1
|
Henriksen K, Jørgensen A, Kaur S, Gerwig R, Brøgger Svane CA, Knop FK, Størling J. Exploring the functional, protective, and transcriptomic effects of GIP on cytokine-exposed human pancreatic islets and EndoC-βH5 cells. Mol Cell Endocrinol 2025; 602:112522. [PMID: 40122442 DOI: 10.1016/j.mce.2025.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/03/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Immune-mediated beta-cell destruction and lack of alpha-cell responsiveness to hypoglycaemia are hallmarks of type 1 diabetes pathology. The incretin hormone glucose-dependent insulinotropic polypeptide (GIP) may hold therapeutic potential for type 1 diabetes due to its insulinotropic and glucagonotropic effects, as well as its cytoprotective effects shown in rodent beta cells. To further increase our understanding of GIP's effects on human beta cells, we here examined the functional, protective, and transcriptomic effects of GIP in human EndoC-βH5 beta cells and isolated human islets in the presence or absence of proinflammatory cytokines (interferon (IFN)-γ ± interleukin (IL)-1β) as a mimic of type 1 diabetes. GIP dose-dependently augmented glucose-stimulated insulin secretion from EndoC-βH5 cells and increased insulin and glucagon secretion from human islets at high and low glucose concentrations, respectively. The insulinotropic effect of GIP in EndoC-βH5 cells was abrogated by KN-93, an inhibitor of calcium/calmodulin-dependent protein kinase 2 (CaMK2). GIP did not prevent cytokine-induced apoptosis in EndoC-βH5 cells or human islets, and GIP did not protect against cytokine-induced functional impairment in EndoC-βH5 cells. GIP treatment of human islets for 24 h had no effects on the transcriptome and did not modulate cytokine-induced transcriptional changes. However, GIP augmented IL-1β + IFNγ-induced secretion of interleukin (IL)-10 and c-c motif chemokine ligand (CCL)-2 from human islets while decreasing the secretion of c-x-c motif chemokine ligand (CXCL)-8. In EndoC-βH5 cells, GIP reduced IFN-γ-induced secretion of tumor necrosis factor (TNF)-α, IL-2, IL-6, and IL-10 but increased the secretion of CXCL8, CCL2, CCL4, and CCL11. In conclusion, our results suggest that the insulinotropic effect of GIP is CaMK2-dependent. Furthermore, our findings indicate that GIP neither exerts cytoprotective effects against cytokines nor modulate the transcriptome of human islets. GIP may, however, exert selective modulatory effects on secreted inflammatory factors from cytokine-exposed beta cells and islets.
Collapse
Affiliation(s)
- Kristine Henriksen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Anne Jørgensen
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simranjeet Kaur
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Rebekka Gerwig
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Cecilie Amalie Brøgger Svane
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Størling
- Translational Type 1 Diabetes Research, Department of Clinical and Translational Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Kim JM, Park CG. Current status of pancreatic islet xenotransplantation. CLINICAL TRANSPLANTATION AND RESEARCH 2025; 39:1-11. [PMID: 39924969 PMCID: PMC11959427 DOI: 10.4285/ctr.24.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/28/2024] [Indexed: 02/11/2025]
Abstract
Pancreatic islet transplantation represents the optimal treatment for severe hypoglycemia, a serious complication experienced by patients with long-term type 1 diabetes who are undergoing insulin therapy. However, the limited availability of donor organs restricts its widespread use. Porcine pancreatic islets could offer a viable alternative to address this organ shortage. For successful pancreatic islet xenotransplantation using porcine pancreatic islets, efficacy and safety must first be demonstrated in pig-to-nonhuman primate (NHP) preclinical studies, as outlined in the consensus statement of the International Xenotransplantation Association. Our group has achieved long-term survival of wild-type porcine islet grafts in immunosuppressed NHPs by employing two immunosuppressive protocols: one based on CD40-CD40L blockade and another utilizing clinically available immunosuppressants. A clinical trial for pancreatic islet xenotransplantation, following the latter protocol, has received approval from the Korean Ministry of Food and Drug Safety (MFDS). This review aims to highlight the results of clinical trials involving porcine islet xenotransplantation to date, along with the age-specific and other characteristics of the porcine islets used in these trials and the preclinical NHP studies that support them. It offers insights into the perspectives around the first clinical islet xenotransplantation approved by the Korean MFDS, emphasizing improved long-term graft survival.
Collapse
Affiliation(s)
- Jong-Min Kim
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Animal Health and Welfare, Cheongju University College of Health and Medical Sciences, Cheongju, Korea
| | - Chung-Gyu Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
- BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
Amendolara R, Zampetti S, Siena A, D'Onofrio L, De Vita F, Barbaro F, Notarnicola D, Sessa RL, Luverà D, Risi R, Maddaloni E, Buzzetti R. Residual C-peptide secretion is associated with better CGM-metrics in adults with short-lasting type 1 diabetes. Diabetes Res Clin Pract 2025; 221:112006. [PMID: 39863081 DOI: 10.1016/j.diabres.2025.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
AIM To investigate whether the risk of hypoglycemia is associated with residual β-cell function in adults with type 1 diabetes (T1D). METHODS This cross-sectional study included 61 subjects with T1D duration <15 years using continuous glucose monitoring (CGM). Random C-peptide levels were compared between participants with time below range (TBR) ≥3 % (n = 15) and TBR <3 % (n = 45). The associations of C-peptide levels with other CGM metrics and clinical characteristics of the study participants were also tested. Analyses were adjusted for disease duration. RESULTS Median [25th - 75th percentiles] C-peptide levels were generally low: 49.3 [15.7-152] pmol/L. Participants in the low-TBR group had significantly higher C-peptide levels compared to those in the high-TBR group (52.9 [19.5-176.3] vs. 21.0 [9.4-106.6] pmol/L, p = 0.036), independently from disease duration. Higher C-peptide levels were associated with better CGM-metrics (p < 0.05). A C-peptide threshold of 15.1 pmol/L was the best cut-off to distinguish people at high risk of hypoglycemia. CONCLUSIONS C-peptide microsecretion is associated with a low risk of hypoglycemia and improved CGM metrics. Therapeutic approaches aimed at preserving minimal C-peptide secretion could potentially enhance glycemic outcomes and reduce hypoglycemic risk in individual with T1D.
Collapse
Affiliation(s)
- Rocco Amendolara
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Simona Zampetti
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Antonio Siena
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Luca D'Onofrio
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Francesco De Vita
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Federica Barbaro
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Dario Notarnicola
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Rosario Luigi Sessa
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Italy
| | - Daniela Luverà
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Renata Risi
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| | - Ernesto Maddaloni
- Department of Experimental Medicine, Sapienza University of Rome, Italy.
| | | |
Collapse
|
4
|
Das AK, Ghosh S, Sil PC. Determination of beneficial effects of cuminaldehyde on hyperglycemia associated kidney malfunctions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3049-3065. [PMID: 39333281 DOI: 10.1007/s00210-024-03470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Type 1 diabetes mellitus is defined by the autoimmune destruction of pancreatic β cells, with diabetic nephropathy being a significant consequence. Recently, cuminaldehyde has been shown protective ability against various pathophysiology. However, its nephroprotective and anti-diabetic potential has not yet been fully understood. We, therefore, conducted the present study to evaluate the anti-hyperglycemic potential of cuminaldehyde in NRK52E cells without (control) or with high glucose medium to emulate hyperglycemic conditions. Cuminaldehyde pre-treatment at an optimal concentration of 175 μM prior to high glucose addition restricted excessive reactive oxygen species (ROS) production and maintained cellular morphology to almost normal. The inhibitor study using N-acetyl-l-cysteine confirmed that blocking of ROS assists NRK52E cells in evading apoptosis. In addition, hyperglycemia was induced in 6-week-old Swiss albino mice in this investigation through the intraperitoneal injection of streptozotocin (150 mg kg-1 body weight). Hyperglycemia increased the kidney-to-body weight ratio, lowered serum insulin levels, and led to significant renal tissue damage compared to control mice. Moreover, hyperglycemia disturbs cellular redox equilibrium by decreasing antioxidant enzyme functions and promoting inflammatory cytokines in kidney tissue. Administering cuminaldehyde at a dosage of 10 mg kg-1 body weight for 5 weeks daily after the onset of diabetes effectively ameliorated the aforementioned anomalies and reversed kidney damage by regulating inflammation-induced cell death. Overall, the research demonstrated that cuminaldehyde has hypoglycemic, antioxidant, anti-inflammatory, and anti-apoptotic properties. We believe that after conducting extensive research, this unique molecule can be used in clinical trials against diabetic nephropathy in future.
Collapse
Affiliation(s)
- Abhishek Kumar Das
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India
| | - Sumit Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata, 700054, West Bengal, India.
| |
Collapse
|
5
|
Mondal S, Pappachan JM. Current perspectives and the future of disease-modifying therapies in type 1 diabetes. World J Diabetes 2025; 16:99496. [PMID: 39817218 PMCID: PMC11718456 DOI: 10.4239/wjd.v16.i1.99496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Use of immunomodulating agents to prevent the progression of autoimmune β-cell damage leading to type 1 diabetes mellitus (T1DM) is an interesting area for research. These include non-specific anti-inflammatory agents, immunologic vaccination and anti-inflammatory agents targeting specific immune cells or cytokines. Teplizumab is an anti-CD3-molecule that binds to and leads to the disappearance of the CD3/TCR complex and rendering the T cell anergic to its target antigen. Preclinical and clinical trials have demonstrated its efficacy in reducing the decline in serum C-peptide levels and the need for insulin therapy if used early in the disease process of T1DM. The benefits have been apparent as early as six months to as long as seven years after therapy. It has recently been approved by the Food and Drug Administration to delay the onset of clinical (stage 3) type 1 diabetes in children above 8 years of age. In their recent meta-analysis published in the World Journal of Diabetes, Ma et al found that those in the teplizumab treatment group have a greater likelihood of reduction in insulin use, change in C-peptide response, and better glycemic control compared to the control group with a good safety profile. However, all the included randomized control trials have been conducted in high-income countries. High cost of therapy and unknown utility of the molecule in stage 3 disease limit its widespread use.
