1
|
Ohji G, Funakoshi Y, Yakushijin K, Matsutani T, Sasaki T, Kusakabe T, Matsumoto S, Koyama T, Nagatani Y, Kurata K, Kimbara S, Kiyota N, Minami H. Analysis of B-cell receptor repertoire to evaluate the immunogenicity of SARS-CoV-2 RBD mRNA vaccine: MAFB-7256a (DS-5670d). Front Immunol 2024; 15:1468760. [PMID: 39434885 PMCID: PMC11491357 DOI: 10.3389/fimmu.2024.1468760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
A monovalent Omicron XBB.1.5 mRNA RBD analogue vaccine, MAFB-7256a (DS-5670d), was newly developed and approved in Japan in the Spring of 2024 for the prevention of COVID-19. However, clinical efficacy data for this vaccine are currently lacking. We previously established the Quantification of Antigen-specific Antibody Sequence (QASAS) method to assess the response to SARS-CoV-2 vaccination at the mRNA level using B-cell receptor (BCR) repertoire assays and the Coronavirus Antibody Database (CoV-AbDab). Here, we used this method to evaluate the immunogenicity of MAFB-7256a. We analyzed repeated blood samples using the QASAS method from three healthy volunteers before and after MAFB-7256a vaccination. BCR response increased rapidly one week post-vaccination and then decreased, as with conventional vaccine. Notably, the matched sequences after MAFB-7256a vaccination specifically bound to the receptor-binding domain (RBD), with no sequences binding to other epitopes. These results validate that MAFB-7256a is an effective vaccine that exclusively induces antibodies specific for the RBD, demonstrating its targeted immunogenic effect.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Immunogenicity, Vaccine
- mRNA Vaccines/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Male
- Adult
- Vaccines, Synthetic/immunology
- Female
- Vaccination
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/blood
Collapse
Affiliation(s)
- Goh Ohji
- Division of Infection Disease Therapeutics, Department of Microbiology and Infectious Diseases, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yohei Funakoshi
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Kimikazu Yakushijin
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Takaji Matsutani
- Research & Development Department, Repertoire Genesis Inc., Ibaraki, Japan
| | | | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Sakuya Matsumoto
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Taiji Koyama
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Nagatani
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Keiji Kurata
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Shiro Kimbara
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
| | - Naomi Kiyota
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
- Cancer Center, Kobe University Hospital, Kobe, Japan
| | - Hironobu Minami
- Division of Medical Oncology/Hematology, Department of Medicine, Kobe University Hospital and Graduate School of Medicine, Kobe, Japan
- Cancer Center, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
2
|
Aminiranjbar Z, Gultakti CA, Alangari MN, Wang Y, Demir B, Koker Z, Das AK, Anantram MP, Oren EE, Hihath J. Identifying SARS-CoV-2 Variants Using Single-Molecule Conductance Measurements. ACS Sens 2024; 9:2888-2896. [PMID: 38773960 DOI: 10.1021/acssensors.3c02734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The global COVID-19 pandemic has highlighted the need for rapid, reliable, and efficient detection of biological agents and the necessity of tracking changes in genetic material as new SARS-CoV-2 variants emerge. Here, we demonstrate that RNA-based, single-molecule conductance experiments can be used to identify specific variants of SARS-CoV-2. To this end, we (i) select target sequences of interest for specific variants, (ii) utilize single-molecule break junction measurements to obtain conductance histograms for each sequence and its potential mutations, and (iii) employ the XGBoost machine learning classifier to rapidly identify the presence of target molecules in solution with a limited number of conductance traces. This approach allows high-specificity and high-sensitivity detection of RNA target sequences less than 20 base pairs in length by utilizing a complementary DNA probe capable of binding to the specific target. We use this approach to directly detect SARS-CoV-2 variants of concerns B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron) and further demonstrate that the specific sequence conductance is sensitive to nucleotide mismatches, thus broadening the identification capabilities of the system. Thus, our experimental methodology detects specific SARS-CoV-2 variants, as well as recognizes the emergence of new variants as they arise.
Collapse
Affiliation(s)
- Zahra Aminiranjbar
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
| | - Caglanaz Akin Gultakti
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Mashari Nasser Alangari
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
- Department of Electrical Engineering, University of Hail, Hail 2240, Saudi Arabia
| | - Yiren Wang
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98115, United States
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Zeynep Koker
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Arindam K Das
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98115, United States
- Department of Computer Science and Electrical Engineering, Eastern Washington University, Cheney, Washington 99004,United States
| | - M P Anantram
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98115, United States
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey
| | - Joshua Hihath
- Department of Electrical and Computer Engineering, University of California Davis, Davis, California 95616, United States
- Center for Bioelectronics and Biosensors, School of Electrical, Computer, and Energy Engineering, Arizona State University, Phoenix, Arizona 85287, United States
| |
Collapse
|
3
|
Bernauer H, Maier J, Bannert N, Ivanusic D. tANCHOR cell-based ELISA approach as a surrogate for antigen-coated plates to monitor specific IgG directed to the SARS-CoV-2 receptor-binding domain. Biol Methods Protoc 2024; 9:bpae001. [PMID: 38332985 PMCID: PMC10850845 DOI: 10.1093/biomethods/bpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
Enzyme-linked immunosorbent assay (ELISA) systems use plates coated with peptides or expressed and purified proteins to monitor immunoglobulins derived from patient serum. However, there is currently no easy, flexible, and fast adaptive ELISA-based system for testing antibodies directed against new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. In this study, we utilized the tANCHOR protein display system that provides a cell surface decorated with the receptor-binding domain (RBD) to monitor specific antibodies derived from SARS-CoV-2 convalescent and vaccinated individuals directed against it. To test sera from vaccinees or convalescent individuals, only the RBD coding sequence needs to be cloned in the tANCHOR vector system and transfected into HeLa cells. Time-consuming protein expression, isolation, and purification followed by coating assay plates are not necessary. With this technique, the immune evasion of new SARS-CoV-2 variants from current vaccination regimes can be examined quickly and reliably.
Collapse
Affiliation(s)
| | - Josef Maier
- ATG:biosynthetics GmbH, 79249 Merzhausen, Germany
| | - Norbert Bannert
- Sexually Transmitted Bacterial Pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| | - Daniel Ivanusic
- Sexually Transmitted Bacterial Pathogens and HIV (FG18), Robert Koch-Institute, 13353 Berlin, Germany
| |
Collapse
|
4
|
Li K, Huntwork RHC, Horn GQ, Abraha M, Hastie KM, Li H, Rayaprolu V, Olmedillas E, Feeney E, Cronin K, Schendel SL, Heise M, Bedinger D, Mattocks MD, Baric RS, Alam SM, Ollmann Saphire E, Tomaras GD, Dennison SM. Cryptic-site-specific antibodies to the SARS-CoV-2 receptor binding domain can retain functional binding affinity to spike variants. J Virol 2023; 97:e0107023. [PMID: 38019013 PMCID: PMC10746274 DOI: 10.1128/jvi.01070-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE Multiple SARS-CoV-2 variants of concern have emerged and caused a significant number of infections and deaths worldwide. These variants of concern contain mutations that might significantly affect antigen-targeting by antibodies. It is therefore important to further understand how antibody binding and neutralization are affected by the mutations in SARS-CoV-2 variants. We highlighted how antibody epitope specificity can influence antibody binding to SARS-CoV-2 spike protein variants and neutralization of SARS-CoV-2 variants. We showed that weakened spike binding and neutralization of Beta (B.1.351) and Omicron (BA.1) variants compared to wildtype are not universal among the panel of antibodies and identified antibodies of a specific binding footprint exhibiting consistent enhancement of spike binding and retained neutralization to Beta variant. These data and analysis can inform how antigen-targeting by antibodies might evolve during a pandemic and prepare for potential future sarbecovirus outbreaks.
Collapse
Affiliation(s)
- Kan Li
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Richard H. C. Huntwork
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Gillian Q. Horn
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kathryn M. Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Haoyang Li
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Vamseedhar Rayaprolu
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| | - Kenneth Cronin
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Sharon L. Schendel
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Mark Heise
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Melissa D. Mattocks
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ralph S. Baric
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - S. Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pathology, Duke University, Durham, North Carolina, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - S. Moses Dennison
- Center for Human Systems Immunology, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Roessler J, Pich D, Krähling V, Becker S, Keppler OT, Zeidler R, Hammerschmidt W. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023; 11:2892. [PMID: 38001893 PMCID: PMC10669694 DOI: 10.3390/biomedicines11112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Johannes Roessler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Verena Krähling
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Oliver T. Keppler
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, 81377 Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| |
Collapse
|
6
|
Pflumm D, Seidel A, Klein F, Groß R, Krutzke L, Kochanek S, Kroschel J, Münch J, Stifter K, Schirmbeck R. Heterologous DNA-prime/protein-boost immunization with a monomeric SARS-CoV-2 spike antigen redundantizes the trimeric receptor-binding domain structure to induce neutralizing antibodies in old mice. Front Immunol 2023; 14:1231274. [PMID: 37753087 PMCID: PMC10518615 DOI: 10.3389/fimmu.2023.1231274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
A multitude of alterations in the old immune system impair its functional integrity. Closely related, older individuals show, for example, a reduced responsiveness to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. However, systematic strategies to specifically improve the efficacy of vaccines in the old are missing or limited to simple approaches like increasing the antigen concentration or injection frequencies. We here asked whether the intrinsic, trimeric structure of the SARS-CoV-2 spike (S) antigen and/or a DNA- or protein-based antigen delivery platform affects priming of functional antibody responses particularly in old mice. The used S-antigens were primarily defined by the presence/absence of the membrane-anchoring TM domain and the closely interlinked formation/non-formation of a trimeric structure of the receptor binding domain (S-RBD). Among others, we generated vectors expressing prefusion-stabilized, cell-associated (TM+) trimeric "S2-P" or secreted (TM-) monomeric "S6-PΔTM" antigens. These proteins were produced from vector-transfected HEK-293T cells under mild conditions by Strep-tag purification, revealing that cell-associated but not secreted S proteins tightly bound Hsp73 and Grp78 chaperones. We showed that both, TM-deficient S6-PΔTM and full-length S2-P antigens elicited very similar S-RBD-specific antibody titers and pseudovirus neutralization activities in young (2-3 months) mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. The trimeric S2-P antigen induced high S-RBD-specific antibody responses in old (23-24 months) mice through DNA-prime/DNA-boost vaccination. Unexpectedly, the monomeric S6-PΔTM antigen induced very low S-RBD-specific antibody titers in old mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. However, old mice efficiently elicited an S-RBD-specific antibody response after heterologous DNA-prime/protein-boost immunization with the S6-PΔTM antigen, and antibody titers even reached similar levels and neutralizing activities as in young mice and also cross-reacted with different S-variants of concern. The old immune system thus distinguished between trimeric and monomeric S protein conformations: it remained antigen responsive to the trimeric S2-P antigen, and a simple change in the vaccine delivery regimen was sufficient to unleash its reactivity to the monomeric S6-PΔTM antigen. This clearly shows that both the antigen structure and the delivery platform are crucial to efficiently prime humoral immune responses in old mice and might be relevant for designing "age-adapted" vaccine strategies.
