1
|
Zhang A, Yang X, Zhang Y, Yu X, Mu W, Wei J. Unlocking the Potential of CAR-NK Cell Therapy: Overcoming Barriers and Challenges in the Treatment of Myeloid Malignancies. Mol Cancer Ther 2025; 24:536-549. [PMID: 39834301 DOI: 10.1158/1535-7163.mct-24-0721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Myeloid malignancies include various types of cancers that arise from the abnormal development or proliferation of myeloid cells within the bone marrow. Chimeric antigen receptor (CAR) T cell treatments, which show great potential for B cell and plasma cell cancers, face major challenges when used for myeloid malignancies. CAR natural killer (NK) cell-based immunotherapy encounters several challenges in treating myeloid cancers, including (i) poor gene transfer efficiency and expansion platforms in vitro, (ii) limited proliferation and persistence in vivo, (iii) antigenic heterogeneity, and (iv) an immunosuppressive tumor microenvironment. Despite these hurdles, "off-the-shelf" CAR-NK treatments showed encouraging results, marked by enhanced proliferation, prolonged persistence, enhanced tumor infiltration, and improved adaptability. This review offers a summary of the biological traits and cellular sources of NK cells along with a discussion of contemporary CAR designs. Furthermore, it addresses the challenges observed in preclinical research and clinical trials related to CAR-NK cell therapy for myeloid cancers, suggesting enhancement strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xiaoxuan Yu
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P. R. China
| | - Wei Mu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, China
| |
Collapse
|
2
|
Zhou Z, Chen Y, Ba Y, Xu H, Zuo A, Liu S, Zhang Y, Weng S, Ren Y, Luo P, Cheng Q, Zuo L, Zhu S, Zhou X, Zhang C, Chen Y, Han X, Pan T, Liu Z. Revolutionising Cancer Immunotherapy: Advancements and Prospects in Non-Viral CAR-NK Cell Engineering. Cell Prolif 2025; 58:e13791. [PMID: 39731215 PMCID: PMC11969250 DOI: 10.1111/cpr.13791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis. Consequently, there has been a surge in the development of non-viral transfection technologies to overcome these challenges in NK cell engineering. Non-viral approaches for CAR-NK cell generation are becoming increasingly essential. Cutting-edge techniques such as trogocytosis, electroporation, lipid nanoparticle (LNP) delivery, clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) gene editing and transposons not only enhance the efficiency and safety of CAR-NK cell engineering but also open new avenues for novel therapeutic possibilities. Additionally, the infusion of technologies already successful in CAR T-cell therapy into the CAR-NK paradigm holds immense potential for further advancements. In this review, we present an overview of the potential of NK cells in cancer immunotherapies, as well as non-viral transfection technologies for engineering NK cells.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuqing Ren
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Peng Luo
- The Department of OncologyZhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Quan Cheng
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Lulu Zuo
- Center of Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shanshan Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xing Zhou
- Department of Pediatric SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuhan Zhang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yukang Chen
- The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
| | - Teng Pan
- Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College)ShenzhenChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Interventional Institute of Zhengzhou UniversityZhengzhouChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
3
|
Pan X, Zhang YWQ, Dai C, Zhang J, Zhang M, Chen X. Applications of mRNA Delivery in Cancer Immunotherapy. Int J Nanomedicine 2025; 20:3339-3361. [PMID: 40125430 PMCID: PMC11928443 DOI: 10.2147/ijn.s500520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 03/08/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer treatment is continually advancing, with immunotherapy gaining prominence as a standard modality that has markedly improved the management of various malignancies. Despite these advancements, the efficacy of immunotherapy remains variable, with certain cancers exhibiting limited response and patient outcomes differing considerably. Thus, enhancing the effectiveness of immunotherapy is imperative. A promising avenue is mRNA delivery, employing carriers such as liposomes, peptide nanoparticles, inorganic nanoparticles, and exosomes to introduce mRNA cargos encoding tumor antigens, immune-stimulatory, or immune-modulatory molecules into the tumor immune microenvironment (TIME). This method aims to activate the immune system to target and eradicate tumor cells. In this review, we introduce the characteristics and limitations of these carriers and summarize the application and mechanisms of currently prevalent cargos in mRNA-based tumor treatment. Additionally, given the significant clinical application of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR)-based cell therapies in solid tumors (including melanoma, non-small-cell lung cancer, head and neck squamous cell carcinoma, triple-negative breast cancer, gastric cancer) and leukemia, which have become first-line treatments, we highlight and discuss recent progress in combining mRNA delivery with ICIs, CAR-T, CAR-NK, and CAR-macrophage therapies. This combination enhances the targeting capabilities and efficacy of ICIs and CAR-cell-based therapies, while also mitigating the long-term off-target toxicities associated with conventional methods. Finally, we analyze the limitations of current mRNA delivery systems, such as nuclease-induced mRNA instability, immunogenicity risks, complex carrier production, and knowledge gaps concerning dosing and safety. Addressing these challenges is crucial for unlocking the potential of mRNA in cancer immunotherapy. Overall, exploring mRNA delivery enriches our comprehension of cancer immunotherapy and holds promise for developing personalized and effective treatment strategies, potentially enhancing the immune responses of cancer patients and extending their survival time.
Collapse
Affiliation(s)
- Xiaoyu Pan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Yang-Wen-Qing Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Caixia Dai
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Junyu Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Minghe Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Oh B, Kim J, Kim N, Jeong Y. Lung Cancer Organoid System to Evaluate the Cytotoxicity of Natural Killer Cells. Int J Stem Cells 2025; 18:99-106. [PMID: 38919124 PMCID: PMC11867905 DOI: 10.15283/ijsc24021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/27/2024] Open
Abstract
Natural killer (NK) cells are gaining growing attention due to their promise for immunotherapy. A fast and accurate system is needed to test NK cell biology and their therapeutic application. Here, we report a lung cancer organoid-based system to evaluate NK cells' cytotoxicity. We first established the lung cancer organoids on top of Matrigel, which allows the co-culture with NK cells. When co-cultured, NK cells moved close to and inside the lung cancer organoids. When we analyzed by flow cytometry, co-culture of NK cells induced a significantly higher ratio of cell death of lung cancer organoids, suggesting that lung cancer organoids can be employed to test the cytotoxicity of NK cells. Finally, the pre-treatment of NK cells with A83-01, a TGFβ inhibitor, significantly enhanced the cell death of lung cancer organoids by NK cells, indicating that lung cancer organoid-based system faithfully recapitulates cell line-based system in evaluating the in vitro cytotoxicity of NK cells. These data represent that cancer organoid-based NK cell co-culture system is a reliable platform for studying NK cell biology and evaluating their cytotoxicity for screening for NK cell immunotherapy.
Collapse
Affiliation(s)
- Byungmoo Oh
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Jeongmin Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Namwoog Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
| | - Youngtae Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| |
Collapse
|
5
|
Dehghan F, Metanat Y, Askarizadeh M, Ahmadi E, Moradi V. Novel gene manipulation approaches to unlock the existing bottlenecks of CAR-NK cell therapy. Front Cell Dev Biol 2025; 12:1511931. [PMID: 40007761 PMCID: PMC11850336 DOI: 10.3389/fcell.2024.1511931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/10/2024] [Indexed: 02/27/2025] Open
Abstract
Currently, CAR-T cell therapy is known as an efficacious treatment for patients with relapsed/refractory hematologic malignancies. Nonetheless, this method faces several bottlenecks, including low efficacy for solid tumors, lethal adverse effects, high cost of autologous products, and the risk of GvHD in allogeneic settings. As a potential alternative, CAR-NK cell therapy can overcome most of the limitations of CAR-T cell therapy and provide an off-the-shelf, safer, and more affordable product. Although published results from preclinical and clinical studies with CAR-NK cells are promising, several bottlenecks must be unlocked to maximize the effectiveness of CAR-NK cell therapy. These bottlenecks include low in vivo persistence, low trafficking into tumor sites, modest efficacy in solid tumors, and sensitivity to immunosuppressive tumor microenvironment. In recent years, advances in gene manipulation tools and strategies have laid the groundwork to overcome the current bottlenecks of CAR-NK cell therapy. This review will introduce the existing gene manipulation tools and discuss their advantages and disadvantages. We will also explore how these tools can enhance CAR-NK cell therapy's safety and efficacy.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Department of Anatomy and Molecular Biology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Sistan and Baluchestan Province, Iran
| | - Mandana Askarizadeh
- School of Biology and Ecology, University of Maine, Orono, ME, United States
| | - Ehsan Ahmadi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Moradi
- Department of Hematology and Blood Transfusion Sciences, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Kim J, Park S, Kim J, Kim Y, Yoon HM, Rayhan BR, Jeong J, Bothwell ALM, Shin JH. Trogocytosis-mediated immune evasion in the tumor microenvironment. Exp Mol Med 2025; 57:1-12. [PMID: 39741180 PMCID: PMC11799389 DOI: 10.1038/s12276-024-01364-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025] Open
Abstract
Trogocytosis is a dynamic cellular process characterized by the exchange of the plasma membrane and associated cytosol during cell-to-cell interactions. Unlike phagocytosis, this transfer maintains the surface localization of transferred membrane molecules. For example, CD4 T cells engaging with antigen-presenting cells undergo trogocytosis, which facilitates the transfer of antigen-loaded major histocompatibility complex (MHC) class II molecules from antigen-presenting cells to CD4 T cells. This transfer results in the formation of antigen-loaded MHC class II molecule-dressed CD4 T cells. These "dressed" CD4 T cells subsequently participate in antigen presentation to other CD4 T cells. Additionally, trogocytosis enables the acquisition of immune-regulatory molecules, such as CTLA-4 and Tim3, in recipient cells, thereby modulating their anti-tumor immunity. Concurrently, donor cells undergo plasma membrane loss, and substantial loss can trigger trogocytosis-mediated cell death, termed trogoptosis. This review aims to explore the trogocytosis-mediated transfer of immune regulatory molecules and their implications within the tumor microenvironment to elucidate the underlying mechanisms of immune evasion in cancers.
