1
|
Yang MM, Boin F, Wolters PJ. Molecular underpinnings of aging contributing to systemic sclerosis pathogenesis. Curr Opin Rheumatol 2025; 37:86-92. [PMID: 39600291 DOI: 10.1097/bor.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by diffuse organ fibrosis and vasculopathy. Aberrant aging has been increasingly implicated in fibrotic diseases of the lung and other organs. The aim of this review is to summarize the established mechanisms of aging and how they may contribute to the pathogenesis of SSc. RECENT FINDINGS Shortened telomeres are present in SSc patients with interstitial lung disease (SSc-ILD) and associate with disease severity and mortality. Although the cause of telomere length shortening is unknown, immune mechanisms may be at play. Senescent cells accumulate in affected organs of SSc patients and contribute to a pathologic cellular phenotype that can be profibrotic and inflammatory. In addition to identifying patients with a more severe phenotype, biomarkers of aging may help identify patients who have worse outcomes with immunosuppression. SUMMARY Aging mechanisms, including telomere dysfunction and cellular senescence, likely contribute to the progressive fibrosis, vasculopathy, and immune dysfunction of SSc. Further work is needed to understand whether aberrant aging is an initiator or perpetuator of disease, and whether this is cell or organ specific. A better understanding of the role aging mechanisms play in SSc will contribute to our understanding of the underlying pathobiology and may also influence management of patients exhibiting the aging phenotype.
Collapse
Affiliation(s)
- Monica M Yang
- Division of Rheumatology, Department of Medicine, University of California, San Francisco
| | - Francesco Boin
- Division of Rheumatology, Kao Autoimmunity Institute, Cedar Sinai Medical Center, Los Angeles
| | - Paul J Wolters
- Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
2
|
Morin L, Zimmermann F, Lelong M, Ferrant J, Hemon P, Patry S, Tallec ELE, Uwambayinema F, Yakoub Y, Dumontet E, Huaux F, Lescoat A, Lecureur V. Pulmonary and systemic effects of inhaled crystalline silica in the HOCl-induced mouse model of systemic sclerosis: An experimental model of Erasmus syndrome. Clin Immunol 2024:110423. [PMID: 39732270 DOI: 10.1016/j.clim.2024.110423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Occupational exposure to crystalline silica is etiologically linked to an increased incidence of systemic sclerosis (SSc), also called Erasmus syndrome. The underlying mechanisms of silica-related SSc are still poorly understood. We demonstrated that early and repeated silica exposure contribute to the severity of SSc symptoms in the hypochloric acid (HOCl)-induced SSc mouse model. Analyses of lung samples from silica-exposed HOCl mice revealed a slightly aggravation of fibrosis and an exacerbation of inflammation, notably an additionally overexpression of NLRP3 inflammasome genes and a recruitment of classical monocytes, macrophages, dendritic cells and neutrophils. Silica exposure showed systemic effects in SSc mouse model with an elevated circulating classical monocyte counts and an overexpression of inflammatory genes in the skin. Silica-exposed SSc patients also had more severe skin disease than unexposed patients. Overall, we provide new insights on immune cell populations and related pathways in early pathogenic mechanisms contributing to HOCl-induced and silica-related SSc.
Collapse
Affiliation(s)
- Laura Morin
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - François Zimmermann
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Marie Lelong
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Juliette Ferrant
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France; Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - Patrice Hemon
- LBAI, UMR1227, University of Brest, INSERM, Brest, France
| | - Salomé Patry
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Erwan L E Tallec
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Francine Uwambayinema
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Yousof Yakoub
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erwan Dumontet
- Centre Hospitalier Universitaire de Rennes, Pôle Biologie, Rennes, France; Unité Mixte de Recherche (UMR)1236, Université Rennes, INSERM, Etablissement Français du Sang Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
| | - François Huaux
- Louvain centre for Toxicology and Applied Pharmacology (LTAP), Institute de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Alain Lescoat
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
3
|
Chen T, Sun W, Xu ZJ. The immune mechanisms of acute exacerbations of idiopathic pulmonary fibrosis. Front Immunol 2024; 15:1450688. [PMID: 39737178 PMCID: PMC11682984 DOI: 10.3389/fimmu.2024.1450688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Acute exacerbations of idiopathic pulmonary fibrosis (AE-IPF) are the leading cause of mortality among patients with IPF. There is still a lack of effective treatments for AE-IPF, resulting in a hospitalization mortality rate as high as 70%-80%. To reveal the complicated mechanism of AE-IPF, more attention has been paid to its disturbed immune environment, as patients with IPF exhibit deficiencies in pathogen defense due to local immune dysregulation. During the development of AE-IPF, the classical stimulatory signals in adaptive immunity are inhibited, while the nonclassical immune reactions (Th17) are activated, attracting numerous neutrophils and monocytes to lung tissues. However, there is limited information about the specific changes in the immune response of AE-IPF. We summarized the immune mechanisms of AE-IPF in this review.
Collapse
Affiliation(s)
- Tao Chen
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, The second hospital of Tianjin Medical University, Tianjin, China
| | - Zuo-jun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
Barile R, Rotondo C, Rella V, Trotta A, Cantatore FP, Corrado A. Fibrosis mechanisms in systemic sclerosis and new potential therapies. Postgrad Med J 2024:qgae169. [PMID: 39656890 DOI: 10.1093/postmj/qgae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/20/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Systemic sclerosis is a rare rheumatic disease characterized by immune cell activation, tissue fibrosis, and endothelial dysfunction. Extracellular matrix synthesis disorder causes widespread fibrosis, primarily in skin and internal organs. Various factors such as TGFβ, VEGF, Galectin-3, and signaling pathways like Wnt/β-catenin are involved in pathophysiological processes. Treatment lacks a unified approach but combines diverse modalities tailored to disease subtype and progression. Current therapeutic strategies include biologics, JAK inhibitors, and IL-6 pathway modulators. Monoclonal antibodies and hypomethylating agents demonstrate potential in fibrosis inhibition. This review focuses on emerging therapeutic evidence regarding drugs targeting collagen, cytokines, and cell surface molecules in systemic sclerosis, aiming to provide insight into potential innovative treatment strategies.
Collapse
Affiliation(s)
- Raffaele Barile
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Cinzia Rotondo
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Valeria Rella
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Antonello Trotta
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| | - Addolorata Corrado
- Rheumatology Unit, Department of Medical and Surgical Sciences, University of Foggia, Luigi Pinto 1, 71121, Foggia, Italy
| |
Collapse
|
5
|
Liu C, Ge Y. Immune-Related Genes Associated with Interstitial Lung Disease in Dermatomyositis. Int J Gen Med 2024; 17:5261-5271. [PMID: 39563787 PMCID: PMC11573690 DOI: 10.2147/ijgm.s490294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/21/2024] Open
Abstract
Background Interstitial lung disease (ILD) is one of the significant complications of dermatomyositis (DM), but the mechanisms by which it occurs remain incompletely elucidated. This study aimed to explore further the possible genetic mechanisms by which this complication occurs. Methods Gene expression profiles for DM (GSE39454, GSE46239, GSE143323) and ILD (GSE32537, GSE110147, GSE150910) were downloaded from the Gene Expression Omnibus (GEO) database. After identifying common differentially expressed genes (DEGs) to DM and ILD using the "limma" R package and the "VennDiagram" R package, functional annotation, relationship to immune cell infiltration, identification of transcription factors (TFs), we also collected clinical cases of DM-associated ILD (DM-ILD), including 3 cases of rapidly progressive ILD (RP-ILD) and 3 cases of none-RP-ILD, and explored whether there were differences in serum lymphocyte subpopulations. Results A total of 4 common DEGs (SLAMF7, SPP1, TDO2, and VCAM1) were screened and Gene Ontology (GO) enrichment analysis showed that these genes were mainly enriched in T cell activation, regulation of lymphocyte activation, lymphocyte differentiation, leukocyte proliferation and regulation of T cell activation. In terms of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, the three significantly enriched pathways were the PI3K-Akt signaling pathway, MAPK signaling pathway, and Cytokine-cytokine receptor interaction. In lung and muscle tissues, 21 and 3 TFs may regulate the expression of these genes, respectively. Finally, by analysing the serum lymphocyte subpopulations, we also found a decrease in the absolute number of CD8+ T cells and an increase in the CD4+ /CD8+ T cell ratio in DM combined with RP-ILD. Conclusion These common pathways and key genes may provide new ideas for further research into DM-ILD.
