1
|
Wu S, Li L, Wang X, Yan Z. Saliva and tongue microbiota in burning mouth syndrome: An exploratory study of potential roles. Oral Dis 2024; 30:5370-5378. [PMID: 38569071 DOI: 10.1111/odi.14934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES Burning mouth syndrome (BMS) is a chronic orofacial pain disorder with unclear etiology, in which the tongue is most commonly affected. This study aims to provide implication of the possible relationship between oral microbiota and the pathogenesis of BMS. MATERIALS AND METHODS Saliva and tongue swabs of 15 primary BMS patients and 10 healthy controls were collected and assessed by 16S rRNA gene amplicon sequencing. The microbiota compositions were compared and bioinformatic analysis was conducted. RESULTS Differences in microbiota compositions between BMS patients and healthy controls were revealed in both saliva and tongue samples. In saliva, Streptococcus, Rothia, and Neisseria were the predominant genus at the taxonomic level in BMS patients. In tongue samples, Prevotella, Streptococcus, and Neisseria were the dominant genus at the taxonomic level in BMS patients. LEfSe analysis and linear discriminant analysis score showed that Actinobacteria were the predominant phylum in saliva, and Selenomonas were enriched in the dorsum of the tongue of BMS patients. CONCLUSIONS This study for the first-time reported saliva and tongue microbiota profiles were distinguished from that of healthy controls, indicating a necessity for further research on the possible relationship between oral microbes and the pathogenesis of BMS.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Linman Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xu Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Zhimin Yan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
2
|
Busch A, Krause A, Rostock M. [Complementary and integrative medicine in cancer-related fatigue]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:1295-1305. [PMID: 39375219 PMCID: PMC11549166 DOI: 10.1007/s00103-024-03957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/16/2024] [Indexed: 10/09/2024]
Abstract
The majority of cancer patients experience fatigue during the course of their illness. Fatigue should not be seen as an inevitable consequence of cancer and its treatment. Cancer-related fatigue (CRF) is a multidimensional symptom complex that is influenced by a variety of factors. Complementary medicine approaches offer potentially promising strategies to address this fatigue and can therefore be a valuable addition to conventional therapies.In this narrative review, complementary medicine treatment approaches for tumor-associated fatigue are presented according to the historical development and current scientific evidence. The focus is on methods with the highest current evidence based on the recommendations of national and international guidelines. Therapeutic approaches from mind-body medicine, such as mindfulness-based stress reduction (MBSR), mindfulness-based cognitive therapy (MBCT), yoga, tai chi, and qigong, as well as acupuncture, acupressure, moxibustion, and phytotherapeutic treatment approaches are presented.In Germany, the complementary therapies listed here are not generally covered by health insurances. However, a few clinics have developed comprehensive programs in mind-body medicine, for which cost coverage has already been obtained. As a result, complementary medical treatments for cancer-related fatigue that adhere to national and international guidelines are typically available only as private services or within the framework of study participation.
Collapse
Affiliation(s)
- Alina Busch
- Universitäres Cancer Center Hamburg, II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Sektion Pneumologie), Universitätsklinikum Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | - Alena Krause
- Universitäres Cancer Center Hamburg, II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Sektion Pneumologie), Universitätsklinikum Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland
| | - Matthias Rostock
- Universitäres Cancer Center Hamburg, II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Sektion Pneumologie), Universitätsklinikum Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.
| |
Collapse
|
3
|
Graves BS, Patel M, Newgent H, Parvathy G, Nasri A, Moxam J, Gill GS, Sawhney V, Gupta M. Chronic Fatigue Syndrome: Diagnosis, Treatment, and Future Direction. Cureus 2024; 16:e70616. [PMID: 39483544 PMCID: PMC11526618 DOI: 10.7759/cureus.70616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Myalgic encephalomyelitis (ME), also known as chronic fatigue syndrome (CFS), is a complex, chronic condition marked by persistent, debilitating fatigue that is not alleviated by rest and often worsens with physical or mental exertion. Along with fatigue, patients experience various symptoms, including cognitive impairments, post-exertional malaise, muscle and joint pain, sleep disturbances, and immune system dysfunction. Diagnosing CFS/ME is challenging due to the absence of definitive biomarkers, the overlap of symptoms with other conditions, and the lack of standardized diagnostic criteria. This comprehensive literature review aims to contribute to the understanding of CFS/ME, including its diagnosis, pathophysiology, differential diagnosis, treatment, and future directions.
Collapse
Affiliation(s)
- B Sue Graves
- Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, USA
| | - Mitsu Patel
- Medicine, Smt. Nathiba Hargovandas Lakhmichand Municipal Medical College, Ahmedabad, IND
| | - Hailey Newgent
- Occupational Therapy, University of Florida, Jacksonville, USA
| | - Gauri Parvathy
- Medicine, Tbilisi State Medical University, Tbilisi, GEO
| | - Ahmad Nasri
- Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA
| | - Jillene Moxam
- Orthopaedics, University of Florida College of Medicine, Jacksonville, USA
| | - Gurnoor S Gill
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, USA
| | - Vivek Sawhney
- Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA
| | - Manish Gupta
- Technology and Clinical Trials, Advanced Research, Deerfield Beach, USA
| |
Collapse
|
4
|
Escoda T, Retornaz F, Plauzolles A, Halfon P. [SIBO, from myth to reality]. Rev Med Interne 2024:S0248-8663(24)00735-5. [PMID: 39237384 DOI: 10.1016/j.revmed.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024]
Abstract
Digestive functional disorders are among the most frequent reasons for medical consultation and a significant source of medical wandering. Therapeutic management of these patients is difficult, particularly due to the absence of specific treatment linked to an incomplete understanding of the pathophysiological mechanisms. In a certain number of these patients, the symptoms are accompanied by a small intestinal bacterial overgrowth (SIBO). This entity, historically identified in specific post-surgical situations, seems finally very common and associated with very diverse pathologies. The diagnosis of SIBO is currently being made more accessible through the development of breathing tests. Therapeutic management, based mainly on antibiotic therapy and diet, remains to date largely empirical because it is based on few studies but the growing interest in SIBO should make it possible to identify effective treatments during robust clinical trials.
Collapse
Affiliation(s)
- Thomas Escoda
- Service de médecine interne et maladie infectieuse, hôpital européen, 6, rue Désirée-Clary, 13003 Marseille, France.
| | - Frédérique Retornaz
- Service de médecine interne et maladie infectieuse, hôpital européen, 6, rue Désirée-Clary, 13003 Marseille, France
| | - Anne Plauzolles
- Service de recherche clinique, laboratoire européen Alphabio Biogroup, Marseille, France
| | - Philippe Halfon
- Service de médecine interne et maladie infectieuse, hôpital européen, 6, rue Désirée-Clary, 13003 Marseille, France; Service de recherche clinique, laboratoire européen Alphabio Biogroup, Marseille, France
| |
Collapse
|
5
|
Bourgonje AR, Hörstke NV, Fehringer M, Innocenti G, Vogl T. Systemic antibody responses against gut microbiota flagellins implicate shared and divergent immune reactivity in Crohn's disease and chronic fatigue syndrome. MICROBIOME 2024; 12:141. [PMID: 39075559 DOI: 10.1186/s40168-024-01858-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/12/2024] [Indexed: 07/31/2024]
Abstract
BACKGROUND Elevated systemic antibody responses against gut microbiota flagellins are observed in both Crohn's disease (CD) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), suggesting potential serological biomarkers for diagnosis. However, flagellin-specific antibody repertoires and functional roles in the diseases remain incompletely understood. Bacterial flagellins can be categorized into three types depending on their interaction with toll-like receptor 5 (TLR5): (1) "stimulator" and (2) "silent" flagellins, which bind TLR5 through a conserved N-terminal motif, with only stimulators activating TLR5 (involving a C-terminal domain); (3) "evader" flagellins of pathogens, which entirely circumvent TLR5 activation via mutations in the N-terminal TLR5 binding motif. RESULTS Here, we show that both CD and ME/CFS patients exhibit elevated antibody responses against distinct regions of flagellins compared to healthy individuals. N-terminal binding to Lachnospiraceae flagellins was comparable in both diseases, while C-terminal binding was more prevalent in CD. N-terminal antibody-bound flagellin sequences were similar across CD and ME/CFS, resembling "stimulator" and "silent" flagellins more than evaders. However, C-terminal antibody-bound flagellins showed a higher resemblance to the stimulator than to silent flagellins in CD, which was not observed in ME/CFS. CONCLUSIONS These findings suggest that antibody binding to the N-terminal domain of stimulator and silent flagellins may impact TLR5 activation in both CD and ME/CFS patients. Blocking this interaction could lead commensal bacteria to be recognized as pathogenic evaders, potentially contributing to dysregulation in both diseases. Furthermore, elevated antibody binding to the C-terminal domain of stimulator flagellins in CD may explain pathophysiological differences between the diseases. Overall, these results highlight the diagnostic potential of these antibody responses and lay a foundation for deeper mechanistic studies of flagellin/TLR5 interactions and their impact on innate/adaptive immunity balance.
