1
|
Tan C, Wang N, Deng S, Wu X, Yue C, Jia X, Lyu Y. The development and application of pseudoviruses: assessment of SARS-CoV-2 pseudoviruses. PeerJ 2023; 11:e16234. [PMID: 38077431 PMCID: PMC10710176 DOI: 10.7717/peerj.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
Although most Coronavirus disease (COVID-19) patients can recover fully, the disease remains a significant cause of morbidity and mortality. In addition to the consequences of acute infection, a proportion of the population experiences long-term adverse effects associated with SARS-CoV-2. Therefore, it is still critical to comprehend the virus's characteristics and how it interacts with its host to develop effective drugs and vaccines against COVID-19. SARS-CoV-2 pseudovirus, a replication-deficient recombinant glycoprotein chimeric viral particle, enables investigations of highly pathogenic viruses to be conducted without the constraint of high-level biosafety facilities, considerably advancing virology and being extensively employed in the study of SARS-CoV-2. This review summarizes three methods of establishing SARS-CoV-2 pseudovirus and current knowledge in vaccine development, neutralizing antibody research, and antiviral drug screening, as well as recent progress in virus entry mechanism and susceptible cell screening. We also discuss the potential advantages and disadvantages.
Collapse
Affiliation(s)
- Conglian Tan
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Nian Wang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoheng Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuhong Lyu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
2
|
Gomez-Romero N, Basurto-Alcantara FJ, Velazquez-Salinas L. Assessing the Potential Role of Cats ( Felis catus) as Generators of Relevant SARS-CoV-2 Lineages during the Pandemic. Pathogens 2023; 12:1361. [PMID: 38003825 PMCID: PMC10675002 DOI: 10.3390/pathogens12111361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Several questions regarding the evolution of SARS-CoV-2 remain poorly elucidated. One of these questions is the possible evolutionary impact of SARS-CoV-2 after the infection in domestic animals. In this study, we aimed to evaluate the potential role of cats as generators of relevant SARS-CoV-2 lineages during the pandemic. A total of 105 full-length genome viral sequences obtained from naturally infected cats during the pandemic were evaluated by distinct evolutionary algorithms. Analyses were enhanced, including a set of highly related SARS-CoV-2 sequences recovered from human populations. Our results showed the apparent high susceptibility of cats to the infection SARS-CoV-2 compared with other animal species. Evolutionary analyses indicated that the phylogenomic characteristics displayed by cat populations were influenced by the dominance of specific SARS-CoV-2 genetic groups affecting human populations. However, disparate dN/dS rates at some genes between populations recovered from cats and humans suggested that infection in these two species may suggest a different evolutionary constraint for SARS-CoV-2. Interestingly, the branch selection analysis showed evidence of the potential role of natural selection in the emergence of five distinct cat lineages during the pandemic. Although these lineages were apparently irrelevant to public health during the pandemic, our results suggested that additional studies are needed to understand the role of other animal species in the evolution of SARS-CoV-2 during the pandemic.
