell RNA-Seq data from pSS patient PBMCs were utilized to analyse KLRB1 expression in T cells. KLRB1-expressing T lymphocyte subset proportions in pSS patients and healthy controls were determined by flow cytometry. CD25, Ki-67, cytokine secretion, and chemokine receptor expression in CD4+ KLRB1+ T cells were detected and compared with those in CD4+ KLRB1- T cells. Correlation analysis was conducted between KLRB1-related T-cell subsets and clinical indicators. ROC curves were generated to explore the diagnostic potential of KLRB1 for pSS. RESULTS KLRB1 was significantly upregulated following T-cell activation, and Ki-67 and CD25 expression was significantly greater in CD4+ KLRB1+ T cells than in CD4+ KLRB1- T cells. KLRB1+ CD4+ T cells exhibited greater IL-17A, IL-21, IL-22, and IFN-γ secretion upon stimulation, and there were significantly greater proportions of CCR5+, CCR2+, CX3CR1+, CCR6+, and CXCR3+ cells among CD4+ KLRB1+ T cells than among CD4+ KLRB1- T cells. Compared with that in HCs, KLRB1 expression in CD4+ T cells was markedly elevated in pSS patients and significantly correlated with clinical disease indicators. CONCLUSION KLRB1 is a characteristic molecule of the CD4+ T-cell activation phenotype. The increased expression of KLRB1 in the CD4+ T cells of pSS patients suggests its potential involvement in the pathogenesis of pSS and its utility as an auxiliary diagnostic marker for pSS.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Danni Liu
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yangyang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Siyu Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruiqing Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ke Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ziqi Xiong
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China.
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
7
|
Liao J, Yu X, Huang Z, He Q, Yang J, Zhang Y, Chen J, Song W, Luo J, Tao Q. Chemokines and lymphocyte homing in Sjögren's syndrome. Front Immunol 2024; 15:1345381. [PMID: 38736890 PMCID: PMC11082322 DOI: 10.3389/fimmu.2024.1345381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4β7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-β, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-β receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.
Collapse
Affiliation(s)
- Jiahe Liao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Xinbo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Ziwei Huang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Qian He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jianying Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Yan Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Jiaqi Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
| | - Weijiang Song
- Traditional Chinese Medicine Department, Peking University Third Hospital, Beijing, China
| | - Jing Luo
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| | - Qingwen Tao
- Traditional Chinese Medicine Department of Rheumatism, China-Japan Friendship Hospital, Beijing, China
- Beijing Key Laboratory of Immune Inflammatory Disease, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
8
|
Kim MC, De U, Borcherding N, Wang L, Paek J, Bhattacharyya I, Yu Q, Kolb R, Drashansky T, Thatayatikom A, Zhang W, Cha S. Single-cell transcriptomics unveil profiles and interplay of immune subsets in rare autoimmune childhood Sjögren's disease. Commun Biol 2024; 7:481. [PMID: 38641668 PMCID: PMC11031574 DOI: 10.1038/s42003-024-06124-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
Childhood Sjögren's disease represents critically unmet medical needs due to a complete lack of immunological and molecular characterizations. This study presents key immune cell subsets and their interactions in the periphery in childhood Sjögren's disease. Here we show that single-cell RNA sequencing identifies the subsets of IFN gene-enriched monocytes, CD4+ T effector memory, and XCL1+ NK cells as potential key players in childhood Sjögren's disease, and especially in those with recurrent parotitis, which is the chief symptom prompting clinical visits from young children. A unique cluster of monocytes with type I and II IFN-related genes is identified in childhood Sjögren's disease, compared to the age-matched control. In vitro regulatory T cell functional assay demonstrates intact functionality in childhood Sjögren's disease in contrast to reduced suppression in adult Sjögren's disease. Mapping this transcriptomic landscape and interplay of immune cell subsets will expedite the understanding of childhood Sjögren's disease pathogenesis and set the foundation for precision medicine.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Umasankar De
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas Borcherding
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St Louis, MO, 63110, USA
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Joon Paek
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
- Department of Pathology & Immunology, Washington University School of Medicine in St. Louis, St Louis, MO, 63110, USA
| | - Indraneel Bhattacharyya
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
- Department of Oral & Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL, 32610, USA
| | - Qing Yu
- The Forsyth Institute, Cambridge, MA, 02142, USA
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | | | | | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Seunghee Cha
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
- Department of Oral & Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Goto M, Takahashi H, Yoshida R, Itamiya T, Nakano M, Nagafuchi Y, Harada H, Shimizu T, Maeda M, Kubota A, Toda T, Hatano H, Sugimori Y, Kawahata K, Yamamoto K, Shoda H, Ishigaki K, Ota M, Okamura T, Fujio K. Age-associated CD4 + T cells with B cell-promoting functions are regulated by ZEB2 in autoimmunity. Sci Immunol 2024; 9:eadk1643. [PMID: 38330141 DOI: 10.1126/sciimmunol.adk1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Aging is a significant risk factor for autoimmunity, and many autoimmune diseases tend to onset during adulthood. We conducted an extensive analysis of CD4+ T cell subsets from 354 patients with autoimmune disease and healthy controls via flow cytometry and bulk RNA sequencing. As a result, we identified a distinct CXCR3midCD4+ effector memory T cell subset that expands with age, which we designated "age-associated T helper (THA) cells." THA cells exhibited both a cytotoxic phenotype and B cell helper functions, and these features were regulated by the transcription factor ZEB2. Consistent with the highly skewed T cell receptor usage of THA cells, gene expression in THA cells from patients with systemic lupus erythematosus reflected disease activity and was affected by treatment with a calcineurin inhibitor. Moreover, analysis of single-cell RNA sequencing data revealed that THA cells infiltrate damaged organs in patients with autoimmune diseases. Together, our characterization of THA cells may facilitate improved understanding of the relationship between aging and autoimmune diseases.
Collapse
Affiliation(s)
- Manaka Goto
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideyuki Takahashi
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ryochi Yoshida
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masahiro Nakano
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiaki Shimizu
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Meiko Maeda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Akatsuki Kubota
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Yusuke Sugimori
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kimito Kawahata
- Department of Rheumatology and Allergology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Wang D, Ling J, Tan R, Wang H, Qu Y, Li X, Lin J, Zhang Q, Hu Q, Liu Z, Lu Z, Lin Y, Sun L, Wang D, Zhou M, Shi Z, Gao W, Ye H, Lin X. CD169 + classical monocyte as an important participant in Graves' ophthalmopathy through CXCL12-CXCR4 axis. iScience 2024; 27:109213. [PMID: 38439953 PMCID: PMC10910260 DOI: 10.1016/j.isci.2024.109213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/11/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Patients with Graves' disease (GD) can develop Graves' ophthalmopathy (GO), but the underlying pathological mechanisms driving this development remain unclear. In our study, which included patients with GD and GO, we utilized single-cell RNA sequencing (scRNA-seq) and multiplatform analyses to investigate CD169+ classical monocytes, which secrete proinflammatory cytokines and are expanded through activated interferon signaling. We found that CD169+ clas_mono was clinically significant in predicting GO progression and prognosis, and differentiated into CD169+ macrophages that promote inflammation, adipogenesis, and fibrosis. Our murine model of early-stage GO showed that CD169+ classical monocytes accumulated in orbital tissue via the Cxcl12-Cxcr4 axis. Further studies are needed to investigate whether targeting circulating monocytes and the Cxcl12-Cxcr4 axis could alleviate GO progression.
Collapse
Affiliation(s)
- Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Ling
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - RongQiang Tan
- The First People’s Hospital of Zhaoqing, Zhaoqing 526000, China
| | - Huishi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yixin Qu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xingyi Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jinshan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qiuling Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhaojing Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Yuheng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Dingqiao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Ming Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wuyou Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Huijing Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
11
|
Huang W, Tian J, He J. Risk factors of primary Sjögren 's syndrome combined with osteoporosis. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:312-318. [PMID: 38755728 PMCID: PMC11103060 DOI: 10.11817/j.issn.1672-7347.2024.230295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 05/18/2024]
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease that is prevalent in middle-aged and elderly women, characterized by dry mouth, dry eyes, fatigue, and joint pain. Nearly one-third pSS patients have been suffering with osteoporosis (OP), displaying symptoms of lumbago, back pain, and even fracture, all of which severely affect their life quality. Common risk factors for pSS and OP include gender and age, persistent state of inflammation, immune disorders, intestinal flora imbalance, vitamin D deficiency, dyslipidemia and sarcopenia. Meanwhile, the comorbidities of pSS, such as renal tubular acidosis, primary biliary cholangitis, autoimmune thyroid diseases, and drugs (glucocorticoids, methotrexate, and cyclophosphamide) are unique risk factors for pSS complicated with OP. Education, guidance of healthy lifestyle, and OP screening are recommended for bone management of pSS patients. Early detection and intervention are crucial for keeping bone health and life quality in pSS patients.