Collapse
Affiliation(s)
- Sunetra Mondal
- Department of Endocrinology, NRS Medical College and Hospital, Kolkata 700014, West Bengal, India
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal 576104, India
| |
Collapse
|
6
|
Guerau-de-Arellano M, Morris MA, Sherman MA, Esch TR. Meeting report: Hidden links in autoimmunity. Sci Immunol 2024; 9:eads5884. [PMID: 39705334 DOI: 10.1126/sciimmunol.ads5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024]
Abstract
A NIAID-sponsored workshop was held in September 2024, where challenges to understanding common mechanisms in autoimmune disease were discussed as opportunities to advance research.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Margaret A Morris
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Matthew A Sherman
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Thomas R Esch
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| |
Collapse
|
7
|
Nikola L, Iva L. Gut microbiota as a modulator of type 1 diabetes: A molecular perspective. Life Sci 2024; 359:123187. [PMID: 39488260 DOI: 10.1016/j.lfs.2024.123187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Type 1 diabetes (T1D) is defined as an autoimmune metabolic disorder, characterized by destruction of pancreatic β-cells and high blood sugar levels. If left untreated, T1D results in severe health complications, including cardiovascular and kidney disease, as well as nerve damage, with ultimately grave consequences. Besides the role of genetic and certain environmental factors in T1D development, in the last decade, one new player emerged to affect T1D pathology as well, and that is a gut microbiota. Dysbiosis of gut bacteria can contribute to T1D by gut barrier disruption and the activation of autoimmune response, leading to the destruction of insulin producing cells, causing the development and aggravation of T1D symptoms. The relationship between gut microbiota and diabetes is complex and varies between individuals and additional research is needed to fully understand the effects of gut microbiome alternations in T1D pathogenesis. Therefore, the goal of this review is to understand the current knowledge in underlying molecular mechanism of gut microbiota effects, which leads to the new approaches for further studies in the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Lukic Nikola
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Lukic Iva
- Laboratory for Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of the Republic of Serbia, University of Belgrade, Serbia.
| |
Collapse
|
8
|
Singh SK, Paul M, Singh A, Sharma A, Kumar M, Gupta J, Sivakumar S, Verma V. Development of MXene Composite Nanofiber-Based 3D Culture System for the Efficient Generation of MSC-Derived Functional Pancreatic β-Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67514-67522. [PMID: 39593212 DOI: 10.1021/acsami.4c17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Pancreatic β-cell transplantation is an effective approach for the therapeutic treatment of type I diabetes. However, it has limitations due to the lack of human cadaveric pancreas donors. Stem cells provide an alternative source for the generation of surrogate pancreatic β-cells. Nonetheless, its clinical utility is restricted due to the unavailability of a robust culture system for the generation of large quantities of insulin-responsive pancreatic β-cells. In this study, we fabricated an MXene composite nanofibrous scaffold (PCL 25_Ti2C 5 nanofiber) for the development of a three-dimensional (3D) culture system that can enhance the proliferation and differentiation of stem cell-derived pancreatic β-cells. The fabricated MXene composite nanofibers exhibited a porous nanostructure and increased hydrophilicity due to a large number of hydrophilic functional groups. We assessed the biocompatibility and differentiation potential of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs) on a fabricated MXene composite nanofibrous scaffold. MXene composite nanofibers significantly upregulated key pancreatic β-cell markers including PDX-1, MAFA, Insulin, Nkx6.1, and Nkx2.2 and also showed increased production and secretion of insulin in response to glucose stimulation when compared to control (PCL 25 nanofiber), suggesting enhanced differentiation of hWJ-MSCs into functional pancreatic β-cells. Overall, the results suggest that MXene nanofiber-based cell therapy has therapeutic potential for diabetes treatment.
Collapse
Affiliation(s)
- Suraj Kumar Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Mouchandra Paul
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Jalaj Gupta
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
9
|
Cholidis P, Kranas D, Chira A, Galouni EA, Adamantidi T, Anastasiadou C, Tsoupras A. Shrimp Lipid Bioactives with Anti-Inflammatory, Antithrombotic, and Antioxidant Health-Promoting Properties for Cardio-Protection. Mar Drugs 2024; 22:554. [PMID: 39728129 DOI: 10.3390/md22120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more. The various health-promoting effects deriving from the consumption of shrimp lipid bioactives and the usage of products containing shrimp lipid extracts are also addressed in this study, through the exploration of several mechanisms of action and the interference of shrimp lipids in these biochemical pathways. Nevertheless, further research on this cultivatable edible species is needed, due to their existing limitations and future prospects which are discussed in this paper.
Collapse
Affiliation(s)
- Paschalis Cholidis
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Dimitrios Kranas
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Aggeliki Chira
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Evangelia Aikaterini Galouni
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | - Theodora Adamantidi
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| | | | - Alexandros Tsoupras
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece
| |
Collapse
|
10
|
Dilworth L, Stennett D, Facey A, Omoruyi F, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomed Pharmacother 2024; 181:117641. [PMID: 39541789 DOI: 10.1016/j.biopha.2024.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by high blood sugar levels (hyperglycemia). Poorly managed diabetes can lead to complications affecting multiple organ systems. Antioxidants play a crucial role in reducing oxidative stress caused by reactive oxygen species (ROS), primarily triggered by uncontrolled high blood sugar levels in diabetes. Antioxidants like vitamin C, E, selenium, and alpha-lipoic acid, when used as supplements, have shown promise in reducing oxidative stress markers and improving antioxidant status in laboratory and animal studies and diabetic patients. Antioxidant supplementation may help reduce the risk of diabetic complications such as neuropathy, nephropathy, retinopathy, and cardiovascular disease. Additionally, antioxidants also have anti-inflammatory properties, which could be beneficial in reducing inflammation associated with diabetes. Antioxidant supplementation has been shown to enhance endothelial function, insulin sensitivity, and glucose metabolism, thereby aiding in glycemic control and overall diabetic management. Combining antioxidants with certain medications may have therapeutic benefits, such as effectively neutralizing free radicals and enhancing the regulation of antioxidant defense systems. This review presents an update on diabetes, the sources of free radical generation, the body's natural defense mechanisms, the clinical evidence regarding using antioxidants in managing diabetic complications, and the potential new therapeutic approaches. Overall, antioxidant supplementation may offer some benefits in managing diabetic complications. However, further studies are needed to understand the mechanisms of action, determine the optimal supplementation, explore potential interactions with other medications, and conduct long-term studies to establish the possible use of antioxidants for optimal benefits in diabetes care.
Collapse
Affiliation(s)
- Lowell Dilworth
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Dewayne Stennett
- The Transitional Year Programme, University of Toronto, Toronto, ON M5S 2E8, Canada.
| | - Aldeam Facey
- Mona Academy of Sport, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix Omoruyi
- University of Rochester Medical Center, Department of Ophthalmology, Rochester, NY, USA.
| | - Shada Mohansingh
- Department of Pathology, The University of the West Indies, Mona Campus, Kingston, Jamaica.
| | - Felix O Omoruyi
- Department of Health Sciences, Texas A&M University, Corpus Christi, TX 78412, USA; Department of Life Sciences, Texas A&M University, Corpus Christi, TX 78412, USA.
| |
Collapse
|
11
|
Cobo‐Vuilleumier N, Rodríguez‐Fernandez S, López‐Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López‐Férnandez‐Sobrino R, Fernández‐Santos B, Serrano CE, Salas‐Lloret D, van Overbeek N, Ramos‐Rodriguez M, Mateo‐Rodríguez C, Hidalgo L, Marin‐Canas S, Nano R, Arroba AI, Caro AC, Vertegaal ACO, Martín‐Montalvo A, Martín F, Aguilar‐Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez‐Brocca MA, Vives‐Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 PMCID: PMC11659195 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
|
12
|
Ahmed ZB, Mahammed TH, Chegma T, Seidel V, Yousfi M. Alpha-glucosidase and α-amylase inhibitory activity of Pistacia atlantica Desf. gall extracts and identification of putative bioactives using a combined UPLC fingerprinting and molecular docking approach. J Diabetes Metab Disord 2024; 23:2081-2094. [PMID: 39610533 PMCID: PMC11599667 DOI: 10.1007/s40200-024-01470-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 11/30/2024]
Abstract
Aims Pistacia atlantica Desf. (Anacardiaceae) is traditionally used in Mediterranean medicine, with previous studies showing antidiabetic potential in its fruits and leaves. This study evaluates the antidiabetic activity of P. atlantica galls (PAG) extracts using in vitro, chemometric, and in silico approaches. Method The antidiabetic activity of the samples were studied by measuring their half-maximal inhibitory concentrations (IC50s) concentrations according to the in vitro enzyme inhibition assays and modelled as a function of the LC fingerprints using the partial least squares technique. Crystal structures of the human pancreatic α-amylase (HPA) and the α-glucosidase homologue isomaltase were obtained from the Protein Data Bank website (http://www.rcsb.org/pdb). Docking simulations and calculations were carried out using AutoDock Vina. Results PAG extracts inhibited HPA (IC50s ranging from 1.85 to 2.92 mg/mL) and α-glucosidase (IC50s ranging from 34 to 49 µg/mL) activities, with galls collected from male plants showing higher activity than those from female plants. UPLC fingerprinting, linked to chemometric analysis using a partial least squares regression model, putatively identified five compounds (quinic acid, methyl gallate, digalloyl quinic acid, methyl digallate, and valoneic acid dilactone) responsible for this antidiabetic effect. Molecular docking using AutoDock Vina revealed that the identified compounds interacted with key amino acid residues of HPA and α-glucosidase. Conclusions By employing UPLC fingerprinting combined with chemometric analysis and molecular docking simulations, quinic acid and digalloyl quinic acid were identified from P. atlantica gall extract as the most promising ligands for further investigation into their antidiabetic potential. Graphical Abstract
Collapse
Affiliation(s)
- Ziyad Ben Ahmed
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Toufik Hadj Mahammed
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
| | - Taha Chegma
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Mohamed Yousfi
- Laboratoire des Sciences Fondamentales, Université Amar Telidji, Laghouat, BP37G Algeria
| |
Collapse
|
13
|
Chbel A, Lafnoune A, Nait Irahal I, Bourhim N. Macromolecules from mushrooms, venoms, microorganisms, and plants for diabetes treatment - Progress or setback? Biochimie 2024; 227:119-128. [PMID: 38996998 DOI: 10.1016/j.biochi.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Diabetes is a substantial public health issue, while its prevalence continues to rise worldwide, affecting millions of persons between the ages of 20 and 80, the development of new therapeutic classes improving glycemic control and consequently micro and macrovascular complications are needed. Today, diabetes treatment is daily for life, and should not be interrupted. However, insulin secretagogues medications, and exogenous self-administration of insulin provide efficient antidiabetic effects, but their misuse leads to hypoglycemic complications besides other risks, hence the need to look for other natural products not to use solely but in concert with others types of medications. In this review, we will highlight briefly the pathophysiology of diabetes and its complications, then we will report the main bioactive macromolecules derived from various sources of natural products providing anti-diabetic properties. However, further researches need to be carried out to face the limitations hampering the development of effective natural drugs for diabetes treatment.
