1
|
Yousefbeigi S, Marsusi F. Structural insights into ACE2 interactions and immune activation of SARS-CoV-2 and its variants: an in-silico study. J Biomol Struct Dyn 2025; 43:665-678. [PMID: 37982275 DOI: 10.1080/07391102.2023.2283158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
The initial interaction between COVID-19 and the human body involves the receptor-binding domain (RBD) of the viral spike protein with the angiotensin-converting enzyme 2 (ACE2) receptor. Likewise, the spike protein can engage with immune-related proteins, such as toll-like receptors (TLRs) and pulmonary surfactant proteins A (SP-A) and D (SP-D), thereby triggering immune responses. In this study, we utilize computational methods to investigate the interactions between the spike protein and TLRs (specifically TLR2 and TLR4), as well as (SP-A) and (SP-D). The study is conducted on four variants of concern (VOC) to differentiate and identify common virus behaviours. An assessment of the structural stability of various variants indicates slight changes attributed to mutations, yet overall structural integrity remains preserved. Our findings reveal the spike protein's ability to bind with TLR4 and TLR2, prompting immune activation. In addition, our in-silico results reveal almost similar docking scores and therefore affinity for both ACE2-spike and TLR4-spike complexes. We demonstrate that even minor changes due to mutations in all variants, surfactant A and D proteins can function as inhibitors against the spike in all variants, hindering the ACE2-RBD interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarina Yousefbeigi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Farah Marsusi
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
2
|
Paludan SR, Pradeu T, Pichlmair A, Wray KB, Mikkelsen JG, Olagnier D, Mogensen TH. Early host defense against virus infections. Cell Rep 2024; 43:115070. [PMID: 39675007 DOI: 10.1016/j.celrep.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Early host defense eliminates many viruses before infections are established while clearing others so they remain subclinical or cause only mild disease. The field of immunology has been shaped by broad concepts, including the pattern recognition theory that currently dominates innate immunology. Focusing on early host responses to virus infections, we analyze the literature to build a working hypothesis for the principles that govern the early line of cellular antiviral defense. Aiming to ultimately arrive at a criteria-based theory with strong explanatory power, we propose that both controlling infection and limiting inflammation are key drivers for the early cellular antiviral response. This response, which we suggest is exerted by a set of "microbe- and inflammation-restricting mechanisms," directly restrict viral replication while also counteracting inflammation. Exploring the mechanisms and physiological importance of the early layer of cellular antiviral defense may open further lines of research in immunology.
Collapse
Affiliation(s)
- Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Thomas Pradeu
- CNRS UMR 5164 ImmunoConcept, University of Bordeaux, Bordeaux, France; Department of Biological and Medical Sciences, University of Bordeaux, Bordeaux, France; Chapman University, Orange, CA, USA
| | - Andreas Pichlmair
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Technical University of Munich, School of Medicine, Institute of Virology, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - K Brad Wray
- Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Centre for Science Studies, Aarhus University, Aarhus, Denmark; Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Center for Immunology of Viral Infections, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Li D, Minkara MS. Comparative Assessment of Water Models in Protein-Glycan Interaction: Insights from Alchemical Free Energy Calculations and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:9459-9473. [PMID: 39378441 DOI: 10.1021/acs.jcim.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Accurate computational simulations of protein-glycan dynamics are crucial for a comprehensive understanding of critical biological mechanisms, including host-pathogen interactions, immune system defenses, and intercellular communication. The accuracy of these simulations, including molecular dynamics (MD) simulation and alchemical free energy calculations, critically relies on the appropriate parameters, including the water model, because of the extensive hydrogen bonding with glycan hydroxyl groups. However, a systematic evaluation of water models' accuracy in simulating protein-glycan interaction at the molecular level is still lacking. In this study, we used full atomistic MD simulations and alchemical absolute binding free energy (ABFE) calculations to investigate the performance of five distinct water models in six protein-glycan complex systems. We evaluated water models' impact on structural dynamics and binding affinity through over 5.8 μs of simulation time per system. Our results reveal that most protein-glycan complexes are stable in the overall structural dynamics regardless of the water model used, while some show obvious fluctuations with specific water models. More importantly, we discover that the stability of the binding motif's conformation is dependent on the water model chosen when its residues form weak hydrogen bonds with the glycan. The water model also influences the conformational stability of the glycan in its bound state according to density functional theory (DFT) calculations. Using alchemical ABFE calculations, we find that the OPC water model exhibits exceptional consistency with experimental binding affinity data, whereas commonly used models such as TIP3P are less accurate. The findings demonstrate how different water models affect protein-glycan interactions and the accuracy of binding affinity calculations, which is crucial in developing therapeutic strategies targeting these interactions.
Collapse
Affiliation(s)
- Deng Li
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| | - Mona S Minkara
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02120, United States
| |
Collapse
|
4
|
Shamim A, Abdul Aziz M, Saeed F, Kumari R, Mary Joseph A, Ponnachan P, Kishore U, Masmoudi K. Revisiting surfactant protein D: an immune surveillance molecule bridging innate and adaptive immunity. Front Immunol 2024; 15:1491175. [PMID: 39742280 PMCID: PMC11685232 DOI: 10.3389/fimmu.2024.1491175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Surfactant protein D (SP-D) is a C-type lectin that was originally discovered as a lung surfactant associated phospholipid recognising protein. It was originally shown to be of great importance in surfactant turnover and homeostasis in conjunction with another hydrophilic surfactant protein i.e. SP-A. In addition, it was found to agglutinate bacteria in suspension and likely a key defence molecule in the lungs. Since its early days of characterization in 1990s, SP-D has turned out to be a central player in the mucosal immunity as pulmonary as well as extrapulmonary innate immune molecule. The most exciting development has been characterization of its C-type lectin or carbohydrate recognition domain (CRDs) that exists in a homotrimeric form in native as well as recombinant versions. SP-D has a range of strategies to recognise pathogen-associated molecular patterns (PAMPs) and thus act as a soluble PAMP-recognizing receptor (PRR), and subsequent destruction of the pathogens directly, or indirectly via phagocytic cells. SP-D also recognizes a range of allergens, competes out with specific IgE antibodies, and downregulates histamine release by basophils and mast cells. These anti-microbial and anti-allergic properties of SP-D have been validated by in vivo murine models of infection and allergy. The SP-D gene deficient mice exhibit remarkable phenotypes where lungs are leaky, showing features of fibrosis and emphysema. One of the seminal discoveries in the field has been the observation that activated eosinophils (and other immune cells) can be induced into apoptotic pathways by SP-D. This raised the possibility that SP-D can be an innate immune surveillance molecule. Studies have revealed the ability of a recombinant fragment of human SP-D containing homotrimeric neck and CRD region to induce apoptosis via intrinsic as well as extrinsic pathways; in addition, it also seems capable of interfering with epithelial-to-mesenchymal transition. These studies have opened up enormous possibilities for setting up pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Azra Shamim
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mughair Abdul Aziz
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Faryal Saeed
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rekha Kumari
- Department of Zoology, A.N College, Patliputra University, Patna, Bihar, India
| | - Ann Mary Joseph
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty Ponnachan
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled Masmoudi
- Department Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Jacob IB, Lawal AO, Mahmoud SS, Kopsack EM, Reynolds ES, Meng Q, Fan H, Massa PT, Thangamani S, Jia H, Wang G. Differential Immunoregulation by Human Surfactant Protein A Variants Determines Severity of SARS-CoV-2-induced Lung Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612497. [PMID: 39314485 PMCID: PMC11418998 DOI: 10.1101/2024.09.11.612497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
COVID-19 remains a significant threat to public health globally. Infection in some susceptible individuals causes life-threatening acute lung injury (ALI/ARDS) and/or death. Human surfactant protein A (SP-A) is a C-type lectin expressed in the lung and other mucosal tissues, and it plays a critical role in host defense against various pathogens. The human SP-A genes ( SFTPA1 and SFTPA2 ) are highly polymorphic and comprise several common genetic variants, i.e., SP-A1 (variants 6A 2 , 6A 4 ) and SP-A2 (variants 1A 0 , 1A 3 ). Here, we elucidated the differential antiviral and immunoregulatory roles of SP-A variants in response to SARS-CoV-2 infection in vivo . Six genetically-modified mouse lines, expressing both hACE2 (SARS-CoV-2 receptor) and individual SP-A variants: (hACE2/6A 2 (6A 2 ), hACE2/6A 4 (6A 4 ), hACE2/1A 0 (1A 0 ), and hACE2/1A 3 (1A 3 ), one SP-A knockout (hACE2/SP-A KO (KO) and one hACE2/mouse SP-A (K18) mice, were challenged intranasally with 10 3 PFU SARS-CoV-2 or saline (Sham). Infected KO and 1A 0 mice had more weight loss and mortality compared to other mouse lines. Relative to other infected mouse lines, a more severe ALI was observed in KO, 1A 0 , and 6A 2 mice. Reduced viral titers were generally observed in the lungs of infected SP-A mice relative to KO mice. Transcriptomic analysis revealed an upregulation in genes that play central roles in immune responses such as MyD88 , Stat3 , IL-18 , and Jak2 in the lungs of KO and 1A 0 mice. However, Mapk1 was significantly downregulated in 6A 2 versus 1A 0 mice. Analysis of biological pathways identified those involved in lung host defense and innate immunity, including pathogen-induced cytokine, NOD1/2, and Trem1 signaling pathways. Consistent with the transcriptomic data, levels of cytokines and chemokines such as G-CSF, IL-6 and IL-1β were comparatively higher in the lungs and sera of KO and 1A 0 mice with the highest mortality rate. These findings demonstrate that human SP-A variants differentially modulate SARS-CoV-2-induced lung injury and disease severity by differentially inhibiting viral infectivity and regulating immune-related gene expressions.
Collapse
|
6
|
Bastani MN, Jalilian S. Unraveling the enigma: The emerging significance of pulmonary surfactant proteins in predicting, diagnosing, and managing COVID-19. Immun Inflamm Dis 2024; 12:e1302. [PMID: 38860749 PMCID: PMC11165688 DOI: 10.1002/iid3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.