Collapse
Affiliation(s)
- Jeonghyun Kim
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Soyeon Park
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea
| | - Jungseo Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Yewon Kim
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Hong Min Yoon
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Bima Rexa Rayhan
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea
| | - Jaekwang Jeong
- Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alfred L M Bothwell
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, 505 S. 45th Street, Omaha, NE, 68198, USA.
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| | - Jae Hun Shin
- Institute of Advanced Bio-Industry Convergence, Yonsei University, Seoul, Korea.
- Integrative Science and Engineering Division, Underwood International College, Yonsei University, Incheon, 21983, Korea.
| |
Collapse
|
7
|
Jia W, Wu Y, Xie Y, Yu M, Chen Y. Advanced Polymeric Nanoparticles for Cancer Immunotherapy: Materials Engineering, Immunotherapeutic Mechanism and Clinical Translation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413603. [PMID: 39797474 DOI: 10.1002/adma.202413603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Indexed: 01/13/2025]
Abstract
Cancer immunotherapy, which leverages immune system components to treat malignancies, has emerged as a cornerstone of contemporary therapeutic strategies. Yet, critical concerns about the efficacy and safety of cancer immunotherapies remain formidable. Nanotechnology, especially polymeric nanoparticles (PNPs), offers unparalleled flexibility in manipulation-from the chemical composition and physical properties to the precision control of nanoassemblies. PNPs provide an optimal platform to amplify the potency and minimize systematic toxicity in a broad spectrum of immunotherapeutic modalities. In this comprehensive review, the basics of polymer chemistry, and state-of-the-art designs of PNPs from a physicochemical standpoint for cancer immunotherapy, encompassing therapeutic cancer vaccines, in situ vaccination, adoptive T-cell therapies, tumor-infiltrating immune cell-targeted therapies, therapeutic antibodies, and cytokine therapies are delineated. Each immunotherapy necessitates distinctively tailored design strategies in polymeric nanoplatforms. The extensive applications of PNPs, and investigation of their mechanisms of action for enhanced efficacy are particularly focused on. The safety profiles of PNPs and clinical research progress are discussed. Additionally, forthcoming developments and emergent trends of polymeric nano-immunotherapeutics poised to transform cancer treatment paradigms into clinics are explored.
Collapse
Affiliation(s)
- Wencong Jia
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Ye Wu
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Yujie Xie
- School of Medicine, Shanghai University, Shanghai China, 200444, China
| | - Meihua Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Shanghai Institute of Materdicine, Shanghai, 200051, China
| |
Collapse
|
8
|
Jaing TH, Hsiao YW, Wang YL. Chimeric Antigen Receptor Cell Therapy: Empowering Treatment Strategies for Solid Tumors. Curr Issues Mol Biol 2025; 47:90. [PMID: 39996811 PMCID: PMC11854309 DOI: 10.3390/cimb47020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has demonstrated impressive efficacy in the treatment of blood cancers; however, its effectiveness against solid tumors has been significantly limited. The differences arise from a range of difficulties linked to solid tumors, including an unfriendly tumor microenvironment, variability within the tumors, and barriers to CAR-T cell infiltration and longevity at the tumor location. Research shows that the reasons for the decreased effectiveness of CAR-T cells in treating solid tumors are not well understood, highlighting the ongoing need for strategies to address these challenges. Current strategies frequently incorporate combinatorial therapies designed to boost CAR-T cell functionality and enhance their capacity to effectively target solid tumors. However, these strategies remain in the testing phase and necessitate additional validation to assess their potential benefits. CAR-NK (natural killer), CAR-iNKT (invariant natural killer T), and CAR-M (macrophage) cell therapies are emerging as promising strategies for the treatment of solid tumors. Recent studies highlight the construction and optimization of CAR-NK cells, emphasizing their potential to overcome the unique challenges posed by the solid tumor microenvironment, such as hypoxia and metabolic barriers. This review focuses on CAR cell therapy in the treatment of solid tumors.
Collapse
Affiliation(s)
- Tang-Her Jaing
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Wen Hsiao
- Division of Nursing, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| | - Yi-Lun Wang
- Division of Hematology and Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan 33315, Taiwan;
| |
Collapse
|
9
|
Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025; 15:1519671. [PMID: 39850899 PMCID: PMC11754230 DOI: 10.3389/fimmu.2024.1519671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Chimeric Antigen Receptor (CAR)-T cell therapy has rapidly emerged as a groundbreaking approach in cancer treatment, particularly for hematologic malignancies. However, the application of CAR-T cell therapy in solid tumors remains challenging. This review summarized the development of CAR-T technologies, emphasized the challenges and solutions in CAR-T cell therapy for solid tumors. Also, key innovations were discussed including specialized CAR-T, combination therapies and the novel use of CAR-Treg, CAR-NK and CAR-M cells. Besides, CAR-based cell therapy have extended its reach beyond oncology to autoimmune disorders. We reviewed preclinical experiments and clinical trials involving CAR-T, Car-Treg and CAAR-T cell therapies in various autoimmune diseases. By highlighting these cutting-edge developments, this review underscores the transformative potential of CAR technologies in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Yanwei Wu
- School of Medicine, Shanghai University, Shanghai, China
| | - Liang Chen
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Tao JH, Zhang J, Li HS, Zhou Y, Guan CX. Nature killer cell for solid tumors: Current obstacles and prospective remedies in NK cell therapy and beyond. Crit Rev Oncol Hematol 2025; 205:104553. [PMID: 39515404 DOI: 10.1016/j.critrevonc.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, cell therapy has emerged as an innovative treatment method for the management of clinical tumors following immunotherapy. Among them, Natural killer (NK) cell therapy has achieved a significant breakthrough in the treatment of hematological tumors. However, the therapeutic effectiveness of NK cells in the treatment of solid tumors remains challenging. With the progress of gene editing and culture techniques and their application to NK cell engineering, it is expected that NK cell therapy will revolutionize the treatment of solid tumors. In this review, we explore the discovery and biological properties of NK cells, their role in the tumor microenvironment, and the therapeutic strategies, clinical trials, challenges, and prospects of NK cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jun Zhang
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China
| | - Hua-Shun Li
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
11
|
Ghasempour A, Mohseni R, Sharif PM, Hamidieh AA. Natural killer cell-based therapies in neuroblastoma. Cell Immunol 2025; 407:104898. [PMID: 39631142 DOI: 10.1016/j.cellimm.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor of childhood forming around 15 % of all pediatric tumors. Despite advances in the treatment of NB, high-risk patients still face a grave prognosis. Adoptive cell therapies based on NK cells are becoming an assistive treatment for such cases. Moreover, there is also evidence that NKT-based therapies have promising results in the management of NB. Lower complications in comparison with adoptive T cell therapies, various cell sources, and miscellaneous tumor recognition mechanisms are some of the advantages of NK- and NKT-based therapies. This review is dedicated to searching for recent advances in this field.
Collapse
Affiliation(s)
- Abtin Ghasempour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Mahdavi Sharif
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Li W, Feng J, Peng J, Zhang X, Aziz AUR, Wang D. Chimeric antigen receptor-natural killer (CAR-NK) cell immunotherapy: A bibliometric analysis from 2004 to 2023. Hum Vaccin Immunother 2024; 20:2415187. [PMID: 39414236 PMCID: PMC11486046 DOI: 10.1080/21645515.2024.2415187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cells represent a breakthrough in cancer immunotherapy, making this a highly popular research area. However, comprehensive analyses of this field using bibliometric methods are rare. To our knowledge, this study has collected highest number of publications (1,259) on CAR-NK therapy from January 1, 2004, to December 31, 2023, and utilized CiteSpace and VOSviewer to analyze regions, institutions, journals, authors, and keywords to forecast the latest trends in CAR-NK therapy research. The United States and China, contributing over 60% of publications, are the primary drivers in this field. The Helmholtz Association and Harvard University are the most active institutions, with most publications appearing in Frontiers in Immunology. Winfried S. Wels is the most prolific author, while EL Liu is the most frequently co-cited author. "Immunotherapy," "T-cells," and "Cancer" are the most extensively covered topics in CAR-NK therapy research. Our study reveals current CAR-NK research trends, identifies potential research hotspots, and visualizes references through bibliometric methods, providing valuable guidance for future research in this field.