Collapse
Affiliation(s)
- Changjian Liu
- Department of Rheumatology, the Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Yongpeng Ge
- Department of Rheumatology, the Key Laboratory of Myositis, China-Japan Friendship Hospital, Beijing, People's Republic of China
| |
Collapse
|
6
|
Nishide M, Shimagami H, Kumanogoh A. Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice. Nat Rev Immunol 2024; 24:781-797. [PMID: 38914790 DOI: 10.1038/s41577-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/26/2024]
Abstract
Since the advent of single-cell RNA sequencing (scRNA-seq) methodology, single-cell analysis has become a powerful tool for exploration of cellular networks and dysregulated immune responses in disease pathogenesis. Advanced bioinformatics tools have enabled the combined analysis of scRNA-seq data and information on various cell properties, such as cell surface molecular profiles, chromatin accessibility and spatial information, leading to a deeper understanding of pathology. This Review provides an overview of the achievements in single-cell analysis applied to clinical samples of rheumatic and allergic diseases, including rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, allergic airway diseases and atopic dermatitis, with an expanded scope beyond peripheral blood cells to include local diseased tissues. Despite the valuable insights that single-cell analysis has provided into disease pathogenesis, challenges remain in translating single-cell findings into clinical practice and developing personalized treatment strategies. Beyond understanding the atlas of cellular diversity, we discuss the application of data obtained in each study to clinical practice, with a focus on identifying biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
Valenzi E, Jia M, Gerges P, Fan J, Tabib T, Behara R, Zhou Y, Sembrat J, Das J, Benos PV, Singh H, Lafyatis R. Altered AP-1, RUNX and EGR chromatin dynamics drive fibrotic lung disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619858. [PMID: 39554071 PMCID: PMC11565795 DOI: 10.1101/2024.10.23.619858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pulmonary fibrosis, including systemic sclerosis-associated interstitial lung disease (SSc-ILD), involves myofibroblasts and SPP1hi macrophages as drivers of fibrosis. Single-cell RNA sequencing has delineated fibroblast and macrophages transcriptomes, but limited insight into transcriptional control of profibrotic gene programs. To address this challenge, we analyzed multiomic snATAC/snRNA-seq on explanted SSc-ILD and donor control lungs. The neural network tool ChromBPNet inferred increased TF binding at single base pair resolution to profibrotic genes, including CTHRC1 and ADAM12, in fibroblasts and SPP1 and CCL18 in macrophages. The novel algorithm HALO confirmed AP-1, RUNX, and EGR TF activity controlling profibrotic gene programs and established TF-regulatory element-gene networks. This TF action atlas provides comprehensive insights into the transcriptional regulation of fibroblasts and macrophages in healthy and fibrotic human lungs.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Minxue Jia
- Department of Computational and Systems Biology, University of Pittsburgh
| | - Peter Gerges
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Jingyu Fan
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Rithika Behara
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - Yuechen Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh
| | - Jishnu Das
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh
- Department of Epidemiology, University of Florida
| | - Harinder Singh
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh
| |
Collapse
|
8
|
Yuan X, Qin X, Takemoto K, Zhao J, Sanderson M, Xu X, Zhang Y, Helke KL, Jacobs Wolf B, Guthridge JM, James JA, Zhou X, Assassi S, Feghali-Bostwick C, Wang D, Sun L, Tsao BP. Human hypofunctional NCF1 variants promote pulmonary fibrosis in the bleomycin-induced mouse model and patients with systemic sclerosis via expansion of SPP1 + monocytes-derived macrophages. Ann Rheum Dis 2024:ard-2024-226034. [PMID: 39299725 DOI: 10.1136/ard-2024-226034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE We assessed the role of a systemic lupus erythematosus causal hypofunctional variant, neutrophil cytosolic factor 1 (NCF1)-p.Arg90His (p.R90H) substitution, in systemic sclerosis (SSc). METHODS Association of NCF1-H90 with SSc was performed in case-control cohorts, bleomycin (BLM)-treated Ncf1-R90 C57BL/6 wildtype and Ncf1-H90 knock-in (KI) littermates. Peripheral blood mononuclear cell (PBMC) subsets were analysed by cytometry by time-of-flight. RESULTS The NCF1-H90 allele is associated with risk for diffuse cutaneous SSc (dcSSc) in Chinese and European Americans, and lung fibrosis in Chinese patients with SSc (OR=2.09, p=7.96E-10). Low copy number of NCF1 associated with lung fibrosis in European Americans (OR=4.33, p=2.60E-2). BLM-treated KI mice demonstrated increased pulmonary fibrosis, exhibiting activated type I interferon signature, elevated Spp1, Ccl2, Arg1, Timp1 and Il6 expression, enriched macrophage scores in lung tissues. In a longitudinal observation cohort, homozygous H90 patients with SSc at baseline had increased anti-nuclear antibody titres, anti-topoisomerase antibody seropositivity and anti-centromere antibody seronegativity, increased incidence of lung fibrosis and Gender-Age-lung Physiology index, elevated modified Rodnan Skin Score (mRSS) and elevated plasma osteopontin (OPN, SPP1), CCL2, ARG1, TIMP-1 and IL-6. These H90 patients with SSc sustained elevated mRSS during follow-up years with decreased survival. The 0, 1 and 2 copies of H90 carriage in SSc PBMCs exhibited dose-dependent increases in profibrotic CD14+CD68+CD11b+Tim3+monocytes. Elevated OPN, CCL2 and ARG1 in CD68+CD11b+monocyte-derived macrophages from H90 patients were decreased after co-culturing with anti-CCL2 antibody. CONCLUSION Low NCF1 activity increases the risk for the development of dcSSc and lung fibrosis via expanding profibrotic SPP1+MoMs in a CCL2-dependent manner, contributing to the severity of lung fibrosis in both BLM-treated mice and patients with SSc.
Collapse
Affiliation(s)
- Xinran Yuan
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Xiaodong Qin
- Department of Orthopedic Surgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, China
| | - Kenji Takemoto
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jian Zhao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthew Sanderson
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue Xu
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yu Zhang
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Bethany Jacobs Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Xiaodong Zhou
- Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Betty P Tsao
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Sumanaweera D, Suo C, Cujba AM, Muraro D, Dann E, Polanski K, Steemers AS, Lee W, Oliver AJ, Park JE, Meyer KB, Dumitrascu B, Teichmann SA. Gene-level alignment of single-cell trajectories. Nat Methods 2024:10.1038/s41592-024-02378-4. [PMID: 39300283 DOI: 10.1038/s41592-024-02378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Single-cell data analysis can infer dynamic changes in cell populations, for example across time, space or in response to perturbation, thus deriving pseudotime trajectories. Current approaches comparing trajectories often use dynamic programming but are limited by assumptions such as the existence of a definitive match. Here we describe Genes2Genes, a Bayesian information-theoretic dynamic programming framework for aligning single-cell trajectories. It is able to capture sequential matches and mismatches of individual genes between a reference and query trajectory, highlighting distinct clusters of alignment patterns. Across both real world and simulated datasets, it accurately inferred alignments and demonstrated its utility in disease cell-state trajectory analysis. In a proof-of-concept application, Genes2Genes revealed that T cells differentiated in vitro match an immature in vivo state while lacking expression of genes associated with TNF signaling. This demonstrates that precise trajectory alignment can pinpoint divergence from the in vivo system, thus guiding the optimization of in vitro culture conditions.
Collapse
Affiliation(s)
- Dinithi Sumanaweera
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Theory of Condensed Matter, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Chenqu Suo
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Paediatrics, Cambridge University Hospitals; Hills Road, Cambridge, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Daniele Muraro
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alexander S Steemers
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Woochan Lee
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Biomedical Sciences, Seoul National University, Seoul, Korea
| | - Amanda J Oliver
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jong-Eun Park
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kerstin B Meyer
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bianca Dumitrascu
- Department of Statistics, Columbia University, New York, NY, USA
- Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute; Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Co-director of CIFAR Macmillan Research Program, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Chilosi M, Piciucchi S, Ravaglia C, Spagnolo P, Sverzellati N, Tomassetti S, Wuyts W, Poletti V. "Alveolar stem cell exhaustion, fibrosis and bronchiolar proliferation" related entities. A narrative review. Pulmonology 2024:S2531-0437(24)00092-8. [PMID: 39277539 DOI: 10.1016/j.pulmoe.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/17/2024] Open
Affiliation(s)
- M Chilosi
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì I
| | - S Piciucchi
- Department of Radiology, Ospedale GB Morgagni, Forlì I.
| | - C Ravaglia
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department
| | - P Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - N Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University Hospital Parma, Parma, Italy
| | - S Tomassetti
- Department of Experimental and Clinical Medicine, Careggi University Hospital, Florence, Italy
| | - W Wuyts
- Pulmonology Department, UZ Leuven, Leuven, Belgium
| | - V Poletti
- Department of Medical Specialities/Pulmonology Ospedale GB Morgagni, Forlì (I); DIMEC, Bologna University, Forlì Campus, Forlì I, Department; Department of Respiratory Diseases & Allergy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Fukasawa T, Yoshizaki-Ogawa A, Enomoto A, Yamashita T, Miyagawa K, Sato S, Yoshizaki A. Single cell analysis in systemic sclerosis - A systematic review. Immunol Med 2024; 47:118-129. [PMID: 38818750 DOI: 10.1080/25785826.2024.2360690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
In recent years, rapid advances in research methods have made single cell analysis possible. Systemic sclerosis (SSc), a disease characterized by the triad of immune abnormalities, fibrosis, and vasculopathy, has also been the subject of various analyses. To summarize the results of single cell analysis in SSc accumulated to date and to deepen our understanding of SSc. Four databases were used to perform a database search on 23rd June 2023. Assessed Grading of Recommendations Assessment, Development and Evaluation certainty of evidence were performed according to PRISMA guidelines. The analysis was completed on July 2023. 17 studies with 358 SSc patients were included. Three studies used PBMCs, six used skin, nine used lung with SSc-interstitial lung diseases (ILDs), and one used lung with SSc-pulmonary arterial hypertension (PAH). The cells studied included immune cells such as T cells, natural killer cells, monocytes, macrophages, and dendritic cells, as well as endothelial cells, fibroblasts, keratinocytes, alveolar type I cells, basal epithelial cells, smooth muscle cells, mesothelial cells, etc. This systematic review revealed the results of single cell analysis, suggesting that PBMCs, skin, SSc-ILD, and SSc-PAH show activation and dysfunction of cells associated with immune-abnormalities, fibrosis, and vasculopathy, respectively.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Shinichi Sato
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, Systemic sclerosis center, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Cannabinoid Research, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Wang D, Chen K, Wang Z, Wu H, Li Y. Research progress on interferon and cellular senescence. FASEB J 2024; 38:e70000. [PMID: 39157951 DOI: 10.1096/fj.202400808rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Since the 12 major signs of aging were revealed in 2023, people's interpretation of aging will go further, which is of great significance for understanding the occurrence, development, and intervention in the aging process. As one of the 12 major signs of aging, cellular senescence refers to the process in which the proliferation and differentiation ability of cells decrease under stress stimulation or over time, often manifested as changes in cell morphology, cell cycle arrest, and decreased metabolic function. Interferon (IFN), as a secreted ligand for specific cell surface receptors, can trigger the transcription of interferon-stimulated genes (ISGs) and play an important role in cellular senescence. In addition, IFN serves as an important component of SASP, and the activation of the IFN signaling pathway has been shown to contribute to cell apoptosis and senescence. It is expected to delay cellular senescence by linking IFN with cellular senescence and studying the effects of IFN on cellular senescence and its mechanism. This article provides a review of the research on the relationship between IFN and cellular senescence by consulting relevant literature.
Collapse
Affiliation(s)
- Da Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Kaixian Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Zheng Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
- National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, P.R. China
| | - Huali Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Yiming Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
13
|
Sun Y, Xu Z, You W, Zhou Y, Nong Q, Chen W, Shan T. Lipidomics and single-cell RNA sequencing reveal lipid and cell dynamics of porcine glycerol-injured skeletal muscle regeneration model. Life Sci 2024; 350:122742. [PMID: 38797365 DOI: 10.1016/j.lfs.2024.122742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
AIMS Intramuscular fat (IMF) infiltration and extracellular matrix (ECM) deposition are characteristic features of muscle dysfunction, such as muscular dystrophy and severe muscle injuries. However, the underlying mechanisms of cellular origin, adipocyte formation and fibrosis in skeletal muscle are still unclear. MAIN METHODS Pigs were injected with 50 % glycerol (GLY) to induce skeletal muscle injury and regeneration. The acyl chain composition was analyzed by lipidomics, and the cell atlas and molecular signatures were revealed via single-cell RNA sequencing (scRNA-seq). Adipogenesis analysis was performed on fibroblast/fibro-adipogenic progenitors (FAPs) isolated from pigs. KEY FINDINGS The porcine GLY-injured skeletal muscle regeneration model was characterized by IMF infiltration and ECM deposition. Skeletal muscle stem cells (MuSCs) and FAP clusters were analyzed to explore the potential mechanisms of adipogenesis and fibrosis, and it was found that the TGF-β signaling pathway might be a key switch that regulates differentiation. Consistently, activation of the TGF-β signaling pathway increased SMAD2/3 phosphorylation and inhibited adipogenesis in FAPs, while inhibition of the TGF-β signaling pathway increased the expression of PPARγ and promoted adipogenesis. SIGNIFICANCE GLY-induced muscle injury and regeneration provides comprehensive insights for the development of therapies for human skeletal muscle dysfunction and fatty infiltration-related diseases in which the TGF-β/SMAD signaling pathway might play a primary regulatory role.