Collapse
Affiliation(s)
- Wuxinrui Huang
- Department of Rheumatology and Immunology, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Jing Tian
- Department of Rheumatology and Immunology, Second Xiangya Hospital, Central South University, Changsha 410011
| | - Jieyu He
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
12
|
Arvidsson G, Czarnewski P, Johansson A, Raine A, Imgenberg-Kreuz J, Nordlund J, Nordmark G, Syvänen AC. Multimodal Single-Cell Sequencing of B Cells in Primary Sjögren's Syndrome. Arthritis Rheumatol 2024; 76:255-267. [PMID: 37610265 DOI: 10.1002/art.42683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE B cells are important in the pathogenesis of primary Sjögren's syndrome (pSS). Patients positive for Sjögren's syndrome antigen A/Sjögren syndrome antigen B (SSA/SSB) autoantibodies are more prone to systemic disease manifestations and adverse outcomes. We aimed to determine the role of B cell composition, gene expression, and B cell receptor usage in pSS subgroups stratified for SSA/SSB antibodies. METHODS Over 230,000 B cells were isolated from peripheral blood of patients with pSS (n = 6 SSA-, n = 8 SSA+ single positive and n = 10 SSA/SSB+ double positive) and four healthy controls and processed for single-cell RNA sequencing (scRNA-seq) and single-cell variable, diversity, and joining (VDJ) gene sequencing (scVDJ-seq). RESULTS We show that SSA/SSB+ patients present the highest and lowest proportion of naïve and memory B cells, respectively, and the highest up-regulation of interferon-induced genes across all B cell subtypes. Differential usage of IGHV showed that IGHV1-69 and IGHV4-30-4 were more often used in all pSS subgroups compared with controls. Memory B cells from SSA/SSB+ patients displayed a higher proportion of cells with unmutated VDJ transcripts compared with other pSS patient groups and controls, indicating altered somatic hypermutation processes. Comparison with previous studies revealed heterogeneous clonotype pools, with little overlap in CDR3 sequences. Joint analysis using scRNA-seq and scVDJ-seq data allowed unsupervised stratification of patients with pSS and identified novel parameters that correlated to disease manifestations and antibody status. CONCLUSION We describe heterogeneity and molecular characteristics in B cells from patients with pSS, providing clues to intrinsic differences in B cells that affect the phenotype and outcome and allowing stratification of patients with pSS at improved resolution.
Collapse
|
13
|
Sur M, Rasquinha MT, Mone K, Massilamany C, Lasrado N, Gurumurthy C, Sobel RA, Reddy J. Investigation into Cardiac Myhc-α 334-352-Specific TCR Transgenic Mice Reveals a Role for Cytotoxic CD4 T Cells in the Development of Cardiac Autoimmunity. Cells 2024; 13:234. [PMID: 38334626 PMCID: PMC10854502 DOI: 10.3390/cells13030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
Myocarditis is one of the major causes of heart failure in children and young adults and can lead to dilated cardiomyopathy. Lymphocytic myocarditis could result from autoreactive CD4+ and CD8+ T cells, but defining antigen specificity in disease pathogenesis is challenging. To address this issue, we generated T cell receptor (TCR) transgenic (Tg) C57BL/6J mice specific to cardiac myosin heavy chain (Myhc)-α 334-352 and found that Myhc-α-specific TCRs were expressed in both CD4+ and CD8+ T cells. To investigate if the phenotype is more pronounced in a myocarditis-susceptible genetic background, we backcrossed with A/J mice. At the fourth generation of backcrossing, we observed that Tg T cells from naïve mice responded to Myhc-α 334-352, as evaluated by proliferation assay and carboxyfluorescein succinimidyl ester staining. The T cell responses included significant production of mainly pro-inflammatory cytokines, namely interferon (IFN)-γ, interleukin-17, and granulocyte macrophage-colony stimulating factor. While the naïve Tg mice had isolated myocardial lesions, immunization with Myhc-α 334-352 led to mild myocarditis, suggesting that further backcrossing to increase the percentage of A/J genome close to 99.99% might show a more severe disease phenotype. Further investigations led us to note that CD4+ T cells displayed the phenotype of cytotoxic T cells (CTLs) akin to those of conventional CD8+ CTLs, as determined by the expression of CD107a, IFN-γ, granzyme B natural killer cell receptor (NKG)2A, NKG2D, cytotoxic and regulatory T cell molecules, and eomesodermin. Taken together, the transgenic system described in this report may be a helpful tool to distinguish the roles of cytotoxic cardiac antigen-specific CD4+ T cells vs. those of CD8+ T cells in the pathogenesis of myocarditis.
Collapse
Affiliation(s)
- Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (M.S.); (M.T.R.); (K.M.); (C.M.); (N.L.)
| | - Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (M.S.); (M.T.R.); (K.M.); (C.M.); (N.L.)
| | - Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (M.S.); (M.T.R.); (K.M.); (C.M.); (N.L.)
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (M.S.); (M.T.R.); (K.M.); (C.M.); (N.L.)
- CRISPR Therapeutics, Boston, MA 02127, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (M.S.); (M.T.R.); (K.M.); (C.M.); (N.L.)
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| | - Channabasavaiah Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Raymond A. Sobel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA;
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (M.S.); (M.T.R.); (K.M.); (C.M.); (N.L.)
| |
Collapse
|
14
|
Thon P, Rahmel T, Ziehe D, Palmowski L, Marko B, Nowak H, Wolf A, Witowski A, Orlowski J, Ellger B, Wappler F, Schwier E, Henzler D, Köhler T, Zarbock A, Ehrentraut SF, Putensen C, Frey UH, Anft M, Babel N, Sitek B, Adamzik M, Bergmann L, Unterberg M, Koos B, Rump K. AQP3 and AQP9-Contrary Players in Sepsis? Int J Mol Sci 2024; 25:1209. [PMID: 38279209 PMCID: PMC10816878 DOI: 10.3390/ijms25021209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Sepsis involves an immunological systemic response to a microbial pathogenic insult, leading to a cascade of interconnected biochemical, cellular, and organ-organ interaction networks. Potential drug targets can depict aquaporins, as they are involved in immunological processes. In immune cells, AQP3 and AQP9 are of special interest. In this study, we tested the hypothesis that these aquaporins are expressed in the blood cells of septic patients and impact sepsis survival. Clinical data, routine laboratory parameters, and blood samples from septic patients were analyzed on day 1 and day 8 after sepsis diagnosis. AQP expression and cytokine serum concentrations were measured. AQP3 mRNA expression increased over the duration of sepsis and was correlated with lymphocyte count. High AQP3 expression was associated with increased survival. In contrast, AQP9 expression was not altered during sepsis and was correlated with neutrophil count, and low levels of AQP9 were associated with increased survival. Furthermore, AQP9 expression was an independent risk factor for sepsis lethality. In conclusion, AQP3 and AQP9 may play contrary roles in the pathophysiology of sepsis, and these results suggest that AQP9 may be a novel drug target in sepsis and, concurrently, a valuable biomarker of the disease.
Collapse
Affiliation(s)
- Patrick Thon
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Tim Rahmel
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Dominik Ziehe
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Lars Palmowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Britta Marko
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Hartmuth Nowak
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
- Center for Artificial Intelligence, Medical Informatics and Data Science, University Hospital Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany
| | - Alexander Wolf
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Andrea Witowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Jennifer Orlowski
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Björn Ellger
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Klinikum Westfalen, 44309 Dortmund, Germany;
| | - Frank Wappler
- Department of Anesthesiology and Operative Intensive Care Medicine, University of Witten/Herdecke, Cologne Merheim Medical School, 51109 Cologne, Germany;
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr-University Bochum, Klinikum Herford, 32049 Herford, Germany; (E.S.); (D.H.); (T.K.)
| | - Alexander Zarbock
- Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, 48149 Münster, Germany;
| | - Stefan Felix Ehrentraut
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Christian Putensen
- Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Bonn, 53127 Bonn, Germany; (S.F.E.); (C.P.)
| | - Ulrich Hermann Frey
- Marien Hospital Herne, Universitätsklinikum der Ruhr-Universität Bochum, 44625 Herne, Germany;
| | - Moritz Anft
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Nina Babel
- Center for Translational Medicine, Medical Clinic I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, 44625 Herne, Germany; (M.A.); (N.B.)
| | - Barbara Sitek
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Michael Adamzik
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Lars Bergmann
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Matthias Unterberg
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Björn Koos
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| | - Katharina Rump
- Klinik für Anästhesiologie, Intensivmedizin und Schmerztherapie, Universitätsklinikum Knappschaftskrankenhaus Bochum, 44892 Bochum, Germany; (P.T.); (T.R.); (D.Z.); (L.P.); (B.M.); (H.N.); (A.W.); (J.O.); (B.S.); (M.A.); (L.B.); (M.U.); (B.K.)
| |
Collapse
|
15
|
He W, Lu Y, Shi R, An Q, Zhao J, Gao X, Zhang L, Ma D. Application of omics in Sjögren's syndrome. Inflamm Res 2023; 72:2089-2109. [PMID: 37878024 DOI: 10.1007/s00011-023-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/10/2023] [Indexed: 10/26/2023] Open
Abstract
OBJECTIVE The pathogenesis, diagnosis, and treatment of Sjögren's syndrome (SS) face many challenges, and there is an urgent need to develop new technologies to improve our understanding of SS. METHODS By searching the literature published domestically and internationally in the past 20 years, this artical reviewed the research of various omics techniques in SS. RESULTS Omics technology provided valuable insights into the pathogenesis, early diagnosis, condition and efficacy evaluation of SS. It is helpful to reveal the pathogenesis of the disease and explore new treatment schemes, which will open a new era for the study of SS. CONCLUSION At present, omics research has made some gratifying achievements, but there are still many uncertainties. Therefore, in the future, we should improve research techniques, standardize the collection of samples, and adopt a combination of multi-omics techniques to jointly study the pathogenesis of SS and provide new schemes for its treatment.
Collapse
Affiliation(s)
- Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Taiyuan, China.
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China.