Collapse
Affiliation(s)
- Mohammad Navid Bastani
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Shahram Jalilian
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
7
|
Altay Benetti A, Tan EYZ, Chang ZW, Bae KH, Thwin MT, Muthuramalingam RPK, Liao KC, Wan Y, Ng LFP, Renia L, Liu J, Chen X, Yang YY, White KP, Pastorin G. Design and Characterization of a New Formulation for the Delivery of COVID-19-mRNA Vaccine to the Nasal Mucosa. Vaccines (Basel) 2024; 12:409. [PMID: 38675792 PMCID: PMC11054997 DOI: 10.3390/vaccines12040409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Chitosan, a natural polysaccharide derived from chitin, possesses biocompatibility, biodegradability, and mucoadhesive characteristics, making it an attractive material for the delivery of mRNA payloads to the nasal mucosa and promoting their uptake by target cells such as epithelial and immune cells (e.g., dendritic cells and macrophages). In this project, we aimed at developing novel lipid-based nanoformulations for mRNA delivery to counteract the pandemic caused by SARS-CoV-2 virus. The formulations achieved a mRNA encapsulation efficiency of ~80.2% with chitosan-lipid nanoparticles, as measured by the RiboGreen assay. Furthermore, the evaluation of SARS-CoV-2 Spike (S) receptor-binding domain (RBD) expression via ELISA for our vaccine formulations showed transfection levels in human embryonic kidney cells (HEK 293), lung carcinoma cells (A549), and dendritic cells (DC 2.4) equal to 9.9 ± 0.1 ng/mL (174.7 ± 1.1 fold change from untreated cells (UT)), 7.0 ± 0.2 ng/mL (128.1 ± 4.9 fold change from UT), and 0.9 ± 0.0 ng/mL (18.0 ± 0.1 fold change from UT), respectively. Our most promising vaccine formulation was also demonstrated to be amenable to lyophilization with minimal degradation of loaded mRNA, paving the way towards a more accessible and stable vaccine. Preliminary in vivo studies in mice were performed to assess the systemic and local immune responses. Nasal bronchoalveolar lavage fluid (BALF) wash showed that utilizing the optimized formulation resulted in local antibody concentrations and did not trigger any systemic antibody response. However, if further improved and developed, it could potentially contribute to the management of COVID-19 through nasopharyngeal immunization strategies.
Collapse
Affiliation(s)
- Ayça Altay Benetti
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (E.Y.Z.T.); (M.T.T.); (R.P.K.M.)
| | - Eugene Yang Zhi Tan
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (E.Y.Z.T.); (M.T.T.); (R.P.K.M.)
| | - Zi Wei Chang
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Ki Hyun Bae
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (K.H.B.); (Y.Y.Y.)
| | - Ma Thinzar Thwin
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (E.Y.Z.T.); (M.T.T.); (R.P.K.M.)
| | - Ram Pravin Kumar Muthuramalingam
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (E.Y.Z.T.); (M.T.T.); (R.P.K.M.)
| | - Kuo-Chieh Liao
- Genome Institute of Singapore, Singapore 138672, Singapore; (K.-C.L.)
| | - Yue Wan
- Genome Institute of Singapore, Singapore 138672, Singapore; (K.-C.L.)
| | - Lisa F. P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Jianping Liu
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore; (J.L.); (X.C.)
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore; (J.L.); (X.C.)
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138632, Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore; (K.H.B.); (Y.Y.Y.)
| | - Kevin P. White
- Precision Medicine Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Giorgia Pastorin
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (E.Y.Z.T.); (M.T.T.); (R.P.K.M.)
| |
Collapse
|
8
|
Jacob IB, Gemmiti A, Xiong W, Reynolds E, Nicholas B, Thangamani S, Jia H, Wang G. Human surfactant protein A inhibits SARS-CoV-2 infectivity and alleviates lung injury in a mouse infection model. Front Immunol 2024; 15:1370511. [PMID: 38596675 PMCID: PMC11002091 DOI: 10.3389/fimmu.2024.1370511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.
Collapse
Affiliation(s)
- Ikechukwu B. Jacob
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Amanda Gemmiti
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weichuan Xiong
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Erin Reynolds
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Brian Nicholas
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Saravanan Thangamani
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hongpeng Jia
- Department of Surgery, Johns-Hopkins University, Baltimore, MD, United States
| | - Guirong Wang
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
9
|
Tu WJ, Melino M, Dunn J, McCuaig RD, Bielefeldt-Ohmann H, Tsimbalyuk S, Forwood JK, Ahuja T, Vandermeide J, Tan X, Tran M, Nguyen Q, Zhang L, Nam A, Pan L, Liang Y, Smith C, Lineburg K, Nguyen TH, Sng JDJ, Tong ZWM, Chew KY, Short KR, Le Grand R, Seddiki N, Rao S. In vivo inhibition of nuclear ACE2 translocation protects against SARS-CoV-2 replication and lung damage through epigenetic imprinting. Nat Commun 2023; 14:3680. [PMID: 37369668 DOI: 10.1038/s41467-023-39341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In vitro, ACE2 translocates to the nucleus to induce SARS-CoV-2 replication. Here, using digital spatial profiling of lung tissues from SARS-CoV-2-infected golden Syrian hamsters, we show that a specific and selective peptide inhibitor of nuclear ACE2 (NACE2i) inhibits viral replication two days after SARS-CoV-2 infection. Moreover, the peptide also prevents inflammation and macrophage infiltration, and increases NK cell infiltration in bronchioles. NACE2i treatment increases the levels of the active histone mark, H3K27ac, restores host translation in infected hamster bronchiolar cells, and leads to an enrichment in methylated ACE2 in hamster bronchioles and lung macrophages, a signature associated with virus protection. In addition, ACE2 methylation is increased in myeloid cells from vaccinated patients and associated with reduced SARS-CoV-2 spike protein expression in monocytes from individuals who have recovered from infection. This protective epigenetic scarring of ACE2 is associated with a reduced latent viral reservoir in monocytes/macrophages and enhanced immune protection against SARS-CoV-2. Nuclear ACE2 may represent a therapeutic target independent of the variant and strain of viruses that use the ACE2 receptor for host cell entry.
Collapse
Affiliation(s)
- Wen Juan Tu
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Michelle Melino
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jenny Dunn
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Robert D McCuaig
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Sofiya Tsimbalyuk
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Taniya Ahuja
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - John Vandermeide
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Xiao Tan
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh Tran
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Liang Zhang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Andy Nam
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Liuliu Pan
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Yan Liang
- NanoString Technologies Inc., Seattle, WA, 98109, USA
| | - Corey Smith
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Katie Lineburg
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tam H Nguyen
- Flow and Imaging Facility, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Julian D J Sng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhen Wei Marcus Tong
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD, Australia
| | - Roger Le Grand
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Nabila Seddiki
- Université Paris-Saclay, INSERM U1184, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses, France
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
Abdellaoui A, Yengo L, Verweij KJH, Visscher PM. 15 years of GWAS discovery: Realizing the promise. Am J Hum Genet 2023; 110:179-194. [PMID: 36634672 PMCID: PMC9943775 DOI: 10.1016/j.ajhg.2022.12.011] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
It has been 15 years since the advent of the genome-wide association study (GWAS) era. Here, we review how this experimental design has realized its promise by facilitating an impressive range of discoveries with remarkable impact on multiple fields, including population genetics, complex trait genetics, epidemiology, social science, and medicine. We predict that the emergence of large-scale biobanks will continue to expand to more diverse populations and capture more of the allele frequency spectrum through whole-genome sequencing, which will further improve our ability to investigate the causes and consequences of human genetic variation for complex traits and diseases.
Collapse
Affiliation(s)
- Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Loic Yengo
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter M Visscher
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Muralidharan A, Bauer C, Katafiasz DM, Pham D, Oyewole OO, Morwitzer MJ, Roy E, Bailey KL, Reid SP, Wyatt TA. Malondialdehyde acetaldehyde adduction of surfactant protein D attenuates SARS-CoV-2 spike protein binding and virus neutralization. Alcohol Clin Exp Res 2023; 47:95-103. [PMID: 36352814 PMCID: PMC9878066 DOI: 10.1111/acer.14974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Over 43% of the world's population regularly consumes alcohol. Although not commonly known, alcohol can have a significant impact on the respiratory environment. Living in the time of the COVID-19 pandemic, alcohol misuse can have a particularly deleterious effect on SARS-CoV-2-infected individuals and, in turn, the overall healthcare system. Patients with alcohol use disorders have higher odds of COVID-19-associated hospitalization and mortality. Even though the detrimental role of alcohol on COVID-19 outcomes has been established, the underlying mechanisms are yet to be fully understood. Alcohol misuse has been shown to induce oxidative damage in the lungs through the production of reactive aldehydes such as malondialdehyde and acetaldehyde (MAA). MAA can then form adducts with proteins, altering their structure and function. One such protein is surfactant protein D (SPD), which plays an important role in innate immunity against pathogens. METHODS AND RESULTS In this study, we examined whether MAA adduction of SPD (SPD-MAA) attenuates the ability of SPD to bind SARS-CoV-2 spike protein, reversing SPD-mediated virus neutralization. Using ELISA, we show that SPD-MAA is unable to competitively bind spike protein and prevent ACE2 receptor binding. Similarly, SPD-MAA fails to inhibit entry of wild-type SARS-CoV-2 virus into Calu-3 cells, a lung epithelial cell line, as well as ciliated primary human bronchial epithelial cells isolated from healthy individuals. CONCLUSIONS Overall, MAA adduction of SPD, a consequence of alcohol overconsumption, represents one mechanism of compromised lung innate defense against SARS-CoV-2, highlighting a possible mechanism underlying COVID-19 severity and related mortality in patients who misuse alcohol.
Collapse
Affiliation(s)
- Abenaya Muralidharan
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Christopher Bauer
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Danielle Pham
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Opeoluwa O. Oyewole
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - M. Jane Morwitzer
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Enakshi Roy
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kristina L. Bailey
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
| | - St Patrick Reid
- Department of Pathology and Microbiology, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Veterans Affairs Nebraska‐Western Iowa Health Care SystemOmahaNebraskaUSA
- Department of Environmental, Agricultural and Occupational Health, College of Public HealthUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
12
|
Hsieh MH, Chen PC, Hsu HY, Liu JC, Ho YS, Lin YJ, Kuo CW, Kuo WS, Kao HF, Wang SD, Liu ZG, Wu LSH, Wang JY. Surfactant protein D inhibits lipid-laden foamy macrophages and lung inflammation in chronic obstructive pulmonary disease. Cell Mol Immunol 2023; 20:38-50. [PMID: 36376488 PMCID: PMC9794778 DOI: 10.1038/s41423-022-00946-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Increased levels of surfactant protein D (SP-D) and lipid-laden foamy macrophages (FMs) are frequently found under oxidative stress conditions and/or in patients with chronic obstructive pulmonary disease (COPD) who are also chronically exposed to cigarette smoke (CS). However, the roles and molecular mechanisms of SP-D and FMs in COPD have not yet been determined. In this study, increased levels of SP-D were found in the bronchoalveolar lavage fluid (BALF) and sera of ozone- and CS-exposed mice. Furthermore, SP-D-knockout mice showed increased lipid-laden FMs and airway inflammation caused by ozone and CS exposure, similar to that exhibited by our study cohort of chronic smokers and COPD patients. We also showed that an exogenous recombinant fragment of human SP-D (rfhSP-D) prevented the formation of oxidized low-density lipoprotein (oxLDL)-induced FMs in vitro and reversed the airway inflammation and emphysematous changes caused by oxidative stress and CS exposure in vivo. SP-D upregulated bone marrow-derived macrophage (BMDM) expression of genes involved in countering the oxidative stress and lipid metabolism perturbations induced by CS and oxLDL. Our study demonstrates the crucial roles of SP-D in the lipid homeostasis of dysfunctional alveolar macrophages caused by ozone and CS exposure in experimental mouse emphysema, which may provide a novel opportunity for the clinical application of SP-D in patients with COPD.