Collapse
Affiliation(s)
- Arno R Bourgonje
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nicolai V Hörstke
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michaela Fehringer
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Gabriel Innocenti
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Kavyani B, Ahn SB, Missailidis D, Annesley SJ, Fisher PR, Schloeffel R, Guillemin GJ, Lovejoy DB, Heng B. Dysregulation of the Kynurenine Pathway, Cytokine Expression Pattern, and Proteomics Profile Link to Symptomology in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). Mol Neurobiol 2024; 61:3771-3787. [PMID: 38015302 DOI: 10.1007/s12035-023-03784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Dysregulation of the kynurenine pathway (KP) is believed to play a significant role in neurodegenerative and cognitive disorders. While some evidence links the KP to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), further studies are needed to clarify the overall picture of how inflammation-driven KP disturbances may contribute to symptomology in ME/CFS. Here, we report that plasma levels of most bioactive KP metabolites differed significantly between ME/CFS patients and healthy controls in a manner consistent with their known contribution to symptomology in other neurological disorders. Importantly, we found that enhanced production of the first KP metabolite, kynurenine (KYN), correlated with symptom severity, highlighting the relationship between inflammation, KP dysregulation, and ME/CFS symptomology. Other significant changes in the KP included lower levels of the downstream KP metabolites 3-HK, 3-HAA, QUIN, and PIC that could negatively impact cellular energetics. We also rationalized KP dysregulation to changes in the expression of inflammatory cytokines and, for the first time, assessed levels of the iron (Fe)-regulating hormone hepcidin that is also inflammation-responsive. Levels of hepcidin in ME/CFS decreased nearly by half, which might reflect systemic low Fe levels or possibly ongoing hypoxia. We next performed a proteomics screen to survey for other significant differences in protein expression in ME/CFS. Interestingly, out of the seven most significantly modulated proteins in ME/CFS patient plasma, 5 proteins have roles in maintaining gut health, which considering the new appreciation of how gut microbiome and health modulates systemic KP could highlight a new explanation of symptomology in ME/CFS patients and potential new prognostic biomarker/s and/or treatment avenues.
Collapse
Affiliation(s)
- Bahar Kavyani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Daniel Missailidis
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Sarah J Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Paul R Fisher
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | | | - Gilles J Guillemin
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David B Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Xiao X, Li K, Song Z. Comment on the role of oral microbiota in burning mouth syndrome. Oral Dis 2024. [PMID: 38887826 DOI: 10.1111/odi.15053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Xuan Xiao
- Department of Oral Mucosa, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Kaiyi Li
- Department of Oral Mucosa, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Zhifeng Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Jurek JM, Castro-Marrero J. A Narrative Review on Gut Microbiome Disturbances and Microbial Preparations in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Implications for Long COVID. Nutrients 2024; 16:1545. [PMID: 38892479 PMCID: PMC11173566 DOI: 10.3390/nu16111545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Myalgic encephalomyelitis, also known as chronic fatigue syndrome (ME/CFS), and long COVID are complex, multisystemic and long-term disabling conditions characterized by debilitating post-exertional malaise and other core symptoms related to immune dysregulation resultant from post-viral infection, including mitochondrial dysfunction, chronic neuroinflammation and gut dysbiosis. The reported associations between altered microbiota composition and cardinal symptoms of ME/CFS and long COVID suggest that the use of microbial preparations, such as probiotics, by restoring the homeostasis of the brain-immune-gut axis, may help in the management of symptoms in both conditions. Therefore, this review aims to investigate the implications of alerted gut microbiome and assess the evidence supporting use of microbial-based preparations, including probiotics, synbiotics, postbiotics alone and/or in combination with other nutraceuticals in the management of fatigue, inflammation and neuropsychiatric and gastrointestinal symptoms among patients with ME/CFS and long COVID.
Collapse
Affiliation(s)
- Joanna Michalina Jurek
- Unit of Research in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID, Rheumatology Research Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
- Grup de Recerca GEMMAIR (AGAUR)-Medicina Aplicada (URV), Departament de Medicina i Cirurgia, Institut d’Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43005 Tarragona, Spain
| | - Jesus Castro-Marrero
- Unit of Research in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and Long COVID, Rheumatology Research Division, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain;
| |
Collapse
|
9
|
Yang X, Cai S, Gong J, Zhang J, Lian M, Chen R, Zhou L, Bai P, Liu B, Zhuang M, Tan H, Xu J, Li M. Characterization of gut microbiota in patients with stage 3-4 chronic kidney disease: a retrospective cohort study. Int Urol Nephrol 2024; 56:1751-1762. [PMID: 38085410 DOI: 10.1007/s11255-023-03893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/16/2023] [Indexed: 04/09/2024]
Abstract
PURPOSE Multiple factors, such as dietary patterns, pharmaceutical interventions, and exposure to harmful substances, possess the capacity to influence gut microbiota composition. Gut microbiota dysbiosis has emerged as a significant contributor to the progression of chronic kidney disease (CKD) and its associated complications. By comprehending the intricacies of the intestinal microbiota, this research endeavor holds the potential to offer novel perspectives on potential strategies for mitigating CKD progression. METHODS In this retrospective analysis, we assessed gut microbiota composition in CKD patients. Fecal samples were collected from a cohort of 44 patients with stage 3-4 CKD, alongside a control group consisting of 132 healthy volunteers. Subsequently, 16 s rDNA sequencing was conducted to examine the composition of the gut microbiota. RESULTS Our findings revealed significant alterations in the diversity of intestinal microbiota in fecal samples between patients with stage 3-4 CKD and healthy subjects. Among the 475 bacterial genera, 164 were shared, while 242 dominant genera were exclusive to healthy subjects and 69 to CKD stages 3-4 samples. Notably, healthy volunteers exhibited a prevalence of intestinal Firmicutes and Bacteroidetes, whereas stage 3-4 CKD patients displayed higher abundance of Proteobacteria and Actinobacteria. The presence of uncultured Coprobacillus sp. notably contributed to distinguishing between the two groups. ROC curve analysis identified distinct microbiota with superior diagnostic efficacy for discriminating stage 3-4 CKD patients from healthy individuals. Metabolic pathway analysis revealed differing dominant pathways between the two groups-the NADH dehydrogenase pathway in healthy individuals and the phosphate acetyltransferase pathway in stage 3-4 CKD patients. Moreover, the CKD cohort displayed a higher proportion of Gram-negative bacteria and facultative anaerobes. CONCLUSIONS In conclusion, our study underscores the profound influence of gut microbiota dysbiosis on CKD progression. The distinct microbial profiles observed in CKD patients highlight the potential efficacy of microbiota-based interventions in mitigating CKD advancement.
Collapse
Affiliation(s)
- Xiali Yang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Shiying Cai
- Department of Nursing, Shenzhen Hospital of Southern Medical University, Shenzhen, 518101, People's Republic of China
- School of Nursing, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinsheng Gong
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Jun Zhang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Minling Lian
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Rufu Chen
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Linghui Zhou
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Peijin Bai
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Bo Liu
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Minting Zhuang
- Department of Nephrology, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, People's Republic of China
| | - Honghong Tan
- Department of VIP Clinic, Shanghai East Hospital, Tongji University School of Medicine, No.150 Jimo Road, Shanghai, 200120, People's Republic of China.
| | - Juan Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China.
| | - Meizhen Li
- Department of Nutrition, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, Fujian Province, People's Republic of China.
| |
Collapse
|
10
|
Jiang S, Du L, Zhao Q, Su S, Huang S, Zhang J. Tropical postbiotics alleviate the disorders in the gut microbiota and kidney damage induced by ochratoxin A exposure. Food Funct 2024; 15:3980-3992. [PMID: 38482731 DOI: 10.1039/d3fo05213c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ochratoxin A (OTA), commonly found in various foods, significantly impacts the health of humans and animals, especially their kidneys. Our study explores OTA's effects on the gut microbiota and kidney damage while examining how postbiotics offer protection. Using metagenomic sequencing, we observed that OTA increased the potential gut pathogens such as Alistipes, elevating detrimental metabolites and inflammation. Also, OTA inhibited the Nrf2/HO-1 pathway, reducing kidney ROS elimination and leading to cellular ferroptosis and subsequent kidney damage. Postbiotics mitigate OTA's effects by downregulating the abundance of the assimilatory sulfate reduction IV pathway and virulence factors associated with iron uptake and relieving the inhibition of OTA on Nrf2/HO-1, restoring ROS-clearing capabilities and thereby alleviating chronic OTA-induced kidney damage. Understanding the OTA-gut-kidney link provides new approaches for preventing kidney damage, with postbiotics showing promise as a preventive treatment.
Collapse
Affiliation(s)
- Shuaiming Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Lingwei Du
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Qian Zhao
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shunyong Su
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| | - Shi Huang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China.
| | - Jiachao Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
- One Health Institute, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
11
|
Pietrangelo T, Cagnin S, Bondi D, Santangelo C, Marramiero L, Purcaro C, Bonadio RS, Di Filippo ES, Mancinelli R, Fulle S, Verratti V, Cheng X. Myalgic encephalomyelitis/chronic fatigue syndrome from current evidence to new diagnostic perspectives through skeletal muscle and metabolic disturbances. Acta Physiol (Oxf) 2024; 240:e14122. [PMID: 38483046 DOI: 10.1111/apha.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 04/17/2024]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a demanding medical condition for patients and society. It has raised much more public awareness after the COVID-19 pandemic since ME/CFS and long-COVID patients share many clinical symptoms such as debilitating chronic fatigue. However, unlike long COVID, the etiopathology of ME/CFS remains a mystery despite several decades' research. This review moves from pathophysiology of ME/CFS through the compelling evidence and most interesting hypotheses. It focuses on the pathophysiology of skeletal muscle by proposing the hypothesis that skeletal muscle tissue offers novel opportunities for diagnosis and treatment of this syndrome and that new evidence can help resolve the long-standing debate on terminology.