Collapse
Affiliation(s)
- Asmaa Chbel
- Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| | - Ayoub Lafnoune
- Laboratoire des Venins et Toxines, Département de Recherche, Institut Pasteur Du Maroc, 1, Place Louis Pasteur, Casablanca, 20360, Morocco
| | - Imane Nait Irahal
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco; INSERM U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 94807, Villejuif Cedex, France.
| | - Noureddine Bourhim
- Laboratoire Santé Et Environnement, Faculté Des Sciences Ain Chock, Université Hassan II de Casablanca, BP5366 Maarif, Casablanca, Morocco
| |
Collapse
|
14
|
Tegegne BA, Adugna A, Yenet A, Yihunie Belay W, Yibeltal Y, Dagne A, Hibstu Teffera Z, Amare GA, Abebaw D, Tewabe H, Abebe RB, Zeleke TK. A critical review on diabetes mellitus type 1 and type 2 management approaches: from lifestyle modification to current and novel targets and therapeutic agents. Front Endocrinol (Lausanne) 2024; 15:1440456. [PMID: 39493778 PMCID: PMC11527681 DOI: 10.3389/fendo.2024.1440456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Diabetes mellitus (DM) has emerged as an international health epidemic due to its rapid rise in prevalence. Consequently, scientists and or researchers will continue to find novel, safe, effective, and affordable anti-diabetic medications. The goal of this review is to provide a thorough overview of the role that lifestyle changes play in managing diabetes, as well as the standard medications that are currently being used to treat the condition and the most recent advancements in the development of novel medical treatments that may be used as future interventions for the disease. A literature search was conducted using research databases such as PubMed, Web of Science, Scopus, ScienceDirect, Wiley Online Library, Google Scholar, etc. Data were then abstracted from these publications using words or Phrases like "pathophysiology of diabetes", "Signe and symptoms of diabetes", "types of diabetes", "major risk factors and complication of diabetes", "diagnosis of diabetes", "lifestyle modification for diabetes", "current antidiabetic agents", and "novel drugs and targets for diabetes management" that were published in English and had a strong scientific foundation. Special emphasis was given to the importance of lifestyle modification, as well as current, novel, and emerging/promising drugs and targets helpful for the management of both T1DM and T2DM.
Collapse
Affiliation(s)
- Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Aderaw Yenet
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Wubetu Yihunie Belay
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Yared Yibeltal
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Dagne
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Haymanot Tewabe
- Department of Medical Laboratory Science, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Rahel Belete Abebe
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Tirsit Ketsela Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
15
|
Prapa I, Kompoura V, Pavlatou C, Nelios G, Mitropoulou G, Kostomitsopoulos N, Plessas S, Bezirtzoglou E, Karathanos VT, Yanni AE, Kourkoutas Y. Effects of Free or Immobilized Pediococcus acidilactici ORE5 on Corinthian Currants on Gut Microbiome of Streptozotocin-Induced Diabetic Rats. Microorganisms 2024; 12:2004. [PMID: 39458313 PMCID: PMC11509866 DOI: 10.3390/microorganisms12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to investigate the effect of a dietary intervention including free or immobilized cells of the presumptive probiotic Pediococcus acidilactici ORE5 on Corinthian currants, a food with beneficial impact in the condition of Type-1 Diabetes Mellitus (T1DM), on the microbiome composition of STZ-induced diabetic rats. Twenty four male Wistar rats were divided into four groups (n = 6 per group): healthy animals, which received the free (H_FP) or the immobilized Pediococcus acidilactici ORE5 cells (H_IPC), and diabetic animals, which received the free (D_FP) or the immobilized Pediococcus acidilactici ORE5 cells(D_IPC) for 4 weeks (109 cfu/day, in all groups). At the end of the dietary intervention, the D_IPC group exerted a lower concentration of the inflammatory cytokine IL-1 beta compared to D_FP. Consumption of immobilized P. acidilactici ORE5 cells on Corinthian currants by diabetic animals led to increased loads of fecal lactobacilli and lower Enterobacteriaceae, coliforms, and Escherichia coli levels, while Actinobacteria phylum, Akkermansia, and Bifidobacterium genera abundances were increased, and fecal lactic acid was elevated. Overall, the results of the present research demonstrated that functional ingredients could ameliorate gut dysbiosis present in T1DM and could be used to design dietary patterns aiming at T1DM management. However, well-designed clinical trials are necessary, in order to confirm the beneficial effects in humans.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Chrysoula Pavlatou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Grigorios Nelios
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Stavros Plessas
- Laboratory of Microbiology, Biotechnology and Hygiene, Faculty of Agricultural Development, Democritus University of Thrace, 68200 Orestiada, Greece;
| | - Eugenia Bezirtzoglou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Vaios T. Karathanos
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
- Agricultural Cooperatives’ Union of Aeghion, Corinthou 201, 25100 Aeghion, Greece
| | - Amalia E. Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece;
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece; (I.P.); (V.K.); (C.P.); (G.N.); (G.M.)
| |
Collapse
|
16
|
Roy S, Pokharel P, Piganelli JD. Decoding the immune dance: Unraveling the interplay between beta cells and type 1 diabetes. Mol Metab 2024; 88:101998. [PMID: 39069156 PMCID: PMC11342121 DOI: 10.1016/j.molmet.2024.101998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is an autoimmune disease characterized by the specific destruction of insulin-producing beta cells in the pancreas by the immune system, including CD4 cells which orchestrate the attack and CD8 cells which directly destroy the beta cells, resulting in the loss of glucose homeostasis. SCOPE OF REVIEW This comprehensive document delves into the complex interplay between the immune system and beta cells, aiming to shed light on the mechanisms driving their destruction in T1D. Insights into the genetic predisposition, environmental triggers, and autoimmune responses provide a foundation for understanding the autoimmune attack on beta cells. From the role of viral infections as potential triggers to the inflammatory response of beta cells, an intricate puzzle starts to unfold. This exploration highlights the importance of beta cells in breaking immune tolerance and the factors contributing to their targeted destruction. Furthermore, it examines the potential role of autophagy and the impact of cytokine signaling on beta cell function and survival. MAJOR CONCLUSIONS This review collectively represents current research findings on T1D which offers valuable perspectives on novel therapeutic approaches for preserving beta cell mass, restoring immune tolerance, and ultimately preventing or halting the progression of T1D. By unraveling the complex dynamics between the immune system and beta cells, we inch closer to a comprehensive understanding of T1D pathogenesis, paving the way for more effective treatments and ultimately a cure.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Pravil Pokharel
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States
| | - Jon D Piganelli
- Department of Endocrinology, Indiana University School of Medicine, Indianapolis, IN, 46202, United States.
| |
Collapse
|
17
|
Ling EM, Lemos JRN, Hirani K, von Herrath M. Type 1 diabetes: immune pathology and novel therapeutic approaches. Diabetol Int 2024; 15:761-776. [PMID: 39469552 PMCID: PMC11512973 DOI: 10.1007/s13340-024-00748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin therapy and some develop life-threatening complications. T1D is a complex, multifactorial, autoimmune condition. Understanding why people get T1D and how it progresses has advanced our knowledge of the disease and led to the discovery of specific targets that can be therapeutically manipulated to halt or reverse the course of T1D. Scientists investigating the potential of immunotherapy treatment for the treatment have recently had some encouraging results. Teplizumab, an anti-CD3 monoclonal antibody that has been approved by the FDA, delays the onset of clinical T1D in patients ≥ 8 years of age with preclinical T1D and improves beta cell function. Therapies targeting beta cell health, vitality, and function are now thought to be an essential component of successful combination therapy for T1D. The idea that the beta cells themselves may influence their own destruction during the development of T1D is a notion that has recently been gaining acceptance in the field. Researchers have recently made remarkable strides in beta cell replacement therapy and beta cell regeneration techniques. This review offers a detailed exploration of the pathophysiological mechanisms of T1D. It discusses the intricate interplay of factors leading to T1D development and the innovative approaches being explored to discover new treatments and a cure for the millions of people living with T1D worldwide.
Collapse
Affiliation(s)
- Eleanor M. Ling
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
| | - Joana R. N. Lemos
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Khemraj Hirani
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
18
|
Srivastava N, Hu H, Peterson OJ, Vomund AN, Stremska M, Zaman M, Giri S, Li T, Lichti CF, Zakharov PN, Zhang B, Abumrad NA, Chen YG, Ravichandran KS, Unanue ER, Wan X. CXCL16-dependent scavenging of oxidized lipids by islet macrophages promotes differentiation of pathogenic CD8 + T cells in diabetic autoimmunity. Immunity 2024; 57:1629-1647.e8. [PMID: 38754432 PMCID: PMC11236520 DOI: 10.1016/j.immuni.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 01/18/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
The pancreatic islet microenvironment is highly oxidative, rendering β cells vulnerable to autoinflammatory insults. Here, we examined the role of islet resident macrophages in the autoimmune attack that initiates type 1 diabetes. Islet macrophages highly expressed CXCL16, a chemokine and scavenger receptor for oxidized low-density lipoproteins (OxLDLs), regardless of autoimmune predisposition. Deletion of Cxcl16 in nonobese diabetic (NOD) mice suppressed the development of autoimmune diabetes. Mechanistically, Cxcl16 deficiency impaired clearance of OxLDL by islet macrophages, leading to OxLDL accumulation in pancreatic islets and a substantial reduction in intra-islet transitory (Texint) CD8+ T cells displaying proliferative and effector signatures. Texint cells were vulnerable to oxidative stress and diminished by ferroptosis; PD-1 blockade rescued this population and reversed diabetes resistance in NOD.Cxcl16-/- mice. Thus, OxLDL scavenging in pancreatic islets inadvertently promotes differentiation of pathogenic CD8+ T cells, presenting a paradigm wherein tissue homeostasis processes can facilitate autoimmune pathogenesis in predisposed individuals.