Collapse
Affiliation(s)
- Miao-Hsi Hsieh
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Graduate Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Pei-Chi Chen
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Han-Yin Hsu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Jui-Chang Liu
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yu-Sheng Ho
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yuh Jyh Lin
- Department of Pediatrics, National Cheng Kung University Hospital, Tainan, Taiwan, China
| | - Chin-Wei Kuo
- Division of Pulmonary Medicine, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Wen-Shuo Kuo
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Hui-Fang Kao
- Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan, China
| | - Shulhn-Der Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan, China
| | - Zhi-Gang Liu
- Department of Respirology and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lawrence Shih-Hsin Wu
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, China.
| | - Jiu-Yao Wang
- Center for Allergy, Immunology, and Microbiome (A.I.M.), China Medical University Hospital, Taichung, Taiwan, China.
- Department of Allergy, Immunology, and Rheumatology (AIR), China Medical University Children's Hospital, Taichung, Taiwan, China.
| |
Collapse
|
13
|
Barmania F, Mellet J, Holborn MA, Pepper MS. Genetic Associations with Coronavirus Susceptibility and Disease Severity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:119-140. [PMID: 37378764 DOI: 10.1007/978-3-031-28012-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the coronavirus disease 2019 (COVID-19) global public health emergency, and the disease it causes is highly variable in its clinical presentation. Host genetic factors are increasingly recognised as a determinant of infection susceptibility and disease severity. Several initiatives and groups have been established to analyse and review host genetic epidemiology associated with COVID-19 outcomes. Here, we review the genetic loci associated with COVID-19 susceptibility and severity focusing on the common variants identified in genome-wide association studies.
Collapse
Affiliation(s)
- Fatima Barmania
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juanita Mellet
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Megan A Holborn
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
Wong SSW, Dellière S, Schiefermeier-Mach N, Lechner L, Perkhofer S, Bomme P, Fontaine T, Schlosser AG, Sorensen GL, Madan T, Kishore U, Aimanianda V. Surfactant protein D inhibits growth, alters cell surface polysaccharide exposure and immune activation potential of Aspergillus fumigatus. Cell Surf 2022; 8:100072. [PMID: 35118215 PMCID: PMC8792412 DOI: 10.1016/j.tcsw.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 10/25/2022] Open
Abstract
Humoral immunity plays a defensive role against invading microbes. However, it has been largely overlooked with respect to Aspergillus fumigatus, an airborne fungal pathogen. Previously, we have demonstrated that surfactant protein D (SP-D), a major humoral component in human lung-alveoli, recognizes A. fumigatus conidial surface exposed melanin pigment. Through binding to melanin, SP-D opsonizes conidia, facilitates conidial phagocytosis, and induces the expression of protective pro-inflammatory cytokines in the phagocytic cells. In addition to melanin, SP-D also interacts with galactomannan (GM) and galactosaminogalactan (GAG), the cell wall polysaccharides exposed on germinating conidial surfaces. Therefore, we aimed at unravelling the biological significance of SP-D during the germination process. Here, we demonstrate that SP-D exerts direct fungistatic activity by restricting A. fumigatus hyphal growth. Conidial germination in the presence of SP-D significantly increased the exposure of cell wall polysaccharides chitin, α-1,3-glucan and GAG, and decreased β-1,3-glucan exposure on hyphae, but that of GM was unaltered. Hyphae grown in presence of SP-D showed positive immunolabelling for SP-D. Additionally, SP-D treated hyphae induced lower levels of pro-inflammatory cytokine, but increased IL-10 (anti-inflammatory cytokine) and IL-8 (a chemokine) secretion by human peripheral blood mononuclear cells (PBMCs), compared to control hyphae. Moreover, germ tube surface modifications due to SP-D treatment resulted in an increased hyphal susceptibility to voriconazole, an antifungal drug. It appears that SP-D exerts its anti-A. fumigatus functions via a range of mechanisms including hyphal growth-restriction, hyphal surface modification, masking of hyphal surface polysaccharides and thus altering hyphal immunostimulatory properties.
Collapse
Affiliation(s)
- Sarah Sze Wah Wong
- Institut Pasteur, Université de Paris, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
| | - Sarah Dellière
- Institut Pasteur, Université de Paris, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
- Department of Mycology & Parasitologie, Hôpital Saint-Louis, Paris, France
| | | | - Lukas Lechner
- Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, Innrain 98, 6020 Innsbruck, Austria
| | - Susanne Perkhofer
- Health University of Applied Sciences Tyrol/FH Gesundheit Tirol, Innrain 98, 6020 Innsbruck, Austria
| | - Perrine Bomme
- Ultrastructural Bio Imaging Unit, C2RT, Institut Pasteur, Paris, France
| | - Thierry Fontaine
- Institut Pasteur, Université de Paris, INREA, USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
| | - Anders G. Schlosser
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Grith L. Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Vishukumar Aimanianda
- Institut Pasteur, Université de Paris, CNRS, Unité de Mycologie Moléculaire, UMR2000, F-75015 Paris, France
| |
Collapse
|
15
|
Elucidating the enhanced binding affinity of a double mutant SP-D with trimannose on the influenza A virus using molecular dynamics. Comput Struct Biotechnol J 2022; 20:4984-5000. [PMID: 36097510 PMCID: PMC9452405 DOI: 10.1016/j.csbj.2022.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 12/02/2022] Open
Abstract
The Asp325Ala mutation in SP-D promotes a trimannose conformational change to a more stable state. The Arg343Val mutation in SP-D reduces its interaction with Glu333 to increase the binding affinity with trimannose. The Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala.
Surfactant protein D (SP-D) is an essential component of the human pulmonary surfactant system, which is crucial in the innate immune response against glycan-containing pathogens, including Influenza A viruses (IAV) and SARS-CoV-2. Previous studies have shown that wild-type (WT) SP-D can bind IAV but exhibits poor antiviral activities. However, a double mutant (DM) SP-D consisting of two point mutations (Asp325Ala and Arg343Val) inhibits IAV more potently. Presently, the structural mechanisms behind the point mutations’ effects on SP-D’s binding affinity with viral surface glycans are not fully understood. Here we use microsecond-scale, full-atomistic molecular dynamics (MD) simulations to understand the molecular mechanism of mutation-induced SP-D’s higher antiviral activity. We find that the Asp325Ala mutation promotes a trimannose conformational change to a more stable state. Arg343Val increases the binding with trimannose by increasing the hydrogen bonding interaction with Glu333. Free energy perturbation (FEP) binding free energy calculations indicate that the Arg343Val mutation contributes more to the increase of SP-D’s binding affinity with trimannose than Asp325Ala. This study provides a molecular-level exploration of how the two mutations increase SP-D binding affinity with trimannose, which is vital for further developing preventative strategies for related diseases.
Collapse
Key Words
- CRD, Carbohydrate Recognition Domain
- DM, Double mutant
- FEP, Free Energy Perturbation
- Free Energy Perturbation
- HA, Hemagglutinin
- IAV, Influenza A Viruses
- MD, Molecular Dynamics
- Molecular Dynamics Simulation
- PAP, Pulmonary Alveolar Proteinosis
- PME, Particle Mesh Ewald
- PS, Pulmonary Surfactant
- Protein-Glycan Complexes
- RMSD, Root Mean Square Deviation
- RMSF, Root Mean Square Fluctuation
- SP-A, Surfactant Protein A
- SP-B, Surfactant Protein B
- SP-C, Surfactant Protein C
- SP-D, Surfactant Protein D
- Surfactant Protein D
- WT, Wild-type
- λ-REMD, λ-Replica-Exchange Molecular Dynamics
Collapse
|
16
|
Aramyan S, McGregor K, Sandeep S, Haczku A. SP-A binding to the SARS-CoV-2 spike protein using hybrid quantum and classical in silico modeling and molecular pruning by Quantum Approximate Optimization Algorithm (QAOA) Based MaxCut with ZDOCK. Front Immunol 2022; 13:945317. [PMID: 36189278 PMCID: PMC9519185 DOI: 10.3389/fimmu.2022.945317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
The pulmonary surfactant protein A (SP-A) is a constitutively expressed immune-protective collagenous lectin (collectin) in the lung. It binds to the cell membrane of immune cells and opsonizes infectious agents such as bacteria, fungi, and viruses through glycoprotein binding. SARS-CoV-2 enters airway epithelial cells by ligating the Angiotensin Converting Enzyme 2 (ACE2) receptor on the cell surface using its Spike glycoprotein (S protein). We hypothesized that SP-A binds to the SARS-CoV-2 S protein and this binding interferes with ACE2 ligation. To study this hypothesis, we used a hybrid quantum and classical in silico modeling technique that utilized protein graph pruning. This graph pruning technique determines the best binding sites between amino acid chains by utilizing the Quantum Approximate Optimization Algorithm (QAOA)-based MaxCut (QAOA-MaxCut) program on a Near Intermediate Scale Quantum (NISQ) device. In this, the angles between every neighboring three atoms were Fourier-transformed into microwave frequencies and sent to a quantum chip that identified the chemically irrelevant atoms to eliminate based on their chemical topology. We confirmed that the remaining residues contained all the potential binding sites in the molecules by the Universal Protein Resource (UniProt) database. QAOA-MaxCut was compared with GROMACS with T-REMD using AMBER, OPLS, and CHARMM force fields to determine the differences in preparing a protein structure docking, as well as with Goemans-Williamson, the best classical algorithm for MaxCut. The relative binding affinity of potential interactions between the pruned protein chain residues of SP-A and SARS-CoV-2 S proteins was assessed by the ZDOCK program. Our data indicate that SP-A could ligate the S protein with a similar affinity to the ACE2-Spike binding. Interestingly, however, the results suggest that the most tightly-bound SP-A binding site is localized to the S2 chain, in the fusion region of the SARS-CoV-2 S protein, that is responsible for cell entry Based on these findings we speculate that SP-A may not directly compete with ACE2 for the binding site on the S protein, but interferes with viral entry to the cell by hindering necessary conformational changes or the fusion process.