Collapse
Affiliation(s)
- Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padua, Padova, Italy
- CIR-Myo Myology Center, University of Padua, Padova, Italy
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Cristina Purcaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Ester Sara Di Filippo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Rosa Mancinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Stefania Fulle
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
- IIM-Interuniversity Institute of Myology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittore Verratti
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
12
|
Stallmach A, Quickert S, Puta C, Reuken PA. The gastrointestinal microbiota in the development of ME/CFS: a critical view and potential perspectives. Front Immunol 2024; 15:1352744. [PMID: 38605969 PMCID: PMC11007072 DOI: 10.3389/fimmu.2024.1352744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Like other infections, a SARS-CoV-2 infection can also trigger Post-Acute Infection Syndromes (PAIS), which often progress into myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS, characterized by post-exercise malaise (PEM), is a severe multisystemic disease for which specific diagnostic markers or therapeutic concepts have not been established. Despite numerous indications of post-infectious neurological, immunological, endocrinal, and metabolic deviations, the exact causes and pathophysiology remain unclear. To date, there is a paucity of data, that changes in the composition and function of the gastrointestinal microbiota have emerged as a potential influencing variable associated with immunological and inflammatory pathways, shifts in ME/CFS. It is postulated that this dysbiosis may lead to intestinal barrier dysfunction, translocation of microbial components with increased oxidative stress, and the development or progression of ME/CFS. In this review, we detailed discuss the findings regarding alterations in the gastrointestinal microbiota and its microbial mediators in ME/CFS. When viewed critically, there is currently no evidence indicating causality between changes in the microbiota and the development of ME/CFS. Most studies describe associations within poorly defined patient populations, often combining various clinical presentations, such as irritable bowel syndrome and fatigue associated with ME/CFS. Nevertheless, drawing on analogies with other gastrointestinal diseases, there is potential to develop strategies aimed at modulating the gut microbiota and/or its metabolites as potential treatments for ME/CFS and other PAIS. These strategies should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
| | - Philipp A. Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
13
|
König RS, Paris DH, Sollberger M, Tschopp R. Identifying the mental health burden in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) patients in Switzerland: A pilot study. Heliyon 2024; 10:e27031. [PMID: 38434357 PMCID: PMC10907781 DOI: 10.1016/j.heliyon.2024.e27031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/09/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
Background Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating chronic disease of significant public health and clinical importance. It affects multiple systems in the body and has neuro-immunological characteristics. The disease is characterized by a prominent symptom called post-exertional malaise (PEM), as well as abnormalities in the immune-inflammatory pathways, mitochondrial dysfunctions and disturbances in neuroendocrine pathways. The purpose of this study was to evaluate the impact of ME/CFS on the mental health and secondary psychosocial manifestations of patients, as well as their coping mechanisms. Method In 2021, a descriptive cross-sectional study was conducted in Switzerland. A self-administered paper questionnaire survey was used to gather data from 169 individuals diagnosed with ME/CFS. Results The majority of the patients (90.5%) reported a lack of understanding of their disease, resulting in patients avoiding talking about the disease due to disbelief, trivialization and avoidance of negative reactions. They felt most supported by close family members (67.1%). Two thirds of the patients (68.5%) experienced stigmatization. ME/CFS had a negative impact on mental health in most patients (88.2%), leading to sadness (71%), hopelessness for relief (66.9%), suicidal thoughts (39.3%) and secondary depression (14.8%). Half of the male patients experienced at least one suicidal thought since clinical onset. Factors significantly associated with depression were the lack of cure, disabilities associated with ME/CFS, social isolation and the fact that life was not worth anymore with ME/CFS. The three main factors contributing to suicidal thoughts were (i) being told the disease was only psychosomatic (89.5%), (ii) being at the end of one's strength (80.7%) and (iii) not feeling being understood by others (80.7%). Conclusion This study provided first time significant insights into the mental and psychological well-being of ME/CFS patients in Switzerland. The findings highlight the substantial experiences of stigmatization, secondary depression and suicidal thoughts compared to other chronic diseases, calling for an urgent need in Switzerland to improve ME/CFS patient's medical, psychological and social support, in order to alleviate the severe mental health burden associated with this overlooked somatic disease.
Collapse
Affiliation(s)
- Rahel Susanne König
- Faculty of Medicine, University of Basel, Klingelbergstrasse 61, 4056, Basel, Switzerland
| | - Daniel Henry Paris
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of University of Basel, Switzerland
| | - Marc Sollberger
- Memory Clinic, University Center for Medicine of Aging Basel, Felix Platter-Hospital, Basel, Switzerland
- Department of Neurology, University Hospital Basel and University of Basel, 4002, Basel, Switzerland
| | - Rea Tschopp
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of University of Basel, Switzerland
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| |
Collapse
|
14
|
English C, Simpson DB, Billinger SA, Churilov L, Coupland KG, Drummond A, Kuppuswamy A, Kutlubaev MA, Lerdal A, Mahmood A, Moseley GL, Pittman QJ, Riley EA, Sutherland BA, Wong CHY, Corbett D, Mead G. A roadmap for research in post-stroke fatigue: Consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable. Int J Stroke 2024; 19:133-144. [PMID: 37424273 PMCID: PMC10811972 DOI: 10.1177/17474930231189135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023]
Abstract
RATIONALE Fatigue affects almost half of all people living with stroke. Stroke survivors rank understanding fatigue and how to reduce it as one of the highest research priorities. METHODS We convened an interdisciplinary, international group of clinical and pre-clinical researchers and lived experience experts. We identified four priority areas: (1) best measurement tools for research, (2) clinical identification of fatigue and potentially modifiable causes, (3) promising interventions and recommendations for future trials, and (4) possible biological mechanisms of fatigue. Cross-cutting themes were aphasia and the voice of people with lived experience. Working parties were formed and structured consensus building processes were followed. RESULTS We present 20 recommendations covering outcome measures for research, development, and testing of new interventions and priority areas for future research on the biology of post-stroke fatigue. We developed and recommend the use of the Stroke Fatigue Clinical Assessment Tool. CONCLUSIONS By synthesizing current knowledge in post-stroke fatigue across clinical and pre-clinical fields, our work provides a roadmap for future research into post-stroke fatigue.
Collapse
Affiliation(s)
- Coralie English
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Dawn B Simpson
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Centre, University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS, USA
| | - Leonid Churilov
- Department of Medicine (RMH), University of Melbourne, Heidelberg, VIC, Australia
| | - Kirsten G Coupland
- Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Avril Drummond
- School of Health Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Anners Lerdal
- Department of Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Amreen Mahmood
- Faculty of Health, Health and Education, Manchester Metropolitan University, Manchester, UK
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Adelaide, SA, Australia
| | - Quentin J Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ellyn A Riley
- Department of Communication Sciences and Disorders, Syracuse University, Syracuse, NY, USA
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Connie HY Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa Roger Guindon Hall, Ottawa, ON, Canada
| | - Gillian Mead
- Ageing and Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
15
|
Carrasco-Querol N, Cabricano-Canga L, Bueno Hernández N, Gonçalves AQ, Caballol Angelats R, Pozo Ariza M, Martín-Borràs C, Montesó-Curto P, Castro Blanco E, Dalmau Llorca MR, Aguilar Martín C. Nutrition and Chronobiology as Key Components of Multidisciplinary Therapeutic Interventions for Fibromyalgia and Associated Chronic Fatigue Syndrome: A Narrative and Critical Review. Nutrients 2024; 16:182. [PMID: 38257075 PMCID: PMC10818822 DOI: 10.3390/nu16020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Fibromyalgia (FM) is often accompanied by chronic fatigue syndrome (CFS). It is a poorly understood disorder that mainly affects women and leads to chronic pain, fatigue, and insomnia, among other symptoms, which decrease quality of life. Due to the inefficiency of current pharmacological treatments, increasing interest is being directed towards non-pharmacological multicomponent therapies. However, nutrition and chronobiology are often overlooked when developing multicomponent therapies. This narrative and critical review explore the relevance of nutritional and chronobiological strategies in the therapeutic management of FM and the often-associated CFS. Reviewed literature offers scientific evidence for the association of dietary habits, nutrient levels, body composition, gut microbiota imbalance, chronobiological alterations, and their interrelation with the development and severity of symptoms. This review highlights the key role of nutrition and chronobiology as relevant and indispensable components in a multidisciplinary approach to FM and CFS.
Collapse
Affiliation(s)
- Noèlia Carrasco-Querol
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
| | | | - Nerea Bueno Hernández
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
| | - Alessandra Queiroga Gonçalves
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
- Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), 08007 Barcelona, Spain
| | - Rosa Caballol Angelats
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain; (R.C.A.); (P.M.-C.); (M.R.D.L.)
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain
| | - Macarena Pozo Ariza
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
| | - Carme Martín-Borràs
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
- Departament de Fisioteràpia, Facultat de Ciencies de la Salut Blanquerna, Universitat Ramón Llull, 08025 Barcelona, Spain
| | - Pilar Montesó-Curto
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain; (R.C.A.); (P.M.-C.); (M.R.D.L.)
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain
- Departament de Medicina i Cirurgia, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili (URV), 43201 Reus, Spain
| | - Elisabet Castro Blanco
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
| | - Maria Rosa Dalmau Llorca
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 08007 Barcelona, Spain; (R.C.A.); (P.M.-C.); (M.R.D.L.)
- Servei d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain
| | - Carina Aguilar Martín
- Unitat de Suport a la Recerca Terres de l’Ebre, Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol I Gurina (IDIAPJGol), 43500 Tortosa, Spain; (N.B.H.); (A.Q.G.); (M.P.A.); (C.M.-B.); (E.C.B.); (C.A.M.)
- Unitat d’Avaluació i Recerca, Direcció d’Atenció Primària Terres de l’Ebre i Gerència Territorial Terres de l’Ebre, Institut Català de la Salut (ICS), 43500 Tortosa, Spain
| |
Collapse
|
16
|
English C, Simpson DB, Billinger SA, Churilov L, Coupland KG, Drummond A, Kuppuswamy A, Kutlubaev MA, Lerdal A, Mahmood A, Moseley GL, Pittman QJ, Riley EA, Sutherland BA, Wong CHY, Corbett D, Mead G. A roadmap for research in post-stroke fatigue: Consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable. Neurorehabil Neural Repair 2024; 38:7-18. [PMID: 37837346 PMCID: PMC10798034 DOI: 10.1177/15459683231209170] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
RATIONALE Fatigue affects almost half of all people living with stroke. Stroke survivors rank understanding fatigue and how to reduce it as one of the highest research priorities. METHODS We convened an interdisciplinary, international group of clinical and pre-clinical researchers and lived experience experts. We identified four priority areas: (1) best measurement tools for research, (2) clinical identification of fatigue and potentially modifiable causes, (3) promising interventions and recommendations for future trials, and (4) possible biological mechanisms of fatigue. Cross-cutting themes were aphasia and the voice of people with lived experience. Working parties were formed and structured consensus building processes were followed. RESULTS We present 20 recommendations covering outcome measures for research, development, and testing of new interventions and priority areas for future research on the biology of post-stroke fatigue. We developed and recommend the use of the Stroke Fatigue Clinical Assessment Tool. CONCLUSIONS By synthesizing current knowledge in post-stroke fatigue across clinical and pre-clinical fields, our work provides a roadmap for future research into post-stroke fatigue.