Collapse
Affiliation(s)
- Ninnet Gomez-Romero
- Comisión México-Estados Unidos para la Prevención de Fiebre Aftosa y Otras Enfermedades Exóticas de los Animales, Carretera Mexico-Toluca Km 15.5 Piso 4 Col. Palo Alto, Cuajimalpa de Morelos, Mexico City 05110, Mexico;
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Francisco Javier Basurto-Alcantara
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Av. Universidad No. 3000 Col Copilco Universidad, Mexico City 14510, Mexico;
| | - Lauro Velazquez-Salinas
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Greenport, NY 11944, USA
- National Bio and Agro-Defense Facility (NBAF), Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA
| |
Collapse
|
3
|
Gonzalez-Alba JM, Rojo-Alba S, Perez-Martinez Z, Boga JA, Alvarez-Arguelles ME, Gomez J, Herrero P, Costales I, Alba LM, Martin-Rodriguez G, Campo R, Castelló-Abietar C, Sandoval M, Abreu-Salinas F, Coto E, Rodriguez M, Rubianes P, Sanchez ML, Vazquez F, Antuña L, Álvarez V, Melón García S. Monitoring and tracking the spread of SARS-CoV-2 in Asturias, Spain. Access Microbiol 2023; 5:000573.v4. [PMID: 37841093 PMCID: PMC10569657 DOI: 10.1099/acmi.0.000573.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023] Open
Abstract
Mutational analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can quantify the relative importance of variants over time, enable dominant mutations to be identified, and facilitate near real-time detection, comparison and tracking of evolving variants. SARS-CoV-2 in Asturias, an autonomous community of Spain with a large ageing population, and high levels of migration and tourism, was monitored and tracked from the beginning of the pandemic in February 2020 until its decline and stabilization in August 2021, and samples were characterized using whole genomic sequencing and single nucleotide polymorphisms. Data held in the GISAID database were analysed to establish patterns in the appearance and persistence of SARS-CoV-2 strains. Only 138 non-synonymous mutations occurring in more than 1 % of the population with SARS-CoV-2 were found, identifying ten major variants worldwide (seven arose before January 2021), 19 regional and one local. In Asturias only 17 different variants were found. After vaccination, no further regional major variants were found. Only half of the defined variants circulated and no new variants were generated, indicating that infection control measures such as rapid diagnosis, isolation and vaccination were efficient.
Collapse
Affiliation(s)
- Jose Maria Gonzalez-Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Susana Rojo-Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Zulema Perez-Martinez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Jose A. Boga
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta Elena Alvarez-Arguelles
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Juan Gomez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Pablo Herrero
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Isabel Costales
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luz Maria Alba
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Gabriel Martin-Rodriguez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Rainer Campo
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Cristian Castelló-Abietar
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Marta Sandoval
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fátima Abreu-Salinas
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Eliecer Coto
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Mercedes Rodriguez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Pablo Rubianes
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Maria Luisa Sanchez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Fernando Vazquez
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Antuña
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Urgencias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Victoria Álvarez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Servicio de Genética Molecular, Oviedo, Spain
| | - Santiago Melón García
- Servicio de Microbiología, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
4
|
He Y, Dang S, Ma W, Chen L, Zhang R, Mei S, Wei X, Lv Q, Peng B, Sun Y, Kong D, Chen J, Li S, Tang X, Lu Q, Zhu C, Chen Z, Wan J, Zou X, Li M, Feng T, Ren L, Wang J. Temporal dynamics of SARS-CoV-2 genome mutations that occurred in vivo on an aircraft. BIOSAFETY AND HEALTH 2023; 5:62-67. [PMID: 36320662 PMCID: PMC9613807 DOI: 10.1016/j.bsheal.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
We analyzed variations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome during a flight-related cluster outbreak of coronavirus disease 2019 (COVID-19) in Shenzhen, China, to explore the characteristics of SARS-CoV-2 transmission and intra-host single nucleotide variations (iSNVs) in a confined space. Thirty-three patients with COVID-19 were sampled, and 14 were resampled 3-31 days later. All 47 nasopharyngeal swabs were deep-sequenced. iSNVs and similarities in the consensus genome sequence were analyzed. Three SARS-CoV-2 variants of concern, Delta (n = 31), Beta (n = 1), and C.1.2 (n = 1), were detected among the 33 patients. The viral genome sequences from 30 Delta-positive patients had similar SNVs; 14 of these patients provided two successive samples. Overall, the 47 sequenced genomes contained 164 iSNVs. Of the 14 paired (successive) samples, the second samples (T2) contained more iSNVs (median: 3; 95% confidence interval [95% CI]: 2.77-10.22) than did the first samples (T1; median: 2; 95% CI: 1.63-3.74; Wilcoxon test, P = 0.021). 38 iSNVs were detected in T1 samples, and only seven were also detectable in T2 samples. Notably, T2 samples from two of the 14 paired samples had additional mutations than the T1 samples. The iSNVs of the SARS-CoV-2 genome exhibited rapid dynamic changes during a flight-related cluster outbreak event. Intra-host diversity increased gradually with time, and new site mutations occurred in vivo without a population transmission bottleneck. Therefore, we could not determine the generational relationship from the mutation site changes alone.