Collapse
Affiliation(s)
- Sona Aramyan
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
| | - Kirk McGregor
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
| | - Samarth Sandeep
- If and Only If (Iff) Technologies, Pleasanton, CA, United States
- *Correspondence: Samarth Sandeep, ; Angela Haczku,
| | - Angela Haczku
- University of California (UC) Davis Lung Center Pulmonary, Critical Care and Sleep Division, Department of Medicine, School of Medicine, University of California, Davis, CA, United States
- *Correspondence: Samarth Sandeep, ; Angela Haczku,
| |
Collapse
|
17
|
Xu X, Li G, Sun B, Zuo YY. S2 Subunit of SARS-CoV-2 Spike Protein Induces Domain Fusion in Natural Pulmonary Surfactant Monolayers. J Phys Chem Lett 2022; 13:8359-8364. [PMID: 36043851 PMCID: PMC9454269 DOI: 10.1021/acs.jpclett.2c01998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pulmonary surfactant has been attempted as a supportive therapy to treat COVID-19. Although it is mechanistically accepted that the fusion peptide in the S2 subunit of the S protein plays a predominant role in mediating viral fusion with the host cell membrane, it is still unknown how the S2 subunit interacts with the natural surfactant film. Using combined bio-physicochemical assays and atomic force microscopy imaging, it was found that the S2 subunit inhibited the biophysical properties of the surfactant and induced microdomain fusion in the surfactant monolayer. The surfactant inhibition has been attributed to membrane fluidization caused by insertion of the S2 subunit mediated by its fusion peptide. These findings may provide novel insight into the understanding of bio-physicochemical mechanisms responsible for surfactant interactions with SARS-CoV-2 and may have translational implications in the further development of surfactant replacement therapy for COVID-19 patients.
Collapse
Affiliation(s)
- Xiaojie Xu
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
| | - Guangle Li
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
| | - Bingbing Sun
- State
Key Laboratory of Fine Chemicals and School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Y. Zuo
- Department
of Mechanical Engineering, University of
Hawaii at Manoa, Honolulu 96822, Hawaii, United States
- Department
of Pediatrics, John A. Burns School of Medicine, University of Hawaii, Honolulu 96826, Hawaii, United States
| |
Collapse
|
18
|
Abstract
Human genetics can inform the biology and epidemiology of coronavirus disease 2019 (COVID-19) by pinpointing causal mechanisms that explain why some individuals become more severely affected by the disease upon infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Large-scale genetic association studies, encompassing both rare and common genetic variants, have used different study designs and multiple disease phenotype definitions to identify several genomic regions associated with COVID-19. Along with a multitude of follow-up studies, these findings have increased our understanding of disease aetiology and provided routes for management of COVID-19. Important emergent opportunities include the clinical translatability of genetic risk prediction, the repurposing of existing drugs, exploration of variable host effects of different viral strains, study of inter-individual variability in vaccination response and understanding the long-term consequences of SARS-CoV-2 infection. Beyond the current pandemic, these transferrable opportunities are likely to affect the study of many infectious diseases.
Collapse
Affiliation(s)
- Mari E K Niemi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Mark J Daly
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
- Broad Institute, Cambridge, MA, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Ganna
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland.
- Broad Institute, Cambridge, MA, USA.
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Fedorchenko Y, Zimba O. CAN PULMONARY SURFACTANT PROTEINS BE RELIABLE INDICATORS OF COVID-19-ASSOCIATED PULMONARY INJURY? CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2022. [DOI: 10.47316/cajmhe.2022.3.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic is still raging all over the world. New variants of the coronavirus emerge and infect recovered from previous infections, vaccinated, and unvaccinated subjects. One aspect remains unchanged that is the lungs are the main targets of the pandemic coronavirus. This challenging situation requires the search for reliable predictive markers of severe and complicated course of the disease. Serum surfactant proteins are known to correlate with pulmonary injury severity in numerous diseases. Measurement of such protein levels may help timely predict the risk. Surfactant proteins can also be helpful diagnostic purposes in COVID-19.
Collapse
|
20
|
Pathak GA, Karjalainen J, Stevens C, Neale BM, Daly M, Ganna A, Andrews SJ, Kanai M, Cordioli M, Polimanti R, Harerimana N, Pirinen M, Liao RG, Chwialkowska K, Trankiem A, Balaconis MK, Nguyen H, Solomonson M, Veerapen K, Wolford B, Roberts G, Park D, Ball CA, Coignet M, McCurdy S, Knight S, Partha R, Rhead B, Zhang M, Berkowitz N, Gaddis M, Noto K, Ruiz L, Pavlovic M, Hong EL, Rand K, Girshick A, Guturu H, Baltzell AH, Niemi MEK, Rahmouni S, Guntz J, Beguin Y, Cordioli M, Pigazzini S, Nkambule L, Georges M, Moutschen M, Misset B, Darcis G, Guiot J, Azarzar S, Gofflot S, Claassen S, Malaise O, Huynen P, Meuris C, Thys M, Jacques J, Léonard P, Frippiat F, Giot JB, Sauvage AS, Frenckell CV, Belhaj Y, Lambermont B, Nakanishi T, Morrison DR, Mooser V, Richards JB, Butler-Laporte G, Forgetta V, Li R, Ghosh B, Laurent L, Belisle A, Henry D, Abdullah T, Adeleye O, Mamlouk N, Kimchi N, Afrasiabi Z, Rezk N, Vulesevic B, Bouab M, Guzman C, Petitjean L, Tselios C, Xue X, Afilalo J, Afilalo M, Oliveira M, Brenner B, Brassard N, Durand M, Schurr E, Lepage P, Ragoussis J, Auld D, Chassé M, Kaufmann DE, Lathrop GM, Adra D, Hayward C, Glessner JT, Shaw DM, Campbell A, Morris M, Hakonarson H, Porteous DJ, Below J, Richmond A, Chang X, Polikowski H, Lauren PE, Chen HH, Wanying Z, Fawns-Ritchie C, North K, McCormick JB, Chang X, Glessner JR, Hakonarson H, Gignoux CR, Wicks SJ, Crooks K, Barnes KC, Daya M, Shortt J, Rafaels N, Chavan S, Timmers PRHJ, Wilson JF, Tenesa A, Kerr SM, D’Mellow K, Shahin D, El-Sherbiny YM, von Hohenstaufen KA, Sobh A, Eltoukhy MM, Nkambul L, Elhadidy TA, Abd Elghafar MS, El-Jawhari JJ, Mohamed AAS, Elnagdy MH, Samir A, Abdel-Aziz M, Khafaga WT, El-Lawaty WM, Torky MS, El-shanshory MR, Yassen AM, Hegazy MAF, Okasha K, Eid MA, Moahmed HS, Medina-Gomez C, Ikram MA, Uitterlinden AG, Mägi R, Milani L, Metspalu A, Laisk T, Läll K, Lepamets M, Esko T, Reimann E, Naaber P, Laane E, Pesukova J, Peterson P, Kisand K, Tabri J, Allos R, Hensen K, Starkopf J, Ringmets I, Tamm A, Kallaste A, Alavere H, Metsalu K, Puusepp M, Batini C, Tobin MD, Venn LD, Lee PH, Shrine N, Williams AT, Guyatt AL, John C, Packer RJ, Ali A, Free RC, Wang X, Wain LV, Hollox EJ, Bee CE, Adams EL, Palotie A, Ripatti S, Ruotsalainen S, Kristiansson K, Koskelainen S, Perola M, Donner K, Kivinen K, Palotie A, Kaunisto M, Rivolta C, Bochud PY, Bibert S, Boillat N, Nussle SG, Albrich W, Quinodoz M, Kamdar D, Suh N, Neofytos D, Erard V, Voide C, Bochud PY, Rivolta C, Bibert S, Quinodoz M, Kamdar D, Neofytos D, Erard V, Voide C, Friolet R, Vollenweider P, Pagani JL, Oddo M, zu Bentrup FM, Conen A, Clerc O, Marchetti O, Guillet A, Guyat-Jacques C, Foucras S, Rime M, Chassot J, Jaquet M, Viollet RM, Lannepoudenx Y, Portopena L, Bochud PY, Vollenweider P, Pagani JL, Desgranges F, Filippidis P, Guéry B, Haefliger D, Kampouri EE, Manuel O, Munting A, Papadimitriou-Olivgeris M, Regina J, Rochat-Stettler L, Suttels V, Tadini E, Tschopp J, Van Singer M, Viala B, Boillat-Blanco N, Brahier T, Hügli O, Meuwly JY, Pantet O, Gonseth Nussle S, Bochud M, D’Acremont V, Estoppey Younes S, Albrich WC, Suh N, Cerny A, O’Mahony L, von Mering C, Bochud PY, Frischknecht M, Kleger GR, Filipovic M, Kahlert CR, Wozniak H, Negro TR, Pugin J, Bouras K, Knapp C, Egger T, Perret A, Montillier P, di Bartolomeo C, Barda B, de Cid R, Carreras A, Moreno V, Kogevinas M, Galván-Femenía I, Blay N, Farré X, Sumoy L, Cortés B, Mercader JM, Guindo-Martinez M, Torrents D, Garcia-Aymerich J, Castaño-Vinyals G, Dobaño C, Gori M, Renieri A, Mari F, Mondelli MU, Castelli F, Vaghi M, Rusconi S, Montagnani F, Bargagli E, Franchi F, Mazzei MA, Cantarini L, Tacconi D, Feri M, Scala R, Spargi G, Nencioni C, Bandini M, Caldarelli GP, Canaccini A, Ognibene A, D’Arminio Monforte A, Girardis M, Antinori A, Francisci D, Schiaroli E, Scotton PG, Panese S, Scaggiante R, Monica MD, Capasso M, Fiorentino G, Castori M, Aucella F, Biagio AD, Masucci L, Valente S, Mandalà M, Zucchi P, Giannattasio F, Coviello DA, Mussini C, Tavecchia L, Crotti L, Rizzi M, Rovere MTL, Sarzi-Braga S, Bussotti M, Ravaglia S, Artuso R, Perrella A, Romani D, Bergomi P, Catena E, Vincenti A, Ferri C, Grassi D, Pessina G, Tumbarello M, Pietro MD, Sabrina R, Luchi S, Furini S, Dei S, Benetti