Collapse
Affiliation(s)
- Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yanbing Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Qiuyun Nong
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wentao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China; The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China; Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
14
|
Zhou Y, Tabib T, Huang M, Yuan K, Kim Y, Morse C, Sembrat J, Valenzi E, Lafyatis R. Molecular Changes Implicate Angiogenesis and Arterial Remodeling in Systemic Sclerosis-Associated and Idiopathic Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:e210-e225. [PMID: 38841857 PMCID: PMC11269037 DOI: 10.1161/atvbaha.123.320005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a common complication of systemic sclerosis (SSc) and a leading cause of mortality among patients with this disease. PH can also occur as an idiopathic condition (idiopathic pulmonary arterial hypertension). Investigation of transcriptomic alterations in vascular populations is critical to elucidating cellular mechanisms underlying pathobiology of SSc-associated and idiopathic PH. METHODS We analyzed single-cell RNA sequencing profiles of endothelial and perivascular mesenchymal populations from explanted lung tissue of patients with SSc-associated PH (n=16), idiopathic pulmonary arterial hypertension (n=3), and healthy controls (n=15). Findings were validated by immunofluorescence staining of explanted human lung tissue. RESULTS Three disease-associated endothelial populations emerged. Two angiogenic endothelial cell (EC) subtypes markedly expanded in SSc-associated PH lungs: tip ECs expressing canonical tip markers PGF and APLN and phalanx ECs expressing genes associated with vascular development, endothelial barrier integrity, and Notch signaling. Gene regulatory network analysis suggested enrichment of Smad1 (SMAD family member 1) and PPAR-γ (peroxisome proliferator-activated receptor-γ) regulon activities in these 2 populations, respectively. Mapping of potential ligand-receptor interactions highlighted Notch, apelin-APJ (apelin receptor), and angiopoietin-Tie (tyrosine kinase with immunoglobulin-like and EGF-like domains 1) signaling pathways between angiogenic ECs and perivascular cells. Transitional cells, expressing both endothelial and pericyte/smooth muscle cell markers, provided evidence for the presence of endothelial-to-mesenchymal transition. Transcriptional programs associated with arterial endothelial dysfunction implicated VEGF-A (vascular endothelial growth factor-A), TGF-β1 (transforming growth factor beta-1), angiotensin, and TNFSF12 (tumor necrosis factor ligand superfamily member 12)/TWEAK (TNF-related weak inducer of apoptosis) in the injury/remodeling phenotype of PH arterial ECs. CONCLUSIONS These data provide high-resolution insights into the complexity and plasticity of the pulmonary endothelium in SSc-associated PH and idiopathic pulmonary arterial hypertension and provide direct molecular insights into soluble mediators and transcription factors driving PH vasculopathy.
Collapse
Affiliation(s)
- Yuechen Zhou
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
- School of Medicine, Tsinghua University; Beijing 100084, China
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Mengqi Huang
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Ke Yuan
- Division of Pulmonary Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Yunhye Kim
- Division of Pulmonary Medicine, Boston Children’s Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Lupu A, Sasaran MO, Jechel E, Azoicai A, Alexoae MM, Starcea IM, Mocanu A, Nedelcu AH, Knieling A, Salaru DL, Burlea SL, Lupu VV, Ioniuc I. Undercover lung damage in pediatrics - a hot spot in morbidity caused by collagenoses. Front Immunol 2024; 15:1394690. [PMID: 38994372 PMCID: PMC11236559 DOI: 10.3389/fimmu.2024.1394690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Connective tissue represents the support matrix and the connection between tissues and organs. In its composition, collagen, the major structural protein, is the main component of the skin, bones, tendons and ligaments. Especially at the pediatric age, its damage in the context of pathologies such as systemic lupus erythematosus, scleroderma or dermatomyositis can have a significant negative impact on the development and optimal functioning of the body. The consequences can extend to various structures (e.g., joints, skin, eyes, lungs, heart, kidneys). Of these, we retain and reveal later in our manuscript, mainly the respiratory involvement. Manifested in various forms that can damage the chest wall, pleura, interstitium or vascularization, lung damage in pediatric systemic inflammatory diseases is underdeveloped in the literature compared to that described in adults. Under the threat of severe evolution, sometimes rapidly progressive and leading to death, it is necessary to increase the popularization of information aimed at physiopathological triggering and maintenance mechanisms, diagnostic means, and therapeutic directions among medical specialists. In addition, we emphasize the need for interdisciplinary collaboration, especially between pediatricians, rheumatologists, infectious disease specialists, pulmonologists, and immunologists. Through our narrative review we aimed to bring up to date, in a concise and easy to assimilate, general principles regarding the pulmonary impact of collagenoses using the most recent articles published in international libraries, duplicated by previous articles, of reference for the targeted pathologies.
Collapse
Affiliation(s)
- Ancuta Lupu
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Maria Oana Sasaran
- Faculty of Medicine, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Elena Jechel
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Alice Azoicai
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Monica Mihaela Alexoae
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Iuliana Magdalena Starcea
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Adriana Mocanu
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Alin Horatiu Nedelcu
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Anton Knieling
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Delia Lidia Salaru
- Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Stefan Lucian Burlea
- Public Health and Management Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Vasile Valeriu Lupu
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Ileana Ioniuc
- Mother and Child Medicine Department, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
16
|
Guo Y, Yu L, Guo L, Xu L, Li Q. A Regularized Bayesian Dirichlet-multinomial Regression Model for Integrating Single-cell-level Omics and Patient-level Clinical Study Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597391. [PMID: 38895417 PMCID: PMC11185671 DOI: 10.1101/2024.06.04.597391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The abundance of various cell types can vary significantly among patients with varying phenotypes and even those with the same phenotype. Recent scientific advancements provide mounting evidence that other clinical variables, such as age, gender, and lifestyle habits, can also influence the abundance of certain cell types. However, current methods for integrating single-cell-level omics data with clinical variables are inadequate. In this study, we propose a regularized Bayesian Dirichlet-multinomial regression framework to investigate the relationship between single-cell RNA sequencing data and patient-level clinical data. Additionally, the model employs a novel hierarchical tree structure to identify such relationships at different cell-type levels. Our model successfully uncovers significant associations between specific cell types and clinical variables across three distinct diseases: pulmonary fibrosis, COVID-19, and non-small cell lung cancer. This integrative analysis provides biological insights and could potentially inform clinical interventions for various diseases.
Collapse
Affiliation(s)
- Yanghong Guo
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, Texas, U.S.A
| | - Lei Yu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, Texas, U.S.A
| | - Qiwei Li
- Department of Mathematical Sciences, The University of Texas at Dallas, Richardson, Texas, U.S.A
| |
Collapse
|
17
|
Drougkas K, Skarlis C, Mavragani C. Type I Interferons in Systemic Autoimmune Rheumatic Diseases: Pathogenesis, Clinical Features and Treatment Options. Mediterr J Rheumatol 2024; 35:365-380. [PMID: 39193187 PMCID: PMC11345602 DOI: 10.31138/mjr.270324.tis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Type I interferon (IFN) pathway dysregulation plays a crucial role in the pathogenesis of several systemic autoimmune rheumatic diseases (SARDs), including systemic lupus erythematosus (SLE), Sjögren's disease (SjD), systemic sclerosis (SSc), dermatomyositis (DM) and rheumatoid arthritis (RA). Genetic and epigenetic alterations have been involved in dysregulated type I IFN responses in systemic autoimmune disorders. Aberrant type I IFN production and secretion have been associated with distinct clinical phenotypes, disease activity, and severity as well as differentiated treatment responses among SARDs. In this review, we provide an overview of the role of type I IFNs in systemic autoimmune diseases including SLE, RA, SjD, SSc, and DM focusing on pathophysiological, clinical, and therapeutical aspects.