Collapse
Affiliation(s)
- Yaqing He
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shengyuan Dang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Wentai Ma
- University of Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
| | - Long Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Renli Zhang
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shujiang Mei
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xinyi Wei
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qiuying Lv
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Bo Peng
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ying Sun
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Dongfeng Kong
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jiancheng Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Shimin Li
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xiujuan Tang
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Qingju Lu
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Can Zhu
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Zhigao Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jia Wan
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Xuan Zou
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing 100101, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Tiejiang Feng
- Shenzhen Research Center for Communicable Disease Control and Prevention, Chinese Academy of Medical Sciences, Shenzhen 518055, China
- Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Lili Ren
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
5
|
Kumar A, Asghar A, Singh HN, Faiq MA, Kumar S, Narayan RK, Kumar G, Dwivedi P, Sahni C, Jha RK, Kulandhasamy M, Prasoon P, Sesham K, Kant K, Pandey SN. SARS-CoV-2 Omicron Variant Genomic Sequences and Their Epidemiological Correlates Regarding the End of the Pandemic: In Silico Analysis. JMIR BIOINFORMATICS AND BIOTECHNOLOGY 2023; 4:e42700. [PMID: 36688013 PMCID: PMC9843602 DOI: 10.2196/42700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Background Emergence of the new SARS-CoV-2 variant B.1.1.529 worried health policy makers worldwide due to a large number of mutations in its genomic sequence, especially in the spike protein region. The World Health Organization (WHO) designated this variant as a global variant of concern (VOC), which was named "Omicron." Following Omicron's emergence, a surge of new COVID-19 cases was reported globally, primarily in South Africa. Objective The aim of this study was to understand whether Omicron had an epidemiological advantage over existing variants. Methods We performed an in silico analysis of the complete genomic sequences of Omicron available on the Global Initiative on Sharing Avian Influenza Data (GISAID) database to analyze the functional impact of the mutations present in this variant on virus-host interactions in terms of viral transmissibility, virulence/lethality, and immune escape. In addition, we performed a correlation analysis of the relative proportion of the genomic sequences of specific SARS-CoV-2 variants (in the period from October 1 to November 29, 2021) with matched epidemiological data (new COVID-19 cases and deaths) from South Africa. Results Compared with the current list of global VOCs/variants of interest (VOIs), as per the WHO, Omicron bears more sequence variation, specifically in the spike protein and host receptor-binding motif (RBM). Omicron showed the closest nucleotide and protein sequence homology with the Alpha variant for the complete sequence and the RBM. The mutations were found to be primarily condensed in the spike region (n=28-48) of the virus. Further mutational analysis showed enrichment for the mutations decreasing binding affinity to angiotensin-converting enzyme 2 receptor and receptor-binding domain protein expression, and for increasing the propensity of immune escape. An inverse correlation of Omicron with the Delta variant was noted (r=-0.99, P<.001; 95% CI -0.99 to -0.97) in the sequences reported from South Africa postemergence of the new variant, subsequently showing a decrease. There was a steep rise in new COVID-19 cases in parallel with the increase in the proportion of Omicron isolates since the report of the first case (74%-100%). By contrast, the incidence of new deaths did not increase (r=-0.04, P>.05; 95% CI -0.52 to 0.58). Conclusions In silico analysis of viral genomic sequences suggests