E, Picchiotti N, Sanarico M, Ceri S, Pinoli P, Raimondi F, Biscarini F, Stella A, Zguro K, Capitani K, Nkambule L, Tanfoni M, Fallerini C, Daga S, Baldassarri M, Fava F, Frullanti E, Valentino F, Doddato G, Giliberti A, Tita R, Amitrano S, Bruttini M, Croci S, Meloni I, Mencarelli MA, Rizzo CL, Pinto AM, Beligni G, Tommasi A, Sarno LD, Palmieri M, Carriero ML, Alaverdian D, Busani S, Bruno R, Vecchia M, Belli MA, Mantovani S, Ludovisi S, Quiros-Roldan E, Antoni MD, Zanella I, Siano M, Emiliozzi A, Fabbiani M, Rossetti B, Bergantini L, D’Alessandro M, Cameli P, Bennett D, Anedda F, Marcantonio S, Scolletta S, Guerrini S, Conticini E, Frediani B, Spertilli C, Donati A, Guidelli L, Corridi M, Croci L, Piacentini P, Desanctis E, Cappelli S, Verzuri A, Anemoli V, Pancrazzi A, Lorubbio M, Miraglia FG, Venturelli S, Cossarizza A, Vergori A, Gabrieli A, Riva A, Paciosi F, Andretta F, Gatti F, Parisi SG, Baratti S, Piscopo C, Russo R, Andolfo I, Iolascon A, Carella M, Merla G, Squeo GM, Raggi P, Marciano C, Perna R, Bassetti M, Sanguinetti M, Giorli A, Salerni L, Parravicini P, Menatti E, Trotta T, Coiro G, Lena F, Martinelli E, Mancarella S, Gabbi C, Maggiolo F, Ripamonti D, Bachetti T, Suardi C, Parati G, Bottà G, Domenico PD, Rancan I, Bianchi F, Colombo R, Barbieri C, Acquilini D, Andreucci E, Segala FV, Tiseo G, Falcone M, Lista M, Poscente M, Vivo OD, Petrocelli P, Guarnaccia A, Baroni S, Hayward C, Porteous DJ, Fawns-Ritchie C, Richmond A, Campbell A, van Heel DA, Hunt KA, Trembath RC, Huang QQ, Martin HC, Mason D, Trivedi B, Wright J, Finer S, Akhtar S, Anwar M, Arciero E, Ashraf S, Breen G, Chung R, Curtis CJ, Chowdhury M, Colligan G, Deloukas P, Durham C, Finer S, Griffiths C, Huang QQ, Hurles M, Hunt KA, Hussain S, Islam K, Khan A, Khan A, Lavery C, Lee SH, Lerner R, MacArthur D, MacLaughlin B, Martin H, Mason D, Miah S, Newman B, Safa N, Tahmasebi F, Trembath RC, Trivedi B, van Heel DA, Wright J, Griffiths CJ, Smith AV, Boughton AP, Li KW, LeFaive J, Annis A, Niavarani A, Aliannejad R, Sharififard B, Amirsavadkouhi A, Naderpour Z, Tadi HA, Aleagha AE, Ahmadi S, Moghaddam SBM, Adamsara A, Saeedi M, Abdollahi H, Hosseini A, Chariyavilaskul P, Jantarabenjakul W, Hirankarn N, Chamnanphon M, Suttichet TB, Shotelersuk V, Pongpanich M, Phokaew C, Chetruengchai W, Putchareon O, Torvorapanit P, Puthanakit T, Suchartlikitwong P, Nilaratanakul V, Sodsai P, Brumpton BM, Hveem K, Willer C, Wolford B, Zhou W, Rogne T, Solligard E, Åsvold BO, Franke L, Boezen M, Deelen P, Claringbould A, Lopera E, Warmerdam R, Vonk JM, van Blokland I, Lanting P, Ori APS, Feng YCA, Mercader J, Weiss ST, Karlson EW, Smoller JW, Murphy SN, Meigs JB, Woolley AE, Green RC, Perez EF, Wolford B, Zöllner S, Wang J, Beck A, Sloofman LG, Ascolillo S, Sebra RP, Collins BL, Levy T, Buxbaum JD, Sealfon SC, Jordan DM, Thompson RC, Gettler K, Chaudhary K, Belbin GM, Preuss M, Hoggart C, Choi S, Underwood SJ, Salib I, Britvan B, Keller K, Tang L, Peruggia M, Hiester LL, Niblo K, Aksentijevich A, Labkowsky A, Karp A, Zlatopolsky M, Zyndorf M, Charney AW, Beckmann ND, Schadt EE, Abul-Husn NS, Cho JH, Itan Y, Kenny EE, Loos RJF, Nadkarni GN, Do R, O’Reilly P, Huckins LM, Ferreira MAR, Abecasis GR, Leader JB, Cantor MN, Justice AE, Carey DJ, Chittoor G, Josyula NS, Kosmicki JA, Horowitz JE, Baras A, Gass MC, Yadav A, Mirshahi T, Hottenga JJ, Bartels M, de geus EEJC, Nivard MMG, Verma A, Ritchie MD, Rader D, Li B, Verma SS, Lucas A, Bradford Y, Abedalthagafi M, Alaamery M, Alshareef A, Sawaji M, Massadeh S, AlMalik A, Alqahtani S, Baraka D, Harthi FA, Alsolm E, Safieh LA, Alowayn AM, Alqubaishi F, Mutairi AA, Mangul S, Almutairi M, Aljawini N, Albesher N, Arabi YM, Mahmoud ES, Khattab AK, Halawani RT, Alahmadey ZZ, Albakri JK, Felemban WA, Suliman BA, Hasanato R, Al-Awdah L, Alghamdi J, AlZahrani D, AlJohani S, Al-Afghani H, AlDhawi N, AlBardis H, Alkwai S, Alswailm M, Almalki F, Albeladi M, Almohammed I, Barhoush E, Albader A, Alotaibi S, Alghamdi B, Jung J, fawzy MS, Alrashed M, Zeberg H, Nkambul L, Frithiof R, Hultström M, Lipcsey M, Tardif N, Rooyackers O, Grip J, Maricic T, Helgeland Ø, Magnus P, Trogstad LIS, Lee Y, Harris JR, Mangino M, Spector TD, Emma D, Moutsianas L, Caulfield MJ, Scott RH, Kousathanas A, Pasko D, Walker S, Stuckey A, Odhams CA, Rhodes D, Fowler T, Rendon A, Chan G, Arumugam P, Karczewski KJ, Martin AR, Wilson DJ, Spencer CCA, Crook DW, Wyllie DH, O’Connell AM, Atkinson EG, Kanai M, Tsuo K, Baya N, Turley P, Gupta R, Walters RK, Palmer DS, Sarma G, Solomonson M, Cheng N, Lu W, Churchhouse C, Goldstein JI, King D, Zhou W, Seed C, Daly MJ, Neale BM, Finucane H, Bryant S, Satterstrom FK, Band G, Earle SG, Lin SK, Arning N, Koelling N, Armstrong J, Rudkin JK, Callier S, Bryant S, Cusick C, Soranzo N, Zhao JH, Danesh J, Angelantonio ED, Butterworth AS, Sun YV, Huffman JE, Cho K, O’Donnell CJ, Tsao P, Gaziano JM, Peloso G, Ho YL, Smieszek SP, Polymeropoulos C, Polymeropoulos V, Polymeropoulos MH, Przychodzen BP, Fernandez-Cadenas I, Planas AM, Perez-Tur J, Llucià-Carol L, Cullell N, Muiño E, Cárcel-Márquez J, DeDiego ML, Iglesias LL, Soriano A, Rico V, Agüero D, Bedini JL, Lozano F, Domingo C, Robles V, Ruiz-Jaén F, Márquez L, Gomez J, Coto E, Albaiceta GM, García-Clemente M, Dalmau D, Arranz MJ, Dietl B, Serra-Llovich A, Soler P, Colobrán R, Martín-Nalda A, Martínez AP, Bernardo D, Rojo S, Fiz-López A, Arribas E, de la Cal-Sabater P, Segura T, González-Villa E, Serrano-Heras G, Martí-Fàbregas J, Jiménez-Xarrié E, de Felipe Mimbrera A, Masjuan J, García-Madrona S, Domínguez-Mayoral A, Villalonga JM, Menéndez-Valladares P, Chasman DI, Sesso HD, Manson JE, Buring JE, Ridker PM, Franco G, Davis L, Lee S, Priest J, Sankaran VG, van Heel D, Biesecker L, Kerchberger VE, Baillie JK. A first update on mapping the human genetic architecture of COVID-19. Nature 2022; 608:E1-E10. [PMID: 35922517 PMCID: PMC9352569 DOI: 10.1038/s41586-022-04826-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/29/2022] [Indexed: 01/04/2023]
|
21
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
22
|
Beirag N, Kumar C, Madan T, Shamji MH, Bulla R, Mitchell D, Murugaiah V, Neto MM, Temperton N, Idicula-Thomas S, Varghese PM, Kishore U. Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front Immunol 2022; 13:960733. [PMID: 35967323 PMCID: PMC9367475 DOI: 10.3389/fimmu.2022.960733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Chandan Kumar
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, India
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute and NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniel Mitchell
- WMS - Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| |
Collapse
|
23
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
24
|
Nissen CG, Mosley DD, Kharbanda KK, Katafiasz DM, Bailey KL, Wyatt TA. Malondialdehyde Acetaldehyde-Adduction Changes Surfactant Protein D Structure and Function. Front Immunol 2022; 13:866795. [PMID: 35669781 PMCID: PMC9164268 DOI: 10.3389/fimmu.2022.866795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
Alcohol consumption with concurrent cigarette smoking produces malondialdehyde acetaldehyde (MAA)-adducted lung proteins. Lung surfactant protein D (SPD) supports innate immunity via bacterial aggregation and lysis, as well as by enhancing macrophage-binding and phagocytosis. MAA-adducted SPD (SPD-MAA) has negative effects on lung cilia beating, macrophage function, and epithelial cell injury repair. Because changes in SPD multimer structure are known to impact SPD function, we hypothesized that MAA-adduction changes both SPD structure and function. Purified human SPD and SPD-MAA (1 mg/mL) were resolved by gel filtration using Sephadex G-200 and protein concentration of each fraction determined by Bradford assay. Fractions were immobilized onto nitrocellulose by slot blot and assayed by Western blot using antibodies to SPD and to MAA. Binding of SPD and SPD-MAA was determined fluorometrically using GFP-labeled Streptococcus pneumoniae (GFP-SP). Anti-bacterial aggregation of GFP-SP and macrophage bacterial phagocytosis were assayed by microscopy and permeability determined by bacterial phosphatase release. Viral injury was measured as LDH release in RSV-treated airway epithelial cells. Three sizes of SPD were resolved by gel chromatography as monomeric, trimeric, and multimeric forms. SPD multimer was the most prevalent, while the majority of SPD-MAA eluted as trimer and monomer. SPD dose-dependently bound to GFP-SP, but SPD-MAA binding to bacteria was significantly reduced. SPD enhanced, but MAA adduction of SPD prevented, both aggregation and macrophage phagocytosis of GFP-SP. Likewise, SPD increased bacterial permeability while SPD-MAA did not. In the presence of RSV, BEAS-2B cell viability was enhanced by SPD, but not protected by SPD-MAA. Our results demonstrate that MAA adduction changes the quaternary structure of SPD from multimer to trimer and monomer leading to a decrease in the native anti-microbial function of SPD. These findings suggest one mechanism for increased pneumonia observed in alcohol use disorders.