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, 030032, China.
| |
Collapse
|
16
|
Xiang N, Xu H, Zhou Z, Wang J, Cai P, Wang L, Tan Z, Zhou Y, Zhang T, Zhou J, Liu K, Luo S, Fang M, Wang G, Chen Z, Guo C, Li X. Single-cell transcriptome profiling reveals immune and stromal cell heterogeneity in primary Sjögren's syndrome. iScience 2023; 26:107943. [PMID: 37810210 PMCID: PMC10558796 DOI: 10.1016/j.isci.2023.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/13/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Primary Sjögren's syndrome (pSS) is a complex autoimmune disease characterized by lymphocytic infiltration and exocrine dysfunction, particularly affecting the salivary gland (SG). We employed single-cell RNA sequencing to investigate cellular heterogeneity in 11 patients with pSS and 5 non-SS controls. Notably, patients with pSS exhibited downregulated SOX9 in myoepithelial cells, potentially associated with impaired epithelial regeneration. An expanded ACKR1+ endothelial subpopulation in patients with pSS suggested a role in facilitating lymphocyte transendothelial migration. Our analysis of immune cells revealed expanded IGHD+ naive B cells in peripheral blood from patients with pSS. Pseudotime trajectory analysis outlined a bifurcated differentiation pathway for peripheral B cells, enriching three subtypes (VPREB3+ B, BANK1+ B, CD83+ B cells) within SGs in patients with pSS. Fibroblasts emerged as pivotal components in a stromal-immune interaction network, potentially driving extracellular matrix disruption, epithelial regeneration impairment, and inflammation. Our study illuminates immune and stromal cell heterogeneity in patients with pSS, offering insights into therapeutic strategies.
Collapse
Affiliation(s)
- Nan Xiang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Hao Xu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Zhou Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Junyu Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Pengfei Cai
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Li Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhen Tan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yingbo Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Tianping Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Jiayuan Zhou
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ke Liu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Songwen Luo
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Minghao Fang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Guosheng Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhuo Chen
- Department of Pathology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Chuang Guo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230021, China
| | - Xiaomei Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| |
Collapse
|
17
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Yang X, Hou X, Zhang J, Liu Z, Wang G. Research progress on the application of single-cell sequencing in autoimmune diseases. Genes Immun 2023; 24:220-235. [PMID: 37550409 DOI: 10.1038/s41435-023-00216-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Autoimmune diseases (AIDs) are caused by immune tolerance deficiency or abnormal immune regulation, leading to damage to host organs. The complicated pathogenesis and varied clinical symptoms of AIDs pose great challenges in diagnosing and monitoring this disease. Regrettably, the etiological factors and pathogenesis of AIDs are still not completely understood. It is noteworthy that the development of single-cell RNA sequencing (scRNA-seq) technology provides a new tool for analyzing the transcriptome of AIDs. In this essay, we have summarized the development of scRNA-seq technology, and made a relatively systematic review of the current research progress of scRNA-seq technology in the field of AIDs, providing a reference to preferably understand the pathogenesis, diagnosis, and treatment of AIDs.
Collapse
Affiliation(s)
- Xueli Yang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China.
| | - Junning Zhang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Zhenyu Liu
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| | - Guangyu Wang
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, 541199, China
| |
Collapse
|
19
|
Cui Y, Zhang H, Wang Z, Gong B, Al-Ward H, Deng Y, Fan O, Wang J, Zhu W, Sun YE. Exploring the shared molecular mechanisms between systemic lupus erythematosus and primary Sjögren's syndrome based on integrated bioinformatics and single-cell RNA-seq analysis. Front Immunol 2023; 14:1212330. [PMID: 37614232 PMCID: PMC10442653 DOI: 10.3389/fimmu.2023.1212330] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023] Open
Abstract
Background Systemic lupus erythematosus (SLE) and primary Sjögren's syndrome (pSS) are common systemic autoimmune diseases that share a wide range of clinical manifestations and serological features. This study investigates genes, signaling pathways, and transcription factors (TFs) shared between SLE and pSS. Methods Gene expression profiles of SLE and pSS were obtained from the Gene Expression Omnibus (GEO). Weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis were conducted to identify shared genes related to SLE and pSS. Overlapping genes were then subject to Gene Ontology (GO) and protein-protein interaction (PPI) network analyses. Cytoscape plugins cytoHubba and iRegulon were subsequently used to screen shared hub genes and predict TFs. In addition, gene set variation analysis (GSVA) and CIBERSORTx were used to calculate the correlations between hub genes and immune cells as well as related pathways. To confirm these results, hub genes and TFs were verified in microarray and single-cell RNA sequencing (scRNA-seq) datasets. Results Following WGCNA and limma analysis, 152 shared genes were identified. These genes were involved in interferon (IFN) response and cytokine-mediated signaling pathway. Moreover, we screened six shared genes, namely IFI44L, ISG15, IFIT1, USP18, RSAD2 and ITGB2, out of which three genes, namely IFI44L, ISG15 and ITGB2 were found to be highly expressed in both microarray and scRNA-seq datasets. IFN response and ITGB2 signaling pathway were identified as potentially relevant pathways. In addition, STAT1 and IRF7 were identified as common TFs in both diseases. Conclusion This study revealed IFI44L, ISG15 and ITGB2 as the shared genes and identified STAT1 and IRF7 as the common TFs of SLE and pSS. Notably, the IFN response and ITGB2 signaling pathway played vital roles in both diseases. Our study revealed common pathogenetic characteristics of SLE and pSS. The particular roles of these pivotal genes and mutually overlapping pathways may provide a basis for further mechanistic research.
Collapse
Affiliation(s)
- Yanling Cui
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huina Zhang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China
| | - Hisham Al-Ward
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxuan Deng
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Orion Fan
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junbang Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenmin Zhu
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
21
|
Fenton KA, Pedersen HL. Advanced methods and novel biomarkers in autoimmune diseases ‑ a review of the recent years progress in systemic lupus erythematosus. Front Med (Lausanne) 2023; 10:1183535. [PMID: 37425332 PMCID: PMC10326284 DOI: 10.3389/fmed.2023.1183535] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
There are several autoimmune and rheumatic diseases affecting different organs of the human body. Multiple sclerosis (MS) mainly affects brain, rheumatoid arthritis (RA) mainly affects joints, Type 1 diabetes (T1D) mainly affects pancreas, Sjogren's syndrome (SS) mainly affects salivary glands, while systemic lupus erythematosus (SLE) affects almost every organ of the body. Autoimmune diseases are characterized by production of autoantibodies, activation of immune cells, increased expression of pro-inflammatory cytokines, and activation of type I interferons. Despite improvements in treatments and diagnostic tools, the time it takes for the patients to be diagnosed is too long, and the main treatment for these diseases is still non-specific anti-inflammatory drugs. Thus, there is an urgent need for better biomarkers, as well as tailored, personalized treatment. This review focus on SLE and the organs affected in this disease. We have used the results from various rheumatic and autoimmune diseases and the organs involved with an aim to identify advanced methods and possible biomarkers to be utilized in the diagnosis of SLE, disease monitoring, and response to treatment.
Collapse
Affiliation(s)
- Kristin Andreassen Fenton
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| | - Hege Lynum Pedersen
- UiT The Arctic University of Norway, Tromsø, Norway
- Centre of Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
22
|
Shen Y, Voigt A, Leng X, Rodriguez AA, Nguyen CQ. A current and future perspective on T cell receptor repertoire profiling. Front Genet 2023; 14:1159109. [PMID: 37408774 PMCID: PMC10319011 DOI: 10.3389/fgene.2023.1159109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
T cell receptors (TCR) play a vital role in the immune system's ability to recognize and respond to foreign antigens, relying on the highly polymorphic rearrangement of TCR genes. The recognition of autologous peptides by adaptive immunity may lead to the development and progression of autoimmune diseases. Understanding the specific TCR involved in this process can provide insights into the autoimmune process. RNA-seq (RNA sequencing) is a valuable tool for studying TCR repertoires by providing a comprehensive and quantitative analysis of the RNA transcripts. With the development of RNA technology, transcriptomic data must provide valuable information to model and predict TCR and antigen interaction and, more importantly, identify or predict neoantigens. This review provides an overview of the application and development of bulk RNA-seq and single-cell (SC) RNA-seq to examine the TCR repertoires. Furthermore, discussed here are bioinformatic tools that can be applied to study the structural biology of peptide/TCR/MHC (major histocompatibility complex) and predict antigenic epitopes using advanced artificial intelligence tools.
Collapse
Affiliation(s)
- Yiran Shen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Alexandria Voigt
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Xuebing Leng
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Amy A. Rodriguez
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Cuong Q. Nguyen
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
- Center of Orphaned Autoimmune Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
23
|
Rheinheimer BA, Pasquale MC, Limesand KH, Hoffman MP, Chibly AM. Evaluating the transcriptional landscape and cell-cell communication networks in chronically irradiated parotid glands. iScience 2023; 26:106660. [PMID: 37168562 PMCID: PMC10165028 DOI: 10.1016/j.isci.2023.106660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 05/13/2023] Open
Abstract
Understanding the transcriptional landscape that results in chronic salivary hypofunction after irradiation will help identify injury mechanisms and develop regenerative therapies. We present scRNA-seq analysis from control and irradiated murine parotid glands collected 10 months after irradiation. We identify a population of secretory cells defined by specific expression of Etv1, which may be an acinar cell precursor. Acinar and Etv1+ secretory express Ntrk2 and Erbb3, respectively while the ligands for these receptors are expressed in myoepithelial and stromal cells. Furthermore, our data suggests that secretory cells and CD4+CD8+T-cells are the most transcriptionally affected during chronic injury with radiation, suggesting active immune involvement. Lastly, evaluation of cell-cell communication networks predicts that neurotrophin, neuregulin, ECM, and immune signaling are dysregulated after irradiation, and thus may play a role in the lack of repair. This resource will be helpful to understand cell-specific pathways that may be targeted to repair chronic damage in irradiated glands.