Collapse
Affiliation(s)
- Konstantinos Drougkas
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Skarlis
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Clio Mavragani
- Department of Physiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Joint Academic Rheumatology Program, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Moroncini G, Svegliati S, Grieco A, Cuccioloni M, Mozzicafreddo M, Paolini C, Agarbati S, Spadoni T, Amoresano A, Pinto G, Chen Q, Benfaremo D, Tonnini C, Senzacqua M, Alizzi S, Nieto K, Finke D, Viola N, Amico D, Galgani M, Gasparini S, Zuccatosta L, Menzo S, Müller M, Kleinschmidt J, Funaro A, Giordano A, La Cava A, Dorfmüller P, Amoroso A, Pucci P, Pezone A, Avvedimento EV, Gabrielli A. Adeno-Associated Virus Type 5 Infection via PDGFRα Is Associated With Interstitial Lung Disease in Systemic Sclerosis and Generates Composite Peptides and Epitopes Recognized by the Agonistic Immunoglobulins Present in Patients With Systemic Sclerosis. Arthritis Rheumatol 2024; 76:620-630. [PMID: 37975161 DOI: 10.1002/art.42746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE The etiopathogenesis of systemic sclerosis (SSc) is unknown. Platelet-derived growth factor receptors (PDGFRs) are overexpressed in patients with SSc. Because PDGFRα is targeted by the adeno-associated virus type 5 (AAV5), we investigated whether AAV5 forms a complex with PDGFRα exposing epitopes that may induce the immune responses to the virus-PDGFRα complex. METHODS The binding of monomeric human PDGFRα to the AAV5 capsid was analyzed by in silico molecular docking, surface plasmon resonance (SPR), and genome editing of the PDGFRα locus. AAV5 was detected in SSc lungs by in situ hybridization, immunohistochemistry, confocal microscopy, and molecular analysis of bronchoalveolar lavage (BAL) fluid. Immune responses to AAV5 and PDGFRα were evaluated by SPR using SSc monoclonal anti-PDGFRα antibodies and immunoaffinity-purified anti-PDGFRα antibodies from sera of patients with SSc. RESULTS AAV5 was detected in the BAL fluid of 41 of 66 patients with SSc with interstitial lung disease (62.1%) and in 17 of 66 controls (25.75%) (P < 0.001). In SSc lungs, AAV5 localized in type II pneumocytes and in interstitial cells. A molecular complex formed of spatially contiguous epitopes of the AAV5 capsid and of PDGFRα was identified and characterized. In silico molecular docking analysis and binding to the agonistic anti-PDGFRα antibodies identified spatially contiguous epitopes derived from PDGFRα and AAV5 that interacted with SSc agonistic antibodies to PDGFRα. These peptides were also able to bind total IgG isolated from patients with SSc, not from healthy controls. CONCLUSION These data link AVV5 with the immune reactivity to endogenous antigens in SSc and provide a novel element in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Gianluca Moroncini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | | - Qingxin Chen
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Devis Benfaremo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Silvia Alizzi
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | - Karen Nieto
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Doreen Finke
- Università Politecnica delle Marche, Ancona, Italy
| | - Nadia Viola
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Stefano Gasparini
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Lina Zuccatosta
- Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Stefano Menzo
- Università Politecnica delle Marche and Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Martin Müller
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | - Antonio La Cava
- Federico II University, Napoli, Italy
- University of California, Los Angeles, CA
| | | | - Antonio Amoroso
- Università di Torino and Azienda Ospedaliera Universitaria Città della Salute e della Scienza, di Torino, Torino, Italy
| | | | | | | | - Armando Gabrielli
- Università Politecnica delle Marche, Ancona, Italy, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy, and Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
19
|
Wang Z, Liu T, Wang Z, Mi Z, Zhang Y, Wang C, Sun L, Ma S, Xue X, Liu H, Zhang F. CYBB-Mediated Ferroptosis Associated with Immunosuppression in Mycobacterium leprae-Infected Monocyte-Derived Macrophages. J Invest Dermatol 2024; 144:874-887.e2. [PMID: 37925067 DOI: 10.1016/j.jid.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/06/2023]
Abstract
Mycobacterium leprae-infected macrophages preferentially exhibit the regulatory M2 phenotype in vitro, which helps the immune escape unabated growth of M leprae in host cells. The mechanism that triggers macrophage polarization is still unknown. In this study, we performed single-cell RNA sequencing to determine the initial responses of human monocyte-derived macrophages against M leprae infection of 4 healthy individuals and found an increase in a major alternative-activated macrophage type that overexpressed NEAT1, CCL2, and CD163. Importantly, further functional analysis showed that ferroptosis was positively correlated with M2 polarization of macrophages, and in vitro experiments have shown that inhibition of ferroptosis promotes the survival of M leprae within macrophages. In addition, further joint analysis of our results with mutisequencing data from patients with leprosy and in vitro validation identified that CYBB was the pivotal molecule for ferroptosis that could promote the M2 polarization of M leprae-infected macrophages, resulting in the immune escape and unabated growth of pathogenic bacteria. Overall, our results suggest that M leprae facilitated its survival by inducing CYBB-mediated macrophage ferroptosis leading to its alternative activation and might reveal the potential for a new therapeutic strategy of leprosy.
Collapse
Affiliation(s)
- Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
20
|
Padilla CM, Valenzi E, Tabib T, Nazari B, Sembrat J, Rojas M, Fuschiotti P, Lafyatis R. Increased CD8+ tissue resident memory T cells, regulatory T cells and activated natural killer cells in systemic sclerosis lungs. Rheumatology (Oxford) 2024; 63:837-845. [PMID: 37310903 PMCID: PMC10907815 DOI: 10.1093/rheumatology/kead273] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
OBJECTIVE Multiple observations indicate a role for lymphocytes in driving autoimmunity in SSc. While T and NK cells have been studied in SSc whole blood and bronchoalveolar lavage fluid, their role remains unclear, partly because no studies have analysed these cell types in SSc-interstitial lung disease (ILD) lung tissue. This research aimed to identify and analyse the lymphoid subpopulations in SSc-ILD lung explants. METHODS Lymphoid populations from 13 SSc-ILD and 6 healthy control (HC) lung explants were analysed using Seurat following single-cell RNA sequencing. Lymphoid clusters were identified by their differential gene expression. Absolute cell numbers and cell proportions in each cluster were compared between cohorts. Additional analyses were performed using pathway analysis, pseudotime and cell ligand-receptor interactions. RESULTS Activated CD16+ NK cells, CD8+ tissue resident memory T cells and Treg cells were proportionately higher in SSc-ILD compared with HC lungs. Activated CD16+ NK cells in SSc-ILD showed upregulated granzyme B, IFN-γ and CD226. Amphiregulin, highly upregulated by NK cells, was predicted to interact with epidermal growth factor receptor on several bronchial epithelial cell populations. Shifts in CD8+ T cell populations indicated a transition from resting to effector to tissue resident phenotypes in SSc-ILD. CONCLUSIONS SSc-ILD lungs show activated lymphoid populations. Activated cytotoxic NK cells suggest they may kill alveolar epithelial cells, while their expression of amphiregulin suggests they may also induce bronchial epithelial cell hyperplasia. CD8+ T cells in SSc-ILD appear to transition from resting to the tissue resident memory phenotype.
Collapse
Affiliation(s)
- Cristina M Padilla
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eleanor Valenzi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Banafsheh Nazari
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Ohio State University College of Medicine, Columbus, OH, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Montesi SB, Gomez CR, Beers M, Brown R, Chattopadhyay I, Flaherty KR, Garcia CK, Gomperts B, Hariri LP, Hogaboam CM, Jenkins RG, Kaminski N, Kim GHJ, Königshoff M, Kolb M, Kotton DN, Kropski JA, Lasky J, Magin CM, Maher TM, McCormick M, Moore BB, Nickerson-Nutter C, Oldham J, Podolanczuk AJ, Raghu G, Rosas I, Rowe SM, Schmidt WT, Schwartz D, Shore JE, Spino C, Craig JM, Martinez FJ. Pulmonary Fibrosis Stakeholder Summit: A Joint NHLBI, Three Lakes Foundation, and Pulmonary Fibrosis Foundation Workshop Report. Am J Respir Crit Care Med 2024; 209:362-373. [PMID: 38113442 PMCID: PMC10878386 DOI: 10.1164/rccm.202307-1154ws] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Christian R. Gomez
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael Beers
- Pulmonary and Critical Care Division, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Brown
- Program in Neurotherapeutics, University of Massachusetts Chan Medical School, Worchester, Massachusetts
| | | | | | - Christine Kim Garcia
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Irving Medical Center, New York, New York
| | | | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine and
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Cory M. Hogaboam
- Women’s Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - R. Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Grace Hyun J. Kim
- Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, and
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California
| | - Melanie Königshoff
- Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Martin Kolb
- Division of Respirology, McMaster University, Hamilton, Ontario, Canada
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts
| | - Jonathan A. Kropski
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joseph Lasky
- Pulmonary Fibrosis Foundation, Chicago, Illinois
- Department of Medicine, Tulane University, New Orleans, Louisiana
| | - Chelsea M. Magin
- Department of Bioengineering
- Department of Pediatrics
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, and
| | - Toby M. Maher
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | | | - Anna J. Podolanczuk
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York
| | - Ganesh Raghu
- Division of Pulmonary, Sleep and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Ivan Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas; and
| | - Steven M. Rowe
- Department of Medicine and
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - David Schwartz
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - J. Matthew Craig
- Division of Lung Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care, Weill Cornell Medical College, New York, New York
| |
Collapse
|
22
|
De Lorenzis E, Wasson CW, Del Galdo F. Alveolar epithelial-to-mesenchymal transition in scleroderma interstitial lung disease: Technical challenges, available evidence and therapeutic perspectives. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2024; 9:7-15. [PMID: 38333528 PMCID: PMC10848925 DOI: 10.1177/23971983231181727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/27/2023] [Indexed: 02/10/2024]
Abstract
The alveolar epithelial-to-mesenchymal transition is the process of transformation of differentiated epithelial cells into mesenchymal-like cells through functional and morphological changes. A partial epithelial-to-mesenchymal transition process can indirectly contribute to lung fibrosis through a paracrine stimulation of the surrounding cells, while a finalized process could also directly enhance the pool of pulmonary fibroblasts and the extracellular matrix deposition. The direct demonstration of alveolar epithelial-to-mesenchymal transition in scleroderma-related interstitial lung disease is challenging due to technical pitfalls and the limited availability of lung tissue samples. Similarly, any inference on epithelial-to-mesenchymal transition occurrence driven from preclinical models should consider the limitations of cell cultures and animal models. Notwithstanding, while the occurrence or the relevance of this phenomenon in scleroderma-related interstitial lung disease have not been directly and conclusively demonstrated until now, pre-clinical and clinical evidence supports the potential role of epithelial-to-mesenchymal transition in the development and progression of lung fibrosis. Evidence consolidation on scleroderma-related interstitial lung disease epithelial-to-mesenchymal transition would pave the way for new therapeutic opportunities to prevent, slow or even reverse lung fibrosis, drawing lessons from current research lines in neoplastic epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Enrico De Lorenzis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
23
|
Shakour N, Karami S, Iranshahi M, Butler AE, Sahebkar A. Antifibrotic effects of sodium-glucose cotransporter-2 inhibitors: A comprehensive review. Diabetes Metab Syndr 2024; 18:102934. [PMID: 38154403 DOI: 10.1016/j.dsx.2023.102934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/25/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS Scar tissue accumulation in organs is the underlying cause of many fibrotic diseases. Due to the extensive array of organs affected, the long-term nature of fibrotic processes and the large number of people who suffer from the negative impact of these diseases, they constitute a serious health problem for modern medicine and a huge economic burden on society. Sodium-glucose cotransporter-2 inhibitors (SGLT2is) are a relatively new class of anti-diabetic pharmaceuticals that offer additional benefits over and above their glucose-lowering properties; these medications modulate a variety of diseases, including fibrosis. Herein, we have collated and analyzed all available research on SGLT2is and their effects on organ fibrosis, together with providing a proposed explanation as to the underlying mechanisms. METHODS PubMed, ScienceDirect, Google Scholar and Scopus were searched spanning the period from 2012 until April 2023 to find relevant articles describing the antifibrotic effects of SGLT2is. RESULTS The majority of reports have shown that SGLT2is are protective against lung, liver, heart and kidney fibrosis as well as arterial stiffness. According to the results of clinical trials and animal studies, many SGLT2 inhibitors are promising candidates for the treatment of fibrosis. Recent studies have demonstrated that SGLT2is affect an array of cellular processes, including hypoxia, inflammation, oxidative stress, the renin-angiotensin system and metabolic activities, all of which have been linked to fibrosis. CONCLUSION Extensive evidence indicates that SGLT2is are promising treatments for fibrosis, demonstrating protective effects in various organs and influencing key cellular processes linked to fibrosis.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Karami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
24
|
Zhan W, Luo W, Zhang Y, Xiang K, Chen X, Shen S, Huang C, Xu T, Ding W, Chen Y, Lin M, Pan X, Lai K. Sputum Transcriptomics Reveals FCN1+ Macrophage Activation in Mild Eosinophilic Asthma Compared to Non-Asthmatic Eosinophilic Bronchitis. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2024; 16:55-70. [PMID: 38262391 PMCID: PMC10823142 DOI: 10.4168/aair.2024.16.1.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/08/2023] [Accepted: 08/05/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE Eosinophilic asthma (EA) and non-asthmatic eosinophilic bronchitis (EB) share similar eosinophilic airway inflammation. Unlike EA, EB did not present airway hyperresponsiveness or airflow obstruction. We aimed to compare the mechanism underlying the different manifestations between EA and EB via sputum transcriptomics analysis. METHODS Induced-sputum cells from newly physician-diagnosed EA, EB patients, and healthy controls (HCs) were collected for RNA sequencing. RESULTS Bulk RNA sequencing was performed using sputum cells from patients with EA (n = 18), EB (n = 15) and HCs (n = 28). Principal component analysis revealed similar gene expression patterns in EA and EB. The most differentially expressed genes in EB compared with HC were also shared by EA, including IL4, IL5 IL13, CLC, CPA3, and DNASE1L3. However, gene set enrichment analysis showed that the signatures regulating macrophage activation were enriched in EA compared to EB. Sputum cells were profiled using single-cell RNA sequencing. FABP4+ macrophages, SPP1+ macrophages, FCN1+ macrophages, dendritic cells, T cells, B cells, mast cells, and epithelial cells were identified based on gene expression profiling. Analysis of cell-cell communication revealed that interactions between FCN1+ macrophages and other cells were higher in EA than in EB. A wealth of transforming growth factor beta (TGF-β) and vascular endothelial growth factor (VEGF) interactions between FCN1+ macrophages and other cells have been shown in EA. The gene expression levels of EREG, TGFBI, and VEGFA in FCN1+ macrophages of EA were significantly higher than those of EB. Furthermore, signatures associated with the response to TGF-β, cellular response to VEGF stimulus and developmental cell growth were enriched in FCN1+ macrophages of EA compared to those of EB. CONCLUSIONS FCN1+ macrophage activation associated with airway remodeling processes was upregulated in EA compared to that in EB, which may contribute to airway hyperresponsiveness and airflow obstruction.