Collapse
Affiliation(s)
- Neetu Srivastava
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Hao Hu
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Orion J Peterson
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Anthony N Vomund
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Marta Stremska
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Zaman
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Shilpi Giri
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiandao Li
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Pavel N Zakharov
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kodi S Ravichandran
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; VIB/UGent Inflammation Research Centre and Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emil R Unanue
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxiao Wan
- Department of Pathology and Immunology, Division of Immunobiology, Washington University School of Medicine, St. Louis, MO, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Xu H, Liu Z, Xu W, Zhang Y. Beneficial In Vitro Effects of Polysaccharide and Non-Polysaccharide Components of Dendrobium huoshanense on Gut Microbiota of Rats with Type 1 Diabetes as Opposed to Metformin. Molecules 2024; 29:2791. [PMID: 38930856 PMCID: PMC11206810 DOI: 10.3390/molecules29122791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The extract of Dendrobium huoshanense, a traditional Chinese medicinal and food homologous plant belonging to the family Orchidaceae, was previously reported to have hypoglycemic and antioxidant effects. In this study, the direct effects of polysaccharide (DHP) and non-polysaccharide (NDHP) components of D. huoshanense, as well as its water extract (DHWE) were compared with that of metformin (an antidiabetic drug) on the gut microbiota (collected from fecal flora) of rats with streptozotocin-induced type 1 diabetes (T1D) using an in vitro fermentation method. The results showed that DHWE, DHP, and NDHP reduced pH and increased bacterial proliferation and short-chain fatty acid (SCFA) content in fermentation broth. DHWE, DHP, NDHP and metformin promoted the production of acetic and propionic acid, acetic acid, propionic acid and butyric acid, and propionic acid, respectively. DHWE, DHP, and NDHP reduced the abundance of Proteobacteria (subdominant pathogenic bacteria) and increased the abundance of Firmicutes (dominant beneficial gut bacteria). NDHP also reduced the abundance of Bacteroidetes (beneficial and conditional pathogenic). Metformin increased the abundance of Proteobacteria and reduced the abundance of Firmicutes and Bacteroidetes. At the genus level, NDHP promoted the proliferation of Megamonas and Megasphaera and decreased harmful bacteria (e.g., Klebsiella), and DHP increased the abundance of Prevotellaceae (opportunistic and usually harmless). By contrast, metformin increased the abundance of harmful bacteria (e.g., Citrobacter) and reduced the abundance of beneficial bacteria (e.g., Oscillospira). Our study indicates that DHWE, DHP, and NDHP are potentially more beneficial than metformin on the gut microbiota of T1D rats in vitro.
Collapse
Affiliation(s)
- Haijun Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
- Engineering Laboratory of Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources in Anhui Province, Lu’an 237012, China
- Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, Lu’an 237012, China
| | - Zhu Liu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| | - Wen Xu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| | - Yafei Zhang
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China; (Z.L.); (W.X.); (Y.Z.)
| |
Collapse
|
20
|
Mohammadi V, Maleki AJ, Nazari M, Siahmansouri A, Moradi A, Elahi R, Esmaeilzadeh A. Chimeric Antigen Receptor (CAR)-Based Cell Therapy for Type 1 Diabetes Mellitus (T1DM); Current Progress and Future Approaches. Stem Cell Rev Rep 2024; 20:585-600. [PMID: 38153634 DOI: 10.1007/s12015-023-10668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 12/29/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease that destroys insulin-producing pancreatic β-cells. Insulin replacement therapy is currently the mainstay of treatment for T1DM; however, treatment with insulin does not ameliorate disease progression, as dysregulated immune response and inflammation continue to cause further pancreatic β-cell degradation. Therefore, shifting therapeutic strategies toward immunomodulating approaches could be effective to prevent and reverse disease progression. Different immune-modulatory therapies could be used, e.g., monoclonal-based immunotherapy, mesenchymal stem cell, and immune cell therapy. Since immune-modulatory approaches could have a systemic effect on the immune system and cause toxicity, more specific treatment options should target the immune response against pancreatic β-cells. In this regard, chimeric antigen receptor (CAR)-based immunotherapy could be a promising candidate for modulation of dysregulated immune function in T1DM. CAR-based therapy has previously been approved for a number of hematologic malignancies. Nevertheless, there is renewed interest in CAR T cells' " off-the-shelf " treatment for T1DM. Several pre-clinical studies demonstrated that redirecting antigen-specific CAR T cells, especially regulatory CAR T cells (CAR Tregs), toward the pancreatic β-cells, could prevent diabetes onset and progression in diabetic mice models. Here, we aim to review the current progress of CAR-based immune-cell therapy for T1DM and the corresponding challenges, with a special focus on designing CAR-based immunomodulatory strategies to improve its efficacy in the treatment of T1DM.
Collapse
Affiliation(s)
- Vahid Mohammadi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Siahmansouri
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amirhosein Moradi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
21
|
Aseer KR, Mazucanti CH, O'Connell JF, González-Mariscal I, Verma A, Yao Q, Dunn C, Liu QR, Egan JM, Doyle ME. Beta cell specific cannabinoid 1 receptor deletion counteracts progression to hyperglycemia in non-obese diabetic mice. Mol Metab 2024; 82:101906. [PMID: 38423253 PMCID: PMC10940176 DOI: 10.1016/j.molmet.2024.101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Type 1 diabetes (T1D) occurs because of islet infiltration by autoreactive immune cells leading to destruction of beta cells and it is becoming evident that beta cell dysfunction partakes in this process. We previously reported that genetic deletion and pharmacological antagonism of the cannabinoid 1 receptor (CB1) in mice improves insulin synthesis and secretion, upregulates glucose sensing machinery, favors beta cell survival by reducing apoptosis, and enhances beta cell proliferation. Moreover, beta cell specific deletion of CB1 protected mice fed a high fat high sugar diet against islet inflammation and beta cell dysfunction. Therefore, we hypothesized that it would mitigate the dysfunction of beta cells in the precipitating events leading to T1D. METHODS We genetically deleted CB1 specifically from beta cells in non-obese diabetic (NOD; NOD RIP Cre+ Cnr1fl/fl) mice. We evaluated female NOD RIP Cre+ Cnr1fl/fl mice and their NOD RIP Cre-Cnr1fl/fl and NOD RIP Cre+ Cnr1Wt/Wt littermates for onset of hyperglycemia over 26 weeks. We also examined islet morphology, islet infiltration by immune cells and beta cell function and proliferation. RESULTS Beta cell specific deletion of CB1 in NOD mice significantly reduced the incidence of hyperglycemia by preserving beta cell function and mass. Deletion also prevented beta cell apoptosis and aggressive insulitis in NOD RIP Cre+ Cnr1fl/fl mice compared to wild-type littermates. NOD RIP Cre+ Cnr1fl/fl islets maintained normal morphology with no evidence of beta cell dedifferentiation or appearance of extra islet beta cells, indicating that protection from autoimmunity is inherent to genetic deletion of beta cell CB1. Pancreatic lymph node Treg cells were significantly higher in NOD RIP Cre+ Cnr1fl/flvs NOD RIP Cre-Cnr1fl/fl. CONCLUSIONS Collectively these data demonstrate how protection of beta cells from metabolic stress during the active phase of T1D can ameliorate destructive insulitis and provides evidence for CB1 as a potential pharmacologic target in T1D.
Collapse
Affiliation(s)
- Kanikkai Raja Aseer
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Caio Henrique Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer F O'Connell
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Isabel González-Mariscal
- Inserm UMR1190 - Translational Research of Diabetes, Pôle recherche 3ème Ouest, 1, place de Verdun 59045 Lille Cedex, France
| | - Anjali Verma
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qin Yao
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Christopher Dunn
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Máire E Doyle
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
22
|
Kiconco R, Lumumba SA, Bagenda CN, Atwine R, Ndarubweine J, Rugera SP. Insulin therapy among diabetic patients in rural communities of Sub-Saharan Africa: a perspective review. Ther Adv Endocrinol Metab 2024; 15:20420188241232280. [PMID: 38379780 PMCID: PMC10878220 DOI: 10.1177/20420188241232280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/24/2024] [Indexed: 02/22/2024] Open
Abstract
In this perspective review, we describe a brief background on the status quo of diabetes mellitus-related therapies and glycemic control among patients in rural communities in sub-Saharan Africa. The article discusses insulin therapy as well as the difficulties in obtaining insulin and oral hypoglycemic medications for diabetic patients living in sub-Saharan Africa. We wrap up our discussion with suggestions on solutions and opportunities for future research to tackle this health challenge in these impoverished communities. We conducted a literature search from PubMed and Google Scholar up until August 2023. Key words were used to generate search terms used to retrieve the required information. All types of literature with pertinent information on the current topic were included in the study. Diabetes mellitus is on the rise in sub-Saharan Africa. Several studies have reported poor glycemic control, low screening rates for diabetes mellitus, cigarette smoking, high alcohol consumption, prescription of antidiabetic therapy, and associated costs as contributors to the uptake of antidiabetic treatment. Although there is paucity of data on the extent of insulin therapy uptake and its possible modifiable contributors among the diabetic patients in the region, the anticipated increase in the number of people with diabetes on the continent makes it critical for global leaders to address the research gaps in insulin therapy among rural communities of sub-Saharan Africa, thus reducing the burden of diabetes in these populations.
Collapse
Affiliation(s)
- Ritah Kiconco
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara City, Mbarara-Kabale Road, Mbarara 1410, Uganda
- Department of Biochemistry, Sororti University, Soroti, Uganda
| | - Sylvia Achieng Lumumba
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
- Department of Medical Laboratory Science, Technical University of Mombasa, Mombasa, Kenya
| | - Charles Nkubi Bagenda
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Raymond Atwine
- Department of Pathology, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Joseph Ndarubweine
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Simon Peter Rugera
- Department of Medical Laboratory Science, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
23
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
24
|
Cioca F, Timar R, Ignuta F, Vlad A, Bratosin F, Rosca O, Jianu AM, Rosca D, Septimiu-Radu S, Burtic SR, Fildan AP, Laitin SMD. Comparative Analysis of COVID-19 Outcomes in Type 1 and Type 2 Diabetes: A Three-Year Retrospective Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:210. [PMID: 38399498 PMCID: PMC10890714 DOI: 10.3390/medicina60020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: This comprehensive retrospective study assesses COVID-19 outcomes in type 1 (T1D) and type 2 diabetes (T2D) patients across three years, focusing on how these outcomes varied with the evolving pandemic and changes in diabetes management. The study aims to determine if COVID-19 outcomes, including severity, intensive care unit (ICU) admission rates, duration of hospitalization, and mortality, are significantly different between these diabetes subtypes. Materials and Methods: The study analyzed data from patients admitted to the Victor Babes Hospital for Infectious Diseases and Pulmonology with confirmed COVID-19 and pre-existing diabetes, from the years 2020, 2021, and 2022. Results: Among 486 patients (200 without diabetes, 62 with T1D, 224 with T2D), T2D patients showed notably higher severity, with 33.5% experiencing severe cases, compared to 25.8% in T1D. Mortality rates were 11.6% in T2D and 8.1% in T1D. T2D patients had longer hospital stays (11.6 ± 7.0 days) compared to T1D (9.1 ± 5.8 days) and were more likely to require ICU admission (OR: 2.24) and mechanical ventilation (OR: 2.46). Hyperglycemia at admission was significantly higher in the diabetes groups, particularly in T2D (178.3 ± 34.7 mg/dL) compared to T1D (164.8 ± 39.6 mg/dL). Conclusions: The study reveals a discernible difference in COVID-19 outcomes between T1D and T2D, with T2D patients having longer hospital admissions, mechanical ventilation necessities, and mortality risks.