Collapse
Affiliation(s)
- Coralie English
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Dawn B Simpson
- School of Health Sciences, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Centre, University of Kansas Alzheimer’s Disease Research Centre, Kansas City, KS, USA
| | - Leonid Churilov
- Department of Medicine (RMH), University of Melbourne, Heidelberg, VIC, Australia
| | - Kirsten G Coupland
- Heart and Stroke Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Avril Drummond
- School of Health Sciences, University of Nottingham, Nottingham, UK
| | | | | | - Anners Lerdal
- Department of Interdisciplinary Health Sciences, Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway
- Research Department, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Amreen Mahmood
- Faculty of Health, Health and Education, Manchester Metropolitan University, Manchester, UK
| | - G Lorimer Moseley
- IIMPACT in Health, University of South Australia, Adelaide, SA, Australia
| | - Quentin J Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Ellyn A Riley
- Department of Communication Sciences and Disorders, Syracuse University, Syracuse, NY, USA
| | - Brad A Sutherland
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Connie HY Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Dale Corbett
- Department of Cellular and Molecular Medicine, University of Ottawa Roger Guindon Hall, Ottawa, ON, Canada
| | - Gillian Mead
- Ageing and Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Jason LA, Natelson BH, Bonilla H, Sherif ZA, Vernon SD, Verduzco Gutierrez M, O’Brien L, Taylor E. What Long COVID investigators can learn from four decades of ME/CFS research. BRAIN BEHAVIOR AND IMMUNITY INTEGRATIVE 2023; 4:100022. [DOI: 10.1016/j.bbii.2023.100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
|
18
|
Chang H, Kuo CF, Yu TS, Ke LY, Hung CL, Tsai SY. Increased risk of chronic fatigue syndrome following infection: a 17-year population-based cohort study. J Transl Med 2023; 21:804. [PMID: 37951920 PMCID: PMC10638797 DOI: 10.1186/s12967-023-04636-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Previous serological studies have indicated an association between viruses and atypical pathogens and Chronic Fatigue Syndrome (CFS). This study aims to investigate the correlation between infections from common pathogens, including typical bacteria, and the subsequent risk of developing CFS. The analysis is based on data from Taiwan's National Health Insurance Research Database. METHODS From 2000 to 2017, we included a total of 395,811 cases aged 20 years or older newly diagnosed with infection. The cases were matched 1:1 with controls using a propensity score and were followed up until diagnoses of CFS were made. RESULTS The Cox proportional hazards regression analysis was used to estimate the relationship between infection and the subsequent risk of CFS. The incidence density rates among non-infection and infection population were 3.67 and 5.40 per 1000 person-years, respectively (adjusted hazard ratio [HR] = 1.5, with a 95% confidence interval [CI] 1.47-1.54). Patients infected with Varicella-zoster virus, Mycobacterium tuberculosis, Escherichia coli, Candida, Salmonella, Staphylococcus aureus and influenza virus had a significantly higher risk of CFS than those without these pathogens (p < 0.05). Patients taking doxycycline, azithromycin, moxifloxacin, levofloxacin, or ciprofloxacin had a significantly lower risk of CFS than patients in the corresponding control group (p < 0.05). CONCLUSION Our population-based retrospective cohort study found that infection with common pathogens, including bacteria, viruses, is associated with an increased risk of developing CFS.
Collapse
Affiliation(s)
- Hsun Chang
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Feng Kuo
- Division of Infectious Diseases, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Teng-Shun Yu
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Liang-Yin Ke
- Medical Laboratory Science & Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Lieh Hung
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Shin-Yi Tsai
- Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan.
- Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205, USA.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, 104, Taiwan.
- Institute of Long-Term Care, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
19
|
Gu Y, You Y, Guo G, Xie F, Guan C, Xie C, Cheng Y, Ji Q, Yao F. Effect of Prolong-life-with-nine-turn-method (Yan Nian Jiu Zhuan) Qigong on fatigue and gastrointestinal function in patients with chronic fatigue syndrome: Study protocol for a randomized controlled trial. PLoS One 2023; 18:e0287287. [PMID: 37922308 PMCID: PMC10624268 DOI: 10.1371/journal.pone.0287287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/24/2023] [Indexed: 11/05/2023] Open
Abstract
INTRODUCTION Chronic fatigue syndrome (CFS) is a physical and mental disorder in which long-term fatigue is the main symptom. CFS patients are often accompanied by functional gastrointestinal diseases (FGIDs), which lead to decreased quality of life and increased fatigue. Prolong-life-with-nine-turn-method (PLWNT) is a kind of physical and mental exercise. Its operation includes adjusting the mind, breathing and cooperating with eight self-rubbing methods and one upper body rocking method. PLWNT was used to improve the digestive function in ancient China and to treat FGIDs such as functional dyspepsia and irritable bowel syndrome in modern times. Previous studies have shown that PLWNT can reduce fatigue in patients with CFS. But it is unclear whether the effect of PLWNT on CFS fatigue is related to gastrointestinal function. The aim of this study was to explore the relationship between PLWNT and fatigue and gastrointestinal function in patients with CFS. METHODS This study is a non-inferiority randomized controlled trial (RCT). The whole study period is 38 weeks, including 2 weeks of baseline evaluation, 12 weeks of intervention and 6 months of follow-up. Ninety-six CFS patients will be stratified random assigned to the intervention group (PLWNT) and the control group (cognitive behavior treatment) in the ratio of 1:1 through the random number table generated by SPSS. In the evaluation of results, Multidimensional Fatigue Inventory-20 (MFI-20), Gastrointestinal Symptom Rating Scale (GSRS), Bristol Stool Form Scale (BSFS), and Short Form 36 item health survey (SF-36) will be evaluated at week 0 (baseline), week 6 (midterm), week 12 (endpoint) and month 9 (follow up). The intestinal flora will be evaluated at week 0 (baseline) and week 12 (endpoint). The data results will be processed by statistical experts. The data analysis will be based on the intention to treat principle and per-protocol analysis. In the efficacy evaluation, repeated measurement analysis of variance will be used for data conforming to normal distribution or approximate normal distribution. The data which do not conform to the analysis of repeated measurement variance will be analyzed by the generalized estimation equation Linear discriminant analysis will be used to clarify the difference species of intestinal flora. The significance level sets as 5%. The safety of interventions will be evaluated after each treatment session. DISCUSSION This trial will provide evidence to PLWNT exerting positive effects on fatigue and gastrointestinal function of CFS. It will further explore whether the improvement of PLWNT on CFS fatigue is related to gastrointestinal function. TRIAL REGISTRATION The trial was registered at Chinese Clinical Trial Registry http://www.chictr.org.cn/showproj.aspx?proj=151456 (Registration No.: ChiCTR2200056530). Date: 2022-02-07.
Collapse
Affiliation(s)
- Yuanjia Gu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanli You
- Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Guangxin Guo
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangfang Xie
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chong Guan
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chaoqun Xie
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanbin Cheng
- YueYang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qing Ji
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fei Yao
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
20
|
Koleničová V, Vňuková MS, Anders M, Fišerová M, Raboch J, Ptáček R. A Review Article on Exercise Intolerance in Long COVID: Unmasking the Causes and Optimizing Treatment Strategies. Med Sci Monit 2023; 29:e941079. [PMID: 37897034 PMCID: PMC10619330 DOI: 10.12659/msm.941079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/20/2023] [Indexed: 10/29/2023] Open
Abstract
There is a growing body of research on SARS-CoV-2 (PASC), previously known as the post-COVID syndrome, a chronic condition characterized by symptoms that persist after SARS-CoV-2 infection. Among these symptoms, feelings of physical exhaustion and prolonged fatigue are particularly prevalent and can significantly impact patients' quality of life. These symptoms are associated with reduced overall physical capacity, decreased daily physical activity, malaise after intense training, and intolerance to physical activity (IFA). IFA, described as a reduced ability to perform physical activities typical for the patient's age, can often lead to a sedentary lifestyle. Prolonged physical inactivity can cause deterioration in the overall physical condition and disrupt mitochondrial function, triggering a vicious cycle of gradual symptom worsening. The underlying causes of PASC remain unclear; however, several biochemical mechanisms have been discussed to explain the body's energy depletion, and a multidisciplinary approach that combines physical and cognitive rehabilitation and lifestyle interventions such as exercise and diet modifications has been suggested to improve the overall health and well-being of PASC patients. This critical review aims to review the existing research on the possible causes and links among chronic fatigue, reduced physical activity, and exercise intolerance in patients with PASC. Further research into the underlying causes and treatment of PASC and the importance of developing individualized treatment is needed to address each patient's unique health requirements.
Collapse
|
21
|
Lacasa M, Alegre-Martin J, Sentañes RS, Varela-Sende L, Jurek J, Castro-Marrero J. Yeast Beta-Glucan Supplementation with Multivitamins Attenuates Cognitive Impairments in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:4504. [PMID: 37960157 PMCID: PMC10647745 DOI: 10.3390/nu15214504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
This research aimed to examine the potential alleviative effects of beta-glucan administration on fatigue, unrefreshing sleep, anxiety/depression symptoms and health-related quality of life in ME/CFS. A 36-week unicenter, randomized, double-blind, placebo-controlled trial was conducted in 65 ME/CFS patients, who were randomly allocated to one of two arms to receive four capsules each one of 250 mg beta-glucan, 3.75 µg vitamin D3, 1.05 mg vitamin B6, and 7.5 mg zinc (n = 35), or matching placebo including only microcrystalline cellulose as an excipient (n = 30) once daily. The findings showed that the beta-glucan supplementation significantly improved cognitive fatigue (assessed with FIS-40 scores) after the 36-week treatment compared to the baseline (p = 0.0338). Taken together, this study presents the novel finding that yeast-derived beta-glucan may alleviate cognitive fatigue symptoms in ME/CFS. Thus, it offers valuable scientific insights into the potential use of yeast beta-glucan as a nutritional supplement and/or functional food to prevent or reduce cognitive dysfunction in patients with ME/CFS. Further interventions are warranted to validate these findings and also to delve deeper into the possible immunometabolic pathomechanisms of beta-glucans in ME/CFS.