Collapse
Affiliation(s)
- Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Dawn M. Katafiasz
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Todd A. Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Research Service Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
25
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
26
|
Fröhlich E. Non-Cellular Layers of the Respiratory Tract: Protection against Pathogens and Target for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14050992. [PMID: 35631578 PMCID: PMC9143813 DOI: 10.3390/pharmaceutics14050992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Epithelial barriers separate the human body from the environment to maintain homeostasis. Compared to the skin and gastrointestinal tract, the respiratory barrier is the thinnest and least protective. The properties of the epithelial cells (height, number of layers, intercellular junctions) and non-cellular layers, mucus in the conducting airways and surfactant in the respiratory parts determine the permeability of the barrier. The review focuses on the non-cellular layers and describes the architecture of the mucus and surfactant followed by interaction with gases and pathogens. While the penetration of gases into the respiratory tract is mainly determined by their hydrophobicity, pathogens use different mechanisms to invade the respiratory tract. Often, the combination of mucus adhesion and subsequent permeation of the mucus mesh is used. Similar mechanisms are also employed to improve drug delivery across the respiratory barrier. Depending on the payload and target region, various mucus-targeting delivery systems have been developed. It appears that the mucus-targeting strategy has to be selected according to the planned application.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria; ; Tel.: +43-316-38573011
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
27
|
Labarrere CA, Kassab GS. Response: Commentary: Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2022; 13:853015. [PMID: 35493507 PMCID: PMC9039250 DOI: 10.3389/fimmu.2022.853015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
28
|
Li D, Wang X, Liao Y, Wang S, Shan J, Ji J. Insights Gained Into the Treatment of COVID19 by Pulmonary Surfactant and Its Components. Front Immunol 2022; 13:842453. [PMID: 35592339 PMCID: PMC9110697 DOI: 10.3389/fimmu.2022.842453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary surfactant constitutes an important barrier that pathogens must cross to gain access to the rest of the organism via the respiratory surface. The presence of pulmonary surfactant prevents the dissemination of pathogens, modulates immune responses, and optimizes lung biophysical activity. Thus, the application of pulmonary surfactant for the treatment of respiratory diseases provides an effective strategy. Currently, several clinical trials are investigating the use of surfactant preparations to treat patients with coronavirus disease 2019 (COVID-19). Some factors have been considered in the application of pulmonary surfactant for the treatment COVID-19, such as mechanical ventilation strategy, timing of treatment, dose delivered, method of delivery, and preparation utilized. This review supplements this list with two additional factors: accurate measurement of surfactants in patients and proper selection of pulmonary surfactant components. This review provides a reference for ongoing exogenous surfactant trials involving patients with COVID-19 and provides insight for the development of surfactant preparations for the treatment of viral respiratory infections.
Collapse
Affiliation(s)
- Dan Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianzheng Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingzhao Liao
- Pediatrics of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Tiezzi M, Morra S, Seminerio J, Van Muylem A, Godefroid A, Law-Weng-Sam N, Van Praet A, Corbière V, Orte Cano C, Karimi S, Del Marmol V, Bondue B, Benjelloun M, Lavis P, Mascart F, van de Borne P, Cardozo AK. SP-D and CC-16 Pneumoproteins' Kinetics and Their Predictive Role During SARS-CoV-2 Infection. Front Med (Lausanne) 2022; 8:761299. [PMID: 35211479 PMCID: PMC8863171 DOI: 10.3389/fmed.2021.761299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Surfactant protein D (SP-D) and pulmonary club cell protein 16 (CC-16) are called “pneumoproteins” and are involved in host defense against oxidative stress, inflammation, and viral outbreak. This study aimed to determine the predictive value of these pneumoproteins on the incidence of acute respiratory distress syndrome (ARDS) or death in patients with coronavirus disease-2019 (COVID-19). Methods This retrospective study included 87 patients admitted to an emergency department. Blood samples were collected on three time points (days 1, 5, and 14 from hospital admission). SP-D and CC-16 serum levels were determined, and univariate and multivariate analyses considering confounding variables (age, body mass index, tobacco use, dyspnea, hypertension, diabetes mellitus, neutrophil-to-lymphocyte ratio) were performed. Results Based on the multivariate analysis, SP-D level on D1 was positively and slightly correlated with subsequent development of ARDS, independent of body mass index, dyspnea, and diabetes mellitus. CC-16 level on D1 was modestly and positively correlated with fatal outcome. A rise in SP-D between D1 and D5 and D1 and D14 had a strong negative association with incidence of ARDS. These associations were independent of tobacco use and neutrophil-to-lymphocyte ratio. Conclusions Overall, our data reveal that increase in SP-D levels is a good prognostic factor for patients with COVID-19, and that initial CC-16 levels correlated with slightly higher risk of death. SP-D and CC-16 may prove useful to predict outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Margherita Tiezzi
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Inflammation and Cell Death Signalling Group, Experimental Gastroenterology Laboratory and Endotools-Medical Faculty, ULB, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jimmy Seminerio
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Noémie Law-Weng-Sam
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmen Orte Cano
- Department of Dermatology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sina Karimi
- Department of Internal Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Del Marmol
- Department of Dermatology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariam Benjelloun
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Philomène Lavis
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium.,Immunobiology Clinic, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling Group, Experimental Gastroenterology Laboratory and Endotools-Medical Faculty, ULB, Brussels, Belgium
| |
Collapse
|
30
|
Sibila O, Perea L, Albacar N, Moisés J, Cruz T, Mendoza N, Solarat B, Lledó G, Espinosa G, Barberà JA, Badia JR, Agustí A, Sellarés J, Faner R. Elevated plasma levels of epithelial and endothelial cell markers in COVID-19 survivors with reduced lung diffusing capacity six months after hospital discharge. Respir Res 2022; 23:37. [PMID: 35189887 PMCID: PMC8860292 DOI: 10.1186/s12931-022-01955-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Some COVID-19 survivors present lung function abnormalities during follow-up, particularly reduced carbon monoxide lung diffusing capacity (DLCO). To investigate risk factors and underlying pathophysiology, we compared the clinical characteristics and levels of circulating pulmonary epithelial and endothelial markers in COVID-19 survivors with normal or reduced DLCO 6 months after discharge. METHODS Prospective, observational study. Clinical characteristics during hospitalization, and spirometry, DLCO and plasma levels of epithelial (surfactant protein (SP) A (SP-A), SP-D, Club cell secretory protein-16 (CC16) and secretory leukocyte protease inhibitor (SLPI)), and endothelial (soluble intercellular adhesion molecule 1 (sICAM-1), soluble E-selectin and Angiopoietin-2) 6 months after hospital discharge were determined in 215 COVID-19 survivors. RESULTS DLCO was < 80% ref. in 125 (58%) of patients, who were older, more frequently smokers, had hypertension, suffered more severe COVID-19 during hospitalization and refer persistent dyspnoea 6 months after discharge. Multivariate regression analysis showed that age ≥ 60 years and severity score of the acute episode ≥ 6 were independent risk factors of reduced DLCO 6 months after discharge. Levels of epithelial (SP-A, SP-D and SLPI) and endothelial (sICAM-1 and angiopoietin-2) markers were higher in patients with reduced DLCO, particularly in those with DLCO ≤ 50% ref. Circulating SP-A levels were associated with the occurrence of acute respiratory distress syndrome (ARDS), organizing pneumonia and pulmonary embolisms during hospitalization. CONCLUSIONS Reduced DLCO is common in COVID-19 survivors 6 months after hospital discharge, especially in those older than 60 years with very severe acute disease. In these individuals, elevated levels of epithelial and endothelial markers suggest persistent lung damage.
Collapse
Affiliation(s)
- Oriol Sibila
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain.