Collapse
Affiliation(s)
- Flavius Cioca
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.C.); (D.R.)
| | - Romulus Timar
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (R.T.)
| | - Flavia Ignuta
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.C.); (D.R.)
| | - Adrian Vlad
- Department of Internal Medicine II, Division of Diabetes, Nutrition and Metabolic Diseases, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (R.T.)
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Felix Bratosin
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (O.R.)
| | - Ovidiu Rosca
- Department of Infectious Diseases, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania; (F.B.); (O.R.)
| | - Adelina Maria Jianu
- Department of Anatomy and Embryology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Daniela Rosca
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.C.); (D.R.)
| | - Susa Septimiu-Radu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.C.); (D.R.)
| | - Sonia-Roxana Burtic
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania; (F.C.); (D.R.)
- Department II, Discipline of Medical Communication, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square 2, 300041 Timisoara, Romania
| | - Ariadna Petronela Fildan
- Department of Pulmonology, Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Sorina Maria Denisa Laitin
- Discipline of Epidemiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
25
|
Hampe CS, Shojaie A, Brooks-Worrell B, Dibay S, Utzschneider K, Kahn SE, Larkin ME, Johnson ML, Younes N, Rasouli N, Desouza C, Cohen RM, Park JY, Florez HJ, Valencia WM, Palmer JP, Balasubramanyam A. GAD65Abs Are Not Associated With Beta-Cell Dysfunction in Patients With T2D in the GRADE Study. J Endocr Soc 2024; 8:bvad179. [PMID: 38333889 PMCID: PMC10853002 DOI: 10.1210/jendso/bvad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Indexed: 02/10/2024] Open
Abstract
Context Autoantibodies directed against the 65-kilodalton isoform of glutamic acid decarboxylase (GAD65Abs) are markers of autoimmune type 1 diabetes (T1D) but are also present in patients with Latent Autoimmune Diabetes of Adults and autoimmune neuromuscular diseases, and also in healthy individuals. Phenotypic differences between these conditions are reflected in epitope-specific GAD65Abs and anti-idiotypic antibodies (anti-Id) against GAD65Abs. We previously reported that 7.8% of T2D patients in the GRADE study have GAD65Abs but found that GAD65Ab positivity was not correlated with beta-cell function, glycated hemoglobin (HbA1c), or fasting glucose levels. Context In this study, we aimed to better characterize islet autoantibodies in this T2D cohort. This is an ancillary study to NCT01794143. Methods We stringently defined GAD65Ab positivity with a competition assay, analyzed GAD65Ab-specific epitopes, and measured GAD65Ab-specific anti-Id in serum. Results Competition assays confirmed that 5.9% of the patients were GAD65Ab positive, but beta-cell function was not associated with GAD65Ab positivity, GAD65Ab epitope specificity or GAD65Ab-specific anti-Id. GAD65-related autoantibody responses in GRADE T2D patients resemble profiles in healthy individuals (low GAD65Ab titers, presence of a single autoantibody, lack of a distinct epitope pattern, and presence of anti-Id to diabetes-associated GAD65Ab). In this T2D cohort, GAD65Ab positivity is likely unrelated to the pathogenesis of beta-cell dysfunction. Conclusion Evidence for islet autoimmunity in the pathophysiology of T2D beta-cell dysfunction is growing, but T1D-associated autoantibodies may not accurately reflect the nature of their autoimmune process.
Collapse
Affiliation(s)
| | - Ali Shojaie
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
| | - Barbara Brooks-Worrell
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sepideh Dibay
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
| | - Kristina Utzschneider
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Steven E Kahn
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Mary E Larkin
- Massachusetts General Hospital Diabetes Center, Harvard Medical School, Boston, MA 02114, USA
| | - Mary L Johnson
- International Diabetes Center, Minneapolis, MN 55416, USA
| | - Naji Younes
- The Biostatistics Center, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Rockville, MD 20852, USA
| | - Neda Rasouli
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Cyrus Desouza
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska and Omaha VA Medical Center, Omaha, NE 68198, USA
| | - Robert M Cohen
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati and Cincinnati VA Medical Center, Cincinnati, OH 45221, USA
| | | | - Hermes J Florez
- Department of Medicine, University of Miami, Miami, FL 33135, USA
- Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Willy Marcos Valencia
- Division of Endocrinology, Diabetes and Metabolic Diseases, Medical University of South Carolina, Charleston, SC 29425, USA
- Geriatric Research, Education and Clinical Center, Bruce W. Carter Veterans Affairs Medical Center, Miami, FL 33125, USA
- Robert Stempel Department of Public Health, College of Health and Urban Affairs, Florida International University, Miami, FL 33181, USA
| | - Jerry P Palmer
- Department of Biostatistics, Department of Medicine, University of Washington, Seattle, WA 98185, USA
- Department of Medicine, VA Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Ashok Balasubramanyam
- Department of Medicine: Endocrinology, Diabetes and Metabolism, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Sachan K, Verma S, Arora K, Bharti U, Singh PK, Singh S. Traditional Herbal Medications Utilized in the Indian Medical System forthe Management of Diabetes: An Updated Review and Clinical Implications. Curr Diabetes Rev 2024; 20:e230124226017. [PMID: 38275040 DOI: 10.2174/0115733998273029231121094725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 10/13/2023] [Indexed: 01/27/2024]
Abstract
Phytomedicine, also called botanical medicine, is the practice of using plants to treat disease. Diabetes, for example, has been treated and prevented with herbal medication for a lot longer than Western medicine. Worldwide, diabetes has become a major health concern. The management of diabetes and hyperglycemia, two of the most common public health threats, is far from ideal. When hyperglycemia persists or is not under control, diabetes-related complications, like blindness, lower limb amputations, renal disease, and cardiovascular disease, play a significant role in the morbidity and mortality of the disease. Although chemicals and biochemical agents can assist in managing diabetes, there is currently no complete cure for the disease. Herbal remedies are one of many methods that can be used to treat and prevent diabetes and its subsequent problems. Numerous traditional treatments have been discovered for diabetes as a result of extensive research efforts. However, there are many factors to consider when deciding which herbs to use, such as the patient's financial status, the presence or absence of co-morbidities, and the accessibility, cost-effectiveness, and safety profile of the herbs. This article focuses on the use of herbal and natural remedies in the treatment and prevention of diabetes, the mechanisms by which these remedies lower blood glucose levels, and the specific herbal items now utilized in the management of diabetes.
Collapse
Affiliation(s)
- Kapil Sachan
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India
| | - Suryakant Verma
- School of Pharmacy, Bharat Institute of Technology, Meerut, Uttar Pradesh, India
| | - Kunal Arora
- Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Ujjwal Bharti
- ITS College of Pharmacy, Muradnagar, Ghaziabad, Uttar Pradesh, India
| | - Pranjal Kumar Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Smita Singh
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology, Delhi NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
27
|
Sims EK, Geyer SM, Long SA, Herold KC. High proinsulin:C-peptide ratio identifies individuals with stage 2 type 1 diabetes at high risk for progression to clinical diagnosis and responses to teplizumab treatment. Diabetologia 2023; 66:2283-2291. [PMID: 37667106 PMCID: PMC10914155 DOI: 10.1007/s00125-023-06003-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 09/06/2023]
Abstract
AIMS/HYPOTHESIS Tractable precision biomarkers to identify immunotherapy responders are lacking in type 1 diabetes. We hypothesised that proinsulin:C-peptide (PI:C) ratios, a readout of beta cell stress, could provide insight into type 1 diabetes progression and responses to immunotherapy. METHODS In this post hoc analysis, proinsulin and C-peptide levels were determined in baseline serum samples from 63 participants with stage 2 type 1 diabetes in the longitudinal TrialNet Teplizumab Prevention Study (n=41 in the teplizumab arm; n=22 in the placebo arm). In addition, previously tested demographic, C-peptide, glucose and proinsulin data were used for the new data analyses. The ratio of intact (unprocessed) proinsulin to C-peptide was analysed and relationships with progression to stage 3 diabetes were investigated. RESULTS Elevated baseline PI:C was strongly associated with more rapid progression of diabetes in both the placebo and teplizumab treatment groups, but teplizumab abrogated the impact of high pre-treatment PI:C on type 1 diabetes progression. Differential responses of drug treatment in those with high vs low PI:C ratios were independent of treatment effects of teplizumab on the PI:C ratio or on relevant immune cells. CONCLUSIONS/INTERPRETATION High pre-treatment PI:C identified individuals with stage 2 type 1 diabetes who were exhibiting rapid progression to stage 3 disease and who displayed benefit from teplizumab treatment. These data suggest that readouts of active disease, such as PI:C ratio, could serve to identify optimal candidates or timing for type 1 diabetes disease-modifying therapies.
Collapse
Affiliation(s)
- Emily K Sims
- Division of Pediatric Endocrinology and Diabetology and Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan M Geyer
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Department of Internal Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
28
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
29
|
Rojas-Espinosa O, Arce-Mendoza AY, Islas-Trujillo S, Muñiz-Buenrostro A, Arce-Paredes P, Popoca-Galván O, Moreno-Altamirano B, Rivero Silva M. Necrosis, netosis, and apoptosis in pulmonary tuberculosis and type-2 diabetes mellitus. Clues from the patient's serum. Tuberculosis (Edinb) 2023; 143:102426. [PMID: 38180029 DOI: 10.1016/j.tube.2023.102426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 01/06/2024]
Abstract
Pulmonary tuberculosis (PTB) and type 2 diabetes mellitus (T2DM) are two inflammatory diseases whose pathology involves neutrophils (NEU) as key participants. Countless inflammatory elements produced at the lesion sites leak into the blood and are distributed systemically. The study aimed to investigate the effect of the serum of patients with PTB, T2DM, and PTB + T2DM on the cellular and nuclear morphology of healthy NEU. Monolayers of NEU were prepared and incubated with sera from PTB (n꓿ 10), T2DM (n꓿10), PTB + T2DM (n꓿ 10) patients, or sera from healthy people (n = 10). Monolayers were stained for histones, elastase, and myeloperoxidase for NETosis, annexin V for apoptosis, and Iris fuchsia for necrosis. Hoechst stain (DNA) was used to identify the nuclear alterations. Necrosis was the predominant alteration. Sera from PTB + T2DM were the most potent change inducers. Normal sera did not induce cell alterations. The blood of TBP and T2DM patients carries a myriad of abnormal elements that induce necrosis of NEU in normal people, thus reflecting what might occur in the neutrophils of the patients themselves. These findings reinforce the participation of NEU in the pathology of these diseases. Necrosis is expected to be the most frequent neutrophil-induced alteration in tuberculosis and diabetes mellitus.