Collapse
Affiliation(s)
- Wenzhi Zhan
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei Luo
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Keheng Xiang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuirong Shen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuqing Huang
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tingting Xu
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenbin Ding
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuehan Chen
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingtong Lin
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, and Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Kefang Lai
- Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Liakouli V, Ciancio A, Del Galdo F, Giacomelli R, Ciccia F. Systemic sclerosis interstitial lung disease: unmet needs and potential solutions. Nat Rev Rheumatol 2024; 20:21-32. [PMID: 37923862 DOI: 10.1038/s41584-023-01044-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 11/06/2023]
Abstract
Systemic sclerosis (SSc), or scleroderma, is a rare, complex, systemic autoimmune disease of unknown aetiology, characterized by high morbidity and mortality often resulting from cardiopulmonary complications such as interstitial lung disease and pulmonary arterial hypertension. Despite substantial progress in unravelling the pathways involved in the pathogenesis of SSc and the increasing number of therapeutic targets tested in clinical trials, there is still no cure for this disease, although several proposed treatments might limit the involvement of specific organs, thereby slowing the natural history of the disease. A specific focus of recent research has been to address the plethora of unmet needs regarding the global management of SSc-related interstitial lung disease, including its pathogenesis, early diagnosis, risk stratification of patients, appropriate treatment regimens and monitoring of treatment response, as well as the definition of progression and predictors of progression and mortality. More refined stratification of patients on the basis of clinical features, molecular signatures, identification of subpopulations with distinct clinical trajectories and implementation of outcome measures for future clinical trials could also improve therapeutic management strategies, helping to avoid poor outcomes related to lung involvement.
Collapse
Affiliation(s)
- Vasiliki Liakouli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Antonio Ciancio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Scleroderma Programme, NIHR Biomedical Research Centre, Leeds Teaching Hospital Trusts, Leeds, UK
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome Campus Biomedico, Rome, Italy
| | - Francesco Ciccia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Dann E, Cujba AM, Oliver AJ, Meyer KB, Teichmann SA, Marioni JC. Precise identification of cell states altered in disease using healthy single-cell references. Nat Genet 2023; 55:1998-2008. [PMID: 37828140 PMCID: PMC10632138 DOI: 10.1038/s41588-023-01523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/05/2023] [Indexed: 10/14/2023]
Abstract
Joint analysis of single-cell genomics data from diseased tissues and a healthy reference can reveal altered cell states. We investigate whether integrated collections of data from healthy individuals (cell atlases) are suitable references for disease-state identification and whether matched control samples are needed to minimize false discoveries. We demonstrate that using a reference atlas for latent space learning followed by differential analysis against matched controls leads to improved identification of disease-associated cells, especially with multiple perturbed cell types. Additionally, when an atlas is available, reducing control sample numbers does not increase false discovery rates. Jointly analyzing data from a COVID-19 cohort and a blood cell atlas, we improve detection of infection-related cell states linked to distinct clinical severities. Similarly, we studied disease states in pulmonary fibrosis using a healthy lung atlas, characterizing two distinct aberrant basal states. Our analysis provides guidelines for designing disease cohort studies and optimizing cell atlas use.
Collapse
Affiliation(s)
- Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter Group, The Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Genentech, San Francisco, CA, USA.
| |
Collapse
|
27
|
Amati F, Bongiovanni G, Tonutti A, Motta F, Stainer A, Mangiameli G, Aliberti S, Selmi C, De Santis M. Treatable Traits in Systemic Sclerosis. Clin Rev Allergy Immunol 2023; 65:251-276. [PMID: 37603199 DOI: 10.1007/s12016-023-08969-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/22/2023]
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease within the spectrum of connective tissue diseases, specifically characterized by vascular abnormalities and inflammatory and fibrotic involvement of the skin and internal organs resulting in high morbidity and mortality. The clinical phenotype of SSc is heterogeneous, and serum autoantibodies together with the extent of skin involvement have a predictive value in the risk stratification. Current recommendations include an organ-based management according to the predominant involvement with only limited individual factors included in the treatment algorithm. Similar to what has been proposed for other chronic diseases, we hypothesize that a "treatable trait" approach based on relevant phenotypes and endotypes could address the unmet needs in SSc stratification and treatment to maximize the outcomes. We provide herein a comprehensive review and a critical discussion of the literature regarding potential treatable traits in SSc, focusing on established and candidate biomarkers, with the purpose of setting the bases for a precision medicine-based approach. The discussion, structured based on the organ involvement, allows to conjugate the pathogenetic mechanisms of tissue injury with the proposed predictors, particularly autoantibodies and other serum biomarkers. Ultimately, we are convinced that precision medicine is the ideal guide to manage a complex condition such as SSc for which available treatments are largely unsatisfactory.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gabriele Bongiovanni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giuseppe Mangiameli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
28
|
Kasamatsu H, Chino T, Hasegawa T, Utsunomiya N, Utsunomiya A, Yamada M, Oyama N, Hasegawa M. A cysteine proteinase inhibitor ALLN alleviates bleomycin-induced skin and lung fibrosis. Arthritis Res Ther 2023; 25:156. [PMID: 37626391 PMCID: PMC10463804 DOI: 10.1186/s13075-023-03130-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc) is a connective tissue disease that is characterized by fibrosis in the skin and internal organs, such as the lungs. Activated differentiation of progenitor cells, which are mainly resident fibroblasts, into myofibroblasts is considered a key mechanism underlying the overproduction of extracellular matrix and the resultant tissue fibrosis in SSc. Calpains are members of the Ca2+-dependent cysteine protease family, whose enzymatic activities participate in signal transduction and tissue remodeling, potentially contributing to fibrosis in various organs. However, the roles of calpain in the pathogenesis of SSc remain unknown. This study aimed to examine the anti-fibrotic properties of N-acetyl-Leu-Leu-norleucinal (ALLN), one of the cysteine proteinase inhibitors that primarily inhibit calpain, in vitro and in vivo, to optimally translate into the therapeutic utility in human SSc. METHODS Normal human dermal and lung fibroblasts pretreated with ALLN were stimulated with recombinant transforming growth factor beta 1 (TGF-β1), followed by assessment of TGF-β1/Smad signaling and fibrogenic molecules. RESULTS ALLN treatment significantly inhibited TGF-β1-induced phosphorylation and nuclear transport of Smad2/3 in skin and lung fibroblasts. TGF-β1-dependent increases in α-smooth muscle actin (αSMA), collagen type I, fibronectin 1, and some mesenchymal transcription markers were attenuated by ALLN. Moreover, our findings suggest that ALLN inhibits TGF-β1-induced mesenchymal transition in human lung epithelial cells. Consistent with these in vitro findings, administering ALLN (3 mg/kg/day) three times a week intraperitoneally remarkably suppressed the development of skin and lung fibrosis in a SSc mouse model induced by daily subcutaneous bleomycin injection. The number of skin- and lung-infiltrating CD3+ T cells decreased in ALLN-treated mice compared with that in control-treated mice. Phosphorylation of Smad3 and/or an increase in αSMA-positive myofibroblasts was significantly inhibited by ALLN treatment on the skin and lungs. However, no adverse effects were observed. CONCLUSIONS Our results prove that calpains can be a novel therapeutic target for skin and lung fibrosis in SSc, considering its inhibitor ALLN.