Collapse
Affiliation(s)
- Wangshu Li
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Jiuxiang Feng
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Jianan Peng
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aziz Ur Rehman Aziz
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| | - Daqing Wang
- Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian Women and Children’s Medical Group, Dalian, Liaoning, China
| |
Collapse
|
13
|
Khanal S, Baer A, Hossain MK, Colon-Moran W, Panthi S, Bhattarai N. Soluble factors released by peripheral blood-derived CAR-NK cells cause bystander myeloid cell activation. Front Immunol 2024; 15:1519415. [PMID: 39776903 PMCID: PMC11703831 DOI: 10.3389/fimmu.2024.1519415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction CAR-T cell therapy is associated with life-threatening inflammatory toxicities, partly due to the activation and secretion of inflammatory cytokines by bystander myeloid cells (BMCs). However, due to limited clinical data, it is unclear whether CAR-NK cells cause similar toxicities. Methods We characterized the soluble factors (SFs) released by activated human CAR-T and CAR-NK cells and assessed their role in BMC activation (BMCA). Results We found that SFs from both activated, peripheral blood-derived CAR-T (PB-CAR-T) and CAR-NK (PB-CAR-NK) cells induced BMCA; however, PB-CAR-NK cells caused significantly lower BMCA compared to PB-CAR-T cells. Interestingly, SFs from cord-blood-derived (CB) NK cells caused little to no BMCA, consistent with previous clinical studies showing minimal inflammatory toxicity with CB-CAR-NK cells. Comparative analysis of SFs released by PB-NK and PB-CAR-NK cells following CAR-dependent and CAR-independent activation revealed several candidate factors with the potential to cause BMCA. Antibody-mediated neutralization studies identified a combination of four factors that contribute to PB-CAR-NK cell-mediated BMCA. siRNA-mediated knockdown studies confirmed that inactivating these four factors in PB-CAR-NK cells significantly reduces BMCA. Importantly, neutralization or knockdown of these four factors did not affect CAR-NK cell potency. Discussion These data suggest that specific SFs released by PB-CAR-NK cells activate BMCs and have the potential to contribute to inflammatory toxicities. Furthermore, inactivation of these four factors in PB-CAR-NK cells could reduce inflammatory toxicities and improve safety of PB-CAR-NK cell therapy without compromising potency.
Collapse
Affiliation(s)
| | | | | | | | | | - Nirjal Bhattarai
- Tumor Vaccine and Biotechnology Branch, Office of Cellular Therapy and Human Tissues, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration (U.S. FDA), Silver Spring, MD, United States
| |
Collapse
|
14
|
Qiu Z, Li Z, Liu X, Zhang R, Li Y, Gao C, Mao X, Bao Y, Zhang M, Guo C. From tumor microenvironment to emerging biomarkers: the reshaping of the esophageal squamous cell carcinoma tumor microenvironment by neoadjuvant chemotherapy combined with immunotherapy. Front Immunol 2024; 15:1478922. [PMID: 39703499 PMCID: PMC11655454 DOI: 10.3389/fimmu.2024.1478922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Esophageal squamous cell carcinoma is a cancer with high morbidity and mortality. The advent of immune checkpoint inhibitors has significantly increased complete response rates and postoperative R0 resection rates after neoadjuvant therapy. These drugs can largely reverse the suppression of the immune system caused by the tumor microenvironment, allowing the reactivation of anti-tumor immune infiltrating cells, significantly improving the patient's tumor microenvironment, and thus preventing tumor development. However, there are still some patients who respond poorly to neoadjuvant combined immunotherapy and cannot achieve the expected results. It is now found that exploring changes in the tumor microenvironment not only elucidates patient responsiveness to immunotherapy and identifies more reliable biomarkers, but also addresses the limitations of prediction with imaging examination such as CT and the instability of existing biomarkers. In light of these considerations, this review aims to delve into the alterations within the tumor microenvironment and identify potential predictive biomarkers ensuing from neoadjuvant immunotherapy in the context of esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Zhengzhou Qiu
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Zhao Li
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Xingfei Liu
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Ruilin Zhang
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Yongxuan Li
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
| | - Chenggen Gao
- Jiangxi Medical College, Nanchang University, NanChang, China
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| | - Xiaoling Mao
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
- Medical College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yin Bao
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
- Medical College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Mingyue Zhang
- Jiangxi Key Laboratory of Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
- Medical College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Changying Guo
- Department of Thoracic Surgery, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, China
- Zhejiang-Jiangxi Joint Thoracic Oncology Research Laboratory, Jiangxi Cancer Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Meles DK, Mustofa I, Wurlina W, Donova CA, Hidayanti ER, Suwasanti N, Rosyada ZNA, Khairullah AR, Akintunde AO, Mustofa RI, Putra SW, Ahmad RZ, Wasito W, Raissa R. Acute toxicity effects of ethylene glycol on lethal dose 50 (LD 50), urine production, and histopathology change renal tubule cell in mice. Open Vet J 2024; 14:3539-3551. [PMID: 39927377 PMCID: PMC11799633 DOI: 10.5455/ovj.2024.v14.i12.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 02/11/2025] Open
Abstract
Background The LD50 (lethal dose causing 50% mortality) of ethylene glycol (EG) and its associated toxicity in mice (Mus musculus) were assessed by evaluating kidney function. Aim This study aimed to determine the acute toxicity of an oral lethal dose of 50% (LD50) of EG, also degeneration, necrosis, and inflammatory cell invasion in kidney tubules of male rats (Rattus norvegicus) as an animal model. Methods There were 66 DDG (Deutschland Denken Yoken) mice in 11 groups of six in this investigation. The daylong metabolic cage study contained one control (C) and 10 treatment groups that received different EG doses. EG's daily BW/kg dosage varied from 0.5 mg/kg to 15,000 mg/kg. The treatment group was given a single dose of EG at a dose of T1 = 0.5 mg/kg BW, T2 = 1.57 mg/kg BW, T3 = 4.94 mg/kg BW, T4 = 15.54 mg/kg BW, T5 = 48.84 mg/kg BW, T6 = 153.55 mg/kg BW, T7 = 482.74 mg/kg BW, and T8 = 1517.66 mg/kg BW T9 = 4771.24 mg/kg BW, T10 = 14999.99 ≈ 15. 000 mg/kg BW. One-way Analysis of Variance testing was used to analyze the data. Results The LD50 value of EG in mice was determined to be 1.598 mg/kg BW, classifying EG as "Slightly Toxic." According to renal histopathology, EG dosage increased renal tubular degeneration, necrosis, and interstitial inflammatory cell infiltration. Acute renal impairment and lower urine output were observed in the EG (4.94 mg/kg-1517.66 mg/kg BW). Histologically, EG levels are associated with renal tubular cell degeneration, necrosis, and interstitial inflammatory cell growth. Conclusion Acute EG exposure caused renal failure in male mice. Acute exposure to EG causes renal tubular cell degeneration and inflammation, indicating toxicity and health hazards.
Collapse
Affiliation(s)
- Dewa Ketut Meles
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Imam Mustofa
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Wurlina Wurlina
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Clarissa Audreylea Donova
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Essi Rayareswari Hidayanti
- Profession Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Niluh Suwasanti
- Department of Clinical Pathology, Universitas Katolik Widya Mandala Surabaya, Surabaya, Indonesia
| | - Zulfi Nur Amrina Rosyada
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Adeyinka Oye Akintunde
- Department of Agriculture and Industrial Technology, Babcock University, Ilishan-Remo, Nigeria
| | | | | | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ricadonna Raissa
- Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
16
|
Leopold AV, Verkhusha VV. Engineering signalling pathways in mammalian cells. Nat Biomed Eng 2024; 8:1523-1539. [PMID: 39237709 PMCID: PMC11852397 DOI: 10.1038/s41551-024-01237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024]
Abstract
In mammalian cells, signalling pathways orchestrate cellular growth, differentiation and survival, as well as many other processes that are essential for the proper functioning of cells. Here we describe cutting-edge genetic-engineering technologies for the rewiring of signalling networks in mammalian cells. Specifically, we describe the recombination of native pathway components, cross-kingdom pathway transplantation, and the development of de novo signalling within cells and organelles. We also discuss how, by designing signalling pathways, mammalian cells can acquire new properties, such as the capacity for photosynthesis, the ability to detect cancer and senescent cell markers or to synthesize hormones or metabolites in response to chemical or physical stimuli. We also review the applications of mammalian cells in biocomputing. Technologies for engineering signalling pathways in mammalian cells are advancing basic cellular biology, biomedical research and drug discovery.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
17
|
Arjmand B, Alavi-Moghadam S, Khorsand G, Sarvari M, Arjmand R, Rezaei-Tavirani M, Rajaeinejad M, Mosaed R. Cell-Based Vaccines: Frontiers in Medical Technology for Cancer Treatment. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2024; 10:480-499. [DOI: 10.1007/s40883-024-00338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 01/03/2025]
|
18
|
Yu Z, Sun J, Fang K, Xu J, Yang J, Chunlei D, Gong Y, Ma H. SLC2A1 boosts the resistance of non-small cell lung cancer to taxanes by stimulating the formation of EPCAM + cancer stem-like cells via glycolysis. Transl Oncol 2024; 49:102082. [PMID: 39126936 PMCID: PMC11364050 DOI: 10.1016/j.tranon.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms by which SLC2A1 enhances chemo-resistance of taxanes to non-small cell lung cancer (NSCLC) remains enigmatic. METHODS An investigation into the SLC2A1 expression pattern and prognosis across diverse datasets, as well as our internally collected samples, was undertaken. Additionally, the biological function of SLC2A1 was further delved into through in vitro experiments. The study also examined the chemo-resistance of NSCLC to taxanes using CCK-8, Annexin-V, and caspase-3 assays. Furthermore, the impact of taxanes on SLC2A1 expression was determined via western blot analysis. The effects of SLC2A1 on the formation of CSCs was examined via flow cytometry and metabolomics techniques. Finally, the impact of SLC2A1 on the tumor microenvironment was analyzed using single-cell sequencing and cellchat. RESULTS In the present investigation, it was observed that there was an elevated expression of SLC2A1 in NSCLC tumor tissues, which exhibited a significant association with a poorer prognosis. SLC2A1 overexpression in vitro promoted NSCLC cell proliferation, invasion, migration, chemo-resistance, and the formation of CD90+ and EpCAM+ CSCs. NSCLC cells were categorized based on SLC2A1 and EpCAM expression. SLC2A1highEpCAM+ CSCs were more chemo-resistance to taxanes. NSCLC patients with high SLC2A1 and EpCAM expression had poorer prognosis. Mechanically, SLC2A1 promoted the formation of CD90+ and EpCAM+ CSCs via activating glycolysis. Finally, SLC2A1low tumor cells promoted CD8+T cell function via HLA-A, B, C, and suppressed NK cell function via HLA-E. CONCLUSION Together, SLC2A1 plays an important role in enhancing chemo-resistance of taxanes to NSCLC.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Sun