Collapse
Affiliation(s)
- Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Alma Yolanda Arce-Mendoza
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Sergio Islas-Trujillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Antonio Muñiz-Buenrostro
- Departamento de Inmunología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 64460, Monterrey, Mexico.
| | - Patricia Arce-Paredes
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Omar Popoca-Galván
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Bertha Moreno-Altamirano
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| | - Miguel Rivero Silva
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340, Ciudad de México, Mexico.
| |
Collapse
|
30
|
Caldara R, Tomajer V, Monti P, Sordi V, Citro A, Chimienti R, Gremizzi C, Catarinella D, Tentori S, Paloschi V, Melzi R, Mercalli A, Nano R, Magistretti P, Partelli S, Piemonti L. Allo Beta Cell transplantation: specific features, unanswered questions, and immunological challenge. Front Immunol 2023; 14:1323439. [PMID: 38077372 PMCID: PMC10701551 DOI: 10.3389/fimmu.2023.1323439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Type 1 diabetes (T1D) presents a persistent medical challenge, demanding innovative strategies for sustained glycemic control and enhanced patient well-being. Beta cells are specialized cells in the pancreas that produce insulin, a hormone that regulates blood sugar levels. When beta cells are damaged or destroyed, insulin production decreases, which leads to T1D. Allo Beta Cell Transplantation has emerged as a promising therapeutic avenue, with the goal of reinstating glucose regulation and insulin production in T1D patients. However, the path to success in this approach is fraught with complex immunological hurdles that demand rigorous exploration and resolution for enduring therapeutic efficacy. This exploration focuses on the distinct immunological characteristics inherent to Allo Beta Cell Transplantation. An understanding of these unique challenges is pivotal for the development of effective therapeutic interventions. The critical role of glucose regulation and insulin in immune activation is emphasized, with an emphasis on the intricate interplay between beta cells and immune cells. The transplantation site, particularly the liver, is examined in depth, highlighting its relevance in the context of complex immunological issues. Scrutiny extends to recipient and donor matching, including the utilization of multiple islet donors, while also considering the potential risk of autoimmune recurrence. Moreover, unanswered questions and persistent gaps in knowledge within the field are identified. These include the absence of robust evidence supporting immunosuppression treatments, the need for reliable methods to assess rejection and treatment protocols, the lack of validated biomarkers for monitoring beta cell loss, and the imperative need for improved beta cell imaging techniques. In addition, attention is drawn to emerging directions and transformative strategies in the field. This encompasses alternative immunosuppressive regimens and calcineurin-free immunoprotocols, as well as a reevaluation of induction therapy and recipient preconditioning methods. Innovative approaches targeting autoimmune recurrence, such as CAR Tregs and TCR Tregs, are explored, along with the potential of stem stealth cells, tissue engineering, and encapsulation to overcome the risk of graft rejection. In summary, this review provides a comprehensive overview of the inherent immunological obstacles associated with Allo Beta Cell Transplantation. It offers valuable insights into emerging strategies and directions that hold great promise for advancing the field and ultimately improving outcomes for individuals living with diabetes.
Collapse
Affiliation(s)
- Rossana Caldara
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valentina Tomajer
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paolo Monti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Sordi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antonio Citro
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raniero Chimienti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Chiara Gremizzi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davide Catarinella
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Tentori
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vera Paloschi
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Raffella Melzi
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessia Mercalli
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Rita Nano
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Magistretti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Partelli
- Pancreatic Surgery, Pancreas Translational & Clinical Research Center, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Lorenzo Piemonti
- Clinic Unit of Regenerative Medicine and Organ Transplants, IRCCS Ospedale San Raffaele, Milan, Italy
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
31
|
Vived C, Lee-Papastavros A, Aparecida da Silva Pereira J, Yi P, MacDonald TL. β Cell Stress and Endocrine Function During T1D: What Is Next to Discover? Endocrinology 2023; 165:bqad162. [PMID: 37947352 DOI: 10.1210/endocr/bqad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Canonically, type 1 diabetes (T1D) is a disease characterized by autoreactive T cells as perpetrators of endocrine dysfunction and β cell death in the spiral toward loss of β cell mass, hyperglycemia, and insulin dependence. β Cells have mostly been considered as bystanders in a flurry of autoimmune processes. More recently, our framework for understanding and investigating T1D has evolved. It appears increasingly likely that intracellular β cell stress is an important component of T1D etiology/pathology that perpetuates autoimmunity during the progression to T1D. Here we discuss the emerging and complex role of β cell stress in initiating, provoking, and catalyzing T1D. We outline the bridges between hyperglycemia, endoplasmic reticulum stress, oxidative stress, and autoimmunity from the viewpoint of intrinsic β cell (dys)function, and we extend this discussion to the potential role for a therapeutic β cell stress-metabolism axis in T1D. Lastly, we mention research angles that may be pursued to improve β cell endocrine function during T1D. Biology gleaned from studying T1D will certainly overlap to innovate therapeutic strategies for T2D, and also enhance the pursuit of creating optimized stem cell-derived β cells as endocrine therapy.
Collapse
Affiliation(s)
- Celia Vived
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | - Jéssica Aparecida da Silva Pereira
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Yi
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Diabetes Program, Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Tara L MacDonald
- Section for Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
32
|
Martin TM, Burke SJ, Wasserfall CH, Collier JJ. Islet beta-cells and intercellular adhesion molecule-1 (ICAM-1): Integrating immune responses that influence autoimmunity and graft rejection. Autoimmun Rev 2023; 22:103414. [PMID: 37619906 PMCID: PMC10543623 DOI: 10.1016/j.autrev.2023.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Type 1 diabetes (T1D) develops due to autoimmune targeting of the pancreatic islet β-cells. Clinical symptoms arise from reduced insulin in circulation. The molecular events and interactions between discrete immune cell populations, infiltration of such leukocytes into pancreatic and islet tissue, and selective targeting of the islet β-cells during autoimmunity and graft rejection are not entirely understood. One protein central to antigen presentation, priming of immune cells, trafficking of leukocytes, and vital for leukocyte effector function is the intercellular adhesion molecule-1 (ICAM-1). The gene encoding ICAM-1 is transcriptionally regulated and rapidly responsive (i.e., within hours) to pro-inflammatory cytokines. ICAM-1 is a transmembrane protein that can be glycosylated; its presence on the cell surface provides co-stimulatory functions for immune cell activation and stabilization of cell-cell contacts. ICAM-1 interacts with the β2-integrins, CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1), which are present on discrete immune cell populations. A whole-body ICAM-1 deletion protects NOD mice from diabetes onset, strongly implicating this protein in autoimmune responses. Since several different cell types express ICAM-1, its biology is fundamentally essential for various physiological and pathological outcomes. Herein, we review the role of ICAM-1 during both autoimmunity and islet graft rejection to understand the mechanism(s) leading to islet β-cell death and dysfunction that results in insufficient circulating quantities of insulin to control glucose homeostasis.
Collapse
Affiliation(s)
- Thomas M Martin
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Susan J Burke
- Laboratory of Immunogenetics, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Clive H Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, United States of America
| | - J Jason Collier
- Laboratory of Islet Biology and Inflammation, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States of America.
| |
Collapse
|
33
|
Kinney SM, Ortaleza K, Won SY, Licht BJM, Sefton MV. Immunomodulation by subcutaneously injected methacrylic acid-based hydrogels and tolerogenic dendritic cells in a mouse model of autoimmune diabetes. Biomaterials 2023; 301:122265. [PMID: 37586232 DOI: 10.1016/j.biomaterials.2023.122265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/30/2023] [Indexed: 08/18/2023]
Abstract
Type 1 diabetes is an autoimmune disease associated with the destruction of insulin-producing β cells. Immunotherapies are being developed to mitigate autoimmune diabetes. One promising option is the delivery of tolerogenic dendritic cells (DCs) primed with specific β-cell-associated autoantigens. These DCs can combat autoreactive cells and promote expansion of β-cell-specific regulatory immune cells, including Tregs. Tolerogenic DCs are typically injected systemically (or near target lymph nodes) in suspension, precluding control over the microenvironment surrounding tolerogenic DC interactions with the host. In this study we show that degradable, synthetic methacrylic acid (MAA)-based hydrogels are an inherently immunomodulating delivery vehicle that enhances tolerogenic DC therapy in the context of autoimmune diabetes. MAA hydrogels were found to affect the local recruitment and activation state of macrophages, DCs, T cells and other cells. Delivering tolerogenic DCs in the MAA hydrogel improved the local host response (e.g., fewer cytotoxic T cells) and enhanced peripheral Treg expansion. Non obese diabetic (NOD) mice treated with tolerogenic DCs subcutaneously injected in MAA hydrogels showed a delay in onset of autoimmune diabetes compared to control vehicles. Our findings further demonstrate the usefulness of MAA-based hydrogels as platforms for regenerative medicine in the context of type 1 diabetes.