that the Omicron variant has more remarkable immune-escape ability than existing VOCs/VOIs, including Delta, but reduced virulence/lethality than other reported variants. The higher power for immune escape for Omicron was a likely reason for the resurgence in COVID-19 cases and its rapid rise as the globally dominant strain. Being more infectious but less lethal than the existing variants, Omicron could have plausibly led to widespread unnoticed new, repeated, and vaccine breakthrough infections, raising the population-level immunity barrier against the emergence of new lethal variants. The Omicron variant could have thus paved the way for the end of the pandemic.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Adil Asghar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Himanshu N Singh
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Systems Biology Columbia University Irving Medical Center New York, NY United States
| | - Muneeb A Faiq
- Etiologically Elusive Disorders Research Network New Delhi India
- New York University Langone Health Center Robert I Grossman School of Medicine New York University New York, NY United States
| | - Sujeet Kumar
- Etiologically Elusive Disorders Research Network New Delhi India
- Center for Proteomics and Drug Discovery Amity Institute of Biotechnology Amity University, Maharashtra Mumbai India
| | - Ravi K Narayan
- Etiologically Elusive Disorders Research Network New Delhi India
- Dr BC Roy Multi-speciality Medical Research Centre Indian Institute of Technology Kharagpur India
| | - Gopichand Kumar
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Prakhar Dwivedi
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Chetan Sahni
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Anatomy Institute of Medical Sciences Banaras Hindu University Varanasi India
| | - Rakesh K Jha
- Department of Anatomy All India Institute of Medical Sciences-Patna Patna India
- Etiologically Elusive Disorders Research Network New Delhi India
| | - Maheswari Kulandhasamy
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Biochemistry Maulana Azad Medical College New Delhi India
| | - Pranav Prasoon
- Etiologically Elusive Disorders Research Network New Delhi India
- School of Medicine University of Pittsburgh Pittsburgh, PA United States
| | - Kishore Sesham
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Anatomy All India Institute of Medical Sciences-Mangalagiri Mangalagiri India
| | - Kamla Kant
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Microbiology All India Institute of Medical Sciences-Bathinda Bathinda India
| | - Sada N Pandey
- Etiologically Elusive Disorders Research Network New Delhi India
- Department of Zoology Banaras Hindu University Varanasi India
| |
Collapse
|
6
|
Jiang C, Jiang K, Li X, Zhang N, Zhu W, Meng L, Zhang Y, Lu S. Evaluation of immunoprotection against coronavirus disease 2019: Novel variants, vaccine inoculation, and complications. J Pharm Anal 2023; 13:1-10. [PMID: 36317070 PMCID: PMC9605787 DOI: 10.1016/j.jpha.2022.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
The strikingly rapidly mutating nature of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome has been a constant challenge during the coronavirus disease 2019 (COVID-19) pandemic. In this study, various techniques, including reverse transcription-quantitative polymerase chain reaction, antigen-detection rapid diagnostic tests, and high-throughput sequencing were analyzed under different scenarios and spectra for the etiological diagnosis of COVID-19 at the population scale. This study aimed to summarize the latest research progress and provide up-to-date understanding of the methodology used for the evaluation of the immunoprotection conditions against future variants of SARS-CoV-2. Our novel work reviewed the current methods for the evaluation of the immunoprotection status of a specific population (endogenous antibodies) before and after vaccine inoculation (administered with biopharmaceutical antibody products). The present knowledge of the immunoprotection status regarding the COVID-19 complications was also discussed. Knowledge on the immunoprotection status of specific populations can help guide the design of pharmaceutical antibody products, inform practice guidelines, and develop national regulations with respect to the timing of and need for extra rounds of vaccine boosters.