- Center for Reproduction and Genetics, Suzhou Municipal Hospital &The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Kai Fang
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu province, China
| | - Jingwei Xu
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Dai Chunlei
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongsheng Gong
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Tachi T, Kijima N, Kuroda H, Ikeda S, Murakami K, Nakagawa T, Yaga M, Nakagawa K, Utsugi R, Hirayama R, Okita Y, Kagawa N, Kishima H, Imai C, Hosen N. Antitumor effects of intracranial injection of B7-H3-targeted Car-T and Car-Nk cells in a patient-derived glioblastoma xenograft model. Cancer Immunol Immunother 2024; 73:256. [PMID: 39367952 PMCID: PMC11456075 DOI: 10.1007/s00262-024-03808-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/12/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most lethal primary brain tumor for which novel therapies are needed. Recently, chimeric antigen receptor (CAR) T cell therapy has been shown to be effective against GBM, but it is a personalized medicine and requires high cost and long time for the cell production. CAR-transduced natural killer (NK) cells can be used for "off-the-shelf" cellular immunotherapy because they do not induce graft-versus-host disease. Therefore, we aimed to analyze the anti-GBM effect of CAR-T or NK cells targeting B7-H3, which is known to be highly expressed in GBM. METHODS CAR-T cells targeting B7-H3 were generated using previously reported anti-B7-H3 scFv sequences. Cord blood (CB)-derived NK cells transduced with the B7-H3 CAR were also generated. Their anti-GBM effect was analyzed in vitro. The antitumor effect of intracranial injection of the B7-H3 CAR-T or NK cells was investigated in an in vivo xenograft model with patient-derived GBM cells. RESULTS Both B7-H3 CAR-T cells and CAR-NK cells exhibited marked cytotoxicity against patient-derived GBM cells in vitro. Furthermore, intracranial injection of CAR-T cells and CAR-NK cells targeting B7-H3 resulted in a significant antitumor effect against patient-derived GBM xenografts. CONCLUSION Not only CAR-T cells but also CB-derived CAR-NK cells targeting B7-H3 may have the potential to eliminate GBM cells.
Collapse
Affiliation(s)
- Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| | - Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Syunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine, Osaka General Hospital, Osaka, Japan
| | - Kanji Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan
| | - Chihaya Imai
- Department of Pediatrics, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Naoki Hosen
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 5650871, Japan.
| |
Collapse
|
20
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
21
|
Tang C, Zhang Y. Potential alternatives to αβ-T cells to prevent graft-versus-host disease (GvHD) in allogeneic chimeric antigen receptor (CAR)-based cancer immunotherapy: A comprehensive review. Pathol Res Pract 2024; 262:155518. [PMID: 39146830 DOI: 10.1016/j.prp.2024.155518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/28/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Currently, CAR-T cell therapy relies on an individualized manufacturing process in which patient's own T cells are infused back into patients after being engineered and expanded ex vivo. Despite the astonishing outcomes of autologous CAR-T cell therapy, this approach is endowed with several limitations and drawbacks, such as high cost and time-consuming manufacturing process. Switching the armature of CAR-T cell therapy from autologous settings to allogeneic can overcome several bottlenecks of the current approach. Nevertheless, the use of allogeneic CAR-T cells is limited by the risk of life-threatening GvHD. Thus, in recent years, developing a method to move CAR-T cell therapy to allogeneic settings without the risk of GvHD has become a hot research topic in this field. Since the alloreactivity of αβ T-cell receptor (TCR) accounts for developing GvHD, several efforts have been made to disrupt endogenous TCR of allogeneic CAR-T cells using gene editing tools to prevent GvHD. Nonetheless, the off-target activity of gene editing tools and their associated genotoxicities, as well as the negative consequences of endogenous TCR disruption, are the main concerns of using this approach. As an alternative, CAR αβ-T cells can be replaced with other types of CAR-engineered cells that are capable of recognizing and killing malignant cells through CAR while avoiding the induction of GvHD. These alternatives include T cell subsets with restricted TCR repertoire (γδ-T, iNKT, virus-specific T, double negative T cells, and MAIT cells), killer cells (NK and CIK cells), non-lymphocytic cells (neutrophils and macrophages), stem/progenitor cells, and cell-free extracellular vesicles. In this review, we discuss how these alternatives can move CAR-based immunotherapy to allogeneic settings to overcome the bottlenecks of autologous manner without the risk of GvHD. We comprehensively discuss the pros and cons of these alternatives over the traditional CAR αβ-T cells in light of their preclinical studies and clinical trials.
Collapse
MESH Headings
- Humans
- Graft vs Host Disease/immunology
- Graft vs Host Disease/prevention & control
- Graft vs Host Disease/therapy
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Immunotherapy, Adoptive/methods
- Neoplasms/therapy
- Neoplasms/immunology
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes/immunology
- Animals
- Gene Editing/methods
- Transplantation, Homologous/methods
Collapse
Affiliation(s)
- Chaozhi Tang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China; Department of Neurology, Xinxiang First Peoples Hospital, Xinxiang 453100, China
| | - Yuling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
22
|
Zhou S, Yang Y, Jing Y, Zhu X. Generating advanced CAR-based therapy for hematological malignancies in clinical practice: targets to cell sources to combinational strategies. Front Immunol 2024; 15:1435635. [PMID: 39372412 PMCID: PMC11449748 DOI: 10.3389/fimmu.2024.1435635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been a milestone breakthrough in the treatment of hematological malignancies, offering an effective therapeutic option for multi-line therapy-refractory patients. So far, abundant CAR-T products have been approved by the United States Food and Drug Administration or China National Medical Products Administration to treat relapsed or refractory hematological malignancies and exhibited unprecedented clinical efficiency. However, there were still several significant unmet needs to be progressed, such as the life-threatening toxicities, the high cost, the labor-intensive manufacturing process and the poor long-term therapeutic efficacy. According to the demands, many researches, relating to notable technical progress and the replenishment of alternative targets or cells, have been performed with promising results. In this review, we will summarize the current research progress in CAR-T eras from the "targets" to "alternative cells", to "combinational drugs" in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Shu Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuhang Yang
- The First Clinical Medical College, Wuhan University, Wuhan, China
| | - Yulu Jing
- The Second Clinical Medical College, Wuhan University, Wuhan, China
| | - Xiaoying Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024; 31:1327-1343.e5. [PMID: 38986609 PMCID: PMC11380586 DOI: 10.1016/j.stem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-β receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-β receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-β inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-β activity. Our findings demonstrate that TGF-β signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-β.
Collapse
Affiliation(s)
- Jaya Lakshmi Thangaraj
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Coffey
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edith Lopez
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
25
|
Bar O, Porgador A, Cooks T. Exploring the potential of the convergence between extracellular vesicles and CAR technology as a novel immunotherapy approach. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70011. [PMID: 39328262 PMCID: PMC11424882 DOI: 10.1002/jex2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024]
Abstract
Cancer therapy is a dynamically evolving field, witnessing the emergence of innovative approaches that offer a promising outlook for patients grappling with persistent disease. Within the realm of therapeutic exploration, chimeric antigen receptor (CAR) T cells as well as CAR NK cells, have surfaced as novel approaches, each possessing unique attributes and transformative potential. Immune cells engineered to express CARs recognizing tumour-specific antigens, have shown remarkable promise in treating terminal cancers by combining the precision of antibody specificity with the potent cytotoxic function of T cells. However, their application in solid tumours is still in its nascent stages, presenting unique major challenges. On the same note, CAR NK cells offer a distinct immunotherapeutic approach, utilizing CARs on NK cells, providing advantages in safety, manufacturing simplicity, and a broader scope for cancer treatment. Extracellular vesicles (EVs) have emerged as promising therapeutic agents due to their ability to carry crucial biomarkers and biologically active molecules, serving as vital messengers in the intercellular communication network. In the context of cancer, the therapeutic potential of EVs lies in delivering tumour-suppressing proteins, nucleic acid components, or targeting drugs with precision, thereby redefining the paradigm of precision medicine. The fusion of CAR technology with the capabilities of EVs has given rise to a new therapeutic frontier. CAR T EVs and CAR NK EVs, leveraging the power of EVs, have the potential to alleviate challenges associated with live-cell therapies. EVs are suggested to reduce the side effects linked to CAR T cell therapy and hold the potential to revolutionize the penetrance in solid tumours. EVs act as carriers of pro-apoptotic molecules and RNA components, enhancing immune responses and thereby expanding their therapeutic potential. In this review article, we navigate dynamic landscapes, with our objective being to evaluate comparative efficacy, safety profiles, manufacturing complexities, and clinical applicability.