Collapse
Affiliation(s)
- Marcos Lacasa
- E-Health Center, Universitat Oberta de Catalunya, 08018 Barcelona, Spain;
| | - Jose Alegre-Martin
- Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Research Unit, Division of Rheumatology, Vall d´Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.A.-M.); (R.S.S.); (J.J.)
| | - Ramon Sanmartin Sentañes
- Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Research Unit, Division of Rheumatology, Vall d´Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.A.-M.); (R.S.S.); (J.J.)
| | - Luisa Varela-Sende
- Clinical Research Department, VITAE Health Innovation, Montmeló, 08160 Barcelona, Spain;
| | - Joanna Jurek
- Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Research Unit, Division of Rheumatology, Vall d´Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.A.-M.); (R.S.S.); (J.J.)
| | - Jesus Castro-Marrero
- Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Research Unit, Division of Rheumatology, Vall d´Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain; (J.A.-M.); (R.S.S.); (J.J.)
| |
Collapse
|
22
|
LI C, YANG Y, FENG C, LI H, QU Y, WANG Y, WANG D, WANG Q, GUO J, SHI T, SUN X, WANG X, HOU Y, SUN Z, YANG T. Integrated 'omics analysis for the gut microbiota response to moxibustion in a rat model of chronic fatigue syndrome. J TRADIT CHIN MED 2023; 43:1176-1189. [PMID: 37946480 PMCID: PMC10623263 DOI: 10.19852/j.cnki.jtcm.20231018.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To observe the efficacy of moxibustion in the treatment of chronic fatigue syndrome (CFS) and explore the effects on gut microbiota and metabolic profiles. METHODS Forty-eight male Sprague-Dawley rats were randomly assigned to control group (Con), CFS model group (Mod, established by multiple chronic stress for 35 d), MoxA group (CFS model with moxibustion Shenque (CV8) and Guanyuan (CV4), 10 min/d, 28 d) and MoxB group (CFS model with moxibustion Zusanli (ST36), 10 min/d, 28 d). Open-field test (OFT) and Morris-water-maze test (MWMT) were determined for assessment the CFS model and the therapeutic effects of moxibustion.16S rRNA gene sequencing analysis based gut microbiota integrated untargeted liquid chromatograph-mass spectrometer (LC-MS) based fecal metabolomics were executed, as well as Spearman correlation analysis, was utilized to uncover the functional relevance between the potential metabolites and gut microbiota. RESULTS The results of our behavioral tests showed that moxibustion improved the performance of CFS rats in the OFT and the MWMT. Microbiome profiling analysis revealed that the gut microbiomes of CFS rats were less diverse with altered composition, including increases in pro-inflammatory species (such as Proteobacteria) and decreases in anti-inflammatory species (such as Bacteroides, Lactobacillus, Ruminococcus, and Prevotella). Moxibustion partially normalized these changes in the gut microbiota. Furthermore, CFS was associated with metabolic disorders, which were effectively ameliorated by moxibustion. This was demonstrated by the normalization of 33 microbiota-related metabolites, including mannose (P = 0.001), aspartic acid (P = 0.009), alanine (P = 0.007), serine (P = 0.000), threonine (P = 0.027), methionine (P = 0.023), 5-hydroxytryptamine (P = 0.008), alpha-linolenic acid (P = 0.003), eicosapentaenoic acid (P = 0.006), hypoxanthine (P = 0.000), vitamin B6 (P = 0.000), cholic acid (P = 0.013), and taurocholate (P = 0.002). Correlation analysis showed a significant association between the perturbed fecal microbiota and metabolite levels, with a notable negative relationship between LCA and Bacteroides. CONCLUSIONS In this study, we demonstrated that moxibustion has an antifatigue-like effect. The results from the 16S rRNA gene sequencing and metabolomics analysis suggest that the therapeutic effects of moxibustion on CFS are related to the regulation of gut microorganisms and their metabolites. The increase in Bacteroides and decrease in LCA may be key targets for the moxibustion treatment of CFS.
Collapse
Affiliation(s)
- Chaoran LI
- 1 Department of Acupuncture, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Yan YANG
- 2 Department of Chinese Medical Literature, College of Basic Medicine, Heilongjiang University of Chinese medicine, Harbin 150040, China
| | - Chuwen FENG
- 3 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Heng LI
- 7 Shanghai Applied Protein Technology Co., Ltd., Shanghai 200233, China
| | - Yuanyuan QU
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Yulin WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Delong WANG
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Qingyong WANG
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing GUO
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tianyu SHI
- 5 Graduate School, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xiaowei SUN
- 4 Department of Acupuncture, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xue WANG
- 8 Department of Acupuncture, Chongqing Changshou District People's Hospital, Chongqing 401220, China
| | - Yunlong HOU
- 9 College of integrated Chinese and Western Medicine, Hebei University of Chinese Medicine, and National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Hebei 050000, China
| | - Zhongren SUN
- 6 Department of Acupuncture, the Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Tiansong YANG
- 10 Department of Rehabilitation, the First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, and Traditional Chinese Medicine Informatics Key Laboratory of Heilongjiang Province, Harbin 150040, China
| |
Collapse
|
23
|
Martín F, Blanco-Suárez M, Zambrano P, Cáceres O, Almirall M, Alegre-Martín J, Lobo B, González-Castro AM, Santos J, Domingo JC, Jurek J, Castro-Marrero J. Increased gut permeability and bacterial translocation are associated with fibromyalgia and myalgic encephalomyelitis/chronic fatigue syndrome: implications for disease-related biomarker discovery. Front Immunol 2023; 14:1253121. [PMID: 37744357 PMCID: PMC10512706 DOI: 10.3389/fimmu.2023.1253121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background There is growing evidence of the significance of gastrointestinal complaints in the impairment of the intestinal mucosal barrier function and inflammation in fibromyalgia (FM) and in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). However, data on intestinal permeability and gut barrier dysfunction in FM and ME/CFS are still limited with conflicting results. This study aimed to assess circulating biomarkers potentially related to intestinal barrier dysfunction and bacterial translocation and their association with self-reported symptoms in these conditions. Methods A pilot multicenter, cross-sectional cohort study with consecutive enrolment of 22 patients with FM, 30 with ME/CFS and 26 matched healthy controls. Plasma levels of anti-beta-lactoglobulin antibodies (IgG anti-β-LGB), zonulin-1 (ZO-1), lipopolysaccharides (LPS), soluble CD14 (sCD14) and interleukin-1-beta (IL-1β) were assayed using ELISA. Demographic and clinical characteristics of the participants were recorded using validated self-reported outcome measures. The diagnostic accuracy of each biomarker was assessed using the receiver operating characteristic (ROC) curve analysis. Results FM patients had significantly higher levels of anti-β-LGB, ZO-1, LPS, and sCD14 than healthy controls (all P < 0.0001). In ME/CFS patients, levels of anti-β-LGB, ZO-1, LPS, and sCD14 were significantly higher than controls, but lower than in FM (all P < 0.01), while there was no significant difference in IL-1β level. In the FM and ME/CFS cohorts, both anti-β-LGB and ZO-1 correlated significantly with LPS and sCD14 (P < 0.001 for both). In the FM group, both anti-β-LGB and ZO-1 were correlated significantly with physical and mental health components on the SF-36 scale (P < 0.05); whereas IL-1β negatively correlated with the COMPASS-31 score (P < 0.05). In the ME/CFS cohort, ZO-1 was positively correlated with the COMPASS-31 score (P < 0.05). The ROC curve analysis indicated a strong ability of anti-β-LGB, ZO-1, LPS and sCD14 to predictively distinguish between FM and ME/CFS from healthy controls (P < 0.0001). Conclusion Biomarkers of intestinal barrier function and inflammation were associated with autonomic dysfunction assessed by COMPASS-31 scores in FM and ME/CFS respectively. Anti-β-LGB antibodies, ZO-1, LPS, and sCD14 may be putative predictors of intestinal barrier dysfunction in these cohorts. Further studies are needed to assess whether these findings are causal and can therefore be applied in clinical practice.
Collapse
Affiliation(s)
- Franz Martín
- Andalusian Centre of Molecular Biology and Regenerative Medicine (CABIMER), University Pablo Olavide, University of Seville, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Blanco-Suárez
- Central Sensitivity Unit (SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Paola Zambrano
- Central Sensitivity Unit (SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Oscar Cáceres
- Central Sensitivity Unit (SHC Medical), Hospital Viamed Santa Ángela de la Cruz, Seville, Spain
| | - Miriam Almirall
- Division of Rheumatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Alegre-Martín
- Division of Rheumatology, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Maria González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d’Hebron Research Institute, Vall d’Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joanna Jurek
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Castro-Marrero
- Rheumatology Research Group, Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Research Unit, Vall d´Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
24
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
25
|
Guo C, Yi B, Wu J, Lu J. The microbiome in post-acute infection syndrome (PAIS). Comput Struct Biotechnol J 2023; 21:3904-3911. [PMID: 37602232 PMCID: PMC10432703 DOI: 10.1016/j.csbj.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Post-Acute Infection Syndrome (PAIS) is a relatively new medical terminology that represents prolonged sequelae symptoms after acute infection by numerous pathogenic agents. Imposing a substantial public health burden worldwide, PASC (post-acute sequelae of COVID-19 infection) and ME/CFS (myalgic encephalomyelitis/chronic fatigue syndrome) are two of the most recognized and prevalent PAIS conditions. The presences of prior infections and similar symptom profiles in PAIS reflect a plausible common etiopathogenesis. The human microbiome is known to play an essential role in health and disease. In this review, we reviewed and summarized available research on oral and gut microbiota alterations in patients with different infections or PAIS conditions. We discussed key theories about the associations between microbiome dysbiosis and PAIS disease development, aiming to explore the mechanistic roles and potential functions the microbiome may have in the process. Additionally, we discuss the areas of knowledge gaps and propose the potential clinical applications of the microbiome for prevention and treatment of PAIS conditions.