Collapse
Affiliation(s)
- Hiroshi Kasamatsu
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takenao Chino
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Takumi Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Natsuko Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Akira Utsunomiya
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Masami Yamada
- Department of Cell Biology and Biochemistry, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Noritaka Oyama
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan
| | - Minoru Hasegawa
- Department of Dermatology, Division of Medicine, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
29
|
Valenzi E, Bahudhanapati H, Tan J, Tabib T, Sullivan DI, Nouraie M, Sembrat J, Fan L, Chen K, Liu S, Rojas M, Lafargue A, Felsher DW, Tran PT, Kass DJ, Lafyatis R. Single-nucleus chromatin accessibility identifies a critical role for TWIST1 in idiopathic pulmonary fibrosis myofibroblast activity. Eur Respir J 2023; 62:2200474. [PMID: 37142338 PMCID: PMC10411550 DOI: 10.1183/13993003.00474-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND In idiopathic pulmonary fibrosis (IPF), myofibroblasts are key effectors of fibrosis and architectural distortion by excessive deposition of extracellular matrix and their acquired contractile capacity. Single-cell RNA-sequencing (scRNA-seq) has precisely defined the IPF myofibroblast transcriptome, but identifying critical transcription factor activity by this approach is imprecise. METHODS We performed single-nucleus assay for transposase-accessible chromatin sequencing on explanted lungs from patients with IPF (n=3) and donor controls (n=2) and integrated this with a larger scRNA-seq dataset (10 IPF, eight controls) to identify differentially accessible chromatin regions and enriched transcription factor motifs within lung cell populations. We performed RNA-sequencing on pulmonary fibroblasts of bleomycin-injured Twist1-overexpressing COL1A2 Cre-ER mice to examine alterations in fibrosis-relevant pathways following Twist1 overexpression in collagen-producing cells. RESULTS TWIST1, and other E-box transcription factor motifs, were significantly enriched in open chromatin of IPF myofibroblasts compared to both IPF nonmyogenic (log2 fold change (FC) 8.909, adjusted p-value 1.82×10-35) and control fibroblasts (log2FC 8.975, adjusted p-value 3.72×10-28). TWIST1 expression was selectively upregulated in IPF myofibroblasts (log2FC 3.136, adjusted p-value 1.41×10- 24), with two regions of TWIST1 having significantly increased accessibility in IPF myofibroblasts. Overexpression of Twist1 in COL1A2-expressing fibroblasts of bleomycin-injured mice resulted in increased collagen synthesis and upregulation of genes with enriched chromatin accessibility in IPF myofibroblasts. CONCLUSIONS Our studies utilising human multiomic single-cell analyses combined with in vivo murine disease models confirm a critical regulatory function for TWIST1 in IPF myofibroblast activity in the fibrotic lung. Understanding the global process of opening TWIST1 and other E-box transcription factor motifs that govern myofibroblast differentiation may identify new therapeutic interventions for fibrotic pulmonary diseases.
Collapse
Affiliation(s)
- Eleanor Valenzi
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Harinath Bahudhanapati
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Jiangning Tan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel I Sullivan
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Li Fan
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kong Chen
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Audrey Lafargue
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- These authors contributed equally to this work
| |
Collapse
|
30
|
Szpor J, Streb J, Glajcar A, Streb-Smoleń A, Łazarczyk A, Korta P, Brzuszkiewicz K, Jach R, Hodorowicz-Zaniewska D. Dendritic Cell Subpopulations Are Associated with Morphological Features of Breast Ductal Carcinoma In Situ. Int J Mol Sci 2023; 24:9918. [PMID: 37373062 DOI: 10.3390/ijms24129918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is the preinvasive form of breast cancer (BC). It is disputed whether all cases of DCIS require extensive treatment as the overall risk of progression to BC is estimated at 40%. Therefore, the crucial objective for researchers is to identify DCIS with significant risk of transformation into BC. Dendritic cells (DC) are professional antigen presenting cells and as such play a pivotal role in the formation of immune cells that infiltrate in breast tumors. The aim of this study was to investigate the relationship between the density of DCs with different superficial antigens (CD1a, CD123, DC-LAMP, DC-SIGN) and various histopathological characteristics of DCIS. Our evaluation indicated that CD123+ and DC-LAMP+ cells were strongly associated with maximal tumor size, grading and neoductgenesis. Together with CD1a+ cells, they were negatively correlated with hormonal receptors expression. Furthermore, the number of DC-LAMP+ cells was higher in DCIS with comedo necrosis, ductal spread, lobular cancerization as well as comedo-type tumors, while CD1a+ cells were abundant in cases with Paget disease. We concluded that different subpopulations of DCs relate to various characteristics of DCIS. Of the superficial DCs markers, DC-LAMP seems particularly promising as a target for further research in this area.
Collapse
Affiliation(s)
- Joanna Szpor
- Department of Pathomorphology, Jagiellonian University Medical College, 31-008 Cracow, Poland
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Joanna Streb
- Department of Oncology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Anna Glajcar
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Anna Streb-Smoleń
- Department of Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 31-115 Cracow, Poland
| | - Agnieszka Łazarczyk
- Department of Pathomorphology, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Paulina Korta
- Department of Pathomorphology, University Hospital, 30-688 Cracow, Poland
| | - Karolina Brzuszkiewicz
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Robert Jach
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Diana Hodorowicz-Zaniewska
- General, Oncological, and Gastrointestinal Surgery, Jagiellonian University Medical College, 31-008 Cracow, Poland
| |
Collapse
|
31
|
Sisto M, Lisi S. Immune and Non-Immune Inflammatory Cells Involved in Autoimmune Fibrosis: New Discoveries. J Clin Med 2023; 12:jcm12113801. [PMID: 37297996 DOI: 10.3390/jcm12113801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fibrosis is an important health problem and its pathogenetic activation is still largely unknown. It can develop either spontaneously or, more frequently, as a consequence of various underlying diseases, such as chronic inflammatory autoimmune diseases. Fibrotic tissue is always characterized by mononuclear immune cells infiltration. The cytokine profile of these cells shows clear proinflammatory and profibrotic characteristics. Furthermore, the production of inflammatory mediators by non-immune cells, in response to several stimuli, can be involved in the fibrotic process. It is now established that defects in the abilities of non-immune cells to mediate immune regulation may be involved in the pathogenicity of a series of inflammatory diseases. The convergence of several, not yet well identified, factors results in the aberrant activation of non-immune cells, such as epithelial cells, endothelial cells, and fibroblasts, that, by producing pro-inflammatory molecules, exacerbate the inflammatory condition leading to the excessive and chaotic secretion of extracellular matrix proteins. However, the precise cellular mechanisms involved in this process have not yet been fully elucidated. In this review, we explore the latest discoveries on the mechanisms that initiate and perpetuate the vicious circle of abnormal communications between immune and non-immune cells, responsible for fibrotic evolution of inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Sabrina Lisi
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
32
|
Chen A, Sun Z, Sun D, Huang M, Fang H, Zhang J, Qian G. Integrative bioinformatics and validation studies reveal KDM6B and its associated molecules as crucial modulators in Idiopathic Pulmonary Fibrosis. Front Immunol 2023; 14:1183871. [PMID: 37275887 PMCID: PMC10235501 DOI: 10.3389/fimmu.2023.1183871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF) can be described as a debilitating lung disease that is characterized by the complex interactions between various immune cell types and signaling pathways. Chromatin-modifying enzymes are significantly involved in regulating gene expression during immune cell development, yet their role in IPF is not well understood. Methods In this study, differential gene expression analysis and chromatin-modifying enzyme-related gene data were conducted to identify hub genes, common pathways, immune cell infiltration, and potential drug targets for IPF. Additionally, a murine model was employed for investigating the expression levels of candidate hub genes and determining the infiltration of different immune cells in IPF. Results We identified 33 differentially expressed genes associated with chromatin-modifying enzymes. Enrichment analyses of these genes demonstrated a strong association with histone lysine demethylation, Sin3-type complexes, and protein demethylase activity. Protein-protein interaction network analysis further highlighted six hub genes, specifically KDM6B, KDM5A, SETD7, SUZ12, HDAC2, and CHD4. Notably, KDM6B expression was significantly increased in the lungs of bleomycin-induced pulmonary fibrosis mice, showing a positive correlation with fibronectin and α-SMA, two essential indicators of pulmonary fibrosis. Moreover, we established a diagnostic model for IPF focusing on KDM6B and we also identified 10 potential therapeutic drugs targeting KDM6B for IPF treatment. Conclusion Our findings suggest that molecules related to chromatin-modifying enzymes, primarily KDM6B, play a critical role in the pathogenesis and progression of IPF.
Collapse
Affiliation(s)
- Anning Chen
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhun Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donglin Sun
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Meiying Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hongwei Fang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinyuan Zhang
- Department of Pain, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guojun Qian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
33
|
C-type lectin Mincle initiates IL-17-mediated inflammation in acute exacerbations of idiopathic pulmonary fibrosis. Biomed Pharmacother 2023; 159:114253. [PMID: 36680813 DOI: 10.1016/j.biopha.2023.114253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) has a poor prognosis and high mortality. However, there is limited information regarding the mechanisms of AE-IPF. AIMS We aimed to explore the function of macrophage-inducible C-type lectin (Mincle) in AE-IPF. METHODS In the present study, Mincle was detected in the lung tissues of AE-IPF patients. Mincle-deficient (Mincle-/-) mice and wild-type C57BL/6 mice were administered bleomycin (BLM), followed by HSV1 viral infection to establish the AE-IPF model. RESULTS Mincle was increased in the lung tissues of AE-IPF patients compared with those with stable IPF (P = 0.04) and healthy controls (P = 0.009). The survival rate of the Mincle-/-+BLM+HSV group was higher than that of the WT+BLM+HSV group. The mice in the Mincle-/-+BLM+HSV group exhibited milder inflammation and lower acute lung injury scores (P = 0.008). Mincle was expressed on inflammatory monocytes and neutrophils (CD11b+Gr1 +F4/80-) and monocyte-derived macrophages (Mo-AMs, CD11b+Gr1 +F4/80 +) in the BALF of AE-IPF mice. Mo-AMs were significantly increased in the WT+BLM+HSV group compared with the WT+BLM+PBS (P < 0.0001) and Mincle-/-+BLM+HSV (P = 0.0009) groups. Deletion of Mincle decreased the proportion of Th17 cells and Mo-AMs in the Mincle-/-+BLM+HSV group. CONCLUSIONS Mincle contributed to acute inflammation in AE-IPF by promoting Th17 differentiation.