Collapse
Affiliation(s)
- Dominik Pflumm
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | - Alina Seidel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Fabrice Klein
- Department of Gene Therapy, University Hospital of Ulm, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, University Hospital of Ulm, Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, University Hospital of Ulm, Ulm, Germany
| | - Joris Kroschel
- Institute of Clinical Chemistry, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Katja Stifter
- Department of Internal Medicine I, University Hospital of Ulm, Ulm, Germany
| | | |
Collapse
|
7
|
Mahmoudi Azar L, Öncel MM, Karaman E, Soysal LF, Fatima A, Choi SB, Eyupoglu AE, Erman B, Khan AM, Uysal S. Human ACE2 orthologous peptide sequences show better binding affinity to SARS-CoV-2 RBD domain: Implications for drug design. Comput Struct Biotechnol J 2023; 21:4096-4109. [PMID: 37671240 PMCID: PMC10475354 DOI: 10.1016/j.csbj.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/07/2023] Open
Abstract
Computational methods coupled with experimental validation play a critical role in the identification of novel inhibitory peptides that interact with viral antigenic determinants. The interaction between the receptor binding domain (RBD) of SARS-CoV-2 spike protein and the helical peptide of human angiotensin-converting enzyme-2 (ACE2) is a necessity for the initiation of viral infection. Herein, natural orthologs of human ACE2 helical peptide were evaluated for competitive inhibitory binding to the viral RBD by use of a computational approach, which was experimentally validated. A total of 624 natural ACE2 orthologous 32-amino acid long peptides were identified through a similarity search. Molecular docking was used to virtually screen and rank the peptides based on binding affinity metrics, benchmarked against human ACE2 peptide docked to the RBD. Molecular dynamics (MD) simulations were done for the human reference and the Nipponia nippon peptide as it exhibited the highest binding affinity (Gibbs free energy; -14 kcal/mol) predicted from the docking results. The MD simulation confirmed the stability of the assessed peptide in the complex (-12.3 kcal/mol). The top three docked-peptides (from Chitinophaga sancti, Nipponia nippon, and Mus musculus) and the human reference were experimentally validated by use of surface plasmon resonance technology. The human reference exhibited the weakest binding affinity (Kd of 318-441 pM) among the peptides tested, in agreement with the docking prediction, while the peptide from Nipponia nippon was the best, with 267-538-fold higher affinity than the reference. The validated peptides merit further investigation. This work showcases that the approach herein can aid in the identification of inhibitory biosimilar peptides for other viruses.
Collapse
Affiliation(s)
- Lena Mahmoudi Azar
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
| | - Muhammed Miran Öncel
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
| | - Elif Karaman
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakif University, Istanbul 34093, Turkiye
| | - Levent Faruk Soysal
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
| | - Ayesha Fatima
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
| | - Sy Bing Choi
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Alp Ertunga Eyupoglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul 34450 Turkiye
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, Istanbul 34450 Turkiye
| | - Asif M. Khan
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Serdar Uysal
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul 34820, Turkiye
| |
Collapse
|
8
|
Yang Y, Zhou L, Mo C, Hu L, Zhou Z, Fan Y, Liu W, Li X, Zhou R, Tian X. Identification of conserved linear epitopes in the SARS-CoV-2 receptor-binding region using monoclonal antibodies. Heliyon 2023; 9:e16847. [PMID: 37292282 PMCID: PMC10238280 DOI: 10.1016/j.heliyon.2023.e16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/10/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused millions of cases of infections, leading to a global health emergency. The SARS-CoV-2 spike (S) protein plays the most important role in viral infection, and S1 subunit and its receptor-binding domain (RBD) are widely considered the most attractive vaccine targets. The RBD is highly immunogenic and its linear epitopes are important for vaccine development and therapy, but linear epitopes on the RBD have rarely been reported. In this study, 151 mouse monoclonal antibodies (mAbs) against the SARS-CoV-2 S1 protein were characterized and used to identify epitopes. Fifty-one mAbs reacted with eukaryotic SARS-CoV-2 RBD. Sixty-nine mAbs reacted with the S proteins of Omicron variants B.1.1.529 and BA.5, indicating their potential as rapid diagnostic materials. Three novel linear epitopes of RBD, R6 (391CFTNVYADSFVIRGD405), R12 (463PFERDISTEIYQAGS477), and R16 (510VVVLSFELLHAPAT523), were identified; these were highly conserved in SARS-CoV-2 variants of concern and could be detected in the convalescent serum of COVID-19 patients. From pseudovirus neutralization assays, some mAbs including one detecting R12 were found to possess neutralizing activity. Together, from the reaction of mAbs with eukaryotic RBD (N501Y), RBD (E484K), and S1 (D614G), we found that a single amino acid mutation in the SARS-CoV-2 S protein may cause a structural alteration, exerting substantial impact on mAb recognition. Our results could, therefore, help us better understand the function of the SARS-CoV-2 S protein and develop diagnostic tools for COVID-19.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Longbo Hu
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
9
|
Dissection of Antibody Responses of Gam-COVID-Vac-Vaccinated Subjects Suggests Involvement of Epitopes Outside RBD in SARS-CoV-2 Neutralization. Int J Mol Sci 2023; 24:ijms24065104. [PMID: 36982183 PMCID: PMC10049224 DOI: 10.3390/ijms24065104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Millions of people have been vaccinated with Gam-COVID-Vac but fine specificities of induced antibodies have not been fully studied. Plasma from 12 naïve and 10 coronavirus disease 2019 (COVID-19) convalescent subjects was obtained before and after two immunizations with Gam-COVID-Vac. Antibody reactivity in the plasma samples (n = 44) was studied on a panel of micro-arrayed recombinant folded and unfolded severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and 46 peptides spanning the spike protein (S) and by immunoglobulin G (IgG) subclass enzyme-linked immunosorbent assay (ELISA). The ability of Gam-COVID-Vac-induced antibodies to inhibit binding of the receptor-binding domain (RBD) to its receptor angiotensin converting enzyme 2 (ACE2) was investigated in a molecular interaction assay (MIA). The virus-neutralizing capacity of antibodies was studied by the pseudo-typed virus neutralization test (pVNT) for Wuhan-Hu-1 and Omicron. We found that Gam-COVID-Vac vaccination induced significant increases of IgG1 but not of other IgG subclasses against folded S, spike protein subunit 1 (S1), spike protein subunit 2 (S2), and RBD in a comparable manner in naïve and convalescent subjects. Virus neutralization was highly correlated with vaccination-induced antibodies specific for folded RBD and a novel peptide (i.e., peptide 12). Peptide 12 was located close to RBD in the N-terminal part of S1 and may potentially be involved in the transition of the pre- to post-fusion conformation of the spike protein. In summary, Gam-COVID-Vac vaccination induced S-specific IgG1 antibodies in naive and convalescent subjects in a comparable manner. Besides the antibodies specific for RBD, the antibodies induced against a peptide close to the N-terminus of RBD were also associated with virus-neutralization.
Collapse
|
10
|
Huo J, Dijokaite-Guraliuc A, Liu C, Zhou D, Ginn HM, Das R, Supasa P, Selvaraj M, Nutalai R, Tuekprakhon A, Duyvesteyn HME, Mentzer AJ, Skelly D, Ritter TG, Amini A, Bibi S, Adele S, Johnson SA, Paterson NG, Williams MA, Hall DR, Plowright M, Newman TAH, Hornsby H, de Silva TI, Temperton N, Klenerman P, Barnes E, Dunachie SJ, Pollard AJ, Lambe T, Goulder P, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. A delicate balance between antibody evasion and ACE2 affinity for Omicron BA.2.75. Cell Rep 2023; 42:111903. [PMID: 36586406 PMCID: PMC9747698 DOI: 10.1016/j.celrep.2022.111903] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have caused successive global waves of infection. These variants, with multiple mutations in the spike protein, are thought to facilitate escape from natural and vaccine-induced immunity and often increase in affinity for ACE2. The latest variant to cause concern is BA.2.75, identified in India where it is now the dominant strain, with evidence of wider dissemination. BA.2.75 is derived from BA.2 and contains four additional mutations in the receptor-binding domain (RBD). Here, we perform an antigenic and biophysical characterization of BA.2.75, revealing an interesting balance between humoral evasion and ACE2 receptor affinity. ACE2 affinity for BA.2.75 is increased 9-fold compared with BA.2; there is also evidence of escape of BA.2.75 from immune serum, particularly that induced by Delta infection, which may explain the rapid spread in India, where where there is a high background of Delta infection. ACE2 affinity appears to be prioritized over greater escape.
Collapse
Affiliation(s)
- Jiandong Huo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK; Guangzhou Laboratory, Bio-island, Guangzhou 510320, China.
| | - Aiste Dijokaite-Guraliuc
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Daming Zhou
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Helen M Ginn
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Raksha Das
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Muneeswaran Selvaraj
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rungtiwa Nutalai
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Aekkachai Tuekprakhon
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Donal Skelly
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Thomas G Ritter
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Ali Amini
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sagida Bibi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Sandra Adele
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Neil G Paterson
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Mark A Williams
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - David R Hall
- Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK
| | - Megan Plowright
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thomas A H Newman
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Thushan I de Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent ME4 4TB, UK
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Eleanor Barnes
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Translational Gastroenterology Unit, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susanna J Dunachie
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Peter Medawar Building for Pathogen Research, Oxford, UK; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Teresa Lambe
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, the Wellcome Centre for Human Genetics, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK; Diamond Light Source, Ltd., Harwell Science and Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Chen Y, Prévost J, Ullah I, Romero H, Lisi V, Tolbert WD, Grover JR, Ding S, Gong SY, Beaudoin-Bussières G, Gasser R, Benlarbi M, Vézina D, Anand SP, Chatterjee D, Goyette G, Grunst MW, Yang Z, Bo Y, Zhou F, Béland K, Bai X, Zeher AR, Huang RK, Nguyen DN, Sherburn R, Wu D, Piszczek G, Paré B, Matthies D, Xia D, Richard J, Kumar P, Mothes W, Côté M, Uchil PD, Lavallée VP, Smith MA, Pazgier M, Haddad E, Finzi A. Molecular basis for antiviral activity of two pediatric neutralizing antibodies targeting SARS-CoV-2 Spike RBD. iScience 2023; 26:105783. [PMID: 36514310 PMCID: PMC9733284 DOI: 10.1016/j.isci.2022.105783] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV-2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Hugo Romero
- Centre de Recherche du CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
| | - Veronique Lisi
- Centre de Recherche du CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Jonathan R. Grover
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Shang Yu Gong
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Romain Gasser
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Mehdi Benlarbi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Dani Vézina
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ziwei Yang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yuxia Bo
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Fei Zhou
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathie Béland
- Centre de Recherche du CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
| | - Xiaoyun Bai
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Allison R. Zeher
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rick K. Huang
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bastien Paré
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Xia
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Center for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Vincent-Philippe Lavallée
- Centre de Recherche du CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montréal, QC, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Martin A. Smith
- Centre de Recherche du CHU Ste-Justine, Montreal, QC H3T 1C5, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Elie Haddad
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Département de Pédiatrie, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
12
|
Oliveira JR, Ruiz CMR, Machado RRG, Magawa JY, Daher IP, Urbanski AH, Schmitz GJH, Arcuri HA, Ferreira MA, Sasahara GL, de Medeiros GX, Júnior RCVS, Durigon EL, Boscardin SB, Rosa DS, Schechtman D, Nakaya HI, Cunha-Neto E, Gadermaier G, Kalil J, Coelho V, Santos KS. Immunodominant antibody responses directed to SARS-CoV-2 hotspot mutation sites and risk of immune escape. Front Immunol 2023; 13:1010105. [PMID: 36685521 PMCID: PMC9849925 DOI: 10.3389/fimmu.2022.1010105] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Considering the likely need for the development of novel effective vaccines adapted to emerging relevant CoV-2 variants, the increasing knowledge of epitope recognition profile among convalescents and afterwards vaccinated with identification of immunodominant regions may provide important information. Methods We used an RBD peptide microarray to identify IgG and IgA binding regions in serum of 71 COVID-19 convalescents and 18 vaccinated individuals. Results We found a set of immunodominant RBD antibody epitopes, each recognized by more than 30% of the tested cohort, that differ among the two different groups and are within conserved regions among betacoronavirus. Of those, only one peptide, P44 (S415-429), recognized by 68% of convalescents, presented IgG and IgA antibody reactivity that positively correlated with nAb titers, suggesting that this is a relevant RBD region and a potential target of IgG/IgA neutralizing activity. Discussion This peptide is localized within the area of contact with ACE-2 and harbors the mutation hotspot site K417 present in gamma (K417T), beta (K417N), and omicron (K417N) variants of concern. The epitope profile of vaccinated individuals differed from convalescents, with a more diverse repertoire of immunodominant peptides, recognized by more than 30% of the cohort. Noteworthy, immunodominant regions of recognition by vaccinated coincide with mutation sites at Omicron BA.1, an important variant emerging after massive vaccination. Together, our data show that immune pressure induced by dominant antibody responses may favor hotspot mutation sites and the selection of variants capable of evading humoral response.