Collapse
Affiliation(s)
- Ofir Bar
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences Ben-Gurion University Beer-Sheva Israel
| |
Collapse
|
26
|
Douka S, Papamoschou V, Raimo M, Mastrobattista E, Caiazzo M. Harnessing the Power of NK Cell Receptor Engineering as a New Prospect in Cancer Immunotherapy. Pharmaceutics 2024; 16:1143. [PMID: 39339180 PMCID: PMC11434712 DOI: 10.3390/pharmaceutics16091143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Natural killer (NK) cells have recently gained popularity as an alternative for cancer immunotherapy. Adoptive cell transfer employing NK cells offers a safer therapeutic option compared to T-cell-based therapies, due to their significantly lower toxicity and the availability of diverse autologous and allogeneic NK cell sources. However, several challenges are associated with NK cell therapies, including limited in vivo persistence, the immunosuppressive and hostile tumor microenvironment (TME), and the lack of effective treatments for solid tumors. To address these limitations, the modification of NK cells to stably produce cytokines has been proposed as a strategy to enhance their persistence and proliferation. Additionally, the overexpression of activating receptors and the blockade of inhibitory receptors can restore the NK cell functions hindered by the TME. To further improve tumor infiltration and the elimination of solid tumors, innovative approaches focusing on the enhancement of NK cell chemotaxis through the overexpression of chemotactic receptors have been introduced. This review highlights the latest advancements in preclinical and clinical studies investigating the engineering of activating, inhibitory, and chemotactic NK cell receptors; discusses recent progress in cytokine manipulation; and explores the potential of combining the chimeric antigen receptor (CAR) technology with NK cell receptors engineering.
Collapse
Affiliation(s)
- Stefania Douka
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Vasilis Papamoschou
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Monica Raimo
- Glycostem Therapeutics B.V., Kloosterstraat 9, 5349 AB Oss, The Netherlands;
| | - Enrico Mastrobattista
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Massimiliano Caiazzo
- Pharmaceutics Division, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
27
|
Li W, Wang X, Zhang X, Aziz AUR, Wang D. CAR-NK Cell Therapy: A Transformative Approach to Overcoming Oncological Challenges. Biomolecules 2024; 14:1035. [PMID: 39199421 PMCID: PMC11352442 DOI: 10.3390/biom14081035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The use of chimeric antigen receptor (CAR) in natural killer (NK) cells for cancer therapy is gaining momentum, marking a significant shift in cancer treatment. This review aims to explore the potential of CAR-NK cell therapy in cancer immunotherapy, providing a fresh perspective. It discusses the innovative approaches in CAR-NK cell design and engineering, particularly targeting refractory or recurrent cancers. By comparing CAR-NK cells with traditional therapies, the review highlights their unique ability to tackle tumor heterogeneity and immune system suppression. Additionally, it explains how novel cytokines and receptors can enhance CAR-NK cell efficacy, specificity, and functionality. This review underscores the advantages of CAR-NK cells, including reduced toxicity, lower cost, and broader accessibility compared to CAR-T cells, along with their potential in treating both blood cancers and solid tumors.
Collapse
Affiliation(s)
- Wangshu Li
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiuying Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Xu Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin 151801, China;
| | - Aziz ur Rehman Aziz
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| | - Daqing Wang
- China Key Laboratory for Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women, Dalian Women and Children’s Medical Group, Dalian 116012, China; (W.L.); (X.W.)
| |
Collapse
|
28
|
Duan R, Milton P, Sittplangkoon C, Liu X, Sui Z, Boyce BF, Yao Z. Chimeric antigen receptor dendritic cells targeted delivery of a single tumoricidal factor for cancer immunotherapy. Cancer Immunol Immunother 2024; 73:203. [PMID: 39105847 PMCID: PMC11303651 DOI: 10.1007/s00262-024-03788-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.
Collapse
Affiliation(s)
- Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Philip Milton
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- School of Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Chutamath Sittplangkoon
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Orthopedics, Tianjin Hospital, Tianjin, 30021, People's Republic of China
| | - Zhining Sui
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
29
|
Li J, Chen P, Ma W. The next frontier in immunotherapy: potential and challenges of CAR-macrophages. Exp Hematol Oncol 2024; 13:76. [PMID: 39103972 DOI: 10.1186/s40164-024-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Chimeric antigen receptor macrophage (CAR-MΦ) represents a significant advancement in immunotherapy, especially for treating solid tumors where traditional CAR-T therapies face limitations. CAR-MΦ offers a promising approach to target and eradicate tumor cells by utilizing macrophages' phagocytic and antigen-presenting abilities. However, challenges such as the complex tumor microenvironment (TME), variability in antigen expression, and immune suppression limit their efficacy. This review addresses these issues, exploring mechanisms of CAR-MΦ action, optimal construct designs, and interactions within the TME. It also delves into the ex vivo manufacturing challenges of CAR-MΦ, discussing autologous and allogeneic sources and the importance of stringent quality control. The potential synergies of integrating CAR-MΦ with existing cancer therapies like checkpoint inhibitors and conventional chemotherapeutics are examined to highlight possible enhanced treatment outcomes. Furthermore, regulatory pathways for CAR-MΦ therapies are scrutinized alongside established protocols for CAR-T cells, identifying unique considerations essential for clinical trials and market approval. Proposed safety monitoring frameworks aim to manage potential adverse events, such as cytokine release syndrome, crucial for patient safety. Consolidating current research and clinical insights, this review seeks to refine CAR-MΦ therapeutic applications, overcome barriers, and suggest future research directions to transition CAR-MΦ therapies from experimental platforms to standard cancer care options.
Collapse
Affiliation(s)
- Jing Li
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Union Hospital, Fujian Medical University Fuzhou, Fujian, 350001, China
| | - Wenxue Ma
- Sanford Stem Cell Institute, Moores Cancer Center, University of California San Diego, CA, 92093, La Jolla, USA.
| |
Collapse
|
30
|
Canichella M, de Fabritiis P. Cell-Based Treatment in Acute Myeloid Leukemia Relapsed after Allogeneic Stem Cell Transplantation. Biomedicines 2024; 12:1721. [PMID: 39200186 PMCID: PMC11351713 DOI: 10.3390/biomedicines12081721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Allogeneic stem cell transplant (ASCT) remains the only treatment option for patients with high-risk acute myeloid leukemia (AML). Recurrence of leukemic cells after ASCT represents a dramatic event associated with a dismal outcome, with a 2-year survival rate of around 20%. Adoptive cell therapy (ACT) is a form of cell-based strategy that has emerged as an effective therapy to treat and prevent post-ASCT recurrence. Lymphocytes are the principal cells used in this therapy and can be derived from a hematopoietic stem cell donor, the patient themselves, or healthy donors, after being engineered to express the chimeric antigen receptor (CAR-T and UniCAR-T). In this review, we discuss recent advances in the established strategy of donor lymphocyte infusion (DLI) and the progress and challenges of CAR-T cells.
Collapse
Affiliation(s)
| | - Paolo de Fabritiis
- Hematology Unit, St. Eugenio Hospital, ASL Roma2, 00144 Rome, Italy;
- Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
31
|
Han J, Son H, Jung D, Kim KY, Jin C, Hwang H, Kang SS, Mitalipov S, An HJ, Lee Y, Kang E. Comparison of Natural Killer Cells Differentiated from Various Pluripotent Stem Cells. Int J Mol Sci 2024; 25:8209. [PMID: 39125777 PMCID: PMC11311719 DOI: 10.3390/ijms25158209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Allogeneic natural killer (NK) cell therapy has been effective in treating cancer. Many studies have tested NK cell therapy using human pluripotent stem cells (hPSCs). However, the impacts of the origin of PSC-NK cells on competence are unclear. In this study, several types of hPSCs, including human-induced PSCs (hiPSCs) generated from CD34+, CD3-CD56+, and CD56- cells in umbilical cord blood (UCB), three lines of human embryonic stem cells (hESCs, ES-1. ES-2 and ES-3) and MHC I knockout (B2M-KO)-ESCs were used to differentiate into NK cells and their capacities were analyzed. All PSC types could differentiate into NK cells. Among the iPSC-derived NK cells (iPSC-NKs) and ESC-derived NK cells (ES-NKs), 34+ iPSCs and ES-3 had a higher growth rate and cytotoxicity, respectively, ES-3 also showed better efficacy than 34+ iPSCs. B2M-KO was similar to the wild type. These results suggest that the screening for differentiation of PSCs into NK cells prior to selecting the PSC lines for the development of NK cell immunotherapy is an essential process for universal allotransplantation, including the chimeric antigen receptor (CAR).
Collapse
Affiliation(s)
- Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (J.H.); (H.S.); (C.J.); (H.H.)
| | - Hyeongbin Son
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (J.H.); (H.S.); (C.J.); (H.H.)
| | - Daun Jung
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam-si 13496, Gyeonggi-do, Republic of Korea; (D.J.); (K.-Y.K.); (H.-J.A.)
| | - Ki-Yeon Kim
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam-si 13496, Gyeonggi-do, Republic of Korea; (D.J.); (K.-Y.K.); (H.-J.A.)
| | - Chaeyeon Jin
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (J.H.); (H.S.); (C.J.); (H.H.)
| | - Hyeonwook Hwang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (J.H.); (H.S.); (C.J.); (H.H.)
| | - Soon-Suk Kang
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA Bundang Medical Center, Sungnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Hee-Jung An
- Department of Pathology, CHA Bundang Medical Center, CHA University, Sungnam-si 13496, Gyeonggi-do, Republic of Korea; (D.J.); (K.-Y.K.); (H.-J.A.)
| | - Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (J.H.); (H.S.); (C.J.); (H.H.)