Collapse
Affiliation(s)
| | - Mary C. Pasquale
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Kirsten H. Limesand
- Nutritional Sciences Department, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew P. Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alejandro M. Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
24
|
Mohammadnezhad L, Shekarkar Azgomi M, La Manna MP, Guggino G, Botta C, Dieli F, Caccamo N. B-Cell Receptor Signaling Is Thought to Be a Bridge between Primary Sjogren Syndrome and Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24098385. [PMID: 37176092 PMCID: PMC10179133 DOI: 10.3390/ijms24098385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Primary Sjogren syndrome (pSS) is the second most common autoimmune disorder worldwide, which, in the worst scenario, progresses to Non-Hodgkin Lymphoma (NHL). Despite extensive studies, there is still a lack of knowledge about developing pSS for NHL. This study focused on cells' signaling in pSS progression to the NHL type of diffuse large B-cell lymphoma (DLBCL). Using bulk RNA and single cell analysis, we found five novel pathologic-independent clusters in DLBCL based on cells' signaling. B-cell receptor (BCR) signaling was identified as the only enriched signal in DLBCL and pSS peripheral naive B-cells or salivary gland-infiltrated cells. The evaluation of the genes in association with BCR has revealed that targeting CD79A, CD79B, and LAMTOR4 as the shared genes can provide novel biomarkers for pSS progression into lymphoma.
Collapse
Affiliation(s)
- Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Giuliana Guggino
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Cirino Botta
- Department of Sciences for Health Promotion and Mother-Child Care "G. D'Alessandro", University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127 Palermo, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnosis (BIND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
25
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
26
|
Ji K, Chen L, Wang X, Wen B, Yang F, Deng W, Chen Y, Zhang G, Liu H. Integrating single-cell RNA sequencing with spatial transcriptomics reveals an immune landscape of human myometrium during labour. Clin Transl Med 2023; 13:e1234. [PMID: 37095651 PMCID: PMC10126311 DOI: 10.1002/ctm2.1234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND The transition of the myometrium from a quiescent to a contractile state during labour is known to involve inflammation, which is characterized by the infiltration of immune cells and the secretion of cytokines. However, the specific cellular mechanisms underlying inflammation in the myometrium during human parturition are not yet fully understood. METHODS Through the analysis of transcriptomics, proteomics, and cytokine arrays, the inflammation in the human myometrium during labour was revealed. By performing single-cell RNA sequencing (scRNA-seq) and spatiotemporal transcriptomic (ST) analyses on human myometrium in term in labour (TIL) and term in non-labour (TNL), we established a comprehensive landscape of immune cells, their transcriptional characteristics, distribution, function and intercellular communications during labour. Histological staining, flow cytometry, and western blotting were applied to validate some results from scRNA-seq and ST. RESULTS Our analysis identified immune cell types, including monocytes, neutrophils, T cells, natural killer (NK) cells and B cells, present in the myometrium. TIL myometrium had a higher proportion of monocytes and neutrophils than TNL myometrium. Furthermore, the scRNA-seq analysis showed an increase in M1 macrophages in TIL myometrium. CXCL8 expression was mainly observed in neutrophils and increased in TIL myometrium. CCL3 and CCL4 were principally expressed in M2 macrophages and neutrophils-6, and decreased during labour; XCL1 and XCL2 were specifically expressed in NK cells, and decreased during labour. Analysis of cytokine receptor expression revealed an increase in IL1R2, which primarily expressed in neutrophils. Finally, we visualized the spatial proximity of representative cytokines, contraction-associated genes, and corresponding receptors in ST to demonstrate their location within the myometrium. CONCLUSIONS Our analysis comprehensively revealed changes in immune cells, cytokines, and cytokine receptors during labour. It provided a valuable resource to detect and characterize inflammatory changes, yielding insights into the immune mechanisms underlying labour.
Collapse
Affiliation(s)
- Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fan Yang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Wenfeng Deng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Guozheng Zhang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
27
|
Jung S, Lee JS. Single-Cell Genomics for Investigating Pathogenesis of Inflammatory Diseases. Mol Cells 2023; 46:120-129. [PMID: 36859476 PMCID: PMC9982059 DOI: 10.14348/molcells.2023.0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent technical advances have enabled unbiased transcriptomic and epigenetic analysis of each cell, known as "single-cell analysis". Single-cell analysis has a variety of technical approaches to investigate the state of each cell, including mRNA levels (transcriptome), the immune repertoire (immune repertoire analysis), cell surface proteins (surface proteome analysis), chromatin accessibility (epigenome), and accordance with genome variants (eQTLs; expression quantitative trait loci). As an effective tool for investigating robust immune responses in coronavirus disease 2019 (COVID-19), many researchers performed single-cell analysis to capture the diverse, unbiased immune cell activation and differentiation. Despite challenges elucidating the complicated immune microenvironments of chronic inflammatory diseases using existing experimental methods, it is now possible to capture the simultaneous immune features of different cell types across inflamed tissues using various single-cell tools. In this review, we introduce patient-based and experimental mouse model research utilizing single-cell analyses in the field of chronic inflammatory diseases, as well as multi-organ atlas targeting immune cells.
Collapse
Affiliation(s)
- Seyoung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jeong Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
28
|
Zeng L, Chen K, Xiao F, Zhu CY, Bai JY, Tan S, Long L, Wang Y, Zhou Q. Potential common molecular mechanisms between Sjögren syndrome and inclusion body myositis: a bioinformatic analysis and in vivo validation. Front Immunol 2023; 14:1161476. [PMID: 37153570 PMCID: PMC10160489 DOI: 10.3389/fimmu.2023.1161476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Background Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy that typically affects the quadriceps and finger flexors. Sjögren's syndrome (SS), an autoimmune disorder characterized by lymphocytic infiltration of exocrine glands has been reported to share common genetic and autoimmune pathways with IBM. However, the exact mechanism underlying their commonality remains unclear. In this study, we investigated the common pathological mechanisms involved in both SS and IBM using a bioinformatic approach. Methods IBM and SS gene expression profiles were obtained from the Gene Expression Omnibus (GEO). SS and IBM coexpression modules were identified using weighted gene coexpression network analysis (WGCNA), and differentially expressed gene (DEG) analysis was applied to identify their shared DEGs. The hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein-protein interaction (PPI) networks, cluster analyses, and hub shared gene identification were conducted. The expression of hub genes was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). We then analyzed immune cell abundance patterns in SS and IBM using single-sample gene set enrichment analysis (ssGSEA) and investigated their association with hub genes. Finally, NetworkAnalyst was used to construct a common transcription factor (TF)-gene network. Results Using WGCNA, we found that 172 intersecting genes were closely related to viral infection and antigen processing/presentation. Based on DEG analysis, 29 shared genes were found to be upregulated and enriched in similar biological pathways. By intersecting the top 20 potential hub genes from the WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were derived and validated to be active transcripts, which all exhibited diagnostic values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in IBM and SS, and the hub genes were positively correlated with the abundance of immune cells. Ultimately, two TFs (HDGF and WRNIP1) were identified as possible key TFs. Conclusion Our study identified that IBM shares common immunologic and transcriptional pathways with SS, such as viral infection and antigen processing/presentation. Furthermore, both IBM and SS have almost identical immune infiltration microenvironments, indicating similar immune responses may contribute to their association.
Collapse
Affiliation(s)
- Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Xiao
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun-yan Zhu
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia-ying Bai
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| |
Collapse
|
29
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
30
|
An Q, Zhao J, Zhu X, Yang B, Wu Z, Su Y, Zhang L, Xu K, Ma D. Exploiting the role of T cells in the pathogenesis of Sjögren's syndrome for therapeutic treatment. Front Immunol 2022; 13:995895. [PMID: 36389806 PMCID: PMC9650646 DOI: 10.3389/fimmu.2022.995895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/17/2022] [Indexed: 08/19/2023] Open
Abstract
Sjögrens syndrome (SS) is caused by autoantibodies that attack proprioceptive salivary and lacrimal gland tissues. Damage to the glands leads to dry mouth and eyes and affects multiple systems and organs. In severe cases, SS is life-threatening because it can lead to interstitial lung disease, renal insufficiency, and lymphoma. Histological examination of the labial minor salivary glands of patients with SS reveals focal lymphocyte aggregation of T and B cells. More studies have been conducted on the role of B cells in the pathogenesis of SS, whereas the role of T cells has only recently attracted the attention of researchers. This review focusses on the role of various populations of T cells in the pathogenesis of SS and the progress made in research to therapeutically targeting T cells for the treatment of patients with SS.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
31
|
Sato M, Arakaki R, Tawara H, Nagao R, Tanaka H, Tamura K, Kawahito Y, Otsuka K, Ushio A, Tsunematsu T, Ishimaru N. Disturbed natural killer cell homeostasis in the salivary gland enhances autoimmune pathology via IFN-γ in a mouse model of primary Sjögren's syndrome. Front Med (Lausanne) 2022; 9:1036787. [PMID: 36388880 PMCID: PMC9643684 DOI: 10.3389/fmed.2022.1036787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/12/2022] [Indexed: 07/22/2023] Open
Abstract
OBJECTIVE Innate lymphoid cells (ILCs), including natural killer (NK) cells, ILC1, ILC2, lymphoid tissue-inducer (LTi) cells, and ILC3 cell, play a key role in various immune responses. Primary Sjögren's syndrome (pSS) is an autoimmune disease characterized by chronic inflammation of exocrine glands, such as the lacrimal and salivary glands (SGs). The role of NK cells among ILCs in the pathogenesis of pSS is still unclear. In this study, the characteristics and subsets of NK cells in the salivary gland (SG) tissue were analyzed using a murine model of pSS. METHODS Multiple phenotypes and cytotoxic signature of the SG NK cells in control and pSS model mice were evaluated by flow cytometric analysis. Intracellular expression of interferon-γ (IFN-γ) among T cells and NK cells from the SG tissues was compared by in vitro experiments. In addition, pathological analysis was performed using anti-asialo-GM1 (ASGM1) antibody (Ab)-injected pSS model mice. RESULTS The number of conventional NK (cNK) cells in the SG of pSS model mice significantly increased compared with that in control mice at 6 weeks of age. The production level of IFN-γ was significantly higher in SG NK cells than in SG T cells. The depletion of NK cells by ASGM1 Ab altered the ratio of tissue resident NK (rNK) cells to cNK cells, which inhibited the injury to SG cells with the recovery of saliva secretion in pSS model mice. CONCLUSION The results indicate that SG cNK cells may enhance the autoreactive response in the target organ by upregulating of IFN-γ, whereas SG rNK cells protect target cells against T cell cytotoxicity. Therefore, the activation process and multiple functions of NK cells in the target organ could be helpful to develop potential markers for determining autoimmune disease activity and target molecules for incurable immune disorders.