Collapse
Affiliation(s)
- Jamille Ramos Oliveira
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Cesar Manuel Remuzgo Ruiz
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
| | | | - Jhosiene Yukari Magawa
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Isabela Pazotti Daher
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Alysson Henrique Urbanski
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Gabriela Justamante Händel Schmitz
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
| | - Helen Andrade Arcuri
- Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | - Marcelo Alves Ferreira
- Laboratório de Biologia Celular, Laboratório de Investigação Médica 59 (LIM59), Departamento de Patologia, Faculdade de Medicina Faculdade de Medicina da Universidade de São Paulo (FMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Greyce Luri Sasahara
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
| | - Giuliana Xavier de Medeiros
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Roberto Carlos Vieira Silva Júnior
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
| | - Edison Luiz Durigon
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Plataforma Científica Pasteur-USP, São Paulo, SP, Brazil
| | - Silvia Beatriz Boscardin
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Daniela Santoro Rosa
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de São Paulo (UNIFESP/EPM, São Paulo, SP, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Helder I. Nakaya
- Plataforma Científica Pasteur-USP, São Paulo, SP, Brazil
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Edecio Cunha-Neto
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Brazil
| | - Jorge Kalil
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Verônica Coelho
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| | - Keity Souza Santos
- Departamento de Clínica Médica, Disciplina de Alergia e Imunologia Clínica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratório de Imunologia, LIM19, Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, (HCFMUSP) São Paulo da Universidade de São Paulo, São Paulo, Brazil
- Instituto de Investigação em Imunologia–Instituto Nacional de Ciências e Tecnologia – instituto de investigação em imunologia - Instituto Nacional de Ciências e Tecnologia (iii-INCT), São Paulo, Brazil
| |
Collapse
|
13
|
Fan C, Cohen AA, Park M, Hung AFH, Keeffe JR, Gnanapragasam PNP, Lee YE, Gao H, Kakutani LM, Wu Z, Kleanthous H, Malecek KE, Williams JC, Bjorkman PJ. Neutralizing monoclonal antibodies elicited by mosaic RBD nanoparticles bind conserved sarbecovirus epitopes. Immunity 2022; 55:2419-2435.e10. [PMID: 36370711 PMCID: PMC9606073 DOI: 10.1016/j.immuni.2022.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 10/24/2022] [Indexed: 01/21/2023]
Abstract
Increased immune evasion by SARS-CoV-2 variants of concern highlights the need for new therapeutic neutralizing antibodies. Immunization with nanoparticles co-displaying spike receptor-binding domains (RBDs) from eight sarbecoviruses (mosaic-8 RBD-nanoparticles) efficiently elicits cross-reactive polyclonal antibodies against conserved sarbecovirus RBD epitopes. Here, we identified monoclonal antibodies (mAbs) capable of cross-reactive binding and neutralization of animal sarbecoviruses and SARS-CoV-2 variants by screening single mouse B cells secreting IgGs that bind two or more sarbecovirus RBDs. Single-particle cryo-EM structures of antibody-spike complexes, including a Fab-Omicron complex, mapped neutralizing mAbs to conserved class 1/4 RBD epitopes. Structural analyses revealed neutralization mechanisms, potentials for intra-spike trimer cross-linking by IgGs, and induced changes in trimer upon Fab binding. In addition, we identified a mAb-resembling Bebtelovimab, an EUA-approved human class 3 anti-RBD mAb. These results support using mosaic RBD-nanoparticle vaccination to generate and identify therapeutic pan-sarbecovirus and pan-variant mAbs.
Collapse
Affiliation(s)
- Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Miso Park
- Department of Molecular Medicine, City of Hope, Duarte, CA 91010, USA
| | | | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Han Gao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Kathryn E Malecek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - John C Williams
- Department of Molecular Medicine, City of Hope, Duarte, CA 91010, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
14
|
Chang MR, Tomasovic L, Kuzmina NA, Ronk AJ, Byrne PO, Johnson R, Storm N, Olmedillas E, Hou YJ, Schäfer A, Leist SR, Tse LV, Ke H, Coherd C, Nguyen K, Kamkaew M, Honko A, Zhu Q, Alter G, Saphire EO, McLellan JS, Griffiths A, Baric RS, Bukreyev A, Marasco WA. IgG-like bispecific antibodies with potent and synergistic neutralization against circulating SARS-CoV-2 variants of concern. Nat Commun 2022; 13:5814. [PMID: 36192374 PMCID: PMC9528872 DOI: 10.1038/s41467-022-33030-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.
Collapse
Affiliation(s)
- Matthew R Chang
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Luke Tomasovic
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Natalia A Kuzmina
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Galveston National Laboratory, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Adam J Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Galveston National Laboratory, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Patrick O Byrne
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Rebecca Johnson
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Nadia Storm
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | | | - Yixuan J Hou
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Longping V Tse
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hanzhong Ke
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Christian Coherd
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Katrina Nguyen
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Maliwan Kamkaew
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Anna Honko
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Quan Zhu
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA
| | | | - Jason S McLellan
- Department of Molecular Biosciences, University of Texas, Austin, TX, 78712, USA
| | - Anthony Griffiths
- Department of Microbiology and National Emerging Infectious Diseases Laboratories, Boston University, School of Medicine, Boston, MA, 02118, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Galveston National Laboratory, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wayne A Marasco
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Correlates with Vaccine Protective Capacity and COVID-19 Disease Symptoms Identified by Serum Proteomics in Vaccinated Individuals. Molecules 2022; 27:molecules27185933. [PMID: 36144669 PMCID: PMC9500703 DOI: 10.3390/molecules27185933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.
Collapse
|
16
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
17
|
Nguyen DC, Lamothe PA, Woodruff MC, Saini AS, Faliti CE, Sanz I, Lee FE. COVID-19 and plasma cells: Is there long-lived protection? Immunol Rev 2022; 309:40-63. [PMID: 35801537 PMCID: PMC9350162 DOI: 10.1111/imr.13115] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Infection with SARS-CoV-2, the etiology of the ongoing COVID-19 pandemic, has resulted in over 450 million cases with more than 6 million deaths worldwide, causing global disruptions since early 2020. Memory B cells and durable antibody protection from long-lived plasma cells (LLPC) are the mainstay of most effective vaccines. However, ending the pandemic has been hampered by the lack of long-lived immunity after infection or vaccination. Although immunizations offer protection from severe disease and hospitalization, breakthrough infections still occur, most likely due to new mutant viruses and the overall decline of neutralizing antibodies after 6 months. Here, we review the current knowledge of B cells, from extrafollicular to memory populations, with a focus on distinct plasma cell subsets, such as early-minted blood antibody-secreting cells and the bone marrow LLPC, and how these humoral compartments contribute to protection after SARS-CoV-2 infection and immunization.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Pedro A. Lamothe
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Matthew C. Woodruff
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ankur S. Saini
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Caterina E. Faliti
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Ignacio Sanz
- Division of Rheumatology, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Emory Autoimmunity Center of ExcellenceEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| | - Frances Eun‐Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineEmory UniversityAtlantaGeorgiaUSA
- Lowance Center for Human ImmunologyEmory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
18
|
Chen Y, Sun L, Ullah I, Beaudoin-Bussières G, Anand SP, Hederman AP, Tolbert WD, Sherburn R, Nguyen DN, Marchitto L, Ding S, Wu D, Luo Y, Gottumukkala S, Moran S, Kumar P, Piszczek G, Mothes W, Ackerman ME, Finzi A, Uchil PD, Gonzalez FJ, Pazgier M. Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. SCIENCE ADVANCES 2022; 8:eabn4188. [PMID: 35857504 PMCID: PMC9278865 DOI: 10.1126/sciadv.abn4188] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/27/2022] [Indexed: 05/27/2023]
Abstract
Soluble angiotensin-converting enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses using ACE2 as their receptor. Using structure-guided approaches, we developed a series of bivalent ACE2-Fcs harboring functionally and structurally validated mutations that enhance severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain recognition by up to ~12-fold and remove angiotensin enzymatic activity. The lead variant M81 potently cross-neutralized SARS-CoV-2 variants of concern (VOCs), including Omicron, at subnanomolar half-maximal inhibitory concentration and was capable of robust Fc-effector functions, including antibody-dependent cellular cytotoxicity, phagocytosis, and complement deposition. When tested in a stringent K18-hACE2 mouse model, Fc-enhanced ACE2-Fc delayed death by 3 to 5 days or effectively resolved lethal SARS-CoV-2 infection in both prophylactic and therapeutic settings via the combined effects of neutralization and Fc-effector functions. These data add to the demonstrated utility of soluble ACE2 as a valuable SARS-CoV-2 antiviral and indicate that Fc-effector functions may constitute an important component of ACE2-Fc therapeutic activity.
Collapse
Affiliation(s)
- Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Irfan Ullah
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guillaume Beaudoin-Bussières
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | | | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Lorie Marchitto
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Priti Kumar
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| |
Collapse
|
19
|
Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms. Biomolecules 2022; 12:biom12070964. [PMID: 35883520 PMCID: PMC9313167 DOI: 10.3390/biom12070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions.