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA Bundang Medical Center, Sungnam-si 13488, Gyeonggi-do, Republic of Korea;
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (J.H.); (H.S.); (C.J.); (H.H.)
- Cell Therapy 3 Center, CHA Advanced Research Institute, CHA Bundang Medical Center, Sungnam-si 13488, Gyeonggi-do, Republic of Korea;
- Department of Biochemistry, School of Medicine, CHA University, Seongnam-si 13488, Gyeonggi-do, Republic of Korea
| |
Collapse
|
32
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
33
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
34
|
Zhong Y, Liu J. Emerging roles of CAR-NK cell therapies in tumor immunotherapy: current status and future directions. Cell Death Discov 2024; 10:318. [PMID: 38987565 PMCID: PMC11236993 DOI: 10.1038/s41420-024-02077-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024] Open
Abstract
Cancer immunotherapy harnesses the body's immune system to combat malignancies, building upon an understanding of tumor immunosurveillance and immune evasion mechanisms. This therapeutic approach reactivates anti-tumor immune responses and can be categorized into active, passive, and combined immunization strategies. Active immunotherapy engages the immune system to recognize and attack tumor cells by leveraging host immunity with cytokine supplementation or vaccination. Conversely, passive immunotherapy employs exogenous agents, such as monoclonal antibodies (anti-CTLA4, anti-PD1, anti-PD-L1) or adoptive cell transfers (ACT) with genetically engineered chimeric antigen receptor (CAR) T or NK cells, to exert anti-tumor effects. Over the past decades, CAR-T cell therapies have gained significant traction in oncological treatment, offering hope through their targeted approach. However, the potential adverse effects associated with CAR-T cells, including cytokine release syndrome (CRS), off-tumor toxicity, and neurotoxicity, warrant careful consideration. Recently, CAR-NK cell therapy has emerged as a promising alternative in the landscape of tumor immunotherapy, distinguished by its innate advantages over CAR-T cell modalities. In this review, we will synthesize the latest research and clinical advancements in CAR-NK cell therapies. We will elucidate the therapeutic benefits of employing CAR-NK cells in oncology and critically examine the developmental bottlenecks impeding their broader application. Our discussion aims to provide a comprehensive overview of the current status and future potential of CAR-NK cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingfeng Liu
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| |
Collapse
|
35
|
Sun X, Nagahama Y, Singh SK, Kozakai Y, Nabeshima H, Fukushima K, Tanaka H, Motooka D, Fukui E, Vivier E, Diez D, Akira S. Deletion of the mRNA endonuclease Regnase-1 promotes NK cell anti-tumor activity via OCT2-dependent transcription of Ifng. Immunity 2024; 57:1360-1377.e13. [PMID: 38821052 DOI: 10.1016/j.immuni.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/31/2023] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Limited infiltration and activity of natural killer (NK) and T cells within the tumor microenvironment (TME) correlate with poor immunotherapy responses. Here, we examined the role of the endonuclease Regnase-1 on NK cell anti-tumor activity. NK cell-specific deletion of Regnase-1 (Reg1ΔNK) augmented cytolytic activity and interferon-gamma (IFN-γ) production in vitro and increased intra-tumoral accumulation of Reg1ΔNK-NK cells in vivo, reducing tumor growth dependent on IFN-γ. Transcriptional changes in Reg1ΔNK-NK cells included elevated IFN-γ expression, cytolytic effectors, and the chemokine receptor CXCR6. IFN-γ induced expression of the CXCR6 ligand CXCL16 on myeloid cells, promoting further recruitment of Reg1ΔNK-NK cells. Mechanistically, Regnase-1 deletion increased its targets, the transcriptional regulators OCT2 and IκBζ, following interleukin (IL)-12 and IL-18 stimulation, and the resulting OCT2-IκBζ-NF-κB complex induced Ifng transcription. Silencing Regnase-1 in human NK cells increased the expression of IFNG and POU2F2. Our findings highlight NK cell dysfunction in the TME and propose that targeting Regnase-1 could augment active NK cell persistence for cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Sun
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Quantitative Immunology Unit, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yasuharu Nagahama
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Host Defense Laboratory, Immunology Unit, Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., 5-1-35 Saito-aokita, Minoh, Osaka 562-0029, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shailendra Kumar Singh
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Yuuki Kozakai
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nabeshima
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Host Defense Laboratory, Immunology Unit, Department of Medical Innovations, Osaka Research Center for Drug Discovery, Otsuka Pharmaceutical Co. Ltd., 5-1-35 Saito-aokita, Minoh, Osaka 562-0029, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kiyoharu Fukushima
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroki Tanaka
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Daisuke Motooka
- NGS Core Facility of the Genome Information Research Center, RIMD, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France; Innate Pharma Research Laboratories, Marseille, France; APHM, Hôpital de la Timone, Marseille-Immunopole, Marseille, France
| | - Diego Diez
- Quantitative Immunology Unit, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Joint Research Chair of Innate Immunity for Drug Discovery, WPI-IFReC, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan; Center for Advanced Modalities and Drug Delivery System (CAMaD), Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
36
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Kiran S, Xue Y, Sarker DB, Li Y, Sang QXA. Feeder-free differentiation of human iPSCs into natural killer cells with cytotoxic potential against malignant brain rhabdoid tumor cells. Bioact Mater 2024; 36:301-316. [PMID: 38496035 PMCID: PMC10940949 DOI: 10.1016/j.bioactmat.2024.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic immune cells that can eliminate target cells without prior stimulation. Human induced pluripotent stem cells (iPSCs) provide a robust source of NK cells for safe and effective cell-based immunotherapy against aggressive cancers. In this in vitro study, a feeder-free iPSC differentiation was performed to obtain iPSC-NK cells, and distinct maturational stages of iPSC-NK were characterized. Mature cells of CD56bright CD16bright phenotype showed upregulation of CD56, CD16, and NK cell activation markers NKG2D and NKp46 upon IL-15 exposure, while exposure to aggressive atypical teratoid/rhabdoid tumor (ATRT) cell lines enhanced NKG2D and NKp46 expression. Malignant cell exposure also increased CD107a degranulation markers and stimulated IFN-γ secretion in activated NK cells. CD56bright CD16bright iPSC-NK cells showed a ratio-dependent killing of ATRT cells, and the percentage lysis of CHLA-05-ATRT was higher than that of CHLA-02-ATRT. The iPSC-NK cells were also cytotoxic against other brain, kidney, and lung cancer cell lines. Further NK maturation yielded CD56-ve CD16bright cells, which lacked activation markers even after exposure to interleukins or ATRT cells - indicating diminished cytotoxicity. Generation and characterization of different NK phenotypes from iPSCs, coupled with their promising anti-tumor activity against ATRT in vitro, offer valuable insights into potential immunotherapeutic strategies for brain tumors.
Collapse
Affiliation(s)
- Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yu Xue
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310-6046, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306-4380, USA
| |
Collapse
|
38
|
Yang K, Lu R, Mei J, Cao K, Zeng T, Hua Y, Huang X, Li W, Yin Y. The war between the immune system and the tumor - using immune biomarkers as tracers. Biomark Res 2024; 12:51. [PMID: 38816871 PMCID: PMC11137916 DOI: 10.1186/s40364-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
Nowadays, immunotherapy is one of the most promising anti-tumor therapeutic strategy. Specifically, immune-related targets can be used to predict the efficacy and side effects of immunotherapy and monitor the tumor immune response. In the past few decades, increasing numbers of novel immune biomarkers have been found to participate in certain links of the tumor immunity to contribute to the formation of immunosuppression and have entered clinical trials. Here, we systematically reviewed the oncogenesis and progression of cancer in the view of anti-tumor immunity, particularly in terms of tumor antigen expression (related to tumor immunogenicity) and tumor innate immunity to complement the cancer-immune cycle. From the perspective of integrated management of chronic cancer, we also appraised emerging factors affecting tumor immunity (including metabolic, microbial, and exercise-related markers). We finally summarized the clinical studies and applications based on immune biomarkers. Overall, immune biomarkers participate in promoting the development of more precise and individualized immunotherapy by predicting, monitoring, and regulating tumor immune response. Therefore, targeting immune biomarkers may lead to the development of innovative clinical applications.