Collapse
Affiliation(s)
- Sean M Kinney
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada
| | - Krystal Ortaleza
- Institute of Biomedical Engineering, University of Toronto, Canada
| | - So-Yoon Won
- Institute of Biomedical Engineering, University of Toronto, Canada
| | | | - Michael V Sefton
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| |
Collapse
|
34
|
Quansah E, Shaik TA, Çevik E, Wang X, Höppener C, Meyer-Zedler T, Deckert V, Schmitt M, Popp J, Krafft C. Investigating biochemical and structural changes of glycated collagen using multimodal multiphoton imaging, Raman spectroscopy, and atomic force microscopy. Anal Bioanal Chem 2023; 415:6257-6267. [PMID: 37640827 PMCID: PMC10558391 DOI: 10.1007/s00216-023-04902-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Advanced glycation end products (AGEs) form extracellular crosslinking with collagenous proteins, which contributes to the development of diabetic complications. In this study, AGEs-related pentosidine (PENT) crosslinks-induced structural and biochemical changes are studied using multimodal multiphoton imaging, Raman spectroscopy and atomic force microscopy (AFM). Decellularized equine pericardium (EP) was glycated with four ribose concentrations ranging between 5 and 200 mM and monitored for up to 30 days. Two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopic imaging probed elastin and collagen fibers, respectively. The glycated EP showed a decrease in the SHG intensities associated with loss of non-centrosymmetry of collagen and an increase of TPEF intensities associated with PENT crosslinks upon glycation. TPEF signals from elastin fibers were unaffected. A three-dimensional reconstruction with SHG + TPEF z-stack images visualized the distribution of collagen and elastin within the EP volume matrix. In addition, Raman spectroscopy (RS) detected changes in collagen-related bands and discriminated glycated from untreated EP. Furthermore, AFM scans showed that the roughness increases and the D-unit structure of fibers remained unchanged during glycation. The PENT crosslinked-induced changes are discussed in the context of previous studies of glutaraldehyde- and genipin-induced crosslinking and collagenase-induced digestion of collagen. We conclude that TPEF, SHG, RS, and AFM are effective, label-free, and non-destructive methods to investigate glycated tissues, differentiate crosslinking processes, and characterize general collagen-associated and disease-related changes, in particular by their RS fingerprints.
Collapse
Affiliation(s)
- Elsie Quansah
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Ecehan Çevik
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Xinyue Wang
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Christiane Höppener
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Tobias Meyer-Zedler
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Volker Deckert
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Michael Schmitt
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Member of the Leibniz Center for Photonics in Infectious Research (LPI), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology (IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infectious Research (LPI), Albert-Einstein-Straße 9, 07745, Jena, Germany.
| |
Collapse
|
35
|
Sionov RV, Ahdut-HaCohen R. A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome. Biomedicines 2023; 11:2558. [PMID: 37761001 PMCID: PMC10527322 DOI: 10.3390/biomedicines11092558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Ahdut-HaCohen
- Department of Medical Neurobiology, Institute of Medical Research, Hadassah Medical School, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel;
- Department of Science, The David Yellin Academic College of Education, Jerusalem 9103501, Israel
| |
Collapse
|
36
|
Atkinson MA, Mirmira RG. The pathogenic "symphony" in type 1 diabetes: A disorder of the immune system, β cells, and exocrine pancreas. Cell Metab 2023; 35:1500-1518. [PMID: 37478842 PMCID: PMC10529265 DOI: 10.1016/j.cmet.2023.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Type 1 diabetes (T1D) is widely considered to result from the autoimmune destruction of insulin-producing β cells. This concept has been a central tenet for decades of attempts seeking to decipher the disorder's pathogenesis and prevent/reverse the disease. Recently, this and many other disease-related notions have come under increasing question, particularly given knowledge gained from analyses of human T1D pancreas. Perhaps most crucial are findings suggesting that a collective of cellular constituents-immune, endocrine, and exocrine in origin-mechanistically coalesce to facilitate T1D. This review considers these emerging concepts, from basic science to clinical research, and identifies several key remaining knowledge voids.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| | - Raghavendra G Mirmira
- Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Camaya I, O’Brien B, Donnelly S. How do parasitic worms prevent diabetes? An exploration of their influence on macrophage and β-cell crosstalk. Front Endocrinol (Lausanne) 2023; 14:1205219. [PMID: 37564976 PMCID: PMC10411736 DOI: 10.3389/fendo.2023.1205219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Diabetes is the fastest growing chronic disease globally, with prevalence increasing at a faster rate than heart disease and cancer. While the disease presents clinically as chronic hyperglycaemia, two distinct subtypes have been recognised. Type 1 diabetes (T1D) is characterised as an autoimmune disease in which the insulin-producing pancreatic β-cells are destroyed, and type 2 diabetes (T2D) arises due to metabolic insufficiency, in which inadequate amounts of insulin are produced, and/or the actions of insulin are diminished. It is now apparent that pro-inflammatory responses cause a loss of functional β-cell mass, and this is the common underlying mechanism of both T1D and T2D. Macrophages are the central immune cells in the pathogenesis of both diseases and play a major role in the initiation and perpetuation of the proinflammatory responses that compromise β-cell function. Furthermore, it is the crosstalk between macrophages and β-cells that orchestrates the inflammatory response and ensuing β-cell dysfunction/destruction. Conversely, this crosstalk can induce immune tolerance and preservation of β-cell mass and function. Thus, specifically targeting the intercellular communication between macrophages and β-cells offers a unique strategy to prevent/halt the islet inflammatory events underpinning T1D and T2D. Due to their potent ability to regulate mammalian immune responses, parasitic worms (helminths), and their excretory/secretory products, have been examined for their potential as therapeutic agents for both T1D and T2D. This research has yielded positive results in disease prevention, both clinically and in animal models. However, the focus of research has been on the modulation of immune cells and their effectors. This approach has ignored the direct effects of helminths and their products on β-cells, and the modulation of signal exchange between macrophages and β-cells. This review explores how the alterations to macrophages induced by helminths, and their products, influence the crosstalk with β-cells to promote their function and survival. In addition, the evidence that parasite-derived products interact directly with endocrine cells to influence their communication with macrophages to prevent β-cell death and enhance function is discussed. This new paradigm of two-way metabolic conversations between endocrine cells and macrophages opens new avenues for the treatment of immune-mediated metabolic disease.
Collapse
Affiliation(s)
| | | | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
38
|
Sorski L, Gidron Y. The Vagal Nerve, Inflammation, and Diabetes-A Holy Triangle. Cells 2023; 12:1632. [PMID: 37371102 DOI: 10.3390/cells12121632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Type 2 diabetic mellitus (T2DM) is a common chronic disease and a substantial risk factor of other fatal illnesses. At its core is insulin resistance, where chronic low-level inflammation is among its main causes. Thus, it is crucial to modulate this inflammation. This review paper provides scientific neuroimmunological evidence on the protective roles of the vagal nerve in T2DM. First, the vagus inhibits inflammation in a reflexive manner via neuroendocrine and neuroimmunological routes. This may also occur at the level of brain networks. Second, studies have shown that vagal activity, as indexed by heart-rate variability (HRV), is inversely related to diabetes and that low HRV is a predictor of T2DM. Finally, some emerging evidence shows that vagal nerve activation may reduce biomarkers and processes related to diabetes. Future randomized controlled trials are needed to test the effects of vagal nerve activation on T2DM and its underlying anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Liat Sorski
- Sagol School of Neuroscience and School of Psychological Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yori Gidron
- Department of Nursing, Faculty of Social Welfare and Health Sciences, Haifa University, Haifa 3498838, Israel
| |
Collapse
|
39
|
Wilson V. Managing type 1 diabetes in children and young people: challenges and solutions. Nurs Child Young People 2023; 35:e1465. [PMID: 37272192 DOI: 10.7748/ncyp.2023.e1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 06/06/2023]
Abstract
Type 1 diabetes is the most common form of diabetes in school-age children. Effective management and self-management at home and during school hours are essential to improve the quality of life of children and young people and reduce their risk of developing complications such as cardiovascular disease and kidney disease. There are, however, multiple barriers to effective management and self-management, notably in adolescence. Interventions, education and support based on clear psychoeducational principles improve the outcomes of children and young people. This article explores type 1 diabetes including its causes and risk factors, presentation and diagnosis, complications and comorbidities, and treatment and management. It focuses in particular on the role of nurses in supporting self-management and on the challenges of type 1 diabetes care in school.
Collapse
|
40
|
Singh A, Afshan N, Singh A, Singh SK, Yadav S, Kumar M, Sarma DK, Verma V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur J Cell Biol 2023; 102:151329. [PMID: 37295265 DOI: 10.1016/j.ejcb.2023.151329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/12/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by the destruction of pancreatic β-cells, leading to insulin deficiency. Insulin replacement therapy is the current standard of care for T1D, but it has significant limitations. However, stem cell-based replacement therapy has the potential to restore β-cell function and achieve glycaemic control eradicating the necessity for drugs or injecting insulin externally. While significant progress has been made in preclinical studies, the clinical translation of stem cell therapy for T1D is still in its early stages. In continuation, further research is essentially required to determine the safety and efficacy of stem cell therapies and to develop strategies to prevent immune rejection of stem cell-derived β-cells. The current review highlights the current state of cellular therapies for T1D including, different types of stem cell therapies, gene therapy, immunotherapy, artificial pancreas, and cell encapsulation being investigated, and their potential for clinical translation.
Collapse
Affiliation(s)
- Akash Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Noor Afshan
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Anshuman Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraj Kumar Singh
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Sudhanshu Yadav
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Vinod Verma
- Stem Cell Research Centre, Department of Haematology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India.
| |
Collapse
|
41
|
Effective Handling of Missing Values in Datasets for Classification Using Machine Learning Methods. INFORMATION 2023. [DOI: 10.3390/info14020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The existence of missing values reduces the amount of knowledge learned by the machine learning models in the training stage thus affecting the classification accuracy negatively. To address this challenge, we introduce the use of Support Vector Machine (SVM) regression for imputing the missing values. Additionally, we propose a two-level classification process to reduce the number of false classifications. Our evaluation of the proposed method was conducted using the PIMA Indian dataset for diabetes classification. We compared the performance of five different machine learning models: Naive Bayes (NB), Support Vector Machine (SVM), k-Nearest Neighbours (KNN), Random Forest (RF), and Linear Regression (LR). The results of our experiments show that the SVM classifier achieved the highest accuracy of 94.89%. The RF classifier had the highest precision (98.80%) and the SVM classifier had the highest recall (85.48%). The NB model had the highest F1-Score (95.59%). Our proposed method provides a promising solution for detecting diabetes at an early stage by addressing the issue of missing values in the dataset. Our results show that the use of SVM regression and a two-level classification process can notably improve the performance of machine learning models for diabetes classification. This work provides a valuable contribution to the field of diabetes research and highlights the importance of addressing missing values in machine learning applications.