Collapse
|
20
|
Mucker EM, Brocato RL, Principe LM, Kim RK, Zeng X, Smith JM, Kwilas SA, Kim S, Horton H, Caproni L, Hooper JW. SARS-CoV-2 Doggybone DNA Vaccine Produces Cross-Variant Neutralizing Antibodies and Is Protective in a COVID-19 Animal Model. Vaccines (Basel) 2022; 10:vaccines10071104. [PMID: 35891268 PMCID: PMC9317096 DOI: 10.3390/vaccines10071104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
To combat the COVID-19 pandemic, an assortment of vaccines has been developed. Nucleic acid vaccines have the advantage of rapid production, as they only require a viral antigen sequence and can readily be modified to detected viral mutations. Doggybone™ DNA vaccines targeting the spike protein of SARS-CoV-2 have been generated and compared with a traditionally manufactured, bacterially derived plasmid DNA vaccine that utilizes the same spike sequence. Administered to Syrian hamsters by jet injection at two dose levels, the immunogenicity of both DNA vaccines was compared following two vaccinations. Immunized hamsters were then immunosuppressed and exposed to SARS-CoV-2. Significant differences in body weight were observed during acute infection, and lungs collected at the time of euthanasia had significantly reduced viral RNA, infectious virus, and pathology compared with irrelevant DNA-vaccinated controls. Moreover, immune serum from vaccinated animals was capable of neutralizing SARS-CoV-2 variants of interest and importance in vitro. These data demonstrate the efficacy of a synthetic DNA vaccine approach to protect hamsters from SARS-CoV-2.
Collapse
Affiliation(s)
- Eric M. Mucker
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (E.M.M.); (R.L.B.); (L.M.P.); (J.M.S.); (S.A.K.)
| | - Rebecca L. Brocato
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (E.M.M.); (R.L.B.); (L.M.P.); (J.M.S.); (S.A.K.)
| | - Lucia M. Principe
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (E.M.M.); (R.L.B.); (L.M.P.); (J.M.S.); (S.A.K.)
| | - Robert K. Kim
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (R.K.K.); (X.Z.)
| | - Xiankun Zeng
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (R.K.K.); (X.Z.)
| | - Jeffrey M. Smith
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (E.M.M.); (R.L.B.); (L.M.P.); (J.M.S.); (S.A.K.)
| | - Steven A. Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (E.M.M.); (R.L.B.); (L.M.P.); (J.M.S.); (S.A.K.)
| | - Sungwon Kim
- Touchlight Genetics, Ltd., London TW12 2ER, UK; (S.K.); (H.H.); (L.C.)
| | - Helen Horton
- Touchlight Genetics, Ltd., London TW12 2ER, UK; (S.K.); (H.H.); (L.C.)
| | - Lisa Caproni
- Touchlight Genetics, Ltd., London TW12 2ER, UK; (S.K.); (H.H.); (L.C.)
| | - Jay W. Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA; (E.M.M.); (R.L.B.); (L.M.P.); (J.M.S.); (S.A.K.)
- Correspondence: ; Tel.: +1-301-619-4101
| |
Collapse
|
21
|
Blanas A, Karsjens H, de Ligt A, Huijbers EJ, van Loon K, Denisov SS, Durukan C, Engbersen DJ, Groen J, Hennig S, Hackeng TM, van Beijnum JR, Griffioen AW. Vaccination with a bacterial peptide conjugated to SARS-CoV-2 RBD accelerates immunity and protects against COVID-19. iScience 2022; 25:104719. [PMID: 35813877 PMCID: PMC9252865 DOI: 10.1016/j.isci.2022.104719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/31/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Poor immunogenicity of critical epitopes can hamper vaccine efficacy. To boost immune recognition of non- or low-immunogenic antigens, we developed a vaccine platform based on the conjugation of a target protein to a chimeric designer peptide (CDP) of bacterial origin. Here, we exploited this immune Boost (iBoost) technology to enhance the immune response against the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. Despite its fundamental role during viral infection, RBD is only moderately immunogenic. Immunization studies in mice showed that the conjugation of CDP to RBD induced superior immune responses compared to RBD alone. CDP-RBD elicited cross-reactive antibodies against the variants of concern Delta and Omicron. Furthermore, hamsters vaccinated with CDP-RBD developed potent neutralizing antibody responses and were fully protected from lung lesion formation upon challenge with SARS-CoV-2. In sum, we show that the iBoost conjugate vaccine technology provides a valuable tool for both quantitatively and qualitatively enhancing anti-viral immunity. An iBoost-based CDP-RBD conjugate vaccine against SARS-CoV-2 Induction of potent RBD-specific humoral and cellular responses CDP-RBD vaccination protects hamsters from lung lesion formation
Collapse
Affiliation(s)
- Athanasios Blanas
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Haiko Karsjens
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aafke de Ligt
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Elisabeth J.M. Huijbers
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Karlijn van Loon
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Stepan S. Denisov
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | - Canan Durukan
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | | | - Jan Groen
- Intravacc, Institute for Translational Vaccinology, Bilthoven, the Netherlands
| | - Sven Hennig
- Department of Chemistry & Pharmaceutical Sciences, Amsterdam Institute of Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tilman M. Hackeng
- School for Cardiovascular Sciences, Department of Biochemistry, Maastricht University, Maastricht, the Netherlands
| | | | - Arjan W. Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
- Corresponding author
| |
Collapse
|
22
|
Homogeneous surrogate virus neutralization assay to rapidly assess neutralization activity of anti-SARS-CoV-2 antibodies. Nat Commun 2022; 13:3716. [PMID: 35778399 PMCID: PMC9249905 DOI: 10.1038/s41467-022-31300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic triggered the development of numerous diagnostic tools to monitor infection and to determine immune response. Although assays to measure binding antibodies against SARS-CoV-2 are widely available, more specific tests measuring neutralization activities of antibodies are immediately needed to quantify the extent and duration of protection that results from infection or vaccination. We previously developed a 'Serological Assay based on a Tri-part split-NanoLuc® (SATiN)' to detect antibodies that bind to the spike (S) protein of SARS-CoV-2. Here, we expand on our previous work and describe a reconfigured version of the SATiN assay, called Neutralization SATiN (Neu-SATiN), which measures neutralization activity of antibodies directly from convalescent or vaccinated sera. The results obtained with our assay and other neutralization assays are comparable but with significantly shorter preparation and run time for Neu-SATiN. As the assay is modular, we further demonstrate that Neu-SATiN enables rapid assessment of the effectiveness of vaccines and level of protection against existing SARS-CoV-2 variants of concern and can therefore be readily adapted for emerging variants.
Collapse
|
23
|
Abe KT, Rathod B, Colwill K, Gingras AC, Tuite A, Robbins NF, Orjuela G, Jenkins C, Conrod V, Yi QL, O'Brien SF, Drews SJ. A Qualitative Comparison of the Abbott SARS-CoV-2 IgG II Quant Assay against Commonly Used Canadian SARS-CoV-2 Enzyme Immunoassays in Blood Donor Retention Specimens, April 2020 to March 2021. Microbiol Spectr 2022; 10:e0113422. [PMID: 35652636 PMCID: PMC9241784 DOI: 10.1128/spectrum.01134-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 01/11/2023] Open
Abstract
Our group has previously used laboratory and commercially developed assays to understand the IgG responses to SARS-CoV-2 antigens, including nucleocapsid (N), spike (S), and receptor binding domain (RBD), in Canadian blood donors. In this current study, we analyzed 17,428 available and previously characterized retention samples collected from April 2020 to March 2021. The analysis compared the characteristics of the Abbott SARS-CoV-2 IgG II Quant assay (Abbott anti-spike [S], Abbott, Chicago, IL) against four other IgG assays. The Abbott anti-S assay has a qualitative threshold of 50 AU/mL. The four comparator assays were the Abbott anti-nucleocapsid (N) assay and three commonly used Canadian in-house IgG enzyme-linked immunosorbent assays (ELISAs) recognizing distinct recombinant viral antigens, full-length spike glycoprotein, glycoprotein RBD, and nucleocapsid. The strongest qualitative relationship was between Sinai RBD and the Abbott anti-S assay (kappa, 0.707; standard error [SE] of kappa, 0.018; 95% confidence interval, 0.671 to 0.743). We then scored each previously characterized specimen as positive when two anti-SARS-COV-2 assays identified anti-SARS-CoV-2 IgG in the specimen. Using this composite reference standard approach, the sensitivity of the Abbott anti-S assay was 95.96% (95% confidence interval [CI], 93.27 to 97.63%). The specificity of the Abbott anti-S assay was 99.35% (95% CI, 99.21 to 99.46%). Our study provides context on the use of commonly used SARS-CoV-2 serologies in Canada and identifies how these assays qualitatively compare to newer commercial assays. Our next steps are to assess how well the Abbott anti-S assays quantitatively detect wild-type and SARS-CoV-2 variants of concern. IMPORTANCE We describe the qualitative test characteristics of the Abbott SARS-CoV-2 IgG II Quant assay against four other anti-SARS-CoV-2 IgG assays commonly used in Canada. Although there is no gold standard for identifying anti-SARS-CoV-2 seropositivity, aggregate standards can be used to assess seropositivity. In this study, we used a specimen bank of previously well-characterized specimens collected between April 2020 and March 2021. The Abbott anti-S assay showed the strongest qualitative relationship with a widely used laboratory-developed IgG assay for the SARS-CoV-2 receptor binding domain. Using the composite reference standard approach, we also showed that the Abbott anti-S assay was highly sensitive and specific. As new anti-SARS-CoV-2 assays are developed, it is important to compare their test characteristics against other assays that have been extensively used in prior research.
Collapse
Affiliation(s)
- Kento T Abe
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Torontogrid.17063.33, Toronto, Ontario, Canada
| | - Bhavisha Rathod
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
| | - Karen Colwill
- Department of Molecular Genetics, University of Torontogrid.17063.33, Toronto, Ontario, Canada
- Treadwell Therapeutics, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mt. Sinai Hospital, Sinai Health, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Torontogrid.17063.33, Toronto, Ontario, Canada
| | - Ashleigh Tuite
- Dalla Lana School of Public Health, University of Torontogrid.17063.33, Toronto, Ontario, Canada
| | - Ninette F Robbins
- Scientific Affairs, Abbott Transfusion Medicine, Chicago, Illinois, USA
| | | | - Craig Jenkins
- COVID-19 Serological Screening Laboratory, Canadian Blood Servicesgrid.423370.1, Ottawa, Ontario, Canada
| | - Valerie Conrod
- COVID-19 Serological Screening Laboratory, Canadian Blood Servicesgrid.423370.1, Ottawa, Ontario, Canada
| | - Qi-Long Yi
- Epidemiology and Surveillance, Canadian Blood Servicesgrid.423370.1, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Sheila F O'Brien
- Epidemiology and Surveillance, Canadian Blood Servicesgrid.423370.1, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Steven J Drews
- Canadian Blood Servicesgrid.423370.1, Microbiology, Edmonton, Alberta, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Yang J, Lin S, Sun H, Chen Z, Yang F, Lin X, Guo L, Wang L, Wen A, Zhang X, Dai Y, He B, Cao Y, Dong H, Liu X, Chen B, Li J, Zhao Q, Lu G. A Potent Neutralizing Nanobody Targeting the Spike Receptor-Binding Domain of SARS-CoV-2 and the Structural Basis of Its Intimate Binding. Front Immunol 2022; 13:820336. [PMID: 35663966 PMCID: PMC9158119 DOI: 10.3389/fimmu.2022.820336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The continuous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) around the world has raised unprecedented challenges to the human society. Antibodies and nanobodies possessing neutralization activity represent promising drug candidates. In this study, we report the identification and characterization of a potent SARS-CoV-2 neutralizing nanobody that targets the viral spike receptor-binding domain (S-RBD). The nanobody, termed as Nb-007, engages SARS-CoV-2 S-RBD with the two-digit picomolar binding affinity and shows outstanding virus entry-inhibition activity. The complex structure of Nb-007 bound to SARS-CoV-2 S-RBD reveals an epitope that is partially overlapping with the binding site for the human receptor of angiotensin-converting enzyme 2 (ACE2). The nanobody therefore exerts neutralization by competing with ACE2 for S-RBD binding, which is further ascertained by our in-vitro biochemical analyses. Finally, we also show that Nb-007 reserves promising, though compromised, neutralization activity against the currently-circulating Delta variant and that fusion of the nanobody with Fc dramatically increases its entry-inhibition capacity. Taken together, these data have paved the way of developing Nb-007 as a drug-reserve for potential treatment of SARS-CoV-2 related diseases.