Collapse
Affiliation(s)
- Kai Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Rongrong Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Jie Mei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Kai Cao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Yijia Hua
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China
- Gusu School, Nanjing Medical University, Nanjing, China
| | - Xiang Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, P. R. China.
| |
Collapse
|
39
|
Li X, Zhu Y, Yi J, Deng Y, Lei B, Ren H. Adoptive cell immunotherapy for breast cancer: harnessing the power of immune cells. J Leukoc Biol 2024; 115:866-881. [PMID: 37949484 DOI: 10.1093/jleuko/qiad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Breast cancer is the most prevalent malignant neoplasm worldwide, necessitating the development of novel therapeutic strategies owing to the limitations posed by conventional treatment modalities. Immunotherapy is an innovative approach that has demonstrated significant efficacy in modulating a patient's innate immune system to combat tumor cells. In the era of precision medicine, adoptive immunotherapy for breast cancer has garnered widespread attention as an emerging treatment strategy, primarily encompassing cellular therapies such as tumor-infiltrating lymphocyte therapy, chimeric antigen receptor T/natural killer/M cell therapy, T cell receptor gene-engineered T cell therapy, lymphokine-activated killer cell therapy, cytokine-induced killer cell therapy, natural killer cell therapy, and γδ T cell therapy, among others. This treatment paradigm is based on the principles of immune memory and antigen specificity, involving the collection, processing, and expansion of the patient's immune cells, followed by their reintroduction into the patient's body to activate the immune system and prevent tumor recurrence and metastasis. Currently, multiple clinical trials are assessing the feasibility, effectiveness, and safety of adoptive immunotherapy in breast cancer. However, this therapeutic approach faces challenges associated with tumor heterogeneity, immune evasion, and treatment safety. This review comprehensively summarizes the latest advancements in adoptive immunotherapy for breast cancer and discusses future research directions and prospects, offering valuable guidance and insights into breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xue Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Yunan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Jinfeng Yi
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Harbin 150081, Heilongjiang, China
| | - Yuhan Deng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| | - He Ren
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150076, Heilongjiang, China
| |
Collapse
|
40
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
41
|
Dash CP, Sonowal D, Dhaka P, Yadav R, Chettri D, Satapathy BP, Sheoran P, Uttam V, Jain M, Jain A. Antitumor activity of genetically engineered NK-cells in non-hematological solid tumor: a comprehensive review. Front Immunol 2024; 15:1390498. [PMID: 38694508 PMCID: PMC11061440 DOI: 10.3389/fimmu.2024.1390498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/18/2024] [Indexed: 05/04/2024] Open
Abstract
Recent advancements in genetic engineering have made it possible to modify Natural Killer (NK) cells to enhance their ability to fight against various cancers, including solid tumors. This comprehensive overview discusses the current status of genetically engineered chimeric antigen receptor NK-cell therapies and their potential for treating solid tumors. We explore the inherent characteristics of NK cells and their role in immune regulation and tumor surveillance. Moreover, we examine the strategies used to genetically engineer NK cells in terms of efficacy, safety profile, and potential clinical applications. Our investigation suggests CAR-NK cells can effectively target and regress non-hematological malignancies, demonstrating enhanced antitumor efficacy. This implies excellent promise for treating tumors using genetically modified NK cells. Notably, NK cells exhibit low graft versus host disease (GvHD) potential and rarely induce significant toxicities, making them an ideal platform for CAR engineering. The adoptive transfer of allogeneic NK cells into patients further emphasizes the versatility of NK cells for various applications. We also address challenges and limitations associated with the clinical translation of genetically engineered NK-cell therapies, such as off-target effects, immune escape mechanisms, and manufacturing scalability. We provide strategies to overcome these obstacles through combination therapies and delivery optimization. Overall, we believe this review contributes to advancing NK-cell-based immunotherapy as a promising approach for cancer treatment by elucidating the underlying mechanisms, evaluating preclinical and clinical evidence, and addressing remaining challenges.
Collapse
Affiliation(s)
- Chinmayee Priyadarsini Dash
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Bibhu Prasad Satapathy
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Non-Coding Ribonucleic Acid (RNA) and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
42
|
Guijarro-Albaladejo B, Marrero-Cepeda C, Rodríguez-Arbolí E, Sierro-Martínez B, Pérez-Simón JA, García-Guerrero E. Chimeric antigen receptor (CAR) modified T Cells in acute myeloid leukemia: limitations and expectations. Front Cell Dev Biol 2024; 12:1376554. [PMID: 38694825 PMCID: PMC11061469 DOI: 10.3389/fcell.2024.1376554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/04/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy with a poor prognosis despite the advent of novel therapies. Consequently, a major need exists for new therapeutic options, particularly for patients with relapsed/refractory (R/R) AML. In recent years, it has been possible to individualize the treatment of a subgroup of patients, particularly with the emergence of multiple targeted therapies. Nonetheless, a considerable number of patients remain without therapeutic options, and overall prognosis remains poor because of a high rate of disease relapse. In this sense, cellular therapies, especially chimeric antigen receptor (CAR)-T cell therapy, have dramatically shifted the therapeutic options for other hematologic malignancies, such as diffuse large B cell lymphoma and acute lymphoblastic leukemia. In contrast, effectively treating AML with CAR-based immunotherapy poses major biological and clinical challenges, most of them derived from the unmet need to identify target antigens with expression restricted to the AML blast without compromising the viability of the normal hematopoietic stem cell counterpart. Although those limitations have hampered CAR-T cell therapy translation to the clinic, there are several clinical trials where target antigens, such as CD123, CLL-1 or CD33 are being used to treat AML patients showing promising results. Moreover, there are continuing efforts to enhance the specificity and efficacy of CAR-T cell therapy in AML. These endeavors encompass the exploration of novel avenues, including the development of dual CAR-T cells and next-generation CAR-T cells, as well as the utilization of gene editing tools to mitigate off-tumor toxicities. In this review, we will summarize the ongoing clinical studies and the early clinical results reported with CAR-T cells in AML, as well as highlight CAR-T cell limitations and the most recent approaches to overcome these barriers. We will also discuss how and when CAR-T cells should be used in the context of AML.
Collapse
Affiliation(s)
- Beatriz Guijarro-Albaladejo
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Cristina Marrero-Cepeda
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Eduardo Rodríguez-Arbolí
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Belén Sierro-Martínez
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - José Antonio Pérez-Simón
- Unidad de Gestión Clínica de Hematología, Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Estefanía García-Guerrero
- Instituto de Biomedicina de Sevilla, IBiS/Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Servicio de Hematología, Hospital Universitario Virgen del Rocío, Seville, Spain
| |
Collapse
|
43
|
Abbaszade Dibavar M, Soleimani M, Mohammadi MH, Zomorrod MS. High yield killing of lymphoma cells by anti-CD22 CAR-NK cell therapy. In Vitro Cell Dev Biol Anim 2024; 60:321-332. [PMID: 38589736 DOI: 10.1007/s11626-024-00895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Chimeric antigen receptors (CARs) offer a promising new approach for targeting B cell malignancies through the immune system. Despite the proven effectiveness of CAR T cells targeting CD19 and CD22 in hematological malignancies, it is imperative to note that their production remains a highly complex process. Unlike T cells, NK cells eliminate targets in a non-antigen-specific manner while avoiding graft vs. host disease (GvHD). CAR-NK cells are considered safer than CAR-T cells because they have a shorter lifespan and produce less toxic cytokines. Due to their unlimited ability to proliferate in vitro, NK-92 cells can be used as a source for CAR-engineered NK cells. We found that CARs created from the m971 anti-CD22 mAb, which specifically targets a proximal CD22 epitope, were more effective at anti-leukemic activity compared to those made with other binding domains. To further enhance the anti-leukemic capacity of NK cells, we used lentiviral transduction to generate the m971-CD28-CD3ζ NK-92. CD22 is highly expressed in B cell lymphoma. To evaluate the potential of targeting CD22, Raji cells were selected as CD22-positive cells. Our study aimed to investigate CD22 as a potential target for CAR-NK-92 therapy in the treatment of B cell lymphoma. We first generated m971-CD28-CD3ζ NK-92 that expressed a CAR for binding CD22 in vitro. Flow cytometric analysis was used to evaluate the expression of CAR. The 7AAD determined the cytotoxicity of the m971-CD28-CD3ζ NK-92 towards target lymphoma cell lines by flow cytometry assay. The ELISA assay evaluated cytokine production in CAR NK-92 cells in response to target cells. The m971-CD28-CD3ζ NK-92 cells have successfully expressed the CD22-specific CAR. m971-CD28-CD3ζ NK-92 cells efficiently lysed CD22-expressing lymphoma cell lines and produced large amounts of cytokines such as IFN-γ and GM-CSF but a lower level of IL-6 after coculturing with target cells. Based on our results, it is evident that transferring m971-CD28-CD3ζ NK-92 cells could be a promising immunotherapy for B cell lymphoma.