Collapse
|
42
|
Thaher O, Iaroshevych V, Driouch J, Hukauf M, Croner RS, Stroh C. Current status of metabolic surgery in patients with type I diabetes mellitus and obesity: a nationwide multicenter study. Langenbecks Arch Surg 2023; 408:46. [PMID: 36662321 DOI: 10.1007/s00423-023-02788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE While obesity is prevalent among patients with type I diabetes mellitus (T1DM), the effects of metabolic surgery on patients with T1DM have not been adequately investigated. The study aims to investigate the perioperative outcomes and the improvement of comorbidity 1 year following metabolic surgery amongst this patient population. METHODS In this study, we evaluated the effects of sleeve gastrectomy (SG) and Roux-Y gastric bypass (RYGB) on patients with T1DM and insulin resistance. RESULTS One hundred forty-nine patients (SG n = 91 and RYGB n = 58) with obesity, T1DM, and insulin resistance were analyzed. There was no significant difference in BMI reduction and %EWL 1 year after surgery between the two groups. In the SG group, BMI reduction was 6.5 kg/m2 versus 5.9 kg/m2 in the RYGB group (p=0.406). The %EWL was 68.2 ± 25.2 in the RYGB group and 64.3 ± 21.5 in SG (p=0.332). There was also no significant difference in weight loss between the two groups (14.9 ± 5.4 kg in SG vs. 14.2 ± 7 kg in RYGB; p=0.548). In all patients, insulin requirements decreased after surgery, and in 22% of patients, insulin requirements were equivalent to those of normal-weight individuals. There was a significantly higher rate of remission of reflux in RYGB patients than in SG patients (94·44% vs 29·41; p<0.001). CONCLUSION Patients with obesity and T1DM may benefit from metabolic surgery. Both methods produce satisfactory results in this group of patients regarding daily insulin requirements and treatment of obesity-related diseases. However, the decision of which procedure should be carried out still depends on the patient's general condition and the surgeon's technical ability.
Collapse
Affiliation(s)
- Omar Thaher
- Department of Surgery, Marien Hospital Herne, Ruhr-Universität Bochum, Hölkeskampring 40, 44625, Herne, Germany.
| | - Volodymyr Iaroshevych
- Department of Surgery, SRH Hospital Naumburg, Humboldtstraße 31, 06618, Naumburg, Germany
| | - Jamal Driouch
- Department of Surgery, Marien Hospital Herne, Ruhr-Universität Bochum, Hölkeskampring 40, 44625, Herne, Germany
| | - Martin Hukauf
- StatConsult Society for Clinical and Health Services Research GmbH, Am Fuchsberg 11, 39112, Magdeburg, Germany
| | - Roland S Croner
- Department of General, Visceral, Vascular and Transplant Surgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Christine Stroh
- Department of General, Abdominal and Pediatric Surgery, Municipal Hospital, Straße des Friedens 122, 07548, Gera, Germany
| |
Collapse
|
43
|
Pilśniak A, Otto-Buczkowska E. Type 1 diabetes - What's new in prevention and therapeutic strategies? Pediatr Endocrinol Diabetes Metab 2023; 29:196-201. [PMID: 38031834 PMCID: PMC10679919 DOI: 10.5114/pedm.2023.132028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/10/2023] [Indexed: 12/01/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder, and insulin deficiency is the result of b-cell dysfunction. Treatment of type 1 diabetes requires constant parenteral insulin administration, which can be very burdensome for the patient. Meticulous use of insulin therapy does not protect the patient against complications. Hence, the search for other methods of treatment as well as ways of preventing the onset of diabetes has been ongoing for a long time. The main obstacle in the implementation of the prevention task is the need to identify people at risk of developing diabetes before the start of autoimmunity. It seems that primary prevention is still unrealistic at the moment, because we do not know all the factors leading to the activation of autoimmunity processes. Research on the use of late secondary prevention in people who develop glucose tolerance disorders or in the early period after the onset of type 1 diabetes are at the most advanced stage. Gene therapy is another attempt at an alternative treatment and prevention of type 1 diabetes and still requires further research. Recent years have brought a lot of information about the nature of type 1 diabetes and the mechanisms leading to its development. However, it has not yet been established what factors decide about the initiation of autoimmunity and what determines the dynamics of these processes.
Collapse
Affiliation(s)
- Aleksandra Pilśniak
- Department of Internal Medicine, Autoimmune and Metabolic Diseases, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | |
Collapse
|
44
|
Khorasaniha R, Olof H, Voisin A, Armstrong K, Wine E, Vasanthan T, Armstrong H. Diversity of fibers in common foods: Key to advancing dietary research. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
45
|
Yang ML, Kibbey RG, Mamula MJ. Biomarkers of autoimmunity and beta cell metabolism in type 1 diabetes. Front Immunol 2022; 13:1028130. [PMID: 36389721 PMCID: PMC9647083 DOI: 10.3389/fimmu.2022.1028130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/13/2022] [Indexed: 09/10/2023] Open
Abstract
Posttranslational protein modifications (PTMs) are an inherent response to physiological changes causing altered protein structure and potentially modulating important biological functions of the modified protein. Besides cellular metabolic pathways that may be dictated by PTMs, the subtle change of proteins also may provoke immune attack in numerous autoimmune diseases. Type 1 diabetes (T1D) is a chronic autoimmune disease destroying insulin-producing beta cells within the pancreatic islets, a result of tissue inflammation to specific autoantigens. This review summarizes how PTMs arise and the potential pathological consequence of PTMs, with particular focus on specific autoimmunity to pancreatic beta cells and cellular metabolic dysfunction in T1D. Moreover, we review PTM-associated biomarkers in the prediction, diagnosis and in monitoring disease activity in T1D. Finally, we will discuss potential preventive and therapeutic approaches of targeting PTMs in repairing or restoring normal metabolic pathways in pancreatic islets.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Richard G. Kibbey
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
46
|
Abstract
Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central sensitization.
Collapse
Affiliation(s)
- Qihua Fan
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Gordon Smith
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
47
|
Talapko J, Meštrović T, Škrlec I. Growing importance of urogenital candidiasis in individuals with diabetes: A narrative review. World J Diabetes 2022; 13:809-821. [PMID: 36311997 PMCID: PMC9606786 DOI: 10.4239/wjd.v13.i10.809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/06/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Both diabetes and fungal infections contribute significantly to the global disease burden, with increasing trends seen in most developed and developing countries during recent decades. This is reflected in urogenital infections caused by Candida species that are becoming ever more pervasive in diabetic patients, particularly those that present with unsatisfactory glycemic control. In addition, a relatively new group of anti-hyperglycemic drugs, known as sodium glucose cotransporter 2 inhibitors, has been linked with an increased risk for colonization of the urogenital region with Candida spp., which can subsequently lead to an infectious process. In this review paper, we have highlighted notable virulence factors of Candida species (with an emphasis on Candida albicans) and shown how the interplay of many pathophysiological factors can give rise to vulvovaginal candidiasis, potentially complicated with recurrences and dire pregnancy outcomes. We have also addressed an increased risk of candiduria and urinary tract infections caused by species of Candida in females and males with diabetes, further highlighting possible complications such as emphysematous cystitis as well as the risk for the development of balanitis and balanoposthitis in (primarily uncircumcised) males. With a steadily increasing global burden of diabetes, urogenital mycotic infections will undoubtedly become more prevalent in the future; hence, there is a need for an evidence-based approach from both clinical and public health perspectives.
Collapse
Affiliation(s)
- Jasminka Talapko
- Laboratory for Microbiology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek 31000, Croatia
| | - Tomislav Meštrović
- University North, University Centre Varaždin, Varaždin 42000, Croatia
- Institute for Health Metrics and Evaluation, Department for Health Metrics Sciences, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Ivana Škrlec
- Department of Biophysics, Biology, and Chemistry, Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, Osijek 31000, Croatia
| |
Collapse
|
48
|
Toren E, Liu Y, Bethea M, Wade A, Hunter CS. The Ldb1 transcriptional co-regulator is required for establishment and maintenance of the pancreatic endocrine lineage. FASEB J 2022; 36:e22460. [PMID: 35881062 PMCID: PMC9397370 DOI: 10.1096/fj.202200410r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Pancreatic islet cell development is regulated by transcription factors (TFs) that mediate embryonic progenitor differentiation toward mature endocrine cells. Prior studies from our lab and others showed that the islet-enriched TF, Islet-1 (Isl1), interacts with the broadly-expressed transcriptional co-regulator, Ldb1, to regulate islet cell maturation and postnhyperatal function (by embryonic day (E)18.5). However, Ldb1 is expressed in the developing pancreas prior to Isl1 expression, notably in multipotent progenitor cells (MPCs) marked by Pdx1 and endocrine progenitors (EPs) expressing Neurogenin-3 (Ngn3). MPCs give rise to the endocrine and exocrine pancreas, while Ngn3+ EPs specify pancreatic islet endocrine cells. We hypothesized that Ldb1 is required for progenitor identity in MPC and EP populations during development to impact islet appearance and function. To test this, we generated a whole-pancreas Ldb1 knockout, termed Ldb1ΔPanc , and observed severe developmental and postnatal pancreas defects including disorganized progenitor pools, a significant reduction of Ngn3-expressing EPs, Pdx1HI β-cells, and early hormone+ cells. Ldb1ΔPanc neonates presented with severe hyperglycemia, hypoinsulinemia, and drastically reduced hormone expression in islets, yet no change in total pancreas mass. This supports the endocrine-specific actions of Ldb1. Considering this, we also developed an endocrine-enriched model of Ldb1 loss, termed Ldb1ΔEndo . We observed similar dysglycemia in this model, as well as a loss of islet identity markers. Through in vitro and in vivo chromatin immunoprecipitation experiments, we found that Ldb1 occupies key Pdx1 and Ngn3 promoter domains. Our findings provide insight into novel regulation of endocrine cell differentiation that may be vital toward improving cell-based diabetes therapies.
Collapse
Affiliation(s)
- Eliana Toren
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanping Liu
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Maigen Bethea
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alexa Wade
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chad S Hunter
- Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
49
|
Fan Q, Gordon Smith A. Recent updates in the treatment of diabetic polyneuropathy. Fac Rev 2022. [PMID: 36311537 DOI: 10.1270/r/11-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
Distal symmetric diabetic peripheral polyneuropathy (DPN) is the most common form of neuropathy in the world, affecting 30 to 50% of diabetic individuals and resulting in significant morbidity and socioeconomic costs. This review summarizes updates in the diagnosis and management of DPN. Recently updated clinical criteria facilitate bedside diagnosis, and a number of new technologies are being explored for diagnostic confirmation in specific settings and for use as surrogate measures in clinical trials. Evolving literature indicates that distinct but overlapping mechanisms underlie neuropathy in type 1 versus type 2 diabetes, and there is a growing focus on the role of metabolic factors in the development and progression of DPN. Exercise-based lifestyle interventions have shown therapeutic promise. A variety of potential disease-modifying and symptomatic therapies are in development. Innovations in clinical trial design include the incorporation of detailed pain phenotyping and biomarkers for central sensitization.
Collapse
Affiliation(s)
- Qihua Fan
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - A Gordon Smith
- Department of Neurology, Division of Neuromuscular Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|