Collapse
Affiliation(s)
- Jing Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Sheng Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honglu Sun
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fanli Yang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Lin
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Liyan Guo
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Wang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ao Wen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xindan Zhang
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yushan Dai
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bin He
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Cao
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haohao Dong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xianbo Liu
- Antibody R&D Department, CHENGDU NB BIOLAB CO., LTD, Chengdu, China
| | - Bo Chen
- Antibody R&D Department, CHENGDU NB BIOLAB CO., LTD, Chengdu, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Designing and characterization of a SARS-CoV-2 immunogen with receptor binding motif grafted on a protein scaffold: An epitope-focused vaccine approach. Int J Biol Macromol 2022; 209:1359-1367. [PMID: 35469951 PMCID: PMC9033297 DOI: 10.1016/j.ijbiomac.2022.04.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has a significant burden on the economy and healthcare around the world. Vaccines are the most effective tools to fight infectious diseases by containing the spread of the disease. The current vaccines against SARS-CoV-2 are mostly based on the spike protein of SARS-CoV-2, which is large and has many immune-dominant non-neutralizing epitopes that may effectively skew the antibody response towards non-neutralizing antibodies. Here, we have explored the possibility of immune-focusing the receptor binding motif (RBM) of the spike protein of SARS-CoV-2 that induces mostly neutralizing antibodies in natural infection or in vacinees. The result shows that the scaffolded RBM can bind to Angiotensin Converting Enzyme 2 (ACE2) although with low affinity and induces a strong antibody response in mice. The immunized sera can bind both, the receptor binding domain (RBD) and the spike protein, which holds the RBM in its natural context. Sera from the immunized mice showed robust interferon γ response but poor neutralization of SARS-CoV-2 suggesting presence of a predominant T cell epitope on scaffolded RBM. Together, we provide a strategy for inducing strong antigenic T cell response which could be exploited further for future vaccine designing and development against SARS-CoV-2 infection.
Collapse
|
26
|
Roessler J, Pich D, Albanese M, Wratil PR, Krähling V, Hellmuth JC, Scherer C, von Bergwelt-Baildon M, Becker S, Keppler OT, Brisson A, Zeidler R, Hammerschmidt W. Quantitation of SARS-CoV-2 neutralizing antibodies with a virus-free, authentic test. PNAS NEXUS 2022; 1:pgac045. [PMID: 36382127 PMCID: PMC9645495 DOI: 10.1093/pnasnexus/pgac045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/02/2022] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
Neutralizing antibodies (NAbs), and their concentration in sera of convalescents and vaccinees are a correlate of protection from COVID-19. The antibody concentrations in clinical samples that neutralize SARS-CoV-2 are difficult and very cumbersome to assess with conventional virus neutralization tests (cVNTs), which require work with the infectious virus and biosafety level 3 containment precautions. Alternative virus neutralization tests currently in use are mostly surrogate tests based on direct or competitive enzyme immunoassays or use viral vectors with the spike protein as the single structural component of SARS-CoV-2. To overcome these obstacles, we developed a virus-free, safe and very fast (4.5 h) in vitro diagnostic test based on engineered yet authentic SARS-CoV-2 virus-like-particles (VLPs). They share all features of the original SARS-CoV-2 but lack the viral RNA genome and thus are non-infectious. NAbs induced by infection or vaccination, but also potentially neutralizing monoclonal antibodies can be reliably quantified and assessed with ease and within hours with our test, because they interfere and block the ACE2-mediated uptake of VLPs by recipient cells. Results from the VLP neutralization test (VLPNT) showed excellent specificity and sensitivity and correlated very well with a cVNT using fully infectious SARS-CoV-2. The results also demonstrated the reduced neutralizing capacity of COVID-19 vaccinee sera against variants of concern of SARS-CoV-2 including omicron B.1.1.529, BA.1.
Collapse
Affiliation(s)
- Johannes Roessler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Manuel Albanese
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Paul R Wratil
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Verena Krähling
- Institute of Virology, Faculty of Medicine, Philipps-Universität Marburg, Marburg, Germany
- German Centre for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Marburg, Germany
| | - Johannes C Hellmuth
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine I, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps-Universität Marburg, Marburg, Germany
- German Centre for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Marburg, Germany
| | - Oliver T Keppler
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Alain Brisson
- UMR-CBMN CNRS-University of Bordeaux-INP, Pessac, France
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Centre for Infection Research (DZIF), Partner site Munich, Germany
| |
Collapse
|
27
|
Strohl WR, Ku Z, An Z, Carroll SF, Keyt BA, Strohl LM. Passive Immunotherapy Against SARS-CoV-2: From Plasma-Based Therapy to Single Potent Antibodies in the Race to Stay Ahead of the Variants. BioDrugs 2022; 36:231-323. [PMID: 35476216 PMCID: PMC9043892 DOI: 10.1007/s40259-022-00529-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic is now approaching 2 years old, with more than 440 million people infected and nearly six million dead worldwide, making it the most significant pandemic since the 1918 influenza pandemic. The severity and significance of SARS-CoV-2 was recognized immediately upon discovery, leading to innumerable companies and institutes designing and generating vaccines and therapeutic antibodies literally as soon as recombinant SARS-CoV-2 spike protein sequence was available. Within months of the pandemic start, several antibodies had been generated, tested, and moved into clinical trials, including Eli Lilly's bamlanivimab and etesevimab, Regeneron's mixture of imdevimab and casirivimab, Vir's sotrovimab, Celltrion's regdanvimab, and Lilly's bebtelovimab. These antibodies all have now received at least Emergency Use Authorizations (EUAs) and some have received full approval in select countries. To date, more than three dozen antibodies or antibody combinations have been forwarded into clinical trials. These antibodies to SARS-CoV-2 all target the receptor-binding domain (RBD), with some blocking the ability of the RBD to bind human ACE2, while others bind core regions of the RBD to modulate spike stability or ability to fuse to host cell membranes. While these antibodies were being discovered and developed, new variants of SARS-CoV-2 have cropped up in real time, altering the antibody landscape on a moving basis. Over the past year, the search has widened to find antibodies capable of neutralizing the wide array of variants that have arisen, including Alpha, Beta, Gamma, Delta, and Omicron. The recent rise and dominance of the Omicron family of variants, including the rather disparate BA.1 and BA.2 variants, demonstrate the need to continue to find new approaches to neutralize the rapidly evolving SARS-CoV-2 virus. This review highlights both convalescent plasma- and polyclonal antibody-based approaches as well as the top approximately 50 antibodies to SARS-CoV-2, their epitopes, their ability to bind to SARS-CoV-2 variants, and how they are delivered. New approaches to antibody constructs, including single domain antibodies, bispecific antibodies, IgA- and IgM-based antibodies, and modified ACE2-Fc fusion proteins, are also described. Finally, antibodies being developed for palliative care of COVID-19 disease, including the ramifications of cytokine release syndrome (CRS) and acute respiratory distress syndrome (ARDS), are described.
Collapse
Affiliation(s)
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX USA
| | | | | | | |
Collapse
|
28
|
Hancock TJ, Hickman P, Kazerooni N, Kennedy M, Kania SA, Dennis M, Szafranski N, Gerhold R, Su C, Masi T, Smith S, Sparer TE. Possible Cross-Reactivity of Feline and White-Tailed Deer Antibodies against the SARS-CoV-2 Receptor Binding Domain. J Virol 2022; 96:e0025022. [PMID: 35352999 PMCID: PMC9044950 DOI: 10.1128/jvi.00250-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.
Collapse
Affiliation(s)
- Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Peyton Hickman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Niloo Kazerooni
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa Kennedy
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Michelle Dennis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Nicole Szafranski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Richard Gerhold
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tom Masi
- Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Stephen Smith
- MEDIC Regional Blood Center, Knoxville, Tennessee, USA
| | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
29
|
Willcox AC, Sung K, Garrett ME, Galloway JG, Erasmus JH, Logue JK, Hawman DW, Chu HY, Hasenkrug KJ, Fuller DH, Matsen IV FA, Overbaugh J. Detailed analysis of antibody responses to SARS-CoV-2 vaccination and infection in macaques. PLoS Pathog 2022; 18:e1010155. [PMID: 35404959 PMCID: PMC9022802 DOI: 10.1371/journal.ppat.1010155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 03/21/2022] [Indexed: 02/02/2023] Open
Abstract
Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses resemble the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in convalescent humans, convalescent (re-infected) rhesus macaques, mRNA-vaccinated humans, and repRNA-vaccinated pigtail macaques. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques. Differences in macaque species and exposure type may also contribute to these findings.
Collapse
Affiliation(s)
- Alexandra C. Willcox
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Jared G. Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jesse H. Erasmus
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- HDT Bio, Seattle, Washington, United States of America
| | - Jennifer K. Logue
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Infectious Diseases and Translational Medicine, Washington National Primate Research Center, Seattle, Washington, United States of America
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen IV
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
30
|
Fenioux C, Teixeira L, Fourati S, Melica G, Lelievre JD, Gallien S, Zalcman G, Pawlotsky JM, Tournigand C. SARS-CoV-2 Antibody Response to 2 or 3 Doses of the BNT162b2 Vaccine in Patients Treated With Anticancer Agents. JAMA Oncol 2022; 8:612-617. [PMID: 34994776 PMCID: PMC8742219 DOI: 10.1001/jamaoncol.2021.7777] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IMPORTANCE Patients with solid cancer are more susceptible to develop SARS-CoV-2 infection and severe complications; the immunogenicity in patients treated with anticancer agents remains unknown. OBJECTIVE To assess the immune humoral response to 2 or 3 doses of the BNT162b2 (BioNTech; Pfizer) vaccine in patients treated with anticancer agents. DESIGN, SETTING, AND PARTICIPANTS A prospective observational cohort study was conducted between February 1 and May 31, 2021. Adults treated with anticancer agents who received 2 or 3 doses of vaccine were included; of these, individuals with a weak humoral response 1 month after the second dose received a third injection. INTERVENTIONS Quantitative serologic testing of antibodies specific for SARS-CoV-2 was conducted before vaccination and during follow-up. MAIN OUTCOMES AND MEASURES Humoral response was evaluated with a threshold of anti-SARS-CoV-2 spike protein antibody levels at 1000 arbitrary units (AU)/mL to neutralize less-sensitive COVID-19 variants. RESULTS Among 163 patients (median [range] age, 66 [27-89] years, 86 men [53%]) with solid tumors who received 2 or 3 doses of vaccine, 122 individuals (75%) were treated with chemotherapy, 15 with immunotherapy (9%), and 26 with targeted therapies (16%). The proportions of patients with an anti-S immunoglobulin G titer greater than 1000 AU/mL were 15% (22 of 145) at the time of the second vaccination and 65% (92 of 142) 28 days after the second vaccination. Humoral response decreased 3 months after the second dose. Treatment type was associated with humoral response; in particular, time between vaccine and chemotherapy did not interfere with the humoral response. Among 36 patients receiving a third dose of vaccine, a serologic response greater than 1000 AU/mL occurred in 27 individuals (75%). CONCLUSIONS AND RELEVANCE The results of this cohort study appear to support the use of a third vaccine dose among patients with active cancer treatment for solid tumors.