Collapse
Affiliation(s)
- Mahnoosh Abbaszade Dibavar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Hossein Mohammadi
- HSCT Research Center, Laboratory Hematology and Blood Banking Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mina Soufi Zomorrod
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
44
|
Li J, Hu H, Lian K, Zhang D, Hu P, He Z, Zhang Z, Wang Y. CAR-NK cells in combination therapy against cancer: A potential paradigm. Heliyon 2024; 10:e27196. [PMID: 38486782 PMCID: PMC10937699 DOI: 10.1016/j.heliyon.2024.e27196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Various preclinical and a limited number of clinical studies of CAR-NK cells have shown promising results: efficient elimination of target cells without side effects similar to CAR-T therapy. However, the homing and infiltration abilities of CAR-NK cells are poor due to the inhibitory tumor microenvironment. From the perspective of clinical treatment strategies, combined with the biological and tumor microenvironment characteristics of NK cells, CAR-NK combination therapy strategies with anti-PD-1/PD-L1, radiotherapy and chemotherapy, kinase inhibitors, proteasome inhibitors, STING agonist, oncolytic virus, photothermal therapy, can greatly promote the proliferation, migration and cytotoxicity of the NK cells. In this review, we will summarize the targets selection, structure constructions and combinational therapies of CAR-NK cells for tumors to provide feasible combination strategies for overcoming the inhibitory tumor microenvironment and improving the efficacy of CAR-NK cells.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Hong Hu
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Dongdong Zhang
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Pengchao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhibing He
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yong Wang
- Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, 441000, China
| |
Collapse
|
45
|
Petrov S, Taskov H, Murdjeva M. Guardians of immunity: NK cell-mediated defense in COVID-19 and post-COVID scenarios. Folia Med (Plovdiv) 2024; 66:12-18. [PMID: 38426460 DOI: 10.3897/folmed.66.e113356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/10/2023] [Indexed: 03/02/2024] Open
Abstract
The COVID-19 pandemic has left a lasting impact on global health, challenging communities, healthcare systems, and researchers worldwide. As we navigate this unprecedented crisis, this paper embarks on a multifaceted exploration of the pivotal role played by natural killer (NK) cells in the context of COVID-19. A significant portion of this paper is devoted to dissecting the nuanced role that NK cells assume in the context of COVID-19. From the initial acute infection to post-recovery immunity, NK cells emerge as critical players. We scrutinize the activation and dysregulation of NK cells during SARS-CoV-2 infection, shedding light on their potential contribution to disease severity. Moreover, we explore the fascinating landscape of post-COVID immunity, where NK cells are known to interact with adaptive immune responses, providing a foundation for long-term protection. In light of their central role, we investigate therapeutic strategies targeting NK cells in COVID-19 management, presenting an overview of current research efforts and their promise in mitigating disease progression. Lastly, we draw attention to research gaps, emphasizing the need for further investigation into NK cell dynamics during COVID-19. These gaps represent opportunities for advancing our understanding of NK cell biology and, by extension, enhancing our strategies for combating this global health crisis. This comprehensive exploration not only highlights the intricate interplay between NK cells and the COVID-19 pandemic but also underscores the importance of these innate immune warriors in shaping both the acute response and long-term immunity, ultimately contributing to the broader discourse surrounding the pandemic's pathophysiology and therapeutic approaches.
Collapse
|
46
|
Nagase H, Kato T, Yoshimoto T. State-of-the-Art Cancer Immunotherapies. Int J Mol Sci 2024; 25:2532. [PMID: 38473780 DOI: 10.3390/ijms25052532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer immunotherapy is a type of cancer therapy utilizing the immune system to fight against tumors [...].
Collapse
Affiliation(s)
- Hisashi Nagase
- Department of Parasitology, Shinshu University School of Medicine 3-1-1, Asahi, Matsumoto 390-8621, Japan
| | - Takuma Kato
- Department of Cellular and Molecular Immunology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu 514-8507, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takayuki Yoshimoto
- Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
47
|
Han H, Qian C, Song M, Zhong C, Zhao Y, Lu Y. Fibroblasts: invigorated targets in pre-metastatic niche formation. Int J Biol Sci 2024; 20:1110-1124. [PMID: 38322116 PMCID: PMC10845297 DOI: 10.7150/ijbs.87680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
At present, tumor metastasis still remains the leading contributor to high recurrence and mortality in cancer patients. There have been no clinically effective therapeutic strategies for treating patients with metastatic cancer. In recent years, a growing body of evidence has shown that the pre-metastatic niche (PMN) plays a crucial role in driving tumor metastasis. Nevertheless, a clear and detailed understanding of the formation of PMN is still lacking given the fact that PMN formation involves in a wealth of complicated communications and underlying mechanisms between primary tumors and metastatic target organs. Despite that the roles of numerous components including tumor exosomes and extracellular vesicles in influencing the evolution of PMN have been well documented, the involvement of cancer-associated fibroblasts (CAFs) in the tumor microenvironment for controlling PMN formation is frequently overlooked. It has been increasingly recognized that fibroblasts trigger the formation of PMN by virtue of modulating exosomes, metabolism and so on. In this review, we mainly summarize the underlying mechanisms of fibroblasts from diverse origins in exerting impacts on PMN evolution, and further highlight the prospective strategies for targeting fibroblasts to prevent PMN formation.
Collapse
Affiliation(s)
- Hongkuan Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cheng Qian
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengyao Song
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chongjin Zhong
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
48
|
Wang W, Liu Y, He Z, Li L, Liu S, Jiang M, Zhao B, Deng M, Wang W, Mi X, Sun Z, Ge X. Breakthrough of solid tumor treatment: CAR-NK immunotherapy. Cell Death Discov 2024; 10:40. [PMID: 38245520 PMCID: PMC10799930 DOI: 10.1038/s41420-024-01815-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
As the latest and most anticipated method of tumor immunotherapy, CAR-NK therapy has received increasing attention in recent years, and its safety and high efficiency have irreplaceable advantages over CAR-T. Current research focuses on the application of CAR-NK in hematological tumors, while there are fewer studies on solid tumor. This article reviews the process of constructing CAR-NK, the effects of hypoxia and metabolic factors, NK cell surface receptors, cytokines, and exosomes on the efficacy of CAR-NK in solid tumor, and the role of CAR-NK in various solid tumor. The mechanism of action and the research status of the potential of CAR-NK in the treatment of solid tumor in clinical practice, and put forward the advantages, limitations and future problems of CAR-NK in the treatment of solid tumor.
Collapse
Affiliation(s)
- Wenkang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yang Liu
- Department of Radiotherapy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Zhen He
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Lifeng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Senbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingqiang Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Deng
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wendong Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xuefang Mi
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xin Ge
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
49
|
Adhikary S, Pathak S, Palani V, Acar A, Banerjee A, Al-Dewik NI, Essa MM, Mohammed SGAA, Qoronfleh MW. Current Technologies and Future Perspectives in Immunotherapy towards a Clinical Oncology Approach. Biomedicines 2024; 12:217. [PMID: 38255322 PMCID: PMC10813720 DOI: 10.3390/biomedicines12010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Immunotherapy is now established as a potent therapeutic paradigm engendering antitumor immune response against a wide range of malignancies and other diseases by modulating the immune system either through the stimulation or suppression of immune components such as CD4+ T cells, CD8+ T cells, B cells, monocytes, macrophages, dendritic cells, and natural killer cells. By targeting several immune checkpoint inhibitors or blockers (e.g., PD-1, PD-L1, PD-L2, CTLA-4, LAG3, and TIM-3) expressed on the surface of immune cells, several monoclonal antibodies and polyclonal antibodies have been developed and already translated clinically. In addition, natural killer cell-based, dendritic cell-based, and CAR T cell therapies have been also shown to be promising and effective immunotherapeutic approaches. In particular, CAR T cell therapy has benefited from advancements in CRISPR-Cas9 genome editing technology, allowing the generation of several modified CAR T cells with enhanced antitumor immunity. However, the emerging SARS-CoV-2 infection could hijack a patient's immune system by releasing pro-inflammatory interleukins and cytokines such as IL-1β, IL-2, IL-6, and IL-10, and IFN-γ and TNF-α, respectively, which can further promote neutrophil extravasation and the vasodilation of blood vessels. Despite the significant development of advanced immunotherapeutic technologies, after a certain period of treatment, cancer relapses due to the development of resistance to immunotherapy. Resistance may be primary (where tumor cells do not respond to the treatment), or secondary or acquired immune resistance (where tumor cells develop resistance gradually to ICIs therapy). In this context, this review aims to address the existing immunotherapeutic technologies against cancer and the resistance mechanisms against immunotherapeutic drugs, and explain the impact of COVID-19 on cancer treatment. In addition, we will discuss what will be the future implementation of these strategies against cancer drug resistance. Finally, we will emphasize the practical steps to lay the groundwork for enlightened policy for intervention and resource allocation to care for cancer patients.
Collapse
Affiliation(s)
- Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Vignesh Palani
- Faculty of Medicine, Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Ahmet Acar
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Türkiye;
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Nader I. Al-Dewik
- Department of Pediatrics, Women’s Wellness and Research Center, Hamad Medical Corporation, Doha 00974, Qatar;
| | - Musthafa Mohamed Essa
- College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | | | - M. Walid Qoronfleh
- Research & Policy Division, Q3 Research Institute (QRI), Ypsilanti, MI 48917, USA
| |
Collapse
|
50
|
Esmaeilzadeh A, Hadiloo K, Jabbari M, Elahi R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci 2024; 337:122381. [PMID: 38145710 DOI: 10.1016/j.lfs.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Equipping cancer-fighting immune cells with chimeric antigen receptor (CAR) has gained immense attention for cancer treatment. CAR-engineered T cells (CAR T cells) are the first immune-engineered cells that have achieved brilliant results in anti-cancer therapy. Despite promising anti-cancer features, CAR T cells could also cause fatal side effects and have shown inadequate efficacy in some studies. This has led to the introduction of other candidates for CAR transduction, e.g., Natural killer cells (NK cells). Regarding the better safety profile and anti-cancer properties, CAR-armored NK cells (CAR NK cells) could be a beneficial and suitable alternative to CAR T cells. Since introducing these two cells as anti-cancer structures, several studies have investigated their efficacy and safety, and most of them have focused on hematological malignancies. Solid tumors have unique properties that make them more resistant and less curable cancers than hematological malignancies. In this review article, we conduct a comprehensive review of the structure and properties of CAR NK and CAR T cells, compare the recent experience of immunotherapy with CAR T and CAR NK cells in various solid cancers, and overview current challenges and future solutions to battle solid cancers using CARNK cells.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Student Research Committee, Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Jabbari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|