Collapse
Affiliation(s)
- Congshan Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Kaichong Jiang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Xiaowei Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Zhang
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenhua Zhu
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Liesu Meng
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yanmin Zhang
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Shemin Lu
- National Regional Children's Medical Center (Northwest), Key Laboratory of Precision Medicine to Pediatric Diseases of Shaanxi Province, Xi'an Key Laboratory of Children's Health and Diseases, Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
7
|
Zhang Y, Zhang L, Wu J, Yu Y, Liu S, Li T, Li Q, Ding R, Wang H, Nie J, Cui Z, Wang Y, Huang W, Wang Y. A second functional furin site in the SARS-CoV-2 spike protein. Emerg Microbes Infect 2022; 11:182-194. [PMID: 34856891 PMCID: PMC8741242 DOI: 10.1080/22221751.2021.2014284] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitously-expressed proteolytic enzyme furin is closely related to the pathogenesis of SARS-CoV-2 and therefore represents a key target for antiviral therapy. Based on bioinformatic analysis and pseudovirus tests, we discovered a second functional furin site located in the spike protein. Furin still increased the infectivity of mutated SARS-CoV-2 pseudovirus in 293T-ACE2 cells when the canonical polybasic cleavage site (682-686) was deleted. However, K814A mutation eliminated the enhancing effect of furin on virus infection. Furin inhibitor prevented infection by 682-686-deleted SARS-CoV-2 in 293T-ACE2-furin cells, but not the K814A mutant. K814A mutation did not affect the activity of TMPRSS2 and cathepsin L but did impact the cleavage of S2 into S2' and cell-cell fusion. Additionally, we showed that this functional furin site exists in RaTG13 from bat and PCoV-GD/GX from pangolin. Therefore, we discovered a new functional furin site that is pivotal in promoting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yue Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- National Vaccine & Serum Institute, Beijing, People's Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yuanling Yu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haixin Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yulin Wang
- National Vaccine & Serum Institute, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- Lead Contact
| |
Collapse
|
8
|
Effectiveness of Booster Doses of the SARS-CoV-2 Inactivated Vaccine KCONVAC against the Mutant Strains. Viruses 2022; 14:v14092016. [PMID: 36146822 PMCID: PMC9503905 DOI: 10.3390/v14092016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 11/26/2022] Open
Abstract
As the COVID-19 epidemic progresses with the emergence of different SARS-CoV-2 variants, it is important to know the effectiveness of inactivated SARS-CoV-2 vaccines against the variants. To maximize efficiency, a third boost injection of the high-dose SARS-CoV-2 inactivated vaccine KCONVAC was selected for investigation. In addition to the ancestral strain, KCONVAC boost vaccination induced neutralizing antibodies and antigen-specific CD8 T cells to recognize several variants, including B.1.617.2 (Delta), B.1.1.529 (Omicron), B.1.1.7 (Alpha), B.1.351 (Beta), P.3, B.1.526.1 (Lota), B.1.526.2, B.1.618, and B.1.617.3. Both humoral and cellular immunity against variants were lower than those of ancestral variants but continued to increase from day 0 to day 7 to day 50 after boost vaccination. Fifty days post-boost, the KCONVAC-vaccinated CD8 T-cell level reached 1.23-, 2.59-, 2.53-, and 1.01-fold that of convalescents against ancestral, Delta, Omicron and other SARS-CoV-2 variants, respectively. Our data demonstrate the importance of KCONVAC boosters to broaden both humoral and cellular immune responses against SARS-CoV-2 variants.