Collapse
Affiliation(s)
- Charlotte Fenioux
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service d’oncologie médicale, Créteil, France
| | - Luis Teixeira
- University de Paris, AP-HP, Hôpital Saint-Louis, Breast Disease Center, INSERM U976, Paris, France
| | - Slim Fourati
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service de virologie, Créteil, France
| | - Giovanna Melica
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service d’immunologie clinique et maladies infectieuses, Créteil, France
| | - Jean Daniel Lelievre
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service d’immunologie clinique et maladies infectieuses, Créteil, France
| | - Sebastien Gallien
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service d’immunologie clinique et maladies infectieuses, Créteil, France
| | - Gérard Zalcman
- Université de Paris, AP-HP, Hôpital Bichat-Claude Bernard, Service d’oncologie thoracique and CIC INSERM 1425, Paris, France
| | - Jean Michel Pawlotsky
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service de virologie, Créteil, France
| | - Christophe Tournigand
- University Paris Est Créteil, INSERM U955, IMRB, Créteil, France,AP-HP, Hôpital Henri Mondor, Service d’oncologie médicale, Créteil, France
| |
Collapse
|
31
|
Verkhivker G. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering. Int J Mol Sci 2022; 23:ijms23062928. [PMID: 35328351 PMCID: PMC8951411 DOI: 10.3390/ijms23062928] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Nanobodies provide important advantages over traditional antibodies, including their smaller size and robust biochemical properties such as high thermal stability, high solubility, and the ability to be bioengineered into novel multivalent, multi-specific, and high-affinity molecules, making them a class of emerging powerful therapies against SARS-CoV-2. Recent research efforts on the design, protein engineering, and structure-functional characterization of nanobodies and their binding with SARS-CoV-2 S proteins reflected a growing realization that nanobody combinations can exploit distinct binding epitopes and leverage the intrinsic plasticity of the conformational landscape for the SARS-CoV-2 S protein to produce efficient neutralizing and mutation resistant characteristics. Structural and computational studies have also been instrumental in quantifying the structure, dynamics, and energetics of the SARS-CoV-2 spike protein binding with nanobodies. In this review, a comprehensive analysis of the current structural, biophysical, and computational biology investigations of SARS-CoV-2 S proteins and their complexes with distinct classes of nanobodies targeting different binding sites is presented. The analysis of computational studies is supplemented by an in-depth examination of mutational scanning simulations and identification of binding energy hotspots for distinct nanobody classes. The review is focused on the analysis of mechanisms underlying synergistic binding of multivalent nanobodies that can be superior to single nanobodies and conventional nanobody cocktails in combating escape mutations by effectively leveraging binding avidity and allosteric cooperativity. We discuss how structural insights and protein engineering approaches together with computational biology tools can aid in the rational design of synergistic combinations that exhibit superior binding and neutralization characteristics owing to avidity-mediated mechanisms.
Collapse
Affiliation(s)
- Gennady Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA; ; Tel.: +1-714-516-4586
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, USA
| |
Collapse
|
32
|
Van Ert HA, Bohan DW, Rogers K, Fili M, Rojas Chávez RA, Qing E, Han C, Dempewolf S, Hu G, Schwery N, Sevcik K, Ruggio N, Boyt D, Pentella MA, Gallagher T, Jackson JB, Merrill AE, Knudson CM, Brown GD, Maury W, Haim H. Limited Variation between SARS-CoV-2-Infected Individuals in Domain Specificity and Relative Potency of the Antibody Response against the Spike Glycoprotein. Microbiol Spectr 2022; 10:e0267621. [PMID: 35080430 PMCID: PMC8791189 DOI: 10.1128/spectrum.02676-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
The spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is arranged as a trimer on the virus surface, composed of three S1 and three S2 subunits. Infected and vaccinated individuals generate antibodies against spike, which can neutralize the virus. Most antibodies target the receptor-binding domain (RBD) and N-terminal domain (NTD) of S1; however, antibodies against other regions of spike have also been isolated. The interhost variability in domain specificity and relative neutralization efficacy of the antibodies is still poorly characterized. To this end, we tested serum and plasma samples collected from 85 coronavirus disease 2019 (COVID-19) convalescent subjects. Samples were analyzed using seven immunoassays that employ different domains, subunits, and oligomeric forms of spike to capture the antibodies. Samples were also tested for their neutralization of pseudovirus containing SARS-CoV-2 spike and of replication-competent SARS-CoV-2. While the total amount of anti-spike antibodies produced varied among convalescent subjects, we observed an unexpectedly fixed ratio of RBD- to NTD-targeting antibodies. The relative potency of the response (defined as the measured neutralization efficacy relative to the total level of spike-targeting antibodies) also exhibited limited variation between subjects and was not associated with the overall amount of antispike antibodies produced. These studies suggest that host-to-host variation in the polyclonal response elicited against SARS-CoV-2 spike in early pandemic subjects is primarily limited to the quantity of antibodies generated rather than their domain specificity or relative neutralization potency. IMPORTANCE Infection by SARS-CoV-2 elicits antibodies against various domains of the spike protein, including the RBD and NTD of subunit S1 and against subunit S2. The antibody responses of different infected individuals exhibit different efficacies to inactivate (neutralize) the virus. Here, we show that the observed variation in the neutralizing activity of the antibody responses in COVID-19 convalescent subjects is caused by differences in the amounts of antibodies rather than their recognition properties or the potency of their antiviral activity. These findings suggest that COVID-19 vaccine strategies that focus on enhancing the overall level of the antibodies will likely elicit a more uniformly efficacious protective response.
Collapse
Affiliation(s)
- Hanora A. Van Ert
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Dana W. Bohan
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Kai Rogers
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Mohammad Fili
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa, United States
| | - Roberth A. Rojas Chávez
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States
| | - Changze Han
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Spencer Dempewolf
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Guiping Hu
- Department of Industrial and Manufacturing Systems Engineering, Iowa State University, Ames, Iowa, United States
| | - Nathan Schwery
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Kristina Sevcik
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Natalie Ruggio
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Devlin Boyt
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Michael A. Pentella
- State Hygienic Laboratory, The University of Iowa, Iowa City, Iowa, United States
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States
| | - J. Brooks Jackson
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, United States
| | - Anna E. Merrill
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, United States
| | - C. Michael Knudson
- Department of Pathology, University of Iowa Hospitals & Clinics, Iowa City, Iowa, United States
| | - Grant D. Brown
- Department of Biostatistics, School of Public Health, The University of Iowa, Iowa City, Iowa, United States
| | - Wendy Maury
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| | - Hillel Haim
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
33
|
Allosteric Determinants of the SARS-CoV-2 Spike Protein Binding with Nanobodies: Examining Mechanisms of Mutational Escape and Sensitivity of the Omicron Variant. Int J Mol Sci 2022; 23:ijms23042172. [PMID: 35216287 PMCID: PMC8877688 DOI: 10.3390/ijms23042172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Structural and biochemical studies have recently revealed a range of rationally engineered nanobodies with efficient neutralizing capacity against the SARS-CoV-2 virus and resilience against mutational escape. In this study, we performed a comprehensive computational analysis of the SARS-CoV-2 spike trimer complexes with single nanobodies Nb6, VHH E, and complex with VHH E/VHH V nanobody combination. We combined coarse-grained and all-atom molecular simulations and collective dynamics analysis with binding free energy scanning, perturbation-response scanning, and network centrality analysis to examine mechanisms of nanobody-induced allosteric modulation and cooperativity in the SARS-CoV-2 spike trimer complexes with these nanobodies. By quantifying energetic and allosteric determinants of the SARS-CoV-2 spike protein binding with nanobodies, we also examined nanobody-induced modulation of escaping mutations and the effect of the Omicron variant on nanobody binding. The mutational scanning analysis supported the notion that E484A mutation can have a significant detrimental effect on nanobody binding and result in Omicron-induced escape from nanobody neutralization. Our findings showed that SARS-CoV-2 spike protein might exploit the plasticity of specific allosteric hotspots to generate escape mutants that alter response to binding without compromising activity. The network analysis supported these findings showing that VHH E/VHH V nanobody binding can induce long-range couplings between the cryptic binding epitope and ACE2-binding site through a broader ensemble of communication paths that is less dependent on specific mediating centers and therefore may be less sensitive to mutational perturbations of functional residues. The results suggest that binding affinity and long-range communications of the SARS-CoV-2 complexes with nanobodies can be determined by structurally stable regulatory centers and conformationally adaptable hotspots that are allosterically coupled and collectively control resilience to mutational escape.
Collapse
|
34
|
Negi SS, Schein CH, Braun W. Regional and temporal coordinated mutation patterns in SARS-CoV-2 spike protein revealed by a clustering and network analysis. Sci Rep 2022; 12:1128. [PMID: 35064154 PMCID: PMC8782831 DOI: 10.1038/s41598-022-04950-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 has steadily mutated during its spread to > 300 million people throughout the world. The WHO has designated strains with certain mutations, "variants of concern" (VOC), as they may have higher infectivity and/or resist neutralization by antibodies in sera of vaccinated individuals and convalescent patients. Methods to detect regionally emerging VOC are needed to guide treatment and vaccine design. Cluster and network analysis was applied to over 1.2 million sequences of the SARS-CoV-2 spike protein from 36 countries in the GISAID database. While some mutations rapidly spread throughout the world, regionally specific groups of variants were identified. Strains circulating in each country contained different sets of high frequency mutations, many of which were known VOCs. Mutations within clusters increased in frequency simultaneously. Low frequency, but highly correlated mutations detected by the method could signal emerging VOCs, especially if they occur at higher frequency in other regions. An automated version of our method to find high frequency mutations in a set of SARS-COV-2 spike sequences is available online at http://curie.utmb.edu/SAR.html .
Collapse
Affiliation(s)
- Surendra S Negi
- Sealy Center for Structural Biology and Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, 301 University Blvd, Galveston, TX, 77555-0304, USA
- Institute for Human Infections and Immunity (IHII), The University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Catherine H Schein
- Sealy Center for Structural Biology and Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, 301 University Blvd, Galveston, TX, 77555-0304, USA
- Institute for Human Infections and Immunity (IHII), The University of Texas Medical Branch, Galveston, TX, 77550, USA
| | - Werner Braun
- Sealy Center for Structural Biology and Biophysics, Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, 301 University Blvd, Galveston, TX, 77555-0304, USA.