Collapse
|
32
|
Xie W, Fang J, Shan Z, Guo J, Liao Y, Zou Z, Wang J, Wen S, Yang L, Zhang Y, Lu H, Zhao H, Kuang DM, Huang P, Chen Q, Wang Z. Regulation of autoimmune disease progression by Pik3ip1 through metabolic reprogramming in T cells and therapeutic implications. SCIENCE ADVANCES 2022; 8:eabo4250. [PMID: 36179018 PMCID: PMC9524833 DOI: 10.1126/sciadv.abo4250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Metabolic alterations could profoundly affect immune functions and influence the progression and outcome of autoimmune diseases. However, the detailed mechanisms and their therapeutic potential remain to be defined. Here, we show that phosphatidylinositide 3-kinase interacting protein 1 (Pik3ip1), a newly identified negative immune regulator, is notably down-regulated in several major autoimmune diseases through a previously unidentified mechanism mediated by interleukin-21/p38 mitogen-activated protein kinase/a disintegrin and metalloprotease-17 (ADAM17) pathway. Down-regulation of Pik3ip1 in T cells causes a major metabolic shift from oxidative phosphorylation toward aerobic glycolysis, leading to their overactivation and aggressive disease progression in experimental autoimmune encephalomyelitis (EAE) mouse model. Suppression of hypoxia-inducible factor 1α (Hif1α) or pharmacologic inhibition of glycolysis could reverse these phenotypes and largely mitigate EAE severity. Our study reveals a previously unrecognized role of Pik3ip1 in metabolic regulation that substantially affects the inflammatory loop in the autoimmune setting and identifies the Pik3ip1/Hif1α/glycolysis axis as a potential therapeutic target for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Wenqiang Xie
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Juan Fang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Zhongyan Shan
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Junyi Guo
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yuan Liao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhaolei Zou
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Shuqiong Wen
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Lisa Yang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yanshu Zhang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Huanzi Lu
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dong-Ming Kuang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Qianming Chen
- School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Wang
- Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Stomatological Hospital, Sun Yat-Sen University, Guangzhou 510055, China
- Corresponding author.
| |
Collapse
|
33
|
Xiao F, Rui K, Han M, Zou L, Huang E, Tian J, Zhang L, Jiang Q, Wu Y, Lu L. Artesunate suppresses Th17 response via inhibiting IRF4-mediated glycolysis and ameliorates Sjog̈ren’s syndrome. Signal Transduct Target Ther 2022; 7:274. [PMID: 36031634 PMCID: PMC9420730 DOI: 10.1038/s41392-022-01103-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
|
34
|
Xu J, Ma J, Zeng Y, Si H, Wu Y, Zhang S, Shen B. A Cross-Tissue Transcriptome-Wide Association Study Identifies Novel Susceptibility Genes for Juvenile Idiopathic Arthritis in Asia and Europe. Front Immunol 2022; 13:941398. [PMID: 35967305 PMCID: PMC9367689 DOI: 10.3389/fimmu.2022.941398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/22/2022] [Indexed: 12/14/2022] Open
Abstract
Background Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children, and its pathogenesis is still unclear. Genome-wide association studies (GWASs) of JIA have identified hundreds of risk factors, but few of them implicated specific biological mechanisms. Methods A cross-tissue transcriptome-wide association study (TWAS) was performed with the functional summary-based imputation software (FUSION) tool based on GWAS summary datasets (898 JIA patients and 346,102 controls from BioBank Japan (BBJ)/FinnGen). The gene expression reference weights of skeletal muscle and the whole blood were obtained from the Genotype-Tissue Expression (GTExv8) project. JIA-related genes identified by TWAS findings genes were further compared with the differentially expressed genes (DEGs) identified by the mRNA expression profile of JIA from the Gene Expression Omnibus (GEO) database (accession number: GSE1402). Last, candidate genes were analyzed using functional enrichment and annotation analysis by Metascape to examine JIA-related gene sets. Results The TWAS identified 535 significant genes with P < 0.05 and contains 350 for Asian and 195 for European (including 10 genes both expressed in Asian and European), such as CDC16 (P = 1.72E-03) and PSMD5-AS1 (P = 3.65E-02). Eight overlapping genes were identified based on TWAS results and DEGs of JIA patients, such as SIRPB1 (PTWAS = 4.21E-03, PDEG = 1.50E-04) and FRAT2 (PTWAS = 2.82E-02, PDEG = 1.43E-02). Pathway enrichment analysis of TWAS identified 183 pathways such as cytokine signaling in the immune system and cell adhesion molecules. By integrating the results of DEGs pathway and process enrichment analyses, 19 terms were identified such as positive regulation of T-cell activation. Conclusion By conducting two populations TWAS, we identified a group of JIA-associated genes and pathways, which may provide novel clues to uncover the pathogenesis of JIA.
Collapse
|
35
|
Martin-Gutierrez L, Wilson R, Castelino M, Jury EC, Ciurtin C. Multi-Omic Biomarkers for Patient Stratification in Sjogren's Syndrome-A Review of the Literature. Biomedicines 2022; 10:1773. [PMID: 35892673 PMCID: PMC9332255 DOI: 10.3390/biomedicines10081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Sjögren's syndrome (SS) is a heterogeneous autoimmune rheumatic disease (ARD) characterised by dryness due to the chronic lymphocytic infiltration of the exocrine glands. Patients can also present other extra glandular manifestations, such as arthritis, anaemia and fatigue or various types of organ involvement. Due to its heterogenicity, along with the lack of effective treatments, the diagnosis and management of this disease is challenging. The objective of this review is to summarize recent multi-omic publications aiming to identify biomarkers in tears, saliva and peripheral blood from SS patients that could be relevant for their better stratification aiming at improved treatment selection and hopefully better outcomes. We highlight the relevance of pro-inflammatory cytokines and interferon (IFN) as biomarkers identified in higher concentrations in serum, saliva and tears. Transcriptomic studies confirmed the upregulation of IFN and interleukin signalling in patients with SS, whereas immunophenotyping studies have shown dysregulation in the immune cell population frequencies, specifically CD4+and C8+T activated cells, and their correlations with clinical parameters, such as disease activity scores. Lastly, we discussed emerging findings derived from different omic technologies which can provide integrated knowledge about SS pathogenesis and facilitate personalised medicine approaches leading to better patient outcomes in the future.
Collapse
Affiliation(s)
- Lucia Martin-Gutierrez
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK; (L.M.-G.); (E.C.J.)
| | - Robert Wilson
- Department of Rheumatology, University College London Hospitals NHS Trust, London NW1 2PG, UK; (R.W.); (M.C.)
| | - Madhura Castelino
- Department of Rheumatology, University College London Hospitals NHS Trust, London NW1 2PG, UK; (R.W.); (M.C.)
| | - Elizabeth C. Jury
- Centre for Rheumatology Research, Division of Medicine, University College London, London WC1E 6JF, UK; (L.M.-G.); (E.C.J.)
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
36
|
Hou X, Hong X, Ou M, Meng S, Wang T, Liao S, He J, Yu H, Liu L, Yin L, Liu D, Tang D, Dai Y. Analysis of Gene Expression and TCR/B Cell Receptor Profiling of Immune Cells in Primary Sjögren's Syndrome by Single-Cell Sequencing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:238-249. [PMID: 35705251 DOI: 10.4049/jimmunol.2100803] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/18/2022] [Indexed: 01/07/2023]
Abstract
Primary Sjögren's syndrome (pSS) is a chronic autoimmune disease that is estimated to affect 35 million people worldwide and is characterized by lymphocytic infiltration, elevated circulating autoantibodies, and proinflammatory cytokines. The key immune cell subset changes and the TCR/BCR repertoire alterations in pSS patients remain unclear. In this study, we sought to comprehensively characterize the transcriptional changes in PBMCs of pSS patients by single-cell RNA sequencing and single-cell V(D)J sequencing. Naive CD8+ T cells and mucosal-associated invariant T cells were markedly decreased but regulatory T cells were increased in pSS patients. There were a large number of differentially expressed genes shared by multiple subpopulations of T cells and B cells. Abnormal signaling pathways, including Ag processing and presentation, the BCR signaling pathway, the TCR signaling pathway, and Epstein-Barr virus infection, were highly enriched in pSS patients. Moreover, there were obvious differences in the CD30, FLT3, IFN-II, IL-1, IL-2, IL-6, IL-10, RESISTIN, TGF-β, TNF, and VEGF signaling networks between pSS patients and healthy controls. Single-cell TCR and BCR repertoire analysis showed that there was a lower diversity of T cells in pSS patients than in healthy controls; however, there was no significant difference in the degree of clonal expansion, CDR3 length distribution, or degree of sequence sharing. Notably, our results further emphasize the functional importance of αβ pairing in determining Ag specificity. In conclusion, our analysis provides a comprehensive single-cell map of gene expression and TCR/BCR profiles in pSS patients for a better understanding of the pathogenesis, diagnosis, and treatment of pSS.