Collapse
|
9
|
Yavarian J, Nejati A, Salimi V, Shafiei Jandaghi NZ, Sadeghi K, Abedi A, Sharifi Zarchi A, Gouya MM, Mokhtari-Azad T. Whole genome sequencing of SARS-CoV2 strains circulating in Iran during five waves of pandemic. PLoS One 2022; 17:e0267847. [PMID: 35499994 PMCID: PMC9060343 DOI: 10.1371/journal.pone.0267847] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/14/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Whole genome sequencing of SARS-CoV2 is important to find useful information about the viral lineages, variants of interests and variants of concern. As there are not enough data about the circulating SARS-CoV2 variants in Iran, we sequenced 54 SARS-CoV2 genomes during the 5 waves of pandemic in Iran. METHODS After viral RNA extraction from clinical samples collected during the COVID-19 pandemic, next generation sequencing was performed using the Nextseq platform. The sequencing data were analyzed and compared with reference sequences. RESULTS During the 1st wave, V and L clades were detected. The second wave was recognized by G, GH and GR clades. Circulating clades during the 3rd wave were GH and GR. In the fourth wave GRY (alpha variant), GK (delta variant) and one GH clade (beta variant) were detected. All viruses in the fifth wave were in clade GK (delta variant). There were different mutations in all parts of the genomes but Spike-D614G, NSP12-P323L, N-R203K and N-G204R were the most frequent mutants in these studied viruses. CONCLUSIONS These findings display the significance of SARS-CoV2 monitoring to help on time detection of possible variants for pandemic control and vaccination plans.
Collapse
Affiliation(s)
- Jila Yavarian
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Sadeghi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Adel Abedi
- Mathematics Department, Shahid Beheshti University, Tehran, Iran
| | - Ali Sharifi Zarchi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nat Commun 2022; 13:1152. [PMID: 35241661 PMCID: PMC8894356 DOI: 10.1038/s41467-022-28766-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/10/2022] [Indexed: 01/07/2023] Open
Abstract
In spring 2021, an increasing number of infections was observed caused by the hitherto rarely described SARS-CoV-2 variant A.27 in south-west Germany. From December 2020 to June 2021 this lineage has been detected in 31 countries. Phylogeographic analyses of A.27 sequences obtained from national and international databases reveal a global spread of this lineage through multiple introductions from its inferred origin in Western Africa. Variant A.27 is characterized by a mutational pattern in the spike gene that includes the L18F, L452R and N501Y spike amino acid substitutions found in various variants of concern but lacks the globally dominant D614G. Neutralization assays demonstrate an escape of A.27 from convalescent and vaccine-elicited antibody-mediated immunity. Moreover, the therapeutic monoclonal antibody Bamlanivimab and partially the REGN-COV2 cocktail fail to block infection by A.27. Our data emphasize the need for continued global monitoring of novel lineages because of the independent evolution of new escape mutations.
Collapse
|
11
|
Huang Z, Fu Z, Wang J. Review on Drug Regulatory Science Promoting COVID-19 Vaccine Development in China. ENGINEERING (BEIJING, CHINA) 2022; 10:127-132. [PMID: 35096437 PMCID: PMC8779850 DOI: 10.1016/j.eng.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
Regulatory science is a discipline that uses comprehensive methods of natural science, social science, and humanities to provide support for administrative decision-making through the development of new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of regulated products. During the pandemics induced by infectious diseases, such as H1N1 flu, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS), regulatory science strongly supported the development of drugs and vaccines to respond to the viruses. In particular, with the support of research on drug regulatory science, vaccines have played a major role in the prevention and control of coronavirus disease 2019 (COVID-19). This review summarizes the overall state of the vaccine industry, research and development (R&D) of COVID-19 vaccines in China, and the general state of regulatory science and supervision for vaccines in China. Further, this review highlights how regulatory science has promoted the R&D of Chinese COVID-19 vaccines, with analyses from the aspects of national-level planning, relevant laws and regulations, technical guidelines, quality control platforms, and post-marketing supervision. Ultimately, this review provides a reference for the formulation of a vaccine development strategy in response to the current pandemic and the field of vaccine development in the post-pandemic era, as well as guidance on how to better respond to emerging and recurring infectious diseases that may occur in the future.