- Institute for Human Infections and Immunity (IHII), The University of Texas Medical Branch, Galveston, TX, 77550, USA.
| |
Collapse
|
35
|
Wu CR, Yin WC, Jiang Y, Xu HE. Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacol Sin 2022; 43:3021-3033. [PMID: 35058587 PMCID: PMC8771608 DOI: 10.1038/s41401-021-00851-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/21/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought an unprecedented public health crisis and persistently threatens to humanity. With tireless efforts from scientists around the world, understanding of the biology of coronavirus has been greatly enhanced over the past 2 years. Structural biology has demonstrated its powerful impact on uncovering structures and functions for the vast majority of SARS-CoV-2 proteins and guided the development of drugs and vaccines against COVID-19. In this review, we summarize current progress in the structural biology of SARS-CoV-2 and discuss important biological issues that remain to be addressed. We present the examples of structure-based design of Pfizer’s novel anti-SARS-CoV-2 drug PF-07321332 (Paxlovid), Merck’s nucleotide inhibitor molnupiravir (Lagevrio), and VV116, an oral drug candidate for COVID-19. These examples highlight the importance of structure in drug discovery to combat COVID-19. We also discussed the recent variants of Omicron and its implication in immunity escape from existing vaccines and antibody therapies.
Collapse
|
36
|
Yoo KH, Thapa N, Kim BJ, Lee JO, Jang YN, Chwae YJ, Kim J. Possibility of exosome‑based coronavirus disease 2019 vaccine (Review). Mol Med Rep 2022; 25:26. [PMID: 34821373 PMCID: PMC8630821 DOI: 10.3892/mmr.2021.12542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
Coronavirus disease 2019 (COVID‑19) is a global pandemic that can have a long‑lasting impact on public health if not properly managed. Ongoing vaccine development trials involve classical molecular strategies based on inactivated or attenuated viruses, single peptides or viral vectors. However, there are multiple issues, such as the risk of reversion to virulence, inability to provide long‑lasting protection and limited protective immunity. To overcome the aforementioned drawbacks of currently available COVID‑19 vaccines, an alternative strategy is required to produce safe and efficacious vaccines that impart long‑term immunity. Exosomes (key intercellular communicators characterized by low immunogenicity, high biocompatibility and innate cargo‑loading capacity) offer a novel approach for effective COVID‑19 vaccine development. An engineered exosome‑based vaccine displaying the four primary structural proteins of SARS‑CoV‑2 (spike, membrane, nucleocapside and envelope proteins) induces humoral and cell mediated immunity and triggers long‑lasting immunity. The present review investigated the prospective use of exosomes in the development of COVID‑19 vaccines; moreover, exosome‑based vaccines may be key to control the COVID‑19 pandemic by providing enhanced protection compared with existing vaccines.
Collapse
Affiliation(s)
- Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - Nikita Thapa
- CK-Exogene, Inc., Seongnam, Gyeonggi-do 13201, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - Jung Ok Lee
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - You Na Jang
- Department of Dermatology, Chung-Ang University College of Medicine, Seoul 06973, Republic of Korea
| | - Yong Joon Chwae
- Department of Microbiology, Ajou University School of Medicine, Suwon, Gyeonggi-do 16499, Republic of Korea
| | - Jaeyoung Kim
- CK-Exogene, Inc., Seongnam, Gyeonggi-do 13201, Republic of Korea
| |
Collapse
|
37
|
Zhou D, Zhou R, Chen Z. Human neutralizing antibodies for SARS-CoV-2 prevention and immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 2:ltab027. [PMID: 35915816 PMCID: PMC8755319 DOI: 10.1093/immadv/ltab027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). SARS-CoV-2 has been spreading worldwide since December 2019, resulting in the ongoing COVID-19 pandemic with 237 million infections and 4.8 million deaths by 11 October 2021. While there are great efforts of global vaccination, ending this pandemic has been challenged by issues of exceptionally high viral transmissibility, re-infection, vaccine-breakthrough infection, and immune escape variants of concern. Besides the record-breaking speed of vaccine research and development, antiviral drugs including SARS-CoV-2-specific human neutralizing antibodies (HuNAbs) have been actively explored for passive immunization. In support of HuNAb-based immunotherapy, passive immunization using convalescent patients' plasma has generated promising evidence on clinical benefits for both mild and severe COVID-19 patients. Since the source of convalescent plasma is limited, the discovery of broadly reactive HuNAbs may have significant impacts on the fight against the COVID-19 pandemic. In this review, therefore, we discuss the current technologies of gene cloning, modes of action, in vitro and in vivo potency and breadth, and clinical development for potent SARS-CoV-2-specific HuNAbs.
Collapse
Affiliation(s)
- Dongyan Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region (SAR), People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
38
|
van der Ley PA, Zariri A, van Riet E, Oosterhoff D, Kruiswijk CP. An Intranasal OMV-Based Vaccine Induces High Mucosal and Systemic Protecting Immunity Against a SARS-CoV-2 Infection. Front Immunol 2021; 12:781280. [PMID: 34987509 PMCID: PMC8721663 DOI: 10.3389/fimmu.2021.781280] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.
Collapse
|
39
|
Mast FD, Fridy PC, Ketaren NE, Wang J, Jacobs EY, Olivier JP, Sanyal T, Molloy KR, Schmidt F, Rutkowska M, Weisblum Y, Rich LM, Vanderwall ER, Dambrauskas N, Vigdorovich V, Keegan S, Jiler JB, Stein ME, Olinares PDB, Herlands L, Hatziioannou T, Sather DN, Debley JS, Fenyö D, Sali A, Bieniasz PD, Aitchison JD, Chait BT, Rout MP. Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. eLife 2021; 10:e73027. [PMID: 34874007 PMCID: PMC8651292 DOI: 10.7554/elife.73027] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence of SARS-CoV-2 variants threatens current vaccines and therapeutic antibodies and urgently demands powerful new therapeutics that can resist viral escape. We therefore generated a large nanobody repertoire to saturate the distinct and highly conserved available epitope space of SARS-CoV-2 spike, including the S1 receptor binding domain, N-terminal domain, and the S2 subunit, to identify new nanobody binding sites that may reflect novel mechanisms of viral neutralization. Structural mapping and functional assays show that indeed these highly stable monovalent nanobodies potently inhibit SARS-CoV-2 infection, display numerous neutralization mechanisms, are effective against emerging variants of concern, and are resistant to mutational escape. Rational combinations of these nanobodies that bind to distinct sites within and between spike subunits exhibit extraordinary synergy and suggest multiple tailored therapeutic and prophylactic strategies.
Collapse
Affiliation(s)
- Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Peter C Fridy
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Natalia E Ketaren
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Junjie Wang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Erica Y Jacobs
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
- Department of Chemistry, St. John’s UniversityQueensUnited States
| | - Jean Paul Olivier
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Tanmoy Sanyal
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Magdalena Rutkowska
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Yiska Weisblum
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
| | - Lucille M Rich
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Elizabeth R Vanderwall
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Nicholas Dambrauskas
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
| | - Sarah Keegan
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Jacob B Jiler
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Milana E Stein
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | | | | | - D Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
| | - Jason S Debley
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Division of Pulmonary and Sleep Medicine, Seattle Children’s HospitalSeattleUnited States
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of MedicineNew YorkUnited States
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San FranciscoSan FranciscoUnited States
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, The Rockefeller UniversityNew YorkUnited States
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research InstituteSeattleUnited States
- Department of Pediatrics, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller UniversityNew YorkUnited States
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
40
|
Willcox AC, Sung K, Garrett ME, Galloway JG, O’Connor MA, Erasmus JH, Logue JK, Hawman DW, Chu HY, Hasenkrug KJ, Fuller DH, Matsen FA, Overbaugh J. Macaque-human differences in SARS-CoV-2 Spike antibody response elicited by vaccination or infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.01.470697. [PMID: 34909774 PMCID: PMC8669841 DOI: 10.1101/2021.12.01.470697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Macaques are a commonly used model for studying immunity to human viruses, including for studies of SARS-CoV-2 infection and vaccination. However, it is unknown whether macaque antibody responses recapitulate, and thus appropriately model, the response in humans. To answer this question, we employed a phage-based deep mutational scanning approach (Phage-DMS) to compare which linear epitopes are targeted on the SARS-CoV-2 Spike protein in humans and macaques following either vaccination or infection. We also used Phage-DMS to determine antibody escape pathways within each epitope, enabling a granular comparison of antibody binding specificities at the locus level. Overall, we identified some common epitope targets in both macaques and humans, including in the fusion peptide (FP) and stem helix-heptad repeat 2 (SH-H) regions. Differences between groups included a response to epitopes in the N-terminal domain (NTD) and C-terminal domain (CTD) in vaccinated humans but not vaccinated macaques, as well as recognition of a CTD epitope and epitopes flanking the FP in convalescent macaques but not convalescent humans. There was also considerable variability in the escape pathways among individuals within each group. Sera from convalescent macaques showed the least variability in escape overall and converged on a common response with vaccinated humans in the SH-H epitope region, suggesting highly similar antibodies were elicited. Collectively, these findings suggest that the antibody response to SARS-CoV-2 in macaques shares many features with humans, but with substantial differences in the recognition of certain epitopes and considerable individual variability in antibody escape profiles, suggesting a diverse repertoire of antibodies that can respond to major epitopes in both humans and macaques.
Collapse
Affiliation(s)
- Alexandra C. Willcox
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Jared G. Galloway
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Megan A. O’Connor
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Infectious Diseases and Translational Medicine, Washington National Primate Research Center, Seattle, WA, USA
| | - Jesse H. Erasmus
- Department of Microbiology, University of Washington, Seattle, WA, USA
- HDT Bio, Seattle, WA, USA
| | | | - David W. Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kim J. Hasenkrug
- Laboratory of Persistent Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Deborah H. Fuller
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Infectious Diseases and Translational Medicine, Washington National Primate Research Center, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA, USA
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
41
|
Gorczynski RM, Lindley RA, Steele EJ, Wickramasinghe NC. Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. J Pers Med 2021; 11:1253. [PMID: 34945725 PMCID: PMC8708741 DOI: 10.3390/jpm11121253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The primary global response to the SARS-CoV-2 pandemic has been to bring to the clinic as rapidly as possible a number of vaccines that are predicted to enhance immunity to this viral infection. While the rapidity with which these vaccines have been developed and tested (at least for short-term efficacy and safety) is commendable, it should be acknowledged that this has occurred despite the lack of research into, and understanding of, the immune elements important for natural host protection against the virus, making this endeavor a somewhat unique one in medical history. In contrast, as pointed out in the review below, there were already important past observations that suggested that respiratory infections at mucosal surfaces were susceptible to immune clearance by mechanisms not typical of infections caused by systemic (blood-borne) pathogens. Accordingly, it was likely to be important to understand the role for both innate and acquired immunity in response to viral infection, as well as the optimum acquired immune resistance mechanisms for viral clearance (B cell or antibody-mediated, versus T cell mediated). This information was needed both to guide vaccine development and to monitor its success. We have known that many pathogens enter into a quasi-symbiotic relationship with the host, with each undergoing sequential change in response to alterations the other makes to its presence. The subsequent evolution of viral variants which has caused such widespread concern over the last 3-6 months as host immunity develops was an entirely predictable response. What is still not known is whether there will be other unexpected side-effects of the deployment of novel vaccines in humans which have yet to be characterized, and, if so, how and if these can be avoided. We conclude by remarking that to ignore a substantial body of well-attested immunological research in favour of expediency is a poor way to proceed.