Collapse
Affiliation(s)
- Xianliang Hou
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Xiaoping Hong
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Minglin Ou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China; and
| | - Shuhui Meng
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Tingting Wang
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shengyou Liao
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jingquan He
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lixiong Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongzhou Liu
- Department of Rheumatology and Immunology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| | - Donge Tang
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| | - Yong Dai
- Department of Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China;
| |
Collapse
|
37
|
Andreani T, Slot LM, Gabillard S, Strübing C, Reimertz C, Yaligara V, Bakker AM, Olfati-Saber R, Toes REM, Scherer HU, Augé F, Šimaitė D. Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data. NAR Genom Bioinform 2022; 4:lqac049. [PMID: 35855325 PMCID: PMC9278041 DOI: 10.1093/nargab/lqac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.
Collapse
Affiliation(s)
- Tommaso Andreani
- AI & Deep Analytics—Omics Data Science, Sanofi , Frankfurt am Main 65926, Germany
| | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | | | - Carsten Strübing
- Immunology & Inflammation Research, Sanofi , Frankfurt am Main 65926, Germany
| | - Claus Reimertz
- Immunology & Inflammation Research, Sanofi , Frankfurt am Main 65926, Germany
| | - Veeranagouda Yaligara
- Molecular Biology & Genomics, Translational Science Unit, Sanofi , Chilly-Mazarin 91385, France
| | - Aleida M Bakker
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | | | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | - Franck Augé
- AI & Deep Analytics—Omics Data Science, Sanofi , Paris 91385, France
| | - Deimantė Šimaitė
- AI & Deep Analytics—Omics Data Science, Sanofi , Frankfurt am Main 65926, Germany
| |
Collapse
|
38
|
Shen Z, Fang M, Sun W, Tang M, Liu N, Zhu L, Liu Q, Li B, Sun R, Shi Y, Guo C, Lin J, Qu K. A transcriptome atlas and interactive analysis platform for autoimmune disease. Database (Oxford) 2022; 2022:6618550. [PMID: 35758882 PMCID: PMC9235372 DOI: 10.1093/database/baac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 11/12/2022]
Abstract
With the rapid development of next-generation sequencing technology, many laboratories have produced a large amount of single-cell transcriptome data of blood and tissue samples from patients with autoimmune diseases, which enables in-depth studies of the relationship between gene transcription and autoimmune diseases. However, there is still a lack of a database that integrates the large amount of autoimmune disease transcriptome sequencing data and conducts effective analysis. In this study, we developed a user-friendly web database tool, Interactive Analysis and Atlas for Autoimmune disease (IAAA), which integrates bulk RNA-seq data of 929 samples of 10 autoimmune diseases and single-cell RNA-seq data of 783 203 cells in 96 samples of 6 autoimmune diseases. IAAA also provides customizable analysis modules, including gene expression, difference, correlation, similar gene detection and cell–cell interaction, and can display results in three formats (plot, table and pdf) through custom parameters. IAAA provides valuable data resources for researchers studying autoimmune diseases and helps users deeply explore the potential value of the current transcriptome data. IAAA is available. Database URL: http://galaxy.ustc.edu.cn/IAAA
Collapse
Affiliation(s)
- Zhuoqiao Shen
- School of Data Sciences, University of Science and Technology of China, No. 443, Huangshan Road, Shushan District, Hefei, Anhui 230027, China.,Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Wangjiang West Road, Shushan District, Hefei, Anhui 230088, China
| | - Minghao Fang
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Wujianan Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Wangjiang West Road, Shushan District, Hefei, Anhui 230088, China.,CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, No. 373 Huangshan Road, Shushan District, Hefei, Anhui 230027, China
| | - Meifang Tang
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Nianping Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Lin Zhu
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Qian Liu
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Bin Li
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Ruoming Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Yu Shi
- School of Medicine, China Pharmaceutical University, No. 639, Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211198, China
| | - Chuang Guo
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China
| | - Jun Lin
- Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Wangjiang West Road, Shushan District, Hefei, Anhui 230088, China
| | - Kun Qu
- School of Data Sciences, University of Science and Technology of China, No. 443, Huangshan Road, Shushan District, Hefei, Anhui 230027, China.,Department of Oncology, The First Affiliated Hospital of USTC, Department of Basic Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17, Lujiang Road, Luyang District, Hefei, Anhui 230021, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Wangjiang West Road, Shushan District, Hefei, Anhui 230088, China.,CAS Center for Excellence in Molecular Cell Sciences, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, No. 373 Huangshan Road, Shushan District, Hefei, Anhui 230027, China
| |
Collapse
|
39
|
Nelke C, Kleefeld F, Preusse C, Ruck T, Stenzel W. Inclusion body myositis and associated diseases: an argument for shared immune pathologies. Acta Neuropathol Commun 2022; 10:84. [PMID: 35659120 PMCID: PMC9164382 DOI: 10.1186/s40478-022-01389-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Inclusion body myositis (IBM) is the most prevalent idiopathic inflammatory myopathy (IIM) affecting older adults. The pathogenic hallmark of IBM is chronic inflammation of skeletal muscle. At present, we do not classify IBM into different sub-entities, with the exception perhaps being the presence or absence of the anti-cN-1A-antibody. In contrast to other IIM, IBM is characterized by a chronic and progressive disease course. Here, we discuss the pathophysiological framework of IBM and highlight the seemingly prototypical situations where IBM occurs in the context of other diseases. In this context, understanding common immune pathways might provide insight into the pathogenesis of IBM. Indeed, IBM is associated with a distinct set of conditions, such as human immunodeficiency virus (HIV) or hepatitis C-two conditions associated with premature immune cell exhaustion. Further, the pathomorphology of IBM is reminiscent of other muscle diseases, notably HIV-associated myositis or granulomatous myositis. Distinct immune pathways are likely to drive these commonalities and senescence of the CD8+ T cell compartment is discussed as a possible mechanism of pathogenesis. Future effort directed at understanding the co-occurrence of IBM and associated diseases could prove valuable to better understand the enigmatic IBM pathophysiology.
Collapse
Affiliation(s)
- Christopher Nelke
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Felix Kleefeld
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology With Institute for Translational Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Zandonella Callegher S, Giovannini I, Zenz S, Manfrè V, Stradner MH, Hocevar A, Gutierrez M, Quartuccio L, De Vita S, Zabotti A. Sjögren syndrome: looking forward to the future. Ther Adv Musculoskelet Dis 2022; 14:1759720X221100295. [PMID: 35634352 PMCID: PMC9131387 DOI: 10.1177/1759720x221100295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a heterogeneous disease characterised by a wide spectrum of manifestations that vary according to the different stages of the disease and among different subsets of patients. The aim of this qualitative literature review is to summarise the recent advances that have been reported in pSS, ranging from the early phases to the established disease and its complications. We analysed the diagnostic, prognostic, and management aspects of pSS, with a look into future clinical and research developments. The early phases of pSS, usually antedating diagnosis, allow us to investigate the pathophysiology and risk factors of the overt disease, thus allowing better and timely patient stratification. Salivary gland ultrasound (SGUS) is emerging as a valid complementary, or even alternative, tool for histopathology in the diagnosis of pSS, due to a standardised scoring system with good agreement and performance. Other promising innovations include the application of artificial intelligence to SGUS, ultrasound-guided core needle biopsy, and a wide array of novel diagnostic and prognostic biomarkers. Stratifying pSS patients through the integration of clinical, laboratory, imaging, and histopathological data; differentiating between activity-related and damage-related manifestations; and identifying patients at higher risk of lymphoma development are essential steps for an optimal management and individualised treatment approach. As new treatment options are emerging for both glandular and systemic manifestations, there is a need for a more reliable treatment response evaluation. pSS is a complex and heterogeneous disease, and many distinct aspects should be considered in the different stages of the disease and subsets of patients. In recent years, efforts have been made to improve our understanding of the disease, and certainly in the coming years, some of these novelties will become part of our routine clinical practice, thus improving the management of pSS patients.