Collapse
Affiliation(s)
- Zhiming Huang
- National Medical Products Administration, Beijing 100053, China
| | - Zhihao Fu
- National Institutes for Food and Drug Control, Beijing 102629, China
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing 102629, China
| |
Collapse
|
12
|
Wu J, Nie J, Zhang L, Song H, An Y, Liang Z, Yang J, Ding R, Liu S, Li Q, Li T, Cui Z, Zhang M, He P, Wang Y, Qu X, Hu Z, Wang Q, Huang W. The antigenicity of SARS-CoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain. Signal Transduct Target Ther 2022; 7:18. [PMID: 35046385 PMCID: PMC8767530 DOI: 10.1038/s41392-022-00874-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/08/2022] Open
Abstract
Emerging SARS-CoV-2 variants are the most serious problem for COVID-19 prophylaxis and treatment. To determine whether the SARS-CoV-2 vaccine strain should be updated following variant emergence like seasonal flu vaccine, the changed degree on antigenicity of SARS-CoV-2 variants and H3N2 flu vaccine strains was compared. The neutralization activities of Alpha, Beta and Gamma variants' spike protein-immunized sera were analysed against the eight current epidemic variants and 20 possible variants combining the top 10 prevalent RBD mutations based on the Delta variant, which were constructed using pseudotyped viruses. Meanwhile, the neutralization activities of convalescent sera and current inactivated and recombinant protein vaccine-elicited sera were also examined against all possible Delta variants. Eight HA protein-expressing DNAs elicited-animal sera were also tested against eight pseudotyped viruses of H3N2 flu vaccine strains from 2011-2019. Our results indicate that the antigenicity changes of possible Delta variants were mostly within four folds, whereas the antigenicity changes among different H3N2 vaccine strains were approximately 10-100-fold. Structural analysis of the antigenic characterization of the SARS-CoV-2 and H3N2 mutations supports the neutralization results. This study indicates that the antigenicity changes of the current SARS-CoV-2 may not be sufficient to require replacement of the current vaccine strain.
Collapse
MESH Headings
- Amino Acid Substitution
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/metabolism
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antibodies, Viral/metabolism
- Binding Sites
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/virology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/chemistry
- COVID-19 Vaccines/metabolism
- Epitopes/chemistry
- Epitopes/genetics
- Epitopes/immunology
- Gene Expression
- Humans
- Immune Sera/chemistry
- Immunogenicity, Vaccine
- Influenza A Virus, H3N2 Subtype/chemistry
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/chemistry
- Influenza Vaccines/metabolism
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Models, Molecular
- Mutation
- Neutralization Tests
- Protein Binding
- Protein Conformation
- Protein Interaction Domains and Motifs
- SARS-CoV-2/chemistry
- SARS-CoV-2/immunology
- SARS-CoV-2/pathogenicity
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Pseudotyping
Collapse
Affiliation(s)
- Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yimeng An
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Ziteng Liang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, 100101, Beijing, China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Mengyi Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Peng He
- Division of Hepatitis and Enteric Viral Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, 102629, Beijing, China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China
| | - Xiaowang Qu
- Translational Medicine Institute, First People's Hospital of Chenzhou, University of South China, Chenzhou, China
| | - Zhongyu Hu
- Division of Hepatitis and Enteric Viral Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC) and Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, 102629, Beijing, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), 102629, Beijing, China.
| |
Collapse
|
13
|
Gupta D, Sharma P, Singh M, Kumar M, Ethayathulla AS, Kaur P. Structural and functional insights into the spike protein mutations of emerging SARS-CoV-2 variants. Cell Mol Life Sci 2021; 78:7967-7989. [PMID: 34731254 PMCID: PMC11073194 DOI: 10.1007/s00018-021-04008-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023]
Abstract
Since the emergence of the first case of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), the viral genome has constantly undergone rapid mutations for better adaptation in the host system. These newer mutations have given rise to several lineages/ variants of the virus that have resulted in high transmission and virulence rates compared to the previously circulating variants. Owing to this, the overall caseload and related mortality have tremendously increased globally to > 233 million infections and > 4.7 million deaths as of Sept. 28th, 2021. SARS-CoV-2, Spike (S) protein binds to host cells by recognizing human angiotensin-converting enzyme 2 (hACE2) receptor. The viral S protein contains S1 and S2 domains that constitute the binding and fusion machinery, respectively. Structural analysis of viral S protein reveals that the virus undergoes conformational flexibility and dynamicity to interact with the hACE2 receptor. The SARS-CoV-2 variants and mutations might be associated with affecting the conformational plasticity of S protein, potentially linked to its altered affinity, infectivity, and immunogenicity. This review focuses on the current circulating variants of SARS-CoV-2 and the structure-function analysis of key S protein mutations linked with increased affinity, higher infectivity, enhanced transmission rates, and immune escape against this infection.