| | - Lídia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Núria Albacar
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Jorge Moisés
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Tamara Cruz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Núria Mendoza
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Belen Solarat
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Gemma Lledó
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Autoimmune Diseases Department, IDIBAPS, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Gerard Espinosa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Autoimmune Diseases Department, IDIBAPS, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Joan Albert Barberà
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Joan Ramon Badia
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Alvar Agustí
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Jacobo Sellarés
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| |
Collapse
|
31
|
DePietro M, Salzberg M. Commentary: Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2022; 13:815168. [PMID: 35154131 PMCID: PMC8826256 DOI: 10.3389/fimmu.2022.815168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
|
32
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
33
|
Stravalaci M, Pagani I, Paraboschi EM, Pedotti M, Doni A, Scavello F, Mapelli SN, Sironi M, Perucchini C, Varani L, Matkovic M, Cavalli A, Cesana D, Gallina P, Pedemonte N, Capurro V, Clementi N, Mancini N, Invernizzi P, Bayarri-Olmos R, Garred P, Rappuoli R, Duga S, Bottazzi B, Uguccioni M, Asselta R, Vicenzi E, Mantovani A, Garlanda C. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat Immunol 2022; 23:275-286. [PMID: 35102342 DOI: 10.1038/s41590-021-01114-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
34
|
Ghanty S, Mandi M, Ganguly A, Das K, Dutta A, Nanda S, Biswas G, Rajak P. Lung surfactant proteins as potential targets of prallethrin: An in silico approach. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2022; 14:89-100. [PMCID: PMC8788395 DOI: 10.1007/s13530-021-00119-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 11/19/2023]
Abstract
Object Prallethrin is a pyrethroid-based insecticide, commonly used as a liquid vaporizer in household, schools, and offices to repel mosquitoes. Due to worldwide application, human beings are exposed to this compound via inhalation. Inhalation of prallethrin can expose lung surfactant proteins (SPs) to this compound. SPs such as SP-A and SP-D have anti-microbial activities, whereas SP-B and SP-C prevent alveolar collapse during exhalation by reducing surface pressure in alveolar walls. The present study aimed to investigate the binding affinities of prallethrin for the pulmonary SPs and the possible interactions involved in it. Methods In this study, molecular docking was performed using prallethrin as ligand and lung SPs as target molecules. The three-dimensional structure of prallethrin (PubChem CID: 9839306) was retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/ ), whereas the same for SPs were retrieved from RCSB Protein Data Bank (https://www.rcsb.org/ ). AutoDock 4.2 employing Lamarckian genetic algorithm was used to calculate binding affinities between the target protein and the ligand. Polar and nonpolar interactions between the amino acids of SPs and Prallethrin were studied utilizing Chimera X and Discovery Studio Visualizer. Results Results demonstrated that, prallethrin can bind with the four SPs using several interactions such as hydrogen bonds, alkyl bonds, Pi–Pi interaction, Van der Waals interaction and other. Prallethrin interacted with two binding pockets of SP-A and SP-C, whereas the prallethrin interacted with three binding pockets of SP-B and SP-D, respectively. Conclusion Findings of the study indicated that prallethrin can bind with the pulmonary SPs employing hydrogen and hydrophobic interactions. Such interactions could impair critical functions of SPs in lungs. This might increase susceptibility of lungs towards a range of respiratory illness, pathogenic infections, as well as malignancy. Graphical abstract
Collapse
Affiliation(s)
- Siddhartha Ghanty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
| | - Moutushi Mandi
- Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal India
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
- Post Graduate Department of Zoology, A.B.N. Seal College, Cooch Behar, West Bengal India
| | - Kanchana Das
- Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal India
| | - Anik Dutta
- Post Graduate Department of Zoology, Darjeeling Government College, Darjeeling, West Bengal India
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
| | - Gopal Biswas
- Department of Zoology, The University of Burdwan, Purba Bardhaman, West Bengal India
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal India
| |
Collapse
|
35
|
Dietl P, Frick M. Channels and Transporters of the Pulmonary Lamellar Body in Health and Disease. Cells 2021; 11:45. [PMID: 35011607 PMCID: PMC8750383 DOI: 10.3390/cells11010045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023] Open
Abstract
The lamellar body (LB) of the alveolar type II (ATII) cell is a lysosome-related organelle (LRO) that contains surfactant, a complex mix of mainly lipids and specific surfactant proteins. The major function of surfactant in the lung is the reduction of surface tension and stabilization of alveoli during respiration. Its lack or deficiency may cause various forms of respiratory distress syndrome (RDS). Surfactant is also part of the innate immune system in the lung, defending the organism against air-borne pathogens. The limiting (organelle) membrane that encloses the LB contains various transporters that are in part responsible for translocating lipids and other organic material into the LB. On the other hand, this membrane contains ion transporters and channels that maintain a specific internal ion composition including the acidic pH of about 5. Furthermore, P2X4 receptors, ligand gated ion channels of the danger signal ATP, are expressed in the limiting LB membrane. They play a role in boosting surfactant secretion and fluid clearance. In this review, we discuss the functions of these transporting pathways of the LB, including possible roles in disease and as therapeutic targets, including viral infections such as SARS-CoV-2.
Collapse
Affiliation(s)
- Paul Dietl
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
36
|
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I, Karteris E. Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 2021; 49:20. [PMID: 34935057 PMCID: PMC8722767 DOI: 10.3892/ijmm.2021.5075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
The pathophysiology of coronavirus disease 2019 (COVID-19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide-repertoire of possible cell entry mediators that appear to co-localise in a cell- and tissue-specific manner. The present study provides an over-view of the 'canonical' SARS-CoV-2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin-1, expanding on the involvement of novel candidates, including glucose-regulated protein 78, basigin, kidney injury molecule-1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor-α convertase) and Toll-like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID-19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS-CoV-2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID-19 warrants further investigation.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Harpal S Randeva
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Sayeh Saravi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ioannis Kyrou
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
37
|
In silico study reveals binding potential of rotenone at multiple sites of pulmonary surfactant proteins: A matter of concern. Curr Res Toxicol 2021; 2:411-423. [PMID: 34917955 PMCID: PMC8666459 DOI: 10.1016/j.crtox.2021.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Inhalation of rotenone exposes lung surfactant proteins (SP) to this pesticide. SP-A and SP-D provides protection from microbial infection. SP-B and SP-C maintain structure and respiratory function of lungs. Rotenone has potential to bind SPs at multiple sites. Such binding can subvert functions of SPs & may invite respiratory ailments.
Rotenone is a broad-spectrum pesticide employed in various agricultural practices all over the world. Human beings are exposed to this chemical through oral, nasal, and dermal routes. Inhalation of rotenone exposes bio-molecular components of lungs to this chemical. Biophysical activity of lungs is precisely regulated by pulmonary surfactant to facilitate gaseous exchange. Surfactant proteins (SPs) are the fundamental components of pulmonary surfactant. SPs like SP-A and SP-D have antimicrobial activities providing a crucial first line of defense against infections in lungs whereas SP-B and SP-C are mainly involved in respiratory cycle and reduction of surface tension at air–water interface. In this study, molecular docking analysis using AutoDock Vina has been conducted to investigate binding potential of rotenone with the four SPs. Results indicate that, rotenone can bind with carbohydrate recognition domain (CRD) of SP-A, N-, and C- terminal peptide of SP-B, SP-C, and CRD of SP-D at multiples sites via several interaction mediators such as H bonds, C–H bonds, alkyl bonds, pi-pi stacked, Van der Waals interaction, and other. Such interactions of rotenone with SPs can disrupt biophysical and anti-microbial functions of SPs in lungs that may invite respiratory ailments and pathogenic infections.
Collapse
Key Words
- ALA, Alanine
- ARG, Arginine
- ASN, Asparagine
- ASP, Aspartic acid
- CYS, Cysteine
- Carbohydrate recognition domain
- GLN, Glutamine
- GLU, Glutamic acid
- GLY, Glycine
- HIS, Histidine
- ILE, Isoleucine
- LEU, Leucine
- LYS, Lysine
- Lungs
- MET, Methionine
- Molecular docking
- PHE, Phenylalanine
- PRO, Proline
- Rotenone
- SER, Serine
- Surfactant protein
- THR, Threonine
- TRP, Tryptophan
- TYR, Tyrosine
- VAL, Valine
Collapse
|
38
|
Calkovska A, Kolomaznik M, Calkovsky V. Alveolar type II cells and pulmonary surfactant in COVID-19 era. Physiol Res 2021; 70:S195-S208. [PMID: 34913352 DOI: 10.33549/physiolres.934763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this review, we discuss the role of pulmonary surfactant in the host defense against respiratory pathogens, including novel coronavirus SARS-CoV-2. In the lower respiratory system, the virus uses angiotensin-converting enzyme 2 (ACE2) receptor in conjunction with serine protease TMPRSS2, expressed by alveolar type II (ATII) cells as one of the SARS-CoV-2 target cells, to enter. ATII cells are the main source of surfactant. After their infection and the resulting damage, the consequences may be severe and may include injury to the alveolar-capillary barrier, lung edema, inflammation, ineffective gas exchange, impaired lung mechanics and reduced oxygenation, which resembles acute respiratory distress syndrome (ARDS) of other etiology. The aim of this review is to highlight the key role of ATII cells and reduced surfactant in the pathogenesis of the respiratory form of COVID-19 and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS patients.
Collapse
Affiliation(s)
- A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University, University Hospital Martin, Martin, Slovak Republic.
| | | | | |
Collapse
|
39
|
White MR, Nikolaidis NM, McCormack F, Crouch EC, Hartshorn KL. Viral Evasion of Innate Immune Defense: The Case of Resistance of Pandemic H1N1 Influenza A Virus to Human Mannose-Binding Proteins. Front Microbiol 2021; 12:774711. [PMID: 34956139 PMCID: PMC8692257 DOI: 10.3389/fmicb.2021.774711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Mannose-binding lectins effectively inhibit most seasonal strains of influenza A virus and contribute to the innate host defense vs. these viruses. In contrast, pandemic IAV strains are largely resistant to these lectins, likely contributing to increased spread and worse outcomes. In this paper, we evaluated the inhibition of IAV by mannose-binding lectins of human, bacterial, and fungal origin to understand and possibly increase activity vs. the pandemic IAV. A modified version of the human surfactant protein D (SP-D) neck and carbohydrate recognition domain (NCRD) with combinatorial substitutions at the 325 and 343 positions, previously shown to inhibit pandemic H3N2 IAV in vitro and in vivo, and to inhibit pandemic H1N1 in vitro, failed to protect mice from pandemic H1N1 in vivo in the current study. We attempted a variety of maneuvers to improve the activity of the mutant NCRDs vs. the 2009 pandemic H1N1, including the formation of full-length SP-D molecules containing the mutant NCRD, cross-linking of NCRDs through the use of antibodies, combining SP-D or NCRDs with alpha-2-macroglobulin, and introducing an additional mutation to the double mutant NCRD. None of these substantially increased the antiviral activity for the pandemic H1N1. We also tested the activity of bacterial and algal mannose-binding lectins, cyanovirin, and griffithsin, against IAV. These had strong activity against seasonal IAV, which was largely retained against pandemic H1N1. We propose mechanisms to account for differences in activity of SP-D constructs against pandemic H3N2 and H1N1, and for differences in activity of cyanovirin vs. SP-D constructs.
Collapse
Affiliation(s)
- Mitchell R. White
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States
| | - Nikolaos M. Nikolaidis
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Francis McCormack
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, United States,Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Erika C. Crouch
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevan L. Hartshorn
- Department of Medicine, Section of Hematology and Oncology, School of Medicine, Boston University, Boston, MA, United States,*Correspondence: Kevan L. Hartshorn,
| |
Collapse
|
40
|
Gilbert C, Lefeuvre C, Preisser L, Pivert A, Soleti R, Blanchard S, Delneste Y, Ducancelle A, Couez D, Jeannin P. Age-Related Expression of IFN-λ1 Versus IFN-I and Beta-Defensins in the Nasopharynx of SARS-CoV-2-Infected Individuals. Front Immunol 2021; 12:750279. [PMID: 34858406 PMCID: PMC8631500 DOI: 10.3389/fimmu.2021.750279] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 coronavirus infection induces heterogeneous symptoms, ranging from asymptomatic to lethal forms. Severe forms usually occur in the elderly and/or individuals with comorbidities. Children generally remain asymptomatic to primary infection, suggesting that they may have an effective local innate immune response. IFN-I and -III have non-redundant protective roles against SARS-CoV-2, although sometimes damaging the host. The expression and role of anti-viral peptides during SARS-CoV-2 infection have thus far been little studied. We aimed to identify the innate immune molecules present at the SARS-CoV-2 entry point. We analyzed the mRNA levels of type I (IFN-α and -β) and type III (IFN-λ1-3) interferons and selected antiviral peptides (i.e., β-defensins 1-3, α-defensins [HNP1-3, HD5] pentraxin-3, surfactant protein D, the cathelicidin LL-37 and interleukin-26) in nasopharyngeal swabs from 226 individuals of various ages, either infected with SARS-CoV-2 (symptomatic or asymptomatic) or negative for the virus. We observed that infection induced selective upregulation of IFN-λ1 expression in pediatric subjects (≤15 years), whereas IFN-α, IFN-β, IFN-λ2/λ3, and β-defensin 1-3 expression was unaffected. Conversely, infection triggered upregulation of IFN-α, IFN-β, IFN-λ2/λ3, and β-defensin 1-3 mRNA expression in adults (15-65 years) and the elderly (≥ 65 years), but without modulation of IFN-λ1. The expression of these innate molecules was not associated with gender or symptoms. Expression of the interferon-stimulated genes IFITM1 and IFITM3 was upregulated in SARS-CoV-2-positive subjects and reached similar levels in the three age groups. Finally, age-related differences in nasopharyngeal innate immunity were also observed in SARS-CoV-2-negative subjects. This study shows that the expression patterns of IFN-I/-III and certain anti-viral molecules in the nasopharyngeal mucosa of SARS-CoV-2-infected subjects differ with age and suggests that susceptibility to SARS-CoV-2 may be related to intrinsic differences in the nature of mucosal anti-viral innate immunity.