Collapse
Affiliation(s)
| | - Ivan Giovannini
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Sabine Zenz
- Division of Rheumatology and Immunology, Medical University Graz, Graz, Austria
| | - Valeria Manfrè
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Martin H. Stradner
- Division of Rheumatology and Immunology, Medical University Graz, Graz, Austria
| | - Alojzija Hocevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Marwin Gutierrez
- Division of Musculoskeletal and Rheumatic Diseases, Instituto Nacional de Rehabilitacion, Mexico City, Mexico
- Rheumatology Center of Excellence, Mexico City, Mexico
| | - Luca Quartuccio
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Salvatore De Vita
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Alen Zabotti
- Rheumatology Clinic, Department of Medicine, University of Udine, c/o Azienda Sanitaria Universitaria Friuli Centrale, Piazzale Santa Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
41
|
Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022; 13:867189. [PMID: 35572552 PMCID: PMC9094409 DOI: 10.3389/fimmu.2022.867189] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In 1986, Mosmann and Coffman identified 2 functionally distinct subsets of activated CD4 T cells, Th1 and Th2 cells, being key in distinct T cell mediated responses. Over the past three decades, our understanding of CD4 T cell differentiation has expanded and the initial paradigm of a dichotomic CD4 T cell family has been revisited to accommodate a constantly growing number of functionally distinct CD4 T helper and regulatory subpopulations. Of note, CD4 T cells with cytotoxic functions have also been described, initially in viral infections, autoimmune disorders and more recently also in cancer settings. Here, we provide an historical overview on the discovery and characterization of cytotoxic CD4 T cells, followed by a description of their mechanisms of cytotoxicity. We emphasize the relevance of these cells in disease conditions, particularly in cancer, and we provide insights on how to exploit these cells in immunotherapy.
Collapse
Affiliation(s)
- Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Margaux Saillard
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
42
|
Alber S, Kumar S, Liu J, Huang ZM, Paez D, Hong J, Chang HW, Bhutani T, Gensler LS, Liao W. Single Cell Transcriptome and Surface Epitope Analysis of Ankylosing Spondylitis Facilitates Disease Classification by Machine Learning. Front Immunol 2022; 13:838636. [PMID: 35634297 PMCID: PMC9135966 DOI: 10.3389/fimmu.2022.838636] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/19/2022] [Indexed: 01/31/2023] Open
Abstract
Ankylosing spondylitis (AS) is an immune-mediated inflammatory disorder that primarily affects the axial skeleton, especially the sacroiliac joints and spine. This results in chronic back pain and, in extreme cases, ankylosis of the spine. Despite its debilitating effects, the pathogenesis of AS remains to be further elucidated. This study used single cell CITE-seq technology to analyze peripheral blood mononuclear cells (PBMCs) in AS and in healthy controls. We identified a number of molecular features associated with AS. CD52 was found to be overexpressed in both RNA and surface protein expression across several cell types in patients with AS. CD16+ monocytes overexpressed TNFSF10 and IL-18Rα in AS, while CD8+ TEM cells and natural killer cells overexpressed genes linked with cytotoxicity, including GZMH, GZMB, and NKG7. Tregs underexpressed CD39 in AS, suggesting reduced functionality. We identified an overrepresented NK cell subset in AS that overexpressed CD16, CD161, and CD38, as well as cytotoxic genes and pathways. Finally, we developed machine learning models derived from CITE-seq data for the classification of AS and achieved an Area Under the Receiver Operating Characteristic (AUROC) curve of > 0.95. In summary, CITE-seq identification of AS-associated genes and surface proteins in specific cell subsets informs our understanding of pathogenesis and potential new therapeutic targets, while providing new approaches for diagnosis via machine learning.
Collapse
Affiliation(s)
- Samuel Alber
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA, United States
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Sugandh Kumar
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Jared Liu
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Zhi-Ming Huang
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Diana Paez
- Division of Rheumatology, Department of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Julie Hong
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Hsin-Wen Chang
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Tina Bhutani
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| | - Lianne S. Gensler
- Division of Rheumatology, Department of Medicine, University of California at San Francisco, San Francisco, CA, United States
| | - Wilson Liao
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, United States
| |
Collapse
|
43
|
Trzupek D, Lee M, Hamey F, Wicker LS, Todd JA, Ferreira RC. Single-cell multi-omics analysis reveals IFN-driven alterations in T lymphocytes and natural killer cells in systemic lupus erythematosus. Wellcome Open Res 2022; 6:149. [PMID: 35509371 PMCID: PMC9046903 DOI: 10.12688/wellcomeopenres.16883.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Background: The characterisation of the peripheral immune system in the autoimmune disease systemic lupus erythematosus (SLE) at the single-cell level has been limited by the reduced sensitivity of current whole-transcriptomic technologies. Here we employ a targeted single-cell multi-omics approach, combining protein and mRNA quantification, to generate a high-resolution map of the T lymphocyte and natural killer (NK) cell populations in blood from SLE patients. Methods: We designed a custom panel to quantify the transcription of 534 genes in parallel with the expression of 51 surface protein targets using the BD Rhapsody AbSeq single-cell system. We applied this technology to profile 20,656 T and NK cells isolated from peripheral blood from an SLE patient with a type I interferon (IFN)-induced gene expression signature (IFN hi), and an age- and sex- matched IFN low SLE patient and healthy donor. Results: We confirmed the presence of a rare cytotoxic CD4 + T cell (CTL) subset, which was exclusively present in the IFN hi patient. Furthermore, we identified additional alterations consistent with increased immune activation in this patient, most notably a shift towards terminally differentiated CD57 + CD8 + T cell and CD16 + NK dim phenotypes, and the presence of a subset of recently-activated naïve CD4 + T cells. Conclusions: Our results identify IFN-driven changes in the composition and phenotype of T and NK cells that are consistent with a systemic immune activation within the IFN hi patient, and underscore the added resolving power of this multi-omics approach to identify rare immune subsets. Consequently, we were able to find evidence for novel cellular peripheral biomarkers of SLE disease activity, including a subpopulation of CD57 + CD4 + CTLs.
Collapse
Affiliation(s)
- Dominik Trzupek
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mercede Lee
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fiona Hamey
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Linda S. Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A. Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ricardo C. Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Dhanwani R, Lima-Junior JR, Sethi A, Pham J, Williams G, Frazier A, Xu Y, Amara AW, Standaert DG, Goldman JG, Litvan I, Alcalay RN, Peters B, Sulzer D, Arlehamn CSL, Sette A. Transcriptional analysis of peripheral memory T cells reveals Parkinson's disease-specific gene signatures. NPJ Parkinsons Dis 2022; 8:30. [PMID: 35314697 PMCID: PMC8938520 DOI: 10.1038/s41531-022-00282-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is a multi-stage neurodegenerative disorder with largely unknown etiology. Recent findings have identified PD-associated autoimmune features including roles for T cells. To further characterize the role of T cells in PD, we performed RNA sequencing on PBMC and peripheral CD4 and CD8 memory T cell subsets derived from PD patients and age-matched healthy controls. When the groups were stratified by their T cell responsiveness to alpha-synuclein (α-syn) as a proxy for an ongoing inflammatory autoimmune response, the study revealed a broad differential gene expression profile in memory T cell subsets and a specific PD associated gene signature. We identified significant enrichment of transcriptomic signatures previously associated with PD, including for oxidative stress, phosphorylation, autophagy of mitochondria, cholesterol metabolism and inflammation, and the chemokine signaling proteins CX3CR1, CCR5, and CCR1. In addition, we identified genes in these peripheral cells that have previously been shown to be involved in PD pathogenesis and expressed in neurons, such as LRRK2, LAMP3, and aquaporin. Together, these findings suggest that features of circulating T cells with α-syn-specific responses in PD patients provide insights into the interactive processes that occur during PD pathogenesis and suggest potential intervention targets.
Collapse
Affiliation(s)
- Rekha Dhanwani
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - João Rodrigues Lima-Junior
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Ashu Sethi
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - John Pham
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Gregory Williams
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - April Frazier
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Yaqian Xu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Amy W Amara
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - David G Standaert
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Jennifer G Goldman
- Shirley Ryan AbilityLab, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Irene Litvan
- Department of Neuroscience, University of California San Diego, La Jolla, CA, 92093, USA
| | - Roy N Alcalay
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Bjoern Peters
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA.,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - David Sulzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.,Department of Neurology, Columbia University, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, 10032, USA.,Departments of Psychiatry and Pharmacology, Columbia University, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Cecilia S Lindestam Arlehamn
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
45
|
Li Y, Du J, Wei W. Emerging Roles of Mucosal-Associated Invariant T Cells in Rheumatology. Front Immunol 2022; 13:819992. [PMID: 35317168 PMCID: PMC8934402 DOI: 10.3389/fimmu.2022.819992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/22/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset expressing a semi-invariant TCR and recognize microbial riboflavin metabolites presented by major histocompatibility complex class 1-related molecule (MR1). MAIT cells serve as innate-like T cells bridging innate and adaptive immunity, which have attracted increasing attention in recent years. The involvement of MAIT cells has been described in various infections, autoimmune diseases and malignancies. In this review, we first briefly introduce the biology of MAIT cells, and then summarize their roles in rheumatic diseases including systemic lupus erythematosus, rheumatoid arthritis, primary Sjögren’s syndrome, psoriatic arthritis, systemic sclerosis, vasculitis and dermatomyositis. An increased knowledge of MAIT cells will inform the development of novel biomarkers and therapeutic approaches in rheumatology.