Collapse
|
34
|
Effects of Ruxolitinib on fibrosis in preclinical models of systemic sclerosis. Int Immunopharmacol 2023; 116:109723. [PMID: 36696855 DOI: 10.1016/j.intimp.2023.109723] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/24/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune fibrotic disorder notably characterized by the production of antinuclear autoantibodies, which have been linked to an excess of apoptotic cells, normally eliminated by a macrophagic efferocytosis. As interferon (IFN) signature and phosphorylation of JAK-STAT proteins are hallmarks of SSc tissues, we tested the hypothesis that a JAK inhibitor, ruxolitinib, targeting the IFN signaling, could improve efferocytosis of IFN-exposed human macrophages in vitro as well as skin and lung fibrosis. In vivo, BLM- and HOCl-induced skin thickness and fibrosis is associated with an increase of caspase-3 positive dermal cells and a significant increase of IFN-stimulated genes expression. In BLM-SSc model, ruxolitinib prevented dermal thickness, fibrosis and significantly decreased the number of cleaved caspase-3 cells in the dermis. Ruxolitinib also improved lung architecture and fibrosis although IFN signature was not entirely decreased by ruxolitinib. In vitro, ruxolitinib improves efferocytosis capacity of human monocyte-differentiated macrophages exposed to IFN-γ or IFN-β. In human fibroblasts derived from lung (HLF) biopsies isolated from patients with idiopathic pulmonary fibrosis, the reduced mRNA expression of typical TGF-β-activated markers by ruxolitinib was associated with a decrease of the phosphorylation of SMAD2 /3 and STAT3. Our finding supports the anti-fibrotic properties of ruxolitinib in a systemic SSc mouse model and in vitro in human lung fibroblasts.
Collapse
|
35
|
Molecular Mechanisms Behind the Role of Plasmacytoid Dendritic Cells in Systemic Sclerosis. BIOLOGY 2023; 12:biology12020285. [PMID: 36829561 PMCID: PMC9953616 DOI: 10.3390/biology12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Systemic sclerosis (SSc) is a debilitating autoimmune disease that affects multiple systems. It is characterized by immunological deregulation, functional and structural abnormalities of small blood vessels, and fibrosis of the skin, and, in some cases, internal organs. Fibrosis has a devastating impact on a patient's life and lung fibrosis is associated with high morbimortality. Several immune populations contribute to the progression of SSc, and plasmacytoid dendritic cells (pDCs) have been identified as crucial mediators of fibrosis. Research on murine models of lung and skin fibrosis has shown that pDCs are essential in the development of fibrosis, and that removing pDCs improves fibrosis. pDCs are a subset of dendritic cells (DCs) that are specialized in anti-viral responses and are also involved in autoimmune diseases, such as SSc, systemic lupus erythematosus (SLE) and psoriasis, mostly due to their capacity to produce type I interferon (IFN). A type I IFN signature and high levels of CXCL4, both derived from pDCs, have been associated with poor prognosis in patients with SSc and are correlated with fibrosis. This review will examine the recent research on the molecular mechanisms through which pDCs impact SSc.
Collapse
|
36
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
37
|
Usual interstitial pneumonia as a stand-alone diagnostic entity: the case for a paradigm shift? THE LANCET. RESPIRATORY MEDICINE 2023; 11:188-196. [PMID: 36640788 DOI: 10.1016/s2213-2600(22)00475-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Usual interstitial pneumonia (UIP) is characterised by a distinctive morphological and radiological appearance that was considered the pathognomonic hallmark of idiopathic pulmonary fibrosis (IPF). However, this peculiar lung remodelling pattern is also seen in other fibrotic interstitial lung diseases, including hypersensitivity pneumonitis, and connective tissue diseases. In this Personal View, we advocate the designation of a UIP pattern as a single, discrete diagnostic entity, amalgamating its primary form and secondary processes in disorders such as hypersensitivity pneumonitis (hypersensitivity pneumonitis with UIP), rheumatoid arthritis (rheumatoid arthritis with UIP), and others. The current separation between primary and secondary UIP is in keeping with the view that every individual interstitial lung disease must be viewed as a separate entity but does not reflect striking similarities between primary and secondary UIP in the morphological or radiological appearance, clinical behaviour, pathogenic pathways, and the efficacy of anti-fibrotic therapy. We believe that the unification of UIP as a single diagnostic entity has undeniable advantages.
Collapse
|
38
|
Cerro Chiang G, Parimon T. Understanding Interstitial Lung Diseases Associated with Connective Tissue Disease (CTD-ILD): Genetics, Cellular Pathophysiology, and Biologic Drivers. Int J Mol Sci 2023; 24:ijms24032405. [PMID: 36768729 PMCID: PMC9917355 DOI: 10.3390/ijms24032405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Connective tissue disease-associated interstitial lung disease (CTD-ILD) is a collection of systemic autoimmune disorders resulting in lung interstitial abnormalities or lung fibrosis. CTD-ILD pathogenesis is not well characterized because of disease heterogeneity and lack of pre-clinical models. Some common risk factors are inter-related with idiopathic pulmonary fibrosis, an extensively studied fibrotic lung disease, which includes genetic abnormalities and environmental risk factors. The primary pathogenic mechanism is that these risk factors promote alveolar type II cell dysfunction triggering many downstream profibrotic pathways, including inflammatory cascades, leading to lung fibroblast proliferation and activation, causing abnormal lung remodeling and repairs that result in interstitial pathology and lung fibrosis. In CTD-ILD, dysregulation of regulator pathways in inflammation is a primary culprit. However, confirmatory studies are required. Understanding these pathogenetic mechanisms is necessary for developing and tailoring more targeted therapy and provides newly discovered disease biomarkers for early diagnosis, clinical monitoring, and disease prognostication. This review highlights the central CTD-ILD pathogenesis and biological drivers that facilitate the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Giuliana Cerro Chiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Correspondence:
| | - Tanyalak Parimon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
39
|
Weeratunga P, Moller DR, Ho LP. Immune mechanisms in fibrotic pulmonary sarcoidosis. Eur Respir Rev 2022; 31:220178. [PMID: 36543347 PMCID: PMC9879330 DOI: 10.1183/16000617.0178-2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
Sarcoidosis is an immune-mediated disorder. Its immunopathology has been steadily mapped out over the past few decades. Despite this, the underpinning mechanisms for progressive fibrotic sarcoidosis is an almost uncharted area. Consequently, there has been little change in the clinical management of fibrotic sarcoidosis over the decades and an unfocused search for new therapeutics. In this review, we provide a comprehensive examination of the relevant immune findings in fibrotic and/or progressive pulmonary sarcoidosis and propose a unifying mechanism for the pathobiology of fibrosis in sarcoidosis.
Collapse
Affiliation(s)
- Praveen Weeratunga
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| | - David R Moller
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ling-Pei Ho
- Oxford Sarcoidosis Clinic, Oxford Interstitial Lung Disease Service, Oxford, UK
- MRC Human Immunology Unit, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Jiang A, Liu N, Wang J, Zheng X, Ren M, Zhang W, Yao Y. The role of PD-1/PD-L1 axis in idiopathic pulmonary fibrosis: Friend or foe? Front Immunol 2022; 13:1022228. [PMID: 36544757 PMCID: PMC9760949 DOI: 10.3389/fimmu.2022.1022228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 12/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with a bleak prognosis. Mounting evidence suggests that IPF shares bio-molecular similarities with lung cancer. Given the deep understanding of the programmed cell death-1 (PD-1)/programmed death-ligand 1 (PD-L1) pathway in cancer immunity and the successful application of immune checkpoint inhibitors (ICIs) in lung cancer, recent studies have noticed the role of the PD-1/PD-L1 axis in IPF. However, the conclusions are ambiguous, and the latent mechanisms remain unclear. In this review, we will summarize the role of the PD-1/PD-L1 axis in IPF based on current murine models and clinical studies. We found that the PD-1/PD-L1 pathway plays a more predominant profibrotic role than its immunomodulatory role in IPF by interacting with multiple cell types and pathways. Most preclinical studies also indicated that blockade of the PD-1/PD-L1 pathway could attenuate the severity of pulmonary fibrosis in mice models. This review will bring significant insights into understanding the role of the PD-1/PD-L1 pathway in IPF and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Na Liu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jingjing Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Mengdi Ren
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Zhang
- Military Physical Education Teaching and Research Section of Air Force Medical Service Training Base, Air Force Medical University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China,*Correspondence: Yu Yao, ; Wei Zhang,
| |
Collapse
|
41
|
Engelbrecht E, Kooistra T, Knipe RS. The Vasculature in Pulmonary Fibrosis. CURRENT TISSUE MICROENVIRONMENT REPORTS 2022; 3:83-97. [PMID: 36712832 PMCID: PMC9881604 DOI: 10.1007/s43152-022-00040-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 02/02/2023]
Abstract
Purpose of Review The current paradigm of idiopathic pulmonary fibrosis (IPF) pathogenesis involves recurrent injury to a sensitive alveolar epithelium followed by impaired repair responses marked by fibroblast activation and deposition of extracellular matrix. Multiple cell types are involved in this response with potential roles suggested by advances in single-cell RNA sequencing and lung developmental biology. Notably, recent work has better characterized the cell types present in the pulmonary endothelium and identified vascular changes in patients with IPF. Recent Findings Lung tissue from patients with IPF has been examined at single-cell resolution, revealing reductions in lung capillary cells and expansion of a population of vascular cells expressing markers associated with bronchial endothelium. In addition, pre-clinical models have demonstrated a fundamental role for aging and vascular permeability in the development of pulmonary fibrosis. Summary Mounting evidence suggests that the endothelium undergoes changes in the context of fibrosis, and these changes may contribute to the development and/or progression of pulmonary fibrosis. Additional studies will be needed to further define the functional role of these vascular changes.
Collapse
Affiliation(s)
| | - Tristan Kooistra
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
42
|
Ding L, Li X, Zhu H, Luo H. Single-Cell Sequencing in Rheumatic Diseases: New Insights from the Perspective of the Cell Type. Aging Dis 2022; 13:1633-1651. [PMID: 36465169 PMCID: PMC9662270 DOI: 10.14336/ad.2022.0323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/23/2022] [Indexed: 11/02/2023] Open
Abstract
Rheumatic diseases are a group of highly heterogeneous autoimmune and inflammatory disorders involving multiple systems. Dysfunction of immune and non-immune cells participates in the complex pathogenesis of rheumatic diseases. Therefore, studies on the abnormal activation of cell subtypes provided a specific basis for understanding the pathogenesis of rheumatic diseases, which promoted the accuracy of disease diagnosis and the effectiveness of various treatments. However, there was still a far way to achieve individualized precision medicine as the result of heterogeneity among cell subtypes. To obtain the biological information of cell subtypes, single-cell sequencing, a cutting-edge technology, is used for analyzing their genomes, transcriptomes, epigenetics, and proteomics. Novel results identified multiple cell subtypes in tissues of patients with rheumatic diseases by single-cell sequencing. Consequently, we provide an overview of recent applications of single-cell sequencing in rheumatic disease and cross-tissue to understand the cell subtypes and functions.