Collapse
Affiliation(s)
- Charly Gilbert
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| | - Caroline Lefeuvre
- Laboratory of Virology, Angers University Hospital, Angers, France
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, Angers, France
| | - Laurence Preisser
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Adeline Pivert
- Laboratory of Virology, Angers University Hospital, Angers, France
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, Angers, France
| | - Raffaella Soleti
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Simon Blanchard
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| | - Yves Delneste
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| | - Alexandra Ducancelle
- Laboratory of Virology, Angers University Hospital, Angers, France
- Univ Angers, CHU Angers, HIFIH, SFR ICAT, Angers, France
| | - Dominique Couez
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
| | - Pascale Jeannin
- Univ Angers, Université de Nantes, CHU Angers, Inserm, CRCINA, SFR ICAT, Angers, France
- Laboratory of Immunology and Allergology, Angers University Hospital, Angers, France
| |
Collapse
|
41
|
Labarrere CA, Kassab GS. Pattern Recognition Proteins: First Line of Defense Against Coronaviruses. Front Immunol 2021; 12:652252. [PMID: 34630377 PMCID: PMC8494786 DOI: 10.3389/fimmu.2021.652252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
The rapid outbreak of COVID-19 caused by the novel coronavirus SARS-CoV-2 in Wuhan, China, has become a worldwide pandemic affecting almost 204 million people and causing more than 4.3 million deaths as of August 11 2021. This pandemic has placed a substantial burden on the global healthcare system and the global economy. Availability of novel prophylactic and therapeutic approaches are crucially needed to prevent development of severe disease leading to major complications both acutely and chronically. The success in fighting this virus results from three main achievements: (a) Direct killing of the SARS-CoV-2 virus; (b) Development of a specific vaccine, and (c) Enhancement of the host's immune system. A fundamental necessity to win the battle against the virus involves a better understanding of the host's innate and adaptive immune response to the virus. Although the role of the adaptive immune response is directly involved in the generation of a vaccine, the role of innate immunity on RNA viruses in general, and coronaviruses in particular, is mostly unknown. In this review, we will consider the structure of RNA viruses, mainly coronaviruses, and their capacity to affect the lungs and the cardiovascular system. We will also consider the effects of the pattern recognition protein (PRP) trident composed by (a) Surfactant proteins A and D, mannose-binding lectin (MBL) and complement component 1q (C1q), (b) C-reactive protein, and (c) Innate and adaptive IgM antibodies, upon clearance of viral particles and apoptotic cells in lungs and atherosclerotic lesions. We emphasize on the role of pattern recognition protein immune therapies as a combination treatment to prevent development of severe respiratory syndrome and to reduce pulmonary and cardiovascular complications in patients with SARS-CoV-2 and summarize the need of a combined therapeutic approach that takes into account all aspects of immunity against SARS-CoV-2 virus and COVID-19 disease to allow mankind to beat this pandemic killer.
Collapse
Affiliation(s)
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
42
|
Arroyo R, Grant SN, Colombo M, Salvioni L, Corsi F, Truffi M, Ottolina D, Hurst B, Salzberg M, Prosperi D, Kingma PS. Full-Length Recombinant hSP-D Binds and Inhibits SARS-CoV-2. Biomolecules 2021; 11:1114. [PMID: 34439781 PMCID: PMC8393632 DOI: 10.3390/biom11081114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection of host cells is driven by binding of the SARS-CoV-2 spike-(S)-protein to lung type II pneumocytes, followed by virus replication. Surfactant protein SP-D, member of the front-line immune defense of the lungs, binds glycosylated structures on invading pathogens such as viruses to induce their clearance from the lungs. The objective of this study is to measure the pulmonary SP-D levels in COVID-19 patients and demonstrate the activity of SP-D against SARS-CoV-2, opening the possibility of using SP-D as potential therapy for COVID-19 patients. Pulmonary SP-D concentrations were measured in bronchoalveolar lavage samples from patients with corona virus disease 2019 (COVID-19) by anti-SP-D ELISA. Binding assays were performed by ELISAs. Protein bridge and aggregation assays were performed by gel electrophoresis followed by silver staining and band densitometry. Viral replication was evaluated in vitro using epithelial Caco-2 cells. Results indicate that COVID-19 patients (n = 12) show decreased pulmonary levels of SP-D (median = 68.9 ng/mL) when compared to levels reported for healthy controls in literature. Binding assays demonstrate that SP-D binds the SARS-CoV-2 glycosylated spike-(S)-protein of different emerging clinical variants. Binding induces the formation of protein bridges, the critical step of viral aggregation to facilitate its clearance. SP-D inhibits SARS-CoV-2 replication in Caco-2 cells (EC90 = 3.7 μg/mL). Therefore, SP-D recognizes and binds to the spike-(S)-protein of SARS-CoV-2 in vitro, initiates the aggregation, and inhibits viral replication in cells. Combined with the low levels of SP-D observed in COVID-19 patients, these results suggest that SP-D is important in the immune response to SARS-CoV-2 and that rhSP-D supplementation has the potential to be a novel class of anti-viral that will target SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Raquel Arroyo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
| | - Shawn N. Grant
- Airway Therapeutics Inc., Cincinnati, OH 45249, USA; (S.N.G.); (M.S.)
| | - Miriam Colombo
- NanoBio laboratory, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy; (M.C.); (L.S.); (D.P.)
| | - Lucia Salvioni
- NanoBio laboratory, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy; (M.C.); (L.S.); (D.P.)
| | - Fabio Corsi
- Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy; (F.C.); (M.T.)
| | - Marta Truffi
- Istituti Clinici Scientifici Maugeri IRCCS, via Maugeri 4, 27100 Pavia, Italy; (F.C.); (M.T.)
| | - Davide Ottolina
- Division of Anesthesiology and Intensive Care Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milano, Italy;
| | - Brett Hurst
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA;
| | - Marc Salzberg
- Airway Therapeutics Inc., Cincinnati, OH 45249, USA; (S.N.G.); (M.S.)
| | - Davide Prosperi
- NanoBio laboratory, Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milano, Italy; (M.C.); (L.S.); (D.P.)
| | - Paul S. Kingma
- Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
43
|
Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The Role of Pulmonary Surfactants in the Treatment of Acute Respiratory Distress Syndrome in COVID-19. Front Pharmacol 2021; 12:698905. [PMID: 34267664 PMCID: PMC8276044 DOI: 10.3389/fphar.2021.698905] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
Lung alveolar type-II (AT-II) cells produce pulmonary surfactant (PS), consisting of proteins and lipids. The lipids in PS are primarily responsible for reducing the air-fluid surface tension inside the alveoli of the lungs and to prevent atelectasis. The proteins are of two types: hydrophilic and hydrophobic. Hydrophilic surfactants are primarily responsible for opsonisation, thereby protecting the lungs from microbial and environmental contaminants. Hydrophobic surfactants are primarily responsible for respiratory function. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the lungs through ACE-2 receptors on lungs and replicates in AT-II cells leading to the etiology of Coronavirus disease - 2019 (COVID-19). The SARS-CoV-2 virus damages the AT-II cells and results in decreased production of PS. The clinical symptoms of acute respiratory distress syndrome (ARDS) in COVID-19 patients are like those of neonatal respiratory distress syndrome (NRDS). The PS treatment is first-line treatment option for NRDS and found to be well tolerated in ARDS patients with inconclusive efficacy. Over the past 70°years, a lot of research is underway to produce natural/synthetic PS and developing systems for delivering PS directly to the lungs, in addition to finding the association between PS levels and respiratory illnesses. In the present COVID-19 pandemic situation, the scientific community all over the world is searching for the effective therapeutic options to improve the clinical outcomes. With a strong scientific and evidence-based background on role of PS in lung homeostasis and infection, few clinical trials were initiated to evaluate the functions of PS in COVID-19. Here, we connect the data on PS with reference to pulmonary physiology and infection with its possible therapeutic benefit in COVID-19 patients.
Collapse
Affiliation(s)
- Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiming Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zuorong Shi
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
44
|
Yasmin H, Saha S, Butt MT, Modi RK, George AJT, Kishore U. SARS-CoV-2: Pathogenic Mechanisms and Host Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:99-134. [PMID: 34661893 DOI: 10.1007/978-3-030-67452-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped, positive-sense RNA coronavirus responsible for the COVID-19 pandemic. Since December 2019, coronavirus disease 2019 (COVID-19) has affected more than 127 million people, 2.7 million deaths globally (as per WHO dashboard, dated 31 March, 2020), the virus is capable of transmitting from human to human via inhalation of infected respiratory droplets or aerosols or contact with infected fomites. Clinically, patients with COVID-19 present with severe respiratory distress syndrome, which is very similar to the presentation of other respiratory viral infections. A huge variation in the host response exists, with the resulting symptoms varying from mild to moderate. Comorbidities such as cardiovascular disease, hypertension, diabetes, coagulation dysfunction, stroke, malignant tumor and multiple organ dysfunction syndrome, as well as age and sex, are associated with severe COVID-19 cases. So far, no targeted therapies have been developed to treat this disease and existing drugs are being investigated for repurposing. This chapter discusses the epidemiology, clinical features of COVID-19, pathogenesis and the innate and adaptive immune response mounted by the host to the SARS-CoV-2 infection. A deeper understanding of the host-pathogen interaction is fundamental to the development of a vaccine.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sudipta Saha
- Amity Institute of Physiology and Allied Sciences, Amity University Campus, Noida, Uttar Pradesh, India
| | - Mariam Tariq Butt
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rishab Kumar Modi
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Andrew J T George
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| |
Collapse
|