Collapse
Affiliation(s)
- Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi,, Delhi, 110029, India
| | - Priyanka Sharma
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi,, Delhi, 110029, India
| | - Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi,, Delhi, 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi,, Delhi, 110029, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi,, Delhi, 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi,, Delhi, 110029, India.
| |
Collapse
|
14
|
Evolutionary and Phenotypic Characterization of Two Spike Mutations in European Lineage 20E of SARS-CoV-2. mBio 2021; 12:e0231521. [PMID: 34781748 PMCID: PMC8593680 DOI: 10.1128/mbio.02315-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have detected two mutations in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at amino acid positions 1163 and 1167 that appeared independently in multiple transmission clusters and different genetic backgrounds. Furthermore, both mutations appeared together in a cluster of 1,627 sequences belonging to clade 20E. This cluster is characterized by 12 additional single nucleotide polymorphisms but no deletions. The available structural information on the S protein in the pre- and postfusion conformations predicts that both mutations confer rigidity, which could potentially decrease viral fitness. Accordingly, we observed reduced infectivity of this spike genotype relative to the ancestral 20E sequence in vitro, and the levels of viral RNA in nasopharyngeal swabs were not significantly higher. Furthermore, the mutations did not impact thermal stability or antibody neutralization by sera from vaccinated individuals but moderately reduce neutralization by convalescent-phase sera from the early stages of the pandemic. Despite multiple successful appearances of the two spike mutations during the first year of SARS-CoV-2 evolution, the genotype with both mutations was displaced upon the expansion of the 20I (Alpha) variant. The midterm fate of the genotype investigated was consistent with the lack of advantage observed in the clinical and experimental data.
Collapse
|
15
|
Shrestha LB, Tedla N, Bull RA. Broadly-Neutralizing Antibodies Against Emerging SARS-CoV-2 Variants. Front Immunol 2021; 12:752003. [PMID: 34646276 PMCID: PMC8502962 DOI: 10.3389/fimmu.2021.752003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have become a major concern in the containment of current pandemic. The variants, including B.1.1.7 (Alpha), B.1.351 (Beta), P1 (Gamma) and B.1.617.2 (Delta) have shown reduced sensitivity to monoclonal antibodies, plasma and/or sera obtained from convalescent patients and vaccinated individuals. Development of potent therapeutic monoclonal antibodies (mAbs) with broad neutralizing breadth have become a priority for alleviating the devastating effects of this pandemic. Here, we review some of the most promising broadly neutralizing antibodies obtained from plasma of patients that recovered from early variants of SARS-CoV-2 that may be effective against emerging new variants of the virus. This review summarizes several mAbs, that have been discovered to cross-neutralize across Sarbecoviruses and SARS-CoV-2 escape mutants. Understanding the characteristics that confer this broad and cross-neutralization functions of these mAbs would inform on the development of therapeutic antibodies and guide the discovery of second-generation vaccines.
Collapse
Affiliation(s)
- Lok Bahadur Shrestha
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- The Kirby Institute, Faculty of Medicine, Sydney, NSW, Australia
| | - Nicodemus Tedla
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
| | - Rowena A. Bull
- School of Medical Sciences, Faculty of Medicine, Sydney, NSW, Australia
- The Kirby Institute, Faculty of Medicine, Sydney, NSW, Australia
| |
Collapse
|