Collapse
Affiliation(s)
- Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, USA
| | - Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Jianyong Wu
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, China
| |
Collapse
|
26
|
AlMuhaissen S, Abu Libdeh A, ElKhatib Y, Alshayeb R, Jaara A, Bardaweel SK. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and COVID-19: is there a connection? Curr Med Res Opin 2023; 39:1119-1126. [PMID: 37501626 DOI: 10.1080/03007995.2023.2242244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVES Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a chronic systemic disease that leads to neurological, immunological, autonomic, and energy metabolism dysfunction. COVID-19 has been reported to cause similar symptoms to ME/CFS. The study aims to investigate the prevalence of myalgic encephalomyelitis in patients post-COVID-19 infection by assessing acute and long-term COVID-19 symptoms. METHODS A cross-sectional questionnaire was developed based on the ME/CFS diagnostic criteria, as specified by the IOM clinical diagnostic criteria, and administered to participants with confirmed COVID-19 who are more than 18 years old and have BMI below 40 Kg/m2. Data from 437 participants were completed. RESULTS The current study results revealed that 8.1% of the study participants met the ME/CFS diagnostic criteria. Interestingly, 2.8 of the study participants were classified to have COVID-19 related to ME/CFS. While 4.6% of participants were determined to have disease-related fatigue, 0.7% of participants showed ME/CFS that was not related to COVID-19, and 3.7% of participants were considered to have long COVID-19. Almost one-fourth of the study participants had a family history of ME/CFS. The current study demonstrated that the prevalence of ME/CFS is similar to slightly higher than reported in the literature. CONCLUSION The presence of a relationship between ME/CFS and COVID-19 has been supported by the results of our study. Follow-up of COVID-19 patients is strongly recommended to ensure proper management of ME/CFS symptoms.
Collapse
Affiliation(s)
- Suha AlMuhaissen
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Amal Abu Libdeh
- Department of Pediatrics, School of Medicine, Al-Balqa Applied University, Amman, Jordan
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | - Yara ElKhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Rund Alshayeb
- King Hussein Medical Center, Royal Medical Services, Amman, Jordan
| | - Areej Jaara
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-ahliyya Amman University, Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
27
|
He G, Cao Y, Ma H, Guo S, Xu W, Wang D, Chen Y, Wang H. Causal Effects between Gut Microbiome and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Two-Sample Mendelian Randomization Study. Front Microbiol 2023; 14:1190894. [PMID: 37485509 PMCID: PMC10359717 DOI: 10.3389/fmicb.2023.1190894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Background Evidence from previous studies have implicated an important association between gut microbiota (GM) and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), but whether there is a definite causal relationship between GM and ME/CFS has not been elucidated. Method This study obtained instrumental variables of 211 GM taxa from the Genome Wide Association Study (GWAS), and mendelian randomization (MR) study was carried out to assess the effect of gut microbiota on ME/CFS risk from UK Biobank GWAS (2076 ME/CFS cases and 460,857 controls). Inverse variance weighted (IVW) was the primary method to analyze causality in this study, and a series of sensitivity analyses was performed to validate the robustness of the results. Results The inverse variance weighted (IVW) method indicated that genus Paraprevotella (OR:1.001, 95%CI:1.000-1.003, value of p < 0.05) and Ruminococca- ceae_UCG_014 (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) were positively associated with ME/CFS risk. Results from the weighted median method supported genus Paraprevotella (OR 1.003, 95% CI 1.000 to 1.005, value of p < 0.05) as a risk factor for ME/CFS. Conclusion This study reveals a causal relationship between genus paraprevotella, genus Ruminococcaceae_UCG_014 and ME/CFS, and our findings provide novel insights for further elucidating the developmental mechanisms mediated by the gut microbiota of ME/CFS.
Collapse
Affiliation(s)
- Gang He
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yu Cao
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Honghao Ma
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Siran Guo
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan, China
| | - Wangzi Xu
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Dai Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
| | - Yongquan Chen
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Houzhao Wang
- State Key laboratory of Molecular Vaccinology and Molecular Diagnostics. School of Public Health, Xiamen University, Xiamen, China
- Department of Clinical Laboratory, Xiang’an Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
28
|
Montagnani M, Bottalico L, Potenza MA, Charitos IA, Topi S, Colella M, Santacroce L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int J Mol Sci 2023; 24:10322. [PMID: 37373470 DOI: 10.3390/ijms241210322] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown that the gut microbiota influences behavior and, in turn, changes in the immune system associated with symptoms of depression or anxiety disorder may be mirrored by corresponding changes in the gut microbiota. Although the composition/function of the intestinal microbiota appears to affect the central nervous system (CNS) activities through multiple mechanisms, accurate epidemiological evidence that clearly explains the connection between the CNS pathology and the intestinal dysbiosis is not yet available. The enteric nervous system (ENS) is a separate branch of the autonomic nervous system (ANS) and the largest part of the peripheral nervous system (PNS). It is composed of a vast and complex network of neurons which communicate via several neuromodulators and neurotransmitters, like those found in the CNS. Interestingly, despite its tight connections to both the PNS and ANS, the ENS is also capable of some independent activities. This concept, together with the suggested role played by intestinal microorganisms and the metabolome in the onset and progression of CNS neurological (neurodegenerative, autoimmune) and psychopathological (depression, anxiety disorders, autism) diseases, explains the large number of investigations exploring the functional role and the physiopathological implications of the gut microbiota/brain axis.
Collapse
Affiliation(s)
- Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Lucrezia Bottalico
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Maria Assunta Potenza
- Department of Precision and Regenerative Medicine and Ionian Area-Section of Pharmacology, School of Medicine, University of Bari "Aldo Moro", Policlinico University Hospital of Bari, Piazza G. Cesare 11, 70124 Bari, Italy
| | - Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Division, Maugeri Clinical Scientific Research Institutes (IRCCS), 70124 Bari, Italy
| | - Skender Topi
- School of Technical Medical Sciences, "Alexander Xhuvani" University of Elbasan, 3001-3006 Elbasan, Albania
| | - Marica Colella
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Microbiology and Virology Unit, School of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
29
|
Boles S, Ashok SR. Pre-assessment and management of long COVID patients requiring elective surgery: challenges and guidance. Perioper Med (Lond) 2023; 12:20. [PMID: 37277879 PMCID: PMC10241122 DOI: 10.1186/s13741-023-00305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023] Open
Abstract
Whilst most patients infected with COVID-19 make a full recovery, around 1 in 33 patients in the UK report ongoing symptoms post-infection, termed 'long COVID'. Studies have demonstrated that infection with early COVID-19 variants increases postoperative mortality and pulmonary complications for around 7 weeks after acute infection. Furthermore, this increased risk persists for those with ongoing symptoms beyond 7 weeks. Patients with long COVID may therefore also be at increased postoperative risk, and despite the significant prevalence of long COVID, there are minimal guidelines on how best to assess and manage these patients perioperatively. Long COVID shares several clinical and pathophysiological similarities with conditions such as myalgic encephalitis/chronic fatigue syndrome and postural tachycardia syndrome; however, there are no current guidelines for the preoperative management of these patients to help develop something similar for long COVID patients. Developing guidelines for long COVID patients is further complicated by its heterogenous presentation and pathology. These patients can have persistent abnormalities on pulmonary function tests and echocardiography 3 months after acute infection, correlating with a reduced functional capacity. Conversely, some long COVID patients can continue to experience symptoms of dyspnoea and fatigue despite normal pulmonary function tests and echocardiography, yet demonstrating significantly reduced aerobic capacity on cardiopulmonary exercise testing even a year after initial infection. How to comprehensively risk assess these patients is therefore challenging. Existing preoperative guidelines for elective patients with recent COVID-19 generally focus on the timing of surgery and recommendations for pre-assessment if surgery is required before this time interval has elapsed. How long to delay surgery in those with ongoing symptoms and how to manage them perioperatively are less clear. We suggest that multidisciplinary decision-making is required for these patients, using a systems-based approach to guide discussion with specialists and the need for further preoperative investigations. However, without a better understanding of the postoperative risks for long COVID patients, it is difficult to obtain a multidisciplinary consensus and obtain informed patient consent. Prospective studies of long COVID patients undergoing elective surgery are urgently required to help quantify their postoperative risk and develop comprehensive perioperative guidelines for this complex patient group.
Collapse
Affiliation(s)
- Sophie Boles
- Department of Anaesthesia and Intensive Care Medicine, Croydon University Hospital, Surrey, UK.
| | - Sundar Raj Ashok
- Department of Anaesthesia and Intensive Care Medicine, Croydon University Hospital, Surrey, UK
| |
Collapse
|
30
|
Bicknell B, Liebert A, Borody T, Herkes G, McLachlan C, Kiat H. Neurodegenerative and Neurodevelopmental Diseases and the Gut-Brain Axis: The Potential of Therapeutic Targeting of the Microbiome. Int J Mol Sci 2023; 24:9577. [PMID: 37298527 PMCID: PMC10253993 DOI: 10.3390/ijms24119577] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.
Collapse
Affiliation(s)
- Brian Bicknell
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
| | - Ann Liebert
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Thomas Borody
- Centre for Digestive Diseases, Five Dock, NSW 2046, Australia;
| | - Geoffrey Herkes
- Department of Governance and Research, Sydney Adventist Hospital, Wahroonga, NSW 2076, Australia;
| | - Craig McLachlan
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
| | - Hosen Kiat
- NICM Health Research Institute, University of Western Sydney, Westmead, NSW 2145, Australia; (A.L.); (H.K.)