Collapse
Affiliation(s)
- Reginald M. Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Robyn A. Lindley
- Department of Clinical Pathology, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, VIC 3000, Australia;
- GMDx Group Ltd., Melbourne, VIC 3000, Australia
| | - Edward J. Steele
- C.Y.O’Connor ERADE Village Foundation, Piara Waters, Perth, WA 6207, Australia;
- Melville Analytics Pty Ltd., Melbourne, VIC 3000, Australia
| | - Nalin Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, Buckingham MK18 1EG, UK;
- Centre for Astrobiology, University of Ruhuna, Matara 81000, Sri Lanka
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| |
Collapse
|
42
|
Chen Y, Sun L, Ullah I, Beaudoin-Bussières G, Anand SP, Hederman AP, Tolbert WD, Sherburn R, Nguyen DN, Marchitto L, Ding S, Wu D, Luo Y, Gottumukkala S, Moran S, Kumar P, Piszczek G, Mothes W, Ackerman ME, Finzi A, Uchil PD, Gonzalez FJ, Pazgier M. Engineered ACE2-Fc counters murine lethal SARS-CoV-2 infection through direct neutralization and Fc-effector activities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.24.469776. [PMID: 34845451 PMCID: PMC8629194 DOI: 10.1101/2021.11.24.469776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Soluble Angiotensin-Converting Enzyme 2 (ACE2) constitutes an attractive antiviral capable of targeting a wide range of coronaviruses utilizing ACE2 as their receptor. Here, using structure-guided approaches, we developed divalent ACE2 molecules by grafting the extracellular ACE2-domain onto a human IgG1 or IgG3 (ACE2-Fc). These ACE2-Fcs harbor structurally validated mutations that enhance spike (S) binding and remove angiotensin enzymatic activity. The lead variant bound tightly to S, mediated in vitro neutralization of SARS-CoV-2 variants of concern (VOCs) with sub-nanomolar IC 50 and was capable of robust Fc-effector functions, including antibody-dependent-cellular cytotoxicity, phagocytosis and complement deposition. When tested in a stringent K18-hACE2 mouse model, it delayed death or effectively resolved lethal SARS-CoV-2 infection in a prophylactic or therapeutic setting utilizing the combined effect of neutralization and Fc-effector functions. These data confirm the utility of ACE2-Fcs as valuable agents in preventing and eliminating SARS-CoV-2 infection and demonstrate that ACE2-Fc therapeutic activity require Fc-effector functions.
Collapse
Affiliation(s)
- Yaozong Chen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
- equal contribution
| | - Lulu Sun
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
- equal contribution
| | - Irfan Ullah
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
- equal contribution
| | - Guillaume Beaudoin-Bussières
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Sai Priya Anand
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill, QC, Canada
| | | | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Rebekah Sherburn
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Dung N. Nguyen
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Lorie Marchitto
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | - Shilei Ding
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Yuhong Luo
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Suneetha Gottumukkala
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| | - Sean Moran
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Andrés Finzi
- Centre de recherche du CHUM. Montreal, QC H2X 0A9, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, QC H2X 0A9, Canada
- Department of Microbiology and Immunology, McGill, QC, Canada
| | - Pradeep D. Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4712, USA
| |
Collapse
|
43
|
Mariotti S, Capocefalo A, Chiantore MV, Iacobino A, Teloni R, De Angelis ML, Gallinaro A, Pirillo MF, Borghi M, Canitano A, Michelini Z, Baggieri M, Marchi A, Bucci P, McKay PF, Acchioni C, Sandini S, Sgarbanti M, Tosini F, Di Virgilio A, Venturi G, Marino F, Esposito V, Di Bonito P, Magurano F, Cara A, Negri D, Nisini R. Isolation and Characterization of Mouse Monoclonal Antibodies That Neutralize SARS-CoV-2 and Its Variants of Concern Alpha, Beta, Gamma and Delta by Binding Conformational Epitopes of Glycosylated RBD With High Potency. Front Immunol 2021; 12:750386. [PMID: 34764961 PMCID: PMC8576447 DOI: 10.3389/fimmu.2021.750386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 01/14/2023] Open
Abstract
Antibodies targeting Receptor Binding Domain (RBD) of SARS-CoV-2 have been suggested to account for the majority of neutralizing activity in COVID-19 convalescent sera and several neutralizing antibodies (nAbs) have been isolated, characterized and proposed as emergency therapeutics in the form of monoclonal antibodies (mAbs). However, SARS-CoV-2 variants are rapidly spreading worldwide from the sites of initial identification. The variants of concern (VOC) B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.167.2 (Delta) showed mutations in the SARS-CoV-2 spike protein potentially able to cause escape from nAb responses with a consequent reduction of efficacy of vaccines and mAbs-based therapy. We produced the recombinant RBD (rRBD) of SARS-CoV-2 spike glycoprotein from the Wuhan-Hu 1 reference sequence in a mammalian system, for mice immunization to isolate new mAbs with neutralizing activity. Here we describe four mAbs that were able to bind the rRBD in Enzyme-Linked Immunosorbent Assay and the transmembrane full-length spike protein expressed in HEK293T cells by flow cytometry assay. Moreover, the mAbs recognized the RBD in supernatants of SARS-CoV-2 infected VERO E6 cells by Western Blot under non-reducing condition or in supernatants of cells infected with lentivirus pseudotyped for spike protein, by immunoprecipitation assay. Three out of four mAbs lost their binding efficiency to completely N-deglycosylated rRBD and none was able to bind the same recombinant protein expressed in Escherichia coli, suggesting that the epitopes recognized by three mAbs are generated by the conformational structure of the glycosylated native protein. Of particular relevance, three mAbs were able to inhibit Wuhan SARS-CoV-2 infection of VERO E6 cells in a plaque-reduction neutralization test and the Wuhan SARS-CoV-2 as well as the Alpha, Beta, Gamma and Delta VOC in a pseudoviruses-based neutralization test. These mAbs represent important additional tools for diagnosis and therapy of COVID-19 and may contribute to the understanding of the functional structure of SARS-CoV-2 RBD.
Collapse
Affiliation(s)
- Sabrina Mariotti
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonio Capocefalo
- Dipartimento Sicurezza alimentare, nutrizione e sanità pubblica veterinaria, Istituto Superiore di Sanità, Roma, Italy
| | | | - Angelo Iacobino
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Raffaela Teloni
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Maria Laura De Angelis
- Dipartimento di Oncologia e Medicina Molecolare, Istituto Superiore di Sanità, Roma, Italy
| | - Alessandra Gallinaro
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Maria Franca Pirillo
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Martina Borghi
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Canitano
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Zuleika Michelini
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Melissa Baggieri
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonella Marchi
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Paola Bucci
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Paul F. McKay
- Department of Infectious Disease, Imperial College, London, United Kingdom
| | - Chiara Acchioni
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Silvia Sandini
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Marco Sgarbanti
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Fabio Tosini
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Antonio Di Virgilio
- Centro per la sperimentazione ed il benessere animale, Istituto Superiore di Sanità, Roma, Italy
| | - Giulietta Venturi
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Francesco Marino
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Roma, Italy
| | - Valeria Esposito
- Centro nazionale per il controllo e la valutazione dei farmaci, Istituto Superiore di Sanità, Roma, Italy
| | - Paola Di Bonito
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Fabio Magurano
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Andrea Cara
- Centro nazionale per la salute globale, Istituto Superiore di Sanità, Roma, Italy
| | - Donatella Negri
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Roberto Nisini
- Dipartimento di Malattie infettive, Istituto Superiore di Sanità, Roma, Italy
| |
Collapse
|
44
|
Patarroyo ME, Patarroyo MA, Alba MP, Pabon L, Rugeles MT, Aguilar-Jimenez W, Florez L, Bermudez A, Rout AK, Griesinger C, Suarez CF, Aza-Conde J, Reyes C, Avendaño C, Samacá J, Camargo A, Silva Y, Forero M, Gonzalez E. The First Chemically-Synthesised, Highly Immunogenic Anti-SARS-CoV-2 Peptides in DNA Genotyped Aotus Monkeys for Human Use. Front Immunol 2021; 12:724060. [PMID: 34539660 PMCID: PMC8446425 DOI: 10.3389/fimmu.2021.724060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Thirty-five peptides selected from functionally-relevant SARS-CoV-2 spike (S), membrane (M), and envelope (E) proteins were suitably modified for immunising MHC class II (MHCII) DNA-genotyped Aotus monkeys and matched with HLA-DRβ1* molecules for use in humans. This was aimed at producing the first minimal subunit-based, chemically-synthesised, immunogenic molecules (COLSARSPROT) covering several HLA alleles. They were predicted to cover 48.25% of the world’s population for 6 weeks (short-term) and 33.65% for 15 weeks (long-lasting) as they induced very high immunofluorescent antibody (IFA) and ELISA titres against S, M and E parental native peptides, SARS-CoV-2 neutralising antibodies and host cell infection. The same immunological methods that led to identifying new peptides for inclusion in the COLSARSPROT mixture were used for antigenicity studies. Peptides were analysed with serum samples from patients suffering mild or severe SARS-CoV-2 infection, thereby increasing chemically-synthesised peptides’ potential coverage for the world populations up to 62.9%. These peptides’ 3D structural analysis (by 1H-NMR acquired at 600 to 900 MHz) suggested structural-functional immunological association. This first multi-protein, multi-epitope, minimal subunit-based, chemically-synthesised, highly immunogenic peptide mixture highlights such chemical synthesis methodology’s potential for rapidly obtaining very pure, highly reproducible, stable, cheap, easily-modifiable peptides for inducing immune protection against COVID-19, covering a substantial percentage of the human population.
Collapse
Affiliation(s)
- Manuel E Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad Santo Tomás, Bogotá, Colombia
| | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha P Alba
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Laura Pabon
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | | | - Lizdany Florez
- Grupo Inmunovirología, Universidad de Antioquia, Medellín, Colombia
| | - Adriana Bermudez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Ashok K Rout
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Carlos F Suarez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Jorge Aza-Conde
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - César Reyes
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia
| | - Jhoan Samacá
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Anny Camargo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yolanda Silva
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Martha Forero
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Edgardo Gonzalez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| |
Collapse
|
45
|
Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PL pro and Mac1) and 5 (3CL pro/M pro) of SARS-CoV-2. Comput Struct Biotechnol J 2021; 19:4868-4883. [PMID: 34457214 PMCID: PMC8382591 DOI: 10.1016/j.csbj.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop effective treatments for coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid spread of SARS-CoV-2 has resulted in a global pandemic that has not only affected the daily lives of individuals but also had a significant impact on the global economy and public health. Although extensive research has been conducted to identify inhibitors targeting SARS-CoV-2, there are still no effective treatment strategies to combat COVID-19. SARS-CoV-2 comprises two important proteolytic enzymes, namely, the papain-like proteinase, located within non-structural protein 3 (nsp3), and nsp5, both of which cleave large replicase polypeptides into multiple fragments that are required for viral replication. Moreover, a domain within nsp3, known as the macrodomain (Mac1), also plays an important role in viral replication. Inhibition of their functions should be able to significantly interfere with the replication cycle of the virus, and therefore these key proteins may serve as potential therapeutic targets. The functions of the above viral targets and their corresponding inhibitors have been summarized in the current review. This review provides comprehensive updates of nsp3 and nsp5 inhibitor development and would help advance the discovery of novel anti-viral therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|