Collapse
Affiliation(s)
- Liqing Ding
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiaojing Li
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Honglin Zhu
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| | - Hui Luo
- The Department of Rheumatology and Immunology, Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Provincial Clinical Research Center for Rheumatic and Immunologic Diseases, Xiangya Hospital, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
43
|
Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, Ge J. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: A review. J Autoimmun 2022; 133:102919. [PMID: 36242821 DOI: 10.1016/j.jaut.2022.102919] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 12/07/2022]
Abstract
Autoimmunity refers to the phenomenon that the body's immune system produces antibodies or sensitized lymphocytes to its own tissues to cause an immune response. Immune disorders caused by autoimmunity can mediate autoimmune diseases. Autoimmune diseases have complicated pathogenesis due to the many types of cells involved, and the mechanism is still unclear. The emergence of single-cell research technology can solve the problem that ordinary transcriptome technology cannot be accurate to cell type. It provides unbiased results through independent analysis of cells in tissues and provides more mRNA information for identifying cell subpopulations, which provides a novel approach to study disruption of immune tolerance and disturbance of pro-inflammatory pathways on a cellular basis. It may fundamentally change the understanding of molecular pathways in the pathogenesis of autoimmune diseases and develop targeted drugs. Single-cell transcriptome sequencing (scRNA-seq) has been widely applied in autoimmune diseases, which provides a powerful tool for demonstrating the cellular heterogeneity of tissues involved in various immune inflammations, identifying pathogenic cell populations, and revealing the mechanism of disease occurrence and development. This review describes the principles of scRNA-seq, introduces common sequencing platforms and practical procedures, and focuses on the progress of scRNA-seq in 41 autoimmune diseases, which include 9 systemic autoimmune diseases and autoinflammatory diseases (rheumatoid arthritis, systemic lupus erythematosus, etc.) and 32 organ-specific autoimmune diseases (5 Skin diseases, 3 Nervous system diseases, 4 Eye diseases, 2 Respiratory system diseases, 2 Circulatory system diseases, 6 Liver, Gallbladder and Pancreas diseases, 2 Gastrointestinal system diseases, 3 Muscle, Bones and joint diseases, 3 Urinary system diseases, 2 Reproductive system diseases). This review also prospects the molecular mechanism targets of autoimmune diseases from the multi-molecular level and multi-dimensional analysis combined with single-cell multi-omics sequencing technology (such as scRNA-seq, Single cell ATAC-seq and single cell immune group library sequencing), which provides a reference for further exploring the pathogenesis and marker screening of autoimmune diseases and autoimmune inflammatory diseases in the future.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Tianqing Zhang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaofei Zhu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hua Chen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China.
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
44
|
Fang D, Chen B, Lescoat A, Khanna D, Mu R. Immune cell dysregulation as a mediator of fibrosis in systemic sclerosis. Nat Rev Rheumatol 2022; 18:683-693. [DOI: 10.1038/s41584-022-00864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
|
45
|
Wu Y, Li Y, Luo Y, Zhou Y, Wen J, Chen L, Liang X, Wu T, Tan C, Liu Y. Gut microbiome and metabolites: The potential key roles in pulmonary fibrosis. Front Microbiol 2022; 13:943791. [PMID: 36274689 PMCID: PMC9582946 DOI: 10.3389/fmicb.2022.943791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
There are a wide variety of microbiomes in the human body, most of which exist in the gastrointestinal tract. Microbiomes and metabolites interact with the host to influence health. Rapid progress has been made in the study of its relationship with abenteric organs, especially lung diseases, and the concept the of "gut-lung axis" has emerged. In recent years, with the in-depth study of the "gut-lung axis," it has been found that changes of the gut microbiome and metabolites are related to fibrotic interstitial lung disease. Understanding their effects on pulmonary fibrosis is expected to provide new possibilities for the prevention, diagnosis and even treatment of pulmonary fibrosis. In this review, we focused on fibrotic interstitial lung disease, summarized the changes the gut microbiome and several metabolites of the gut microbiome in different types of pulmonary fibrosis, and discussed their contributions to the occurrence and development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Yinlan Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Yu Zhou
- Department of Respiratory and Critical Care Medicine, Chengdu First People’s Hospital, Chengdu, China
| | - Ji Wen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Lu Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Xiuping Liang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Tong Wu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China
| | - Chunyu Tan
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China,*Correspondence: Chunyu Tan,
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China,Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, China,Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Chengdu, China,Yi Liu,
| |
Collapse
|
46
|
Secretory phosphoprotein 1 secreted by fibroblast-like synoviocytes promotes osteoclasts formation via PI3K/AKT signaling in collagen-induced arthritis. Biomed Pharmacother 2022; 155:113687. [PMID: 36088855 DOI: 10.1016/j.biopha.2022.113687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022] Open
Abstract
Synovial tissue hyperplasia is a major cause of bone damage in rheumatoid arthritis (RA). Over-proliferation and secretion of cytokines of fibroblast-like synoviocytes (FLSs) are key contributors to bone damage in the joint microenvironment. Therefore, inhibition of FLSs-mediated bone damage is of great significance in RA patients. The aim of this study was to investigate the molecular mechanisms by which FLSs-mediated bone damage in the joint microenvironment. The results of whole transcriptome sequencing showed that Spp1 gene expression was significantly upregulated in collagen-induced arthritis FLSs compared to Normal FLSs. KEGG enrichment analysis revealed up-regulated Spp1 gene expression, associated with PI3K/AKT signaling. Animal and cellular experiments were designed to validate and explore the results of sequencing. Briefly, the data demonstrated secretory phosphoprotein 1 (SPP1) (encoded by Spp1 gene) secreted by FLSs promotes osteoclasts differentiation in vivo and in vitro and exacerbates articular bone damage in collagen-induced arthritis mice. Interestingly, SPP1 secreted by FLSs does not affect its own proliferation and apoptosis. The results of co-culture of FLSs with bone marrow-derived monocytes indicated the level of SPP1 secreted by FLSs positively correlates with the frequency of p-PI3K+PI3K+ osteoclasts, whereas not with the frequency of p-AKT+AKT+ osteoclasts. This may suggest that SPP1 secreted by FLSs acts directly on PI3K while indirectly on AKT. Together, the results revealed SPP1 secreted by FLSs promotes osteoclasts formation via PI3K/AKT signaling in collagen-induced arthritis. Regulation of Spp1 gene expression in FLSs may be a potential approach to treat RA bone damage in the joint microenvironment.
Collapse
|
47
|
Liu W, Han X, Li Q, Sun L, Wang J. Iguratimod ameliorates bleomycin-induced pulmonary fibrosis by inhibiting the EMT process and NLRP3 inflammasome activation. Biomed Pharmacother 2022; 153:113460. [DOI: 10.1016/j.biopha.2022.113460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022] Open
|
48
|
Recent advances in elucidating the genetic basis of systemic sclerosis. Curr Opin Rheumatol 2022; 34:295-301. [PMID: 35979692 DOI: 10.1097/bor.0000000000000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a complex autoimmune disorder that affects the connective tissue and causes severe vascular damage and fibrosis of the skin and internal organs. There are recent advances in the field that apply novel methods to high throughput genotype information of thousands of patients with SSc and provide promising results towards the use of genomic data to help SSc diagnosis and clinical care. RECENT FINDINGS This review addresses the development of the first SSc genomic risk score, which can contribute to differentiating SSc patients from healthy controls and other immune-mediated diseases. Moreover, we explore the implementation of data mining strategies on the results of genome-wide association studies to highlight subtype-specific HLA class II associations and a strong association of the HLA class I locus with SSc for the first time. Finally, the combination of genomic data with transcriptomics informed drug repurposing and genetic association studies in well characterized SSc patient cohorts identified markers of severe complications of the disease. SUMMARY Early diagnosis and clinical management of SSc and SSc-related complications are still challenging for rheumatologists. The development of predictive models and tools using genotype data may help to finally deliver personalized clinical care and treatment for patients with SSc in the near future.
Collapse
|
49
|
Assessment of disease outcome measures in systemic sclerosis. Nat Rev Rheumatol 2022; 18:527-541. [PMID: 35859133 DOI: 10.1038/s41584-022-00803-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 01/08/2023]
Abstract
The assessment of disease activity in systemic sclerosis (SSc) is challenging owing to its heterogeneous manifestations across multiple organ systems, the variable rate of disease progression and regression, and the relative paucity of patients in early-phase therapeutic trials. Despite some recent successes, most clinical trials have failed to show efficacy, underscoring the need for improved outcome measures linked directly to disease pathogenesis, particularly applicable for biomarker studies focused on skin disease. Current outcome measures in SSc-associated interstitial lung disease and SSc skin disease are largely adequate, although advancing imaging technology and the incorporation of skin mRNA biomarkers might provide opportunities for earlier detection of the therapeutic effect. Biomarkers can further inform pathogenesis, enabling early phase trials to act as reverse translational studies through the incorporation of routine high-throughput sequencing.
Collapse
|
50
|
Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct Target Ther 2022; 7:206. [PMID: 35773269 PMCID: PMC9247101 DOI: 10.1038/s41392-022-01070-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Fibrosis is characterized by the excessive extracellular matrix deposition due to dysregulated wound and connective tissue repair response. Multiple organs can develop fibrosis, including the liver, kidney, heart, and lung. Fibrosis such as liver cirrhosis, idiopathic pulmonary fibrosis, and cystic fibrosis caused substantial disease burden. Persistent abnormal activation of myofibroblasts mediated by various signals, such as transforming growth factor, platelet-derived growth factor, and fibroblast growh factor, has been recongized as a major event in the occurrence and progression of fibrosis. Although the mechanisms driving organ-specific fibrosis have not been fully elucidated, drugs targeting these identified aberrant signals have achieved potent anti-fibrotic efficacy in clinical trials. In this review, we briefly introduce the aetiology and epidemiology of several fibrosis diseases, including liver fibrosis, kidney fibrosis, cardiac fibrosis, and pulmonary fibrosis. Then, we summarise the abnormal cells (epithelial cells, endothelial cells, immune cells, and fibroblasts) and their interactions in fibrosis. In addition, we also focus on the aberrant signaling pathways and therapeutic targets that regulate myofibroblast activation, extracellular matrix cross-linking, metabolism, and inflammation in fibrosis. Finally, we discuss the anti-fibrotic drugs based on their targets and clinical trials. This review provides reference for further research on fibrosis mechanism, drug development, and clinical trials.
Collapse
|