- Centre for Healthy Futures, Torrens University Australia, Ultimo, NSW 2007, Australia;
- Macquarie Medical School, Macquarie University, Macquarie Park, NSW 2109, Australia
- ANU College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
31
|
Schmidbauer L, Kirchberger I, Goßlau Y, Warm TD, Hyhlik-Dürr A, Linseisen J, Meisinger C. The association between the number of symptoms and the severity of Post-COVID-Fatigue after SARS-CoV-2 infection treated in an outpatient setting. J Neurol 2023:10.1007/s00415-023-11752-9. [PMID: 37219607 DOI: 10.1007/s00415-023-11752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Post-COVID-Fatigue (PCF) is one of the most reported symptoms following SARS-CoV-2 infection. Currently, research on persistent symptoms focuses mainly on severe infections, while outpatients are rarely included in observations. OBJECTIVE To investigate whether the severity of PCF is related to the number of acute and persistent symptoms due to mild-to-moderate COVID-19 and to compare the most common symptoms during acute infection with the persistent symptoms in PCF patients. METHODS A total of 425 participants were examined after COVID-19 treated as an outpatient (median 249 days [IQR: 135; 322] after acute disease) at the site of University Hospital Augsburg, Germany. The Fatigue Assessment Scale (FAS) was used to quantify the severity of PCF. The number of symptoms (maximum 41) during acute infection and persistent symptoms (during the last 14 days before examination) were added up to sum scores. Multivariable linear regression models were used to show the association between the number of symptoms and PCF. RESULTS Of the 425 participants, 37% (n = 157) developed PCF; most were women (70%). The median number of symptoms was significantly higher in the PCF group than in the non-PCF group at both time points. In multivariable linear regression models, both sum scores were associated with PCF (acute symptoms: β-estimate per additional symptom [95%-CI]: 0.48 [0.39; 0.57], p < 0.0001); persistent symptoms: β-estimate per additional symptom [95%-CI]: 1.18 [1.02; 1.34], p < 0.0001). The acute symptoms strongest associated with PCF severity were difficulty concentrating, memory problems, dyspnea or shortness of breath on exertion, palpitations, and problems with movement coordination. CONCLUSION Each additional symptom that occurs in COVID-19 increases the likelihood of suffering a higher severity of PCF. Further research is needed to identify the aetiology of PCF. TRIAL REGISTRATION Nr. NCT04615026. Date of registration: November 4, 2020.
Collapse
Affiliation(s)
- Lena Schmidbauer
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität München, Marchioninistraße 15, 81377, Munich, Germany.
- Pettenkofer School of Public Health, Munich, Germany.
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| | - Inge Kirchberger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Yvonne Goßlau
- Vascular Surgery, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Tobias D Warm
- Vascular Surgery, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | - Jakob Linseisen
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
32
|
Slevin E, Koyama S, Harrison K, Wan Y, Klaunig JE, Wu C, Shetty AK, Meng F. Dysbiosis in gastrointestinal pathophysiology: Role of the gut microbiome in Gulf War Illness. J Cell Mol Med 2023; 27:891-905. [PMID: 36716094 PMCID: PMC10064030 DOI: 10.1111/jcmm.17631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 01/31/2023] Open
Abstract
Gulf War Illness (GWI) has been reported in 25%-35% of veterans returned from the Gulf war. Symptoms of GWI are varied and include both neurological and gastrointestinal symptoms as well as chronic fatigue. Development of GWI has been associated with chemical exposure particularly with exposure to pyridostigmine bromide (PB) and permethrin. Recent studies have found that the pathology of GWI is connected to changes in the gut microbiota, that is the gut dysbiosis. In studies using animal models, the exposure to PB and permethrin resulted in similar changes in the gut microbiome as these found in GW veterans with GWI. Studies using animal models have also shown that phytochemicals like curcumin are beneficial in reducing the symptoms and that the extracellular vesicles (EV) released from gut bacteria and from the intestinal epithelium can both promote diseases and suppress diseases through the intercellular communication mechanisms. The intestinal epithelium cells produce EVs and these EVs of intestinal epithelium origin are found to suppress inflammatory bowel disease severity, suggesting the benefits of utilizing EV in treatments. On the contrary, EV from the plasma of septic mice enhanced the level of proinflammatory cytokines in vitro and neutrophils and macrophages in vivo, suggesting differences in the EV depending on the types of cells they were originated and/or influences of environmental changes. These studies suggest that targeting the EV that specifically have positive influences may become a new therapeutic strategy in the treatment of veterans with GWI.
Collapse
Affiliation(s)
- Elise Slevin
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Kelly Harrison
- Department of Transplant SurgeryBaylor Scott & White Memorial HospitalTempleTexasUSA
| | - Ying Wan
- Department of Pathophysiology, School of Basic Medical ScienceSouthwest Medical UniversityLuzhouChina
| | - James E. Klaunig
- Laboratory of Investigative Toxicology and Pathology, Department of Environmental and Occupational Health, Indiana School of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Chaodong Wu
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Ashok K. Shetty
- Department of Molecular and Cellular MedicineInstitute for Regenerative Medicine, Texas A&M College of MedicineCollege StationTexasUSA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of MedicineIndiana University School of MedicineIndianapolisIndianaUSA
- Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
33
|
Hinchado MD, Quero-Calero CD, Otero E, Gálvez I, Ortega E. Synbiotic Supplementation Improves Quality of Life and Inmunoneuroendocrine Response in Patients with Fibromyalgia: Influence of Codiagnosis with Chronic Fatigue Syndrome. Nutrients 2023; 15:nu15071591. [PMID: 37049432 PMCID: PMC10097287 DOI: 10.3390/nu15071591] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Fibromyalgia (FM) and chronic fatigue syndrome (CFS) are two medical conditions in which pain, fatigue, immune/inflammatory dysregulation, as well as various mental health disorders predominate in the diagnosis, without evidence of a clear consensus on the treatment of FM and CFS. The main aim of this research was to analyse the possible effects of a synbiotic (Synbiotic, Gasteel Plus® (Heel España S.A.U.), through the study of pro-inflammatory/anti-inflammatory cytokines (IL-8/IL-10) and neuroendocrine biomarkers (cortisol and DHEA), in order to evaluate the interaction between inflammatory and stress responses mediated by the cytokine-HPA (hypothalamic-pituitary-adrenal) axis, as well as mental and physical health using body composition analysis, accelerometry and previously validated questionnaires. The participants were women diagnosed with FM with or without a diagnostic of CFS. Each participant was evaluated at baseline and after the intervention, which lasted one month. Synbiotic intervention decreased levels of perceived stress, anxiety and depression, as well as improved quality of life during daily activities. In addition, the synbiotic generated an activation of HPA axis (physiological cortisol release) that can compensate the increased inflammatory status (elevated IL-8) observed at baseline in FM patients. There were no detrimental changes in body composition or sleep parameters, as well as in the most of the activity/sedentarism-related parameters studied by accelerometry. It is concluded that synbiotic nutritional supplements can improve the dysregulated immunoneuroendocrine interaction involving inflammatory and stress responses in women diagnosed with FM, particularly in those without a previous CFS diagnostic; as well as their perceived of levels stress, anxiety, depression and quality of life.
Collapse
|
34
|
Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol 2023; 21:133-146. [PMID: 36639608 PMCID: PMC9839201 DOI: 10.1038/s41579-022-00846-2] [Citation(s) in RCA: 1562] [Impact Index Per Article: 1562.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
Long COVID is an often debilitating illness that occurs in at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. More than 200 symptoms have been identified with impacts on multiple organ systems. At least 65 million individuals worldwide are estimated to have long COVID, with cases increasing daily. Biomedical research has made substantial progress in identifying various pathophysiological changes and risk factors and in characterizing the illness; further, similarities with other viral-onset illnesses such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome have laid the groundwork for research in the field. In this Review, we explore the current literature and highlight key findings, the overlap with other conditions, the variable onset of symptoms, long COVID in children and the impact of vaccinations. Although these key findings are critical to understanding long COVID, current diagnostic and treatment options are insufficient, and clinical trials must be prioritized that address leading hypotheses. Additionally, to strengthen long COVID research, future studies must account for biases and SARS-CoV-2 testing issues, build on viral-onset research, be inclusive of marginalized populations and meaningfully engage patients throughout the research process.
Collapse
Affiliation(s)
| | | | - Julia Moore Vogel
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA
| | - Eric J Topol
- Scripps Research Translational Institute, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
35
|
Gotaas ME, Landmark T, Helvik AS, Fors EA. Characteristics associated with physical functioning and fatigue in patients with chronic fatigue syndrome (CFS): secondary analyses of a randomized controlled trial. FATIGUE: BIOMEDICINE, HEALTH & BEHAVIOR 2023. [DOI: 10.1080/21641846.2023.2175521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Merethe Eide Gotaas
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- National Competence Centre for Complex Symptom Disorders, St. Olav’s University Hospital, Trondheim, Norway
| | - Tormod Landmark
- National Competence Centre for Complex Symptom Disorders, St. Olav’s University Hospital, Trondheim, Norway
| | - Anne S. Helvik
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil A. Fors
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
36
|
Malato J, Graça L, Sepúlveda N. Impact of Misdiagnosis in Case-Control Studies of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13030531. [PMID: 36766636 PMCID: PMC9914258 DOI: 10.3390/diagnostics13030531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Misdiagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) can occur when different case definitions are used by clinicians (relative misdiagnosis) or when failing the genuine diagnosis of another disease (misdiagnosis in a strict sense). This problem translates to a recurrent difficulty in reproducing research findings. To tackle this problem, we simulated data from case-control studies under misdiagnosis in a strict sense. We then estimated the power to detect a genuine association between a potential causal factor and ME/CFS. A minimum power of 80% was obtained for studies with more than 500 individuals per study group. When the simulation study was extended to the situation where the potential causal factor could not be determined perfectly (e.g., seropositive/seronegative in serological association studies), the minimum power of 80% could only be achieved in studies with more than 1000 individuals per group. In conclusion, current ME/CFS studies have suboptimal power under the assumption of misdiagnosis. This power can be improved by increasing the overall sample size using multi-centric studies, reporting the excluded illnesses and their exclusion criteria, or focusing on a homogeneous cohort of ME/CFS patients with a specific pathological mechanism where the chance of misdiagnosis is reduced.