Collapse
|
46
|
Zheng Z, Chang L, Li J, Wu Y, Chen G, Zou L. Insights Gained and Future Outlook From scRNAseq Studies in Autoimmune Rheumatic Diseases. Front Immunol 2022; 13:849050. [PMID: 35251048 PMCID: PMC8891165 DOI: 10.3389/fimmu.2022.849050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune rheumatic diseases have a major impact on public health as one of the most common morbidities, and many of these disorders involve both local and systemic manifestations with severe consequences for patient health and quality of life. However, treatment options for many of these diseases remain inadequate for a substantial portion of patients, and progress in developing novel therapeutics has been slow. This lack of progress can be largely attributed to an insufficient understanding of the complex mechanisms driving pathogenesis. Recently, the emergence of single-cell RNA sequencing (scRNAseq) has offered a powerful new tool for interrogating rheumatic diseases, with the potential to assess biological heterogeneity and individual cell function in rheumatic diseases. In this review, we discuss the major insights gained from current scRNAseq interrogations of human rheumatic diseases. We highlight novel cell populations and key molecular signatures uncovered, and also raise a number of hypotheses for follow-up study that may be of interest to the field. We also provide an outlook into two emerging single-cell technologies (repertoire sequencing and spatial transcriptomics) that have yet to be utilized in the field of rheumatic diseases, but which offer immense potential in expanding our understanding of immune and stromal cell behavior. We hope that scRNAseq may serve as a wellspring for the generation and interrogation of novel hypotheses regarding autoreactive lymphocytes and tissue infiltration patterns, and help uncover novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Zihan Zheng
- Institute of Immunology, Army Medical University, Chongqing, China
- Department of Autoimmune Diseases, Chongqing International Institute for Immunology, Chongqing, China
| | - Ling Chang
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Jingyi Li
- Department of Rheumatology and Immunology, First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Army Medical University, Chongqing, China
| | - Guangxing Chen
- Center for Joint Surgery, First Affiliated Hospital (Southwest Hospital) of Army Medical University, Chongqing, China
| | - Liyun Zou
- Institute of Immunology, Army Medical University, Chongqing, China
| |
Collapse
|
47
|
Kuret T, Sodin-Šemrl S, Leskošek B, Ferk P. Single Cell RNA Sequencing in Autoimmune Inflammatory Rheumatic Diseases: Current Applications, Challenges and a Step Toward Precision Medicine. Front Med (Lausanne) 2022; 8:822804. [PMID: 35118101 PMCID: PMC8804286 DOI: 10.3389/fmed.2021.822804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Single cell RNA sequencing (scRNA-seq) represents a new large scale and high throughput technique allowing analysis of the whole transcriptome at the resolution of an individual cell. It has emerged as an imperative method in life science research, uncovering complex cellular networks and providing indices that will eventually lead to the development of more targeted and personalized therapies. The importance of scRNA-seq has been particularly highlighted through the analysis of complex biological systems, in which cellular heterogeneity is a key aspect, such as the immune system. Autoimmune inflammatory rheumatic diseases represent a group of disorders, associated with a dysregulated immune system and high patient heterogeneity in both pathophysiological and clinical aspects. This complicates the complete understanding of underlying pathological mechanisms, associated with limited therapeutic options available and their long-term inefficiency and even toxicity. There is an unmet need to investigate, in depth, the cellular and molecular mechanisms driving the pathogenesis of rheumatic diseases and drug resistance, identify novel therapeutic targets, as well as make a step forward in using stratified and informed therapeutic decisions, which could now be achieved with the use of single cell approaches. This review summarizes the current use of scRNA-seq in studying different rheumatic diseases, based on recent findings from published in vitro, in vivo, and clinical studies, as well as discusses the potential implementation of scRNA-seq in the development of precision medicine in rheumatology.
Collapse
Affiliation(s)
- Tadeja Kuret
- Faculty of Medicine, Institute of Cell Biology, University of Ljubljana, Ljubljana, Slovenia
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| | - Brane Leskošek
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/ELIXIR-SI Center, University of Ljubljana, Ljubljana, Slovenia
| | - Polonca Ferk
- Faculty of Medicine, Institute for Biostatistics and Medical Informatics/ELIXIR-SI Center, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Polonca Ferk
| |
Collapse
|
48
|
Liu J, Yang X, Pan J, Wei Z, Liu P, Chen M, Liu H. Single-Cell Transcriptome Profiling Unravels Distinct Peripheral Blood Immune Cell Signatures of RRMS and MOG Antibody-Associated Disease. Front Neurol 2022; 12:807646. [PMID: 35095746 PMCID: PMC8795627 DOI: 10.3389/fneur.2021.807646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Relapsing-remitting multiple sclerosis (RRMS) and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) are inflammatory demyelinating diseases of the central nervous system (CNS). Due to the shared clinical manifestations, detection of disease-specific serum antibody of the two diseases is currently considered as the gold standard for the diagnosis; however, the serum antibody levels are unpredictable during different stages of the two diseases. Herein, peripheral blood single-cell transcriptome was used to unveil distinct immune cell signatures of the two diseases, with the aim to provide predictive discrimination. Single-cell RNA sequencing (scRNA-seq) was conducted on the peripheral blood from three subjects, i.e., one patient with RRMS, one patient with MOGAD, and one patient with healthy control. The results showed that the CD19+ CXCR4+ naive B cell subsets were significantly expanded in both RRMS and MOGAD, which was verified by flow cytometry. More importantly, RRMS single-cell transcriptomic was characterized by increased naive CD8+ T cells and cytotoxic memory-like Natural Killer (NK) cells, together with decreased inflammatory monocytes, whereas MOGAD exhibited increased inflammatory monocytes and cytotoxic CD8 effector T cells, coupled with decreased plasma cells and memory B cells. Collectively, our findings indicate that the two diseases exhibit distinct immune cell signatures, which allows for highly predictive discrimination of the two diseases and paves a novel avenue for diagnosis and therapy of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ju Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiali Pan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Chen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu
| |
Collapse
|
49
|
Li N, Li L, Wu M, Li Y, Yang J, Wu Y, Xu H, Luo D, Gao Y, Fei X, Jiang L. Integrated Bioinformatics and Validation Reveal Potential Biomarkers Associated With Progression of Primary Sjögren's Syndrome. Front Immunol 2021; 12:697157. [PMID: 34367157 PMCID: PMC8343000 DOI: 10.3389/fimmu.2021.697157] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Primary Sjögren's syndrome (pSS) is a chronic systemic autoimmune disease of the exocrine glands characterized by specific pathological features. Previous studies have pointed out that salivary glands from pSS patients express a unique profile of cytokines, adhesion molecules, and chemokines compared to those from healthy controls. However, there is limited evidence supporting the utility of individual markers for different stages of pSS. This study aimed to explore potential biomarkers associated with pSS disease progression and analyze the associations between key genes and immune cells. Methods We combined our own RNA sequencing data with pSS datasets from the NCBI Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) via bioinformatics analysis. Salivary gland biopsies were collected from 14 pSS patients, 6 non-pSS patients, and 6 controls. Histochemical staining and transmission electron micrographs (TEM) were performed to macroscopically and microscopically characterize morphological features of labial salivary glands in different disease stages. Then, we performed quantitative PCR to validate hub genes. Finally, we analyzed correlations between selected hub genes and immune cells using the CIBERSORT algorithm. Results We identified twenty-eight DEGs that were upregulated in pSS patients compared to healthy controls. These were mainly involved in immune-related pathways and infection-related pathways. According to the morphological features of minor salivary glands, severe interlobular and periductal lymphocytic infiltrates, acinar atrophy and collagen in the interstitium, nuclear shrinkage, and microscopic organelle swelling were observed with pSS disease progression. Hub genes based on above twenty-eight DEGs, including MS4A1, CD19, TCL1A, CCL19, CXCL9, CD3G, and CD3D, were selected as potential biomarkers and verified by RT-PCR. Expression of these genes was correlated with T follicular helper cells, memory B cells and M1 macrophages. Conclusion Using transcriptome sequencing and bioinformatics analysis combined with our clinical data, we identified seven key genes that have potential value for evaluating pSS severity.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyao Wu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
50
|
Trzupek D, Lee M, Hamey F, Wicker LS, Todd JA, Ferreira RC. Single-cell multi-omics analysis reveals IFN-driven alterations in T lymphocytes and natural killer cells in systemic lupus erythematosus. Wellcome Open Res 2021; 6:149. [PMID: 35509371 PMCID: PMC9046903 DOI: 10.12688/wellcomeopenres.16883.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 08/28/2024] Open
Abstract
Background: The characterisation of the peripheral immune system in the autoimmune disease systemic lupus erythematosus (SLE) at the single-cell level has been limited by the reduced sensitivity of current whole-transcriptomic technologies. Here we employ a targeted single-cell multi-omics approach, combining protein and mRNA quantification, to generate a high-resolution map of the T lymphocyte and natural killer (NK) cell populations in blood from SLE patients. Methods: We designed a custom panel to quantify the transcription of 534 genes in parallel with the expression of 51 surface protein targets using the BD Rhapsody AbSeq single-cell system. We applied this technology to profile 20,656 T and NK cells isolated from peripheral blood from an SLE patient with a type I interferon (IFN)-induced gene expression signature (IFN hi), and an age- and sex- matched IFN low SLE patient and healthy donor. Results: We confirmed the presence of a rare cytotoxic CD4 + T cell (CTL) subset, which was exclusively present in the IFN hi patient. Furthermore, we identified additional alterations consistent with increased immune activation in this patient, most notably a shift towards terminally differentiated CD57 + CD8 + T cell and CD16 + NK dim phenotypes, and the presence of a subset of recently-activated naïve CD4 + T cells. Conclusions: Our results identify IFN-driven changes in the composition and phenotype of T and NK cells that are consistent with a systemic immune activation within the IFN hi patient, and underscore the added resolving power of this multi-omics approach to identify rare immune subsets. Consequently, we were able to find evidence for novel cellular peripheral biomarkers of SLE disease activity, including a subpopulation of CD57 + CD4 + CTLs.
Collapse
Affiliation(s)
- Dominik Trzupek
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Mercede Lee
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Fiona Hamey
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Linda S. Wicker
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - John A. Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Ricardo C. Ferreira
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|