Collapse
Affiliation(s)
- João Malato
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Luís Graça
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Nuno Sepúlveda
- CEAUL—Centro de Estatística e Aplicações da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warszawa, Poland
- Correspondence:
| |
Collapse
|
37
|
Lei C, Chen J, Huang Z, Men Y, Qian Y, Yu M, Xu X, Li L, Zhao X, Jiang Y, Liu Y. Ginsenoside Rg1 can reverse fatigue behavior in CFS rats by regulating EGFR and affecting Taurine and Mannose 6-phosphate metabolism. Front Pharmacol 2023; 14:1163638. [PMID: 37101547 PMCID: PMC10123289 DOI: 10.3389/fphar.2023.1163638] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Background: Chronic fatigue syndrome (CFS) is characterized by significant and persistent fatigue. Ginseng is a traditional anti-fatigue Chinese medicine with a long history in Asia, as demonstrated by clinical and experimental studies. Ginsenoside Rg1 is mainly derived from ginseng, and its anti-fatigue metabolic mechanism has not been thoroughly explored. Methods: We performed non-targeted metabolomics of rat serum using LC-MS and multivariate data analysis to identify potential biomarkers and metabolic pathways. In addition, we implemented network pharmacological analysis to reveal the potential target of ginsenoside Rg1 in CFS rats. The expression levels of target proteins were measured by PCR and Western blotting. Results: Metabolomics analysis confirmed metabolic disorders in the serum of CFS rats. Ginsenoside Rg1 can regulate metabolic pathways to reverse metabolic biases in CFS rats. We found a total of 34 biomarkers, including key markers Taurine and Mannose 6-phosphate. AKT1, VEGFA and EGFR were identified as anti-fatigue targets of ginsenoside Rg1 using network pharmacological analysis. Finally, biological analysis showed that ginsenoside Rg1 was able to down-regulate the expression of EGFR. Conclusion: Our results suggest ginsenoside Rg1 has an anti-fatigue effect, impacting the metabolism of Taurine and Mannose 6-phosphate through EGFR regulation. This demonstrates ginsenoside Rg1 is a promising alternative treatment for patients presenting with chronic fatigue syndrome.
Collapse
Affiliation(s)
- Chaofang Lei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yinian Men
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Qian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingzhi Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Youming Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyun Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Yueyun Liu,
| |
Collapse
|
38
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
39
|
Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, Pandey RK, Bala K, Sonawane A, Jha HC. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022; 12:1064. [PMID: 36355147 PMCID: PMC9692419 DOI: 10.3390/metabo12111064] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The gut-brain axis is a bidirectional communication network connecting the gastrointestinal tract and central nervous system. The axis keeps track of gastrointestinal activities and integrates them to connect gut health to higher cognitive parts of the brain. Disruption in this connection may facilitate various neurological and gastrointestinal problems. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Misfolded protein aggregates that cause cellular toxicity and that aid in the collapse of cellular proteostasis are a defining characteristic of neurodegenerative proteinopathies. These disorders are not only caused by changes in the neural compartment but also due to other factors of non-neural origin. Mounting data reveal that the majority of gastrointestinal (GI) physiologies and mechanics are governed by the central nervous system (CNS). Furthermore, the gut microbiota plays a critical role in the regulation and physiological function of the brain, although the mechanism involved has not yet been fully interpreted. One of the emerging explanations of the start and progression of many neurodegenerative illnesses is dysbiosis of the gut microbial makeup. The present understanding of the literature surrounding the relationship between intestinal dysbiosis and the emergence of certain neurological diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, is the main emphasis of this review. The potential entry pathway of the pathogen-associated secretions and toxins into the CNS compartment has been explored in this article at the outset of neuropathology. We have also included the possible mechanism of undelaying the synergistic effect of infections, their metabolites, and other interactions based on the current understanding.
Collapse
Affiliation(s)
- Meenakshi Kandpal
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Omkar Indari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Budhadev Baral
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Shweta Jakhmola
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Deeksha Tiwari
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Vasundhra Bhandari
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telengana, India
| | - Rajan Kumar Pandey
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17165 Stockholm, Sweden
| | - Kiran Bala
- Algal Ecotechnology & Sustainability Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Avinash Sonawane
- Disease Biology & Cellular Immunology Lab, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| | - Hem Chandra Jha
- Infection Bioengineering Group, Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
40
|
Luo C, Wei X, Song J, Xu X, Huang H, Fan S, Zhang D, Han L, Lin J. Interactions between Gut Microbiota and Polyphenols: New Insights into the Treatment of Fatigue. Molecules 2022; 27:7377. [PMID: 36364203 PMCID: PMC9653952 DOI: 10.3390/molecules27217377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 09/02/2023] Open
Abstract
Fatigue seriously affects people's work efficiency and quality of life and has become a common health problem in modern societies around the world. The pathophysiology of fatigue is complex and not fully clear. To some degree, interactions between gut microbiota and host may be the cause of fatigue progression. Polyphenols such as tannin, tea polyphenols, curcumin, and soybean isoflavones relieve fatigue significantly. Studies have shown that the gut microbiota is able to convert these active compounds into more active metabolites through intestinal fermentation. However, the mechanism of anti-fatigue polyphenols is currently mainly analyzed from the perspective of antioxidant and anti-inflammatory effects, and changes in gut microbiota are rarely considered. This review focuses on gut microecology and systematically summarizes the latest theoretical and research findings on the interaction of gut microbiota, fatigue, and polyphenols. First, we outline the relationship between gut microbiota and fatigue, including changes in the gut microbiota during fatigue and how they interact with the host. Next, we describe the interactions between the gut microbiota and polyphenols in fatigue treatment (regulation of the gut microbiota by polyphenols and metabolism of polyphenols by the gut microbiota), and how the importance of potential active metabolites (such as urolithin) produced by the decomposition of polyphenols by gut microbiota is emerging. Based on the new perspective of gut microbiota, this review provides interesting insights into the mechanism of polyphenols in fatigue treatment and clarifies the potential of polyphenols as targets for anti-fatigue product development, aiming to provide a useful basis for further research and design.
Collapse
Affiliation(s)
- Chuanhong Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xichuan Wei
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610051, China
| | - Jiao Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiaorong Xu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haozhou Huang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sanhu Fan
- Sichuan Huamei Pharmaceutical Co., Ltd., Sanajon Pharmaceutical Group, Chengdu 610045, China
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
41
|
Vogl T, Kalka IN, Klompus S, Leviatan S, Weinberger A, Segal E. Systemic antibody responses against human microbiota flagellins are overrepresented in chronic fatigue syndrome patients. SCIENCE ADVANCES 2022; 8:eabq2422. [PMID: 36149952 PMCID: PMC11580831 DOI: 10.1126/sciadv.abq2422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant library. Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated that immune responses against gut microbiota represent a unique layer of information beyond standard blood tests, providing improved molecular diagnostics for ME/CFS. Together, our results point toward an involvement of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel diseases and illnesses characterized by long-term fatigue symptoms, including post-COVID-19 syndrome.
Collapse
Affiliation(s)
- Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria
| | - Iris N. Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
42
|
Abstract
Myalgic encephalomyelitis and Long Covid have overlapping presentation.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, MHIQ, Griffith University, Gold Coast, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, MHIQ, Griffith University, Gold Coast, Australia
| |
Collapse
|
43
|
El-Saber Batiha G, Al-Gareeb AI, Saad HM, Al-kuraishy HM. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology 2022; 30:1189-1205. [PMID: 35562628 PMCID: PMC9106274 DOI: 10.1007/s10787-022-00987-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
It has been reported that corticosteroid therapy was effective in the management of severe acute respiratory syndrome (SARS) and the Middle East Respiratory Syndrome (MERS), and recently in coronavirus disease 2019 (COVID-19). Corticosteroids are potent anti-inflammatory drugs that mitigate the risk of acute respiratory distress syndrome (ARDS) in COVID-19 and other viral pneumonia, despite a reduction of viral clearance; corticosteroids inhibit the development of cytokine storm and multi-organ damage. The risk-benefit ratio should be assessed for critical COVID-19 patients. In conclusion, corticosteroid therapy is an effective way in the management of COVID-19, it reduces the risk of complications primarily acute lung injury and the development of ARDS. Besides, corticosteroid therapy mainly dexamethasone and methylprednisolone are effective in reducing the severity of COVID-19 and associated comorbidities such as chronic obstructive pulmonary diseases (COPD), rheumatoid arthritis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyiah University, Baghdad, Iraq
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744 Matrouh Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyiah University, Baghdad, Iraq
| |
Collapse
|
44
|
Stanculescu D, Bergquist J. Perspective: Drawing on Findings From Critical Illness to Explain Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Med (Lausanne) 2022; 9:818728. [PMID: 35345768 PMCID: PMC8957276 DOI: 10.3389/fmed.2022.818728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Abstract
We propose an initial explanation for how myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) could originate and perpetuate by drawing on findings from critical illness research. Specifically, we combine emerging findings regarding (a) hypoperfusion and endotheliopathy, and (b) intestinal injury in these illnesses with our previously published hypothesis about the role of (c) pituitary suppression, and (d) low thyroid hormone function associated with redox imbalance in ME/CFS. Moreover, we describe interlinkages between these pathophysiological mechanisms as well as “vicious cycles” involving cytokines and inflammation that may contribute to explain the chronic nature of these illnesses. This paper summarizes and expands on our previous publications about the relevance of findings from critical illness for ME/CFS. New knowledge on diagnostics, prognostics and treatment strategies could be gained through active collaboration between critical illness and ME/CFS researchers, which could lead to improved outcomes for both conditions.
Collapse
Affiliation(s)
| | - Jonas Bergquist
- Division of Analytical Chemistry and Neurochemistry, Department of Chemistry - Biomedical Center, Uppsala University, Uppsala, Sweden.,The Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Collaborative Research Centre at Uppsala University, Uppsala, Sweden
